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Abstract

We present a shallow embedding in PVS of a predicate transformer semantics
of an imperative language suitable for reasoning about recursive procedures
with parameters and local variables. We use the PVS dependent type mech-
anism for implementing program variables of different types. We use an un-
interpreted state space and define the program variables behavior by means
of certain tree functions that are supposed to satisfy some axioms. Unlike in
the implementations mentioned in the literature, we do not need to change
the state space when adding local variables or procedure parameters.



1 Introduction

Refinement calculus developed by Back [1] and later by Morris [14], and Mor-
gan [13], is a generalization of the predicate transformer semantics introduced
by Dijkstra [8]. Mechanizations of programming logics, in general, and refine-
ment calculus, in particular, have been widely studied [9, 18, 19, 10, 11, 12, 6].

An important issue when mechanizing a programming logic is how to im-
plement the state. For the mechanization to be of any use the program vari-
ables should be able to be of different types. Many implementations [5, 12, 6]
solve this problem by representing states as tuples, with one component for
each program variable. However, since program variables are identified with
the projection functions of the tuple, manipulating programs with many vari-
ables becomes very inefficient due to the terms becoming very large. Perhaps
a more important drawback of such a representation is the need to add or
remove components from the tuple whenever local variables are added or
deleted. As a result, when the programming language has recursive proce-
dures with parameters, recursive calls need to be made in a different state
space; this adds much complexity to the calculus. In some mechanizations
[19] this problem is solved by considering the predicates transformers over
all possible state spaces. Others avoid the problem altogether by handling
only parameterless procedures [11, 20].

We provide a PVS [17] implementation based on the theory developed in
[2] where the state model allows the handling of recursive procedures with
parameters without requiring any state changes. As a result, the procedure
semantics and refinement rules become quite simple. In particular, the rule
for introducing recursive procedures has no side conditions and does not
involve the parameters or local variables. The rules for local variables and
procedure parameters are almost as simple as the ordinary assignment rule,
and their side conditions are decidable.

We consider the state space to be an uninterpreded type State and define
the behavior of the program variables using tree primitive functions val(x),
set(x), and del(x), where x is a program variable. The term val(x)(s) gives the
value of x in the state s, set(x)(a)(s) gives the state obtained from s by setting
the value of x to a, and del(x)(s) gives the state obtained from s by deleting
the local variable x. The function del(x) pops a value from the computation
stack and assigns it to x. The behavior of these functions is introduced by
a set of axioms, which are proved consistent using the theory interpretation
mechanism of PVS [16]. The program variables themselves can have different
types (among those listed in a customized ProgVar datatype).

The resulting mechanized theory is very general: adding new types for
program variables requires few changes (related to ProgVar); the rest can be
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reused without additional proofs. For example we can easily add program
variables ranging over bounded integers, floating point numbers, or have a
rich algebra of data types.

In Section 2 we present some facts about PVS. Sections 3 and 4 introduce
the program variables representation and the program expressions. In Section
5 the theory of complete lattices is introduced, and in Section 6 we build
the complete lattice of monotonic predicate transformers. We introduce the
assignment and local variables rule in Section 7. Section 8 presents the
semantics for procedures and introduces the refinement rule for recursive
procedures. In Section 9 we show how this theory can be used to refine
a recursive procedure with parameters from its specification. Section 10
contains concluding remarks and comments on future work.

2 Preliminaries PVS

PVS is a specification and verification system whose language is based on
classical, typed higher-order logic [7]. The base types include uninterpreted
types that may be introduced by the user, and built-in types such as the
booleans (bool), naturals (nat), integers (int), and reals (real); the type-
constructors include functions, sets, tuples, disjoint unions, records, and ab-
stract data types [15], such as lists and binary trees.

PVS specifications are organized into parameterized theories that may
contain assumptions, definitions, axioms, and theorems. Definitions are guar-
anteed to provide conservative extension. PVS also provides a theory inter-
pretation mechanism that can be used to prove consistency of theories that
contains axioms.

The PVS theorem prover provides a collection of powerful primitive in-
ference procedures that are applied interactively under user guidance within
a sequent calculus framework. The primitive inferences include propositional
and quantifier rules, induction, rewriting, and decision procedures for linear
arithmetic. User-defined procedures can combine these primitive inferences
to yield higher-level proof strategies.

We use some mathematical simplified notations and symbols instead of
the PVS syntax. We use ∧, ∨, ¬, ∀, ∃, ⇒, ≤, →, ∅ instead of and, or, not,
forall, exists, =>, <=, −>, emptyset. We also write ∀x : T • b instead of the
PVS syntax forall (x : T) : b. We use a sanserif font for identifiers.

PVS language supports predicate subtypes that increase the expressivity
of specifications. For a PVS type T the type of predicates (sets) over T is
denoted by set[T] or pred[T] and is equal with the type of all functions from
T to bool. For a predicate P : pred[T] over some type T, PVS has primitives
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to create a subtype of T based on the predicate P. The new type is denoted
by (P) and PVS knows that the elements of (P) are elements of T too. If we
assert that some element of T has the type (P) than a type condition constrain
is generated. PVS tries to automatically prove such constrains using built-in
tactics; if the attempt fails, the user needs to prove them interactively.

For two PVS types T, T′ the type of all function from T to T′ is denoted
by T → T′, the type of the disjoint union is denoted by [T + T′], and the type
of the cartesian product is denoted [T, T′]. For the cartesian product type
the functions proj1 : [[T, T′] → T] and proj2 : [[T, T′] → T′] are the projection
functions. For the disjoint union type the function in1 : [T → [T + T′]] is the
inclusion function, and in?1 is a predicate on [T + T′], which is true for the
elements in the first component of the union. out1 : [(in?1) → T] is a bijective
function and its inverse is in1 co-restricted to (in?1). Similarly the functions
in2?, in2, and out2 correspond to the second component of the union.

PVS also supports dependent types, i.e. functions can have the type of
the result depend on their arguments or the argument types can depend on
the previous arguments. However the dependent types can only be subtypes
a given common type or user defined uninterpreted types. As an example of a
dependent type, consider the function that computes the binomial coefficient
“n choose k”. Its second argument k depends on n, k ≤ n:

comb(n : nat, k : upto(n)) = . . .

We also use in this paper the PVS abstract data type of lists over a
type T, list[T]. The empty list is null : list[T], and if a : T and x : list[T] then
cons(a, x) : list[T] is the list that has head a and tail x.

Instead of using the PVS style for writing recursive definitions we use a
mathematical notation that can be straightforwardly translated to PVS. For
example we define the sum of the elements of a list of numbers by:

sum(null) : nat = 0

sum(cons(a, x)) : nat = a + sum(x)

instead of

sum(x : list[nat]) : recursive nat =

cases x of

null : 0,

cons(a, y) : a + sum(y)

endcases

measure length(x)

If f : [T → T′] and X : pred[T] then image(f, X) is a predicate on T′ and
is true on the elements of T′ that are in the image of X.
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3 Program variables representation

3.1 Program variables types

Our program variables can be of type real, int, nat, or bool. The behavior of
program variables is defined using the tree functions set, val, and del which,
in turn, are defined using the PVS dependent type mechanism. In order to
be able to define them we need to create our own types Real, Int, Nat, and
Bool, so that they are all subtypes of a given type. So we define in PVS:

ProgType : type+ = [real + bool]

Bool? : [ProgType → bool] = in?2

Bool : type+ = (Bool?)

ProgType is the type of the disjoint union of the PVS types real and bool.
Bool? is a predicate on ProgType which is true only for elements of the second
component of ProgType. In a similar manner we define the predicates Nat?,
Int? and Real? and the corresponding types

Nat ⊆ Int ⊆ Real ⊆ ProgType.

We also lift some operations on bool, real, int, and nat to our Bool, Real,
Int, and Nat, for example:

false : Bool = in2(false)

(x − y) : Real = in2(out1(x) − out1(y))

minus nat : judgment − (k, n : Nat) has type Int

3.2 Program variables

We define the type of all program variables as:

ProgVar : datatype

begin

b(name : string) : BoolVar?

r(name : string) : RealVar?

i(name : string) : IntVar?

n(name : string) : NatVar?

end
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For a program variable x : ProgVar we define the predicate T?(x) on ProgType

to be Bool?, Real?, Int?, or Nat? depending on x being from (BoolVar?),
(RealVar?), (IntVar?), or (NatVar?). We define the type of the program vari-
able x, T(x) as the PVS type corresponding to the predicate T?(x). For two
program variables x and y we define the predicate SameType(x)(y) to be true
if and only if T?(x) = T?(y). We denote by elem(x) some arbitrary but fixed
element of type T(x).

3.3 Program variables axioms

Now we are able to introduce the functions for handling program variables
and the axioms that define their properties. We define them in a parametric
theory ProgVarAxiom(State : type+) whose parameter is the uninterpreted
type State.

set : [x : ProgVar → [T(x) → [State → State]]]

val : [x : ProgVar → [State → T(x)]]

del : [x : ProgVar → [State → State]]

The function set takes as parameters a program variable x, a value a : T(x)
and a state s and returns a state where the variables x is set to a. val(x)(s)
returns the value of x in state s, and del(x)(s) deletes a value from the stack
in state s and assigns it to x.

Instead of defining the type State and defining the functions set, val and
del as operations on this type, we introduce the behavior of set, val and del

with a collection of axioms:

var a : axiom ∀a : T(x) • val(x)(set(x)(a)(s)) = a

var b : axiom ∀a : T(x) • x 6= y ⇒ val(y)(set(x)(a)(s)) = val(y)(s)

var c : axiom ∀a, b : T(x) • set(x)(b) ◦ set(x)(a) = set(x)(b)

var d : axiom ∀a : T(x), b : T(y) • x 6= y ⇒

set.(x)(a) ◦ set(y)(b) = set(y)(b) ◦ set(x)(a)

var e : axiom set(x)(val(x)(s))(s) = s

var f : axiom del(x) is surjective

var g : axiom x 6= y ⇒ val(x) ◦ del(x) = val(x)

var h : axiom del(x) ◦ set(x)(a) = del(x)

var i : axiom ∀a : T(x) • x 6= y ⇒

del(y) ◦ set(x)(a) = set(x)(a) ◦ del(y)
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In order to show that these axioms are consistent we use the PVS theory
interpretation mechanism [16]. In a new theory prog var model we define
the type State as

State = [[x : ProgVar → T(x)], list[ProgType]]

The first component of the tuple stores the values of the program variables
and the second component is the stack of the computation. We denote by
stack(s) = proj2(s) and define set m, val m, and del m by

val m(x)(s) = proj1(s)(x)

set m(x)(a)(s) = (λy • if x = y then a else val(y)(s) fi, stack(s))

del m(x)(s) = (λy • if x = y then a0 else val(y)(s) fi, st0)

where

(a0, st0) =

{

(a, t) if stack(s) = cons(a, t) ∧ T?(x)(a)
(elem(x), stack(s)) otherwise

We import in this theory the theory of program variables axioms instantiating
val, set, and del with set m, val m, and del m, and all the axioms are proved
valid in this model.

3.4 List of program variables

In order to reason about procedures with parameters we need to introduce
lists of program variables. We introduce the type ProgVarList as list[ProgVar]
and we inductively extend all elements defined on program variables to lists
of program variables. For example we extend T? and val to lists of program
variables with:

T?(null)(null) = true

T?(cons(x, y))(cons(a, b)) = T?(x)(a) ∧ T?(y)(b)

val(null)(s) = null

val(cons(x, y))(s) = cons(val(x)(s), val(y)(s))

We also need some additional operations on lists of program variables We
define a predicate variable : ProgVarList → bool such that variable(x) is true if
and only if all variables in x are distinct:

variable(null) = true

variable(cons(x, y)) = ¬member(x, y) ∧ variable(y)

6



If x, y ∈ ProgVarList then the predicate x ∩ y on ProgVar, and the list
x − y : ProgVarList are defined by

x ∩ y = λz : ProgVar • member(z, x) ∧ member(z, y)

x − y =











null if x = null

cons(u, z − y) if x = cons(u, z) ∧ ¬member(u, y)
z − y if x = cons(u, z) ∧ member(u, y)

All program variables axioms can be extended to lists of program vari-
ables. If x, y are lists of program variables of appropriate types then:

var list a : lemma ∀a : T(x) • variable(x) ⇒val(x)(set(x)(a)(s)) = a

var list b : lemma ∀a : T(x) • x ∩ y = ∅ ⇒ val(y)(set(x)(a)(s)) = val(y)(s)

var list c : lemma ∀a, b : T(x) • set(x)(b) ◦ set(x)(a) = set(x)(b)

var list d : lemma ∀a : T(x), b : T(y) • x ∩ y = ∅ ⇒

set.(x)(a) ◦ set(y)(b) = set(y)(b) ◦ set(x)(a)

var list e : lemma set(x)(val(x)(s))(s) = s

var list f : lemma del(x) is surjective

var list g : lemma x ∩ y = ∅ ⇒ val(x) ◦ del(x) = val(x)

var list h : lemma del(x) ◦ set(x)(a) = del(x)

var list i : lemma ∀a : T(x) • x ∩ y = ∅ ⇒

del(y) ◦ set(x)(a) = set(x)(a) ◦ del(y)

The proofs of these lemmas are done by induction on x and y and using some
additional lemmas.

In the rest of the implementation we mainly work with lists of program
variables.

4 Program expressions

Because we give a shallow embedding of a predicate transformer semantics of
imperative program constructs we need to solve some problems that would
be straightforward if we had access to the syntax. We define program ex-
pressions of some type E as the functions from State to E.

ProgExp : type+ = [State → E]

We also define substitution and freeness. Assuming x : ProgVar, e′ : [State

→ T(x)], e : ProgExp, and s : State we define:
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subst(x, e′, e)(s) : ProgExp = e(set(x)(e′(x))(s))

We also need to specify when a variable does not occur free in an expression.
We define a more general concept of freeness. If f : State → State then

free(f)(e) : bool = (e ◦ f = e)

i.e. e is f free if the state transformer f does not change e. We also define:

freeset(x)(e) = ∀a : T(x) • free(set(x)(a)(e)

i.e. the expression e remains unchenged when the variable x changes.
The expressions defined so far depend not only on the values of the pro-

gram variables, but also on the stack. We define a special form of program
expressions that only depend on the current values of the program variables.
If s, s′ : State then

valeq(s, s′) : bool = (∀y • val(y)(s) = val(y)(s′))

valdet(e) : bool = (∀s, s′ • valeq(s, s′) ⇒ e(s) = e(s′))

5 Complete lattices, least fixpoints

We introduce some theories about complete lattices and use them to give
semantics to recursive procedures.

We first introduce a theory for partial orders in which we define least
upper bounds and greatest lower bounds.

po[A : type+] : theory

importing orders[A]

po : type = (partial order?)

≤: var po

p : var pred[A]

x, y : var A

We define the upper bound ub?(≤)(p), and least upper bound lub?(≤)(p)
as predicates on A.

ub?(≤)(p)(x) : bool = (∀y : (p) • y ≤ x)

lub?(≤)(p)(x) : bool = ub?(≤)(p)(x) ∧ (∀y : (p) • ub?(≤)(p)(y) ⇒ x ≤ y)
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Similarly we define the predicates lb?(≤)(p) – lower bound, glb?(≤)(p)
– greatest lower bound, top?(≤) – top element, and bottom?(≤) – bottom
element. We also prove properties of these predicates. For example we prove
that if a partial order ≤ has least upper bounds than it has greatest lower
bounds, top, and bottom. We prove that the least upper bound, greatest
lower bound, top, and bottom are unique. We also define the predicates
exists glb?, exists lub?, exists top?, and exists bottom? on partial orders

exists lub?(≤) : bool = (∀p : exists1(lub?(≤)(p))

We define the predicate cl? on partial orders over L as

cl?(≤) : bool = exists glb?(≤) ∧ exists lub?(≤) ∧
exists bottom?(≤) ∧ exists top?(≤)

(1)

and we take cl = (cl?) the corresponding type. Although it is sufficient to
define that a partial order is a complete lattice if it has least upper bounds,
we prefer definition (1) because we want all properties listed in (1) when
we expand the definition of cl?. When proving that some partial order is a
complete lattice we use the following judgment:

lub is cl : judgment (exists lub?) subtype of cl

and prove only that the order has least upper bounds. If ≤: cl and p : set[L]
then we define

inf(≤)(p) : (glb?(≤)(p))

sup(≤)(p) : (lub?(≤)(p))

bottom(≤) : (bottom?(≤))

top(≤) : (top?(≤))

Very often it is more convenient to work with an operation from an in-
dexed family of elements from A to A instead of an operation from set[A] to
A:

op : var [set[A] → A]

f : var [[I → A] → A]

family(op)(f) = op(image(f, λx : A • true))

conversion family

We define predicates by lifting the order on the boolean algebra with
two elements to predicates; then we lift the complete lattice of predicates to
predicate transformers. For this purpose we lift the complete lattice order ≤
on L to a complete lattice order on T → L where T is a nonempty type.
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lift(≤) : cl[[T → L]] = λf, g • ∀x • f(x) ≤ g(x)

We prove as a type constrain condition that lift(≤) is a complete lattice
partial order.

If ≤ is a complete lattice partial order on L then we define the predicate
monotonic?(≤) on [L → L]; and the predicates fixpoint fixpoint?(≤)(f), and
least fixpoint lfp?(le)(f) on L given by

monotonic?(≤)(f) : bool = ∀x, y • x ≤ y ⇒ f(x) ≤ f(y)

fixpoint?(≤)(f)(x) : bool = f(x) = x

lfp?(≤)(f)(x) : bool = fixpoint?(≤)(f)(x) ∧ ∀y •
fixpoint?(≤)(f)(y) ⇒ x ≤ y

We are able now to introduce and prove the Knaster Tarski theorem
about the existence of a least fixpoint of a monotonic function on a complete
lattice.

KnasterTarski : theorem monotonic?(≤)(f) ⇒ ∃x • lfp?(≤)(f)(x)

Using this theorem we define mu(≤)(f) : L, the least fixpoint of the monotonic
function f by

mu(≤)(f) : lfp?(≤)(f)

6 Predicates, relations, functions, and mono-

tonic predicate transformers

We introduce a complete lattice order on bool, and define inf and sup by

≤: cl[bool] = λx, y • x ⇒ y

inf(a : [bool → bool]) : (glb?(≤)(a)) = ¬a(false)

sup(a : [bool → bool]) : (lub?(≤)(a)) = a(true)

and prove as type constrain conditions that ≤, inf, and sup have the postu-
lated properties.

The complete lattice of predicates over State is obtained by lifting the
complete lattice on bool to State → bool. We also extend some operations
from bool to Pred[bool].

≤: cl[Pred[bool]] = λp, q • ∀s • p(s) ⇒ q(s)

∧(p, q : Pred[bool]) : Pred[bool] = λs • p(s) ∧ q(s)
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union(t : set[Pred[bool]]) : Pred[bool] = λs • ∃p : (t) • p(s)

intersection(t : set[Pred[bool]]) : Pred[bool] = λs • ∀p : (t) • p(s)

We introduce the monotonic predicate transformers MTran as a subtype
of [Pred[State] → Pred[State]] and define the complete lattice partial order on
MTran together with some operations:

MTran? : Set[[Pred[State] → Pred[State]]] = monotonic?(≤)

MTran : type+ = (MTran?)

≤: cl[MTran] = λS, S′ • λq • S(q) ≤ S′(q)

union(X : Set[MTran]) : (lub?[MTran](≤)(X)) =

λq • union(λS : (X) • S(q))

intersection(X : Set[MTran]) : (lub?[MTran](≤)(X)) =

λq • intersection(λS : (X) • S(q))

Magic : (top?[MTran](≤)) = λq • true

Abort : (bottom?[MTran](≤)) = λq • false

∧(S, T : MTran) : MTran = λq • S(q) ∧ T(q)

∨(S, T : MTran) : MTran = λq • S(q) ∨ T(q)

The partial order ≤ on MTran is the refinement relation. The predicate
transformer S ∧ T models demonic choice – the choice between executing S

or T is arbitrary; S ∨ T models angelic choice – the choice is resolved so that
the postcondition is established, if possible. The program sequential com-
position is modeled by the functional composition ◦ of monotonic predicate
transformers.

Often we work with predicate transformers based on functions or rela-
tions. We introduce the types Func and Rel by

Func : type+ = [State → State]

Rel : type+ = [State → Pred]

and define the identity function id : Func = λs : State • s.
If p, q : Pred, R : Rel, f : Func, s, s′ : State, and S, T : MTran then we define

f update(f) : MTran = λq, s • q(f(s))

d update(R) : MTran = λq, s • ∀s′ • R(s)(s′) ⇒ q(s′)

Assert(p) : MTran = λq • p ∧ q

Assume(p) : MTran = λq • p ⇒ q

If(p)(S)(T) : MTran = (Assume(p) ◦ S) ∧ (Assume(¬p) ◦ T)
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We also prove the following property:

assert union : lemma Assert(union(X)) = union(image(Assert, X))

where X : Set[Pred].

7 Assignment and local variables statements

Now we are able to introduce the program statements for handling program
variables. We define two versions of the assignment statement. The de-
terministic multiple assignment statement Assign(x, e) where x is a list of
program variables and e is a program expression of type T(x) is given by:

Assign(x, e) : MTran = f update(λs • set(x)(e(s))(s))

The nondeterministic assignment statement [3], Assign(x, b), where x is a
list of program variable and [b : T(x) → [State → bool]] is given by:

Assign(x, b) : MTran =

d update(λs, s′ • ∃a :T(x) • b(a)(s) ∧ s′ = set(x)(a)(s)

The interpretation of this statement is that x is assigned a value a such that
b(a) is true in the initial state.

We introduce four program constructs for handling introduction and dele-
tion of local program variables.

Del(x) : MTran = f update(del(x))

Add(x) : MTran = d update(λs, s′ • s = del(x)(s′))

Add(x, e) : MTran = d update(λ s, s′ • s = del(x)(s′) ∧ val(x)(s′) = e(s))

Del(x, y) : MTran = f update(λ s • set(y)(val(x)(s))(del(x)(s))

where e : State → T(x) and y : SameType(x). The statement Del(x) deletes
the local variables x, i.e., according to the model presented above, it pops up
the top value from the stack and assigns it to x. The statement Add(x) is the
inverse of Del(x), i.e., according to the model, it pushes the value of x into
the stack and makes x undefined. Add(x, e) is similar to Add(x), but it also
initializes x with the value of the program expression e in the initial state.
The statement Del(x, y), deletes the local program variables x, but saves their
values in y. We have proved the following refinement rules for the program
statements we introduced.
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add del skip : lemma Add(x) ◦ Del(x) = Skip

add exp del skip : lemma ∀e : [State → T(x)] •

variable(x) ⇒ Add(x, e) ◦ Del(x) = Skip

assign x del x : lemma ∀e : [State → T(x)] •

Assign(x, e) ◦ Del(x) = Del(x)

assign y del x : lemma ∀e : [State → T(x)] •

x ∩ y = ∅ ∧ free(del(y))(e) ⇒

Assign(x, e) ◦ Del(y) = Del(y) ◦ Assign(x, e)

assign x del x y : lemma ∀y : SameType(x), e : [State → T(x)] •

variable(x) ∧ free(del(x))(e) ⇒

Assign(x, e) ◦ Del(x, y) = Del(x) ◦ Assign(y, e)

p, q : var Pred

add x : lemma Add(x)(q ◦ del(x)) = q

add x free : lemma free(del(x))(q) ⇒ Add(x)(q) = q

add x e : lemma ∀e : [State → T(x)] •

variable(x) ⇒ Add(x, e)(q ◦ del(x)) = q

add x e free : lemma ∀e : [State → T(x)] •

variable(x) ∧ free(del(x))(q) ⇒ Add(x, e)(q ◦ del(x)) = q

add x e subst : lemma ∀e : [State → T(x)] •

variable(x) ∧ valdet(q) ⇒ Add(x, e)(q) = subst(x, e, q)

del x : lemma Del(x)(q) = (q ◦ del(x))

del x free : lemma free(del(x))(q) ⇒ Del(x)(q) = q

del x y : lemma ∀y : SameType(x) •

freeset(y)(q) ⇒ Del(x, y)(q) = q ◦ del(x)

del x y free : lemma ∀y : SameType(x) •

freeset(y)(q) ∧ free(del(x))(q) ⇒ Del(x, y)(q) = q

del x y subst : lemma ∀y : SameType(x) •

valdet(q) ∧ freeset(x − y)(q) ⇒ Del(x, y)(q) = subst(y, val(x), q)

Lemma add del skip asserts that adding a local variable followed by deleting
it is the same as skipping. Lemmas add x e subst and del x y subst state
that under certain conditions the statements Add(x)(e) and Del(x)(y) behave
as assignment statements.

All conditions of the rules presented above are decidable and one could
write tactics that automatically prove them.
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8 Procedures

A procedure with parameters from A or simply a procedure over A, is an
element from A → MTran. We define the type Proc : type+ = A → MTran

the type of all procedures over A. The type A is the range of the procedure’s
actual parameters. For example, a procedure with a value parameter x and a
result parameter y, both of type Nat, has A = NatExp × NatVar. A call to a
procedure P ∈ Proc[A] with the actual parameter a : A is the program P(a).

We use again the lifting mechanism we used to obtain a complete lattice
over predicates to lift the complete lattice structure from monotonic predicate
transformers to procedures over A. We also extend sequential composition
to procedures by

P ◦ P′ : Proc = λx • P(x) ◦ P′(x)

Moreover we lift the algebraic structure on predicates to parametric predi-
cates, ParamPred : type+ = A → Pred and define

Assert(p : PramPred) : Proc = λx • Assert(p(x))

Recursive procedures are defined as the least fixpoint of a monotonic func-
tion from Proc to Proc. To introduce the theorem for refining recursive proce-
dures we need a well founded partial order on a set W, <: (well founded?[W]).
For w : W and p : [W → ParamPred] we define

below(p)(w) : ParamPred =

union(λx : ParamPred • ∃v : W • v < w ∧ p(v) = x)

and the theorem is

rec proc rule : theorem

(∀w • Assert(p(w)) ◦ P ≤ f(Assert(below(p)(w)) ◦ P)) ⇒

Assert(union(p)) ◦ P ≤ mu(≤)(f)

9 Example

All the elements introduced so far are sufficient to define and reason about
recursive procedures with value, value-result parameters and local variables.
We give a recursive procedure that computes the binomial coefficient

(

n

k

)

=
n!

k! · (n − k)!
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using the recursive formula

(

n

k

)

=

(

n − 1

k − 1

)

+

(

n − 1

k

)

when 0 < k < n.
The specification of this computation is:

fact(n : nat) : recursive nat =

if n = 0 then 1 else n ∗ fact(n − 1)

measure n

comb(n : nat, k : upto(n)) : nat = fact(n)/(fact(k) ∗ fact(n − k))

comp proc spec : Proc[[NatExp, NatExp, NatVar]] =

λ (e, f, u) • Assign(u, comb(e, f))

where u is a variable of type NatVar, e, f are variables of type NatExp, and
comb(e, f)(s) : Nat = if f.s ≤ e.s then comb(f.s, e.s) else 0 fi. The type of the
parameters of this specification procedure is A = [NatExp, NatExp, NatVar].

To define the procedure for computing the binomial coefficient we need
some program variables for the formal procedure parameters and for the local
variables:

k : NatVar = n(”k”)

n : NatVar = n(”n”)

c : NatVar = n(”c”)

x : NatVar = n(”x”)

y : NatVar = n(”y”)

Assuming the following definitions

eq(e, f : [State → E])(s) : bool = e(s) = f(s)

conversion λx : ProgVarList • cons(x, null)

& (x : ProgVar, y : ProgVarList) : ProgVarList = cons(x, y)

conversion val

conversion λe : [State → ProgType] • λs • cons(e(s), null)

conversion λa : ProgType • λs • cons(a, null)

conversion λx • λs • cons(val(x)(s), null)

a : var [State → ProgType]

b : var [State → list[ProgType]]

15



& (a, b) : [State → list[ProgType]] = λs • cons(a(s), b(s))

We introduce the function that defines the procedure by taking its fix-
point:

comb body : monotonic[Proc[A]](≤) = λ comb • λ (e, f, u) •

Add (n & k & c, e & f & u) ◦

Add (x & y) ◦

If eq (k, 0) ∨ eq (k, n) then

Assign (c, 1)

else

comb (k − 1, n − 1, x) ◦

comb (k, n − 1, y) ◦

Assign (c, x + y)

endif ◦

Del (x & y) ◦

Del (n & k) ◦

Del (c, u)

and the procedure definition is:

comb proc : Proc[A] = mu(comb body)

We are able to prove now that the specification comb proc spec is refined
by the procedure comb proc under the assertion e ≤ f.

comb refin : theorem

Assert(λ (e, f, u) • e ≤ f) ◦ comb proc spec ≤ comb proc

10 Conclusions, future work

We have presented a PVS implementation of a predicate transformer seman-
tics suitable for refinement of recursive procedures with parameters and local
variables. Since in our approach the state space does not change when adding
local variables or using procedure parameters, the refinement rule for intro-
duction of recursive procedure calls does not have (syntactic) side conditions
and does not involve the procedure parameters or the local variables. The
refinement rules for local variables and procedure parameters have decidable

16



side conditions and are almost as simple as the assignment rules. More-
over, the theory is general and we can plug in without additional proofs any
“algebra” of program variables types.

Although mutually recursive procedures are not mentioned in this paper,
they can be easily included by lifting the structure of complete lattices on
procedure types to their cartesian product. More concretely, if P : Proc[A]
and P′ : Proc[B] are two mutually recursive procedures, then their semantics
is the least fixpoint of a monotonic function from [Proc[A], Proc[B]] to itself.

In future work we intend to improve the handling of program expressions
so that lifting properties from the PVS basic types to program expressions
becomes seemless and can exploit better the power of the theorem prover.
Another interesting direction would be to extend the program variables data
types with pointer structures [4].
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