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Abstract

Word equations of the form z* = z]fl zé” -+ zkn are considered in this paper.
In particular, we investigate the case where x is of different length than z;,
for any 7, and k and k; are at least 3, for all 1 < i < n, and n < k. We
prove that for those equations all solutions are of rank 1, that is, x and z; are
powers of the same word for all 1 < i < n. It is also shown that this result
implies a well-known result by K.I. Appel and F. M. Djorup about the more
special case where k; = k; for all 1 <i < j < n.

Keywords: combinatorics on words, word equations

TUCS Laboratory

Discrete Mathematics for Information Technology



1 Introduction

Word equations of the form

2t =2ty (1)
have long been of interest, see for example [7, 5, 1]. Originally motivated
from questions concerning equations in free groups special cases of (1) in free
semigroups were investigated. For example

x® = Mk
is of rank 1 which was shown by Lyndon and Schiitzenberger [7], and Lentin
[5] investigated the solutions of

= zflz§22§3

which has solutions of higher rank, see Example 6, and Appel and Djorup
[1] investigated
We show in Theorem 5 of this paper that equations of the form (1) are of
rank 1, if all exponents are larger than 2 and n < k£ and x is not a conjugate
of z; for any 1 < ¢ < n. This result straightforwardly implies Theorem 7
by Appel and Djorup [1].

We continue with fixing some notation. More basic definitions can be
found in [6]. Let A be a finite set and A* be the free monoid generated by A.
We call A alphabet and the elements of A* words. Let w = wuyw(a) - - - we)
where w; is a letter, for every 1 < ¢ < n. We denote the length n of w by |w].
An integer 1 < p < n is a period of w, if wu)y = wiyy) forall 1 <i <n —p.
A nonempty word u is called a border of a word w, if w = uv = v'u for some
suitable words v and v'. We call w bordered, if it has a border that is shorter
than w, otherwise w is called unbordered. A word w is called primitive if
w = u* implies that k = 1. We call two words v and v conjugates, denoted
by u ~ v, if u = zy and v = yx for some words x and y. Let [u] = {v | u ~ v}
and w* = {w' | i > 0}.

Let 3 be an alphabet. A tuple (u,v) € ¥* x ¥* is called word equation
in Y, usually denoted by u = v. Let u,v € ¥* be such that every letter of X
occurs in v or v. A morphism p: ¥* — A* is called a solution of u = v, if
o(u) = ¢(v). The rank of a solution ¢ of an equation v = v is the minimum
rank of a free subsemigroup that contains ¢(X). The rank of an equation is
the maximum rank of all its solutions.



2 Some Known Results

The following theorem was shown by Fine and Wilf [2]. As usual, ged denotes
the greatest common devisor.

Theorem 1. Let w € A*, and p and q be periods of w. If we have that
lw| > p+ q— ged{p, ¢} then ged{p,q} is a period of w.

The following lemma is a consequence of Theorem 1; see [3].

Lemma 2. Let w € A* and p be the smallest period of w. Then, for any
period q of w, with ¢ < |w| — p, we have that q is a multiple of p.

The following theorem follows Lyndon and Schiitzenberger’s proof [7] for
free groups. See also [4] for a short direct proof and the following Lemma 4.

Theorem 3. Let z,y,z € A* and 4,5,k > 2. If ' = y/2* then z,y, 2 € w*
for some w € A*.

Lemma 4. Let x,z € A* be primitive and nonempty words. If 2™ is a fac-
tor of x* for some k,m > 2, then either (m — 1)|z| < |z| or z and z are
conjugates.

Proof. Assume that (m — 1)|z| > |z|. Then 2™ has two periods |z| and |z|,
and hence, a period ged{|z|,|z|} by Theorem 1. Now, |z| = |z| and = and z
are conjugates. ]

3 The Main Result

The following theorem is the main result of this paper. It shows that the
solutions of a word equation of the form z¥ = 21252 ... 25 are necessarily of

n
rank 1 under certain conditions.

Theorem 5. Let n > 2 and x,z; € A* and |x| # |z)| and k,k; > 3, for all
1<i<n. If2* :zflz?---z,'fb" and n < k then x, z; € w*, for some w € A*
and all1 <1 <n.
Proof. Assume w.l.o.g. that z, z;, for all 1 < i < n, are primitive words. Note,
that |2¥~!| < |2| by Lemma 4, and therefore |z;| < |z| for all i.

If n < k then let f be an unbordered conjugate of x, and z* = z f* 12,
with x = xox;. Let us illustrate this case with the following drawing.
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By the pigeon hole principle there exists an ¢ such that f is a factor of ZZ]’“
But now, f is bordered; a contradiction.

Assume n = k in the following. Let us illustrate this case with the
following drawing.

k1 ko k3 Zi%

From k; > 3, for all 1 < ¢ < n, follows that there exists a primitive word
z € A* such that for every i with |z| < |2 ;| is the smallest
period of x and z; € [z] by Lemma 2.

There exists an i such that |z| < |25 We also
have for all 1 < i < n that, if [z| < |2 |zlfﬂl| < |z|, otherwise either
2z is not primitive or « € z§, with 2y € [z], and z is not primitive. Similarly

for z;_;. Moreover, we have that all factors zfj with |z| < |z]kJ| oceur in
a word u which is a factor of zzx and |u| < |z| + |2| otherwise z**!, for
some 1 <4 < n, and xx have a common factor of length greater or equal to

|z| + |z] and either x or z is not primitive. Consider the following drawing.

k.
Zj/

Therefore, we have for every i with |z| < |2 Z:ﬁ < |zz| because
|zit1] < |z| and otherwise 2z is not primitive. This proves the case for k > 3
since then |27 2 (for k; > 3 for all 1 <1i < n is required), for every
i such that |z| < |2F|, Mok gkn| < |2]; a contradiction.

The case k = 3 remains. Since we can construct from one equation a new
one of the same rank by cyclic shifts, we can assume that |z| < [252|. Let us

consider the following drawing for example.

Zkl Zkg Zkg

By the arguments above, we have that |zll| < |z and |28*] < |z|. Now,
|2k 1| < |z| < |#*| and |zk2] < |2 |53, Let 2 = 2212 where 2 € [2]
and z{, is a prefix of 2’. Let g be an unbordered conjugate of 2z’ such that

"= g1990, where g = gog1 and 2’ = g19o. We get a contradiction, if



lg19] < |21 since then 2§' covers g, and hence, g is bordered. So, as-
sume |gig| > [2M]. But now, |2¥282| < |zzgy|, because we have that
lgozbx| < |252| < |z| + |2| < |gozhzg1|, and g is covered by 2¥*; a contradiction
again. O]

The following example shows why the condition |x| # |z;| is needed in
Theorem 5.

Example 6. Consider x* = 232323, There exists a solution ¢ of rank 2 with

p(x) = ¢(z1) = a’0® and p(z2) = a® and p(z3) = b°.
Theorem 5 implies the following result by Appel and Djorup [1].

Theorem 7. Letn > 2 and x,z; € A*, for all 1 <i <n. If2¥ = zfzé“ . --zﬁ
with n < k, then x, z; € w*, for some w € A* and all 1 < i < n.

Proof. If n = 2 the result follows from Theorem 3. Assume n > 2 in the
following. Let Z and Z; denote the primitive roots of x = z° and z = Zfi, for
all 1 <17 < n, respectively. Then we have

gt = ghkglek . gk (2)

If there exists an @ such that |z;| = |Z| then z; ~ Z and we have the equation
0=k _ slikzlek  Sliciklink otk

x =c1 ~2 Zi-1 Fitl “n (3)

which has not a higher rank than (2). Since(3) meets our assumptions this
reduction can be iterated until either n = 2 or |z;| # |z| for all 1 < i < n.
But, then Theorem 5 gives the result. O
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