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Abstract

Word equations of the form xk = zk1

1 zk2

2 · · · z
kn
n are considered in this paper.

In particular, we investigate the case where x is of different length than zi,
for any i, and k and ki are at least 3, for all 1 ≤ i ≤ n, and n ≤ k. We
prove that for those equations all solutions are of rank 1, that is, x and zi are
powers of the same word for all 1 ≤ i ≤ n. It is also shown that this result
implies a well-known result by K. I. Appel and F.M.Djorup about the more
special case where ki = kj for all 1 ≤ i < j ≤ n.
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1 Introduction

Word equations of the form

xk = zk1

1 zk2

2 · · · z
kn

n (1)

have long been of interest, see for example [7, 5, 1]. Originally motivated
from questions concerning equations in free groups special cases of (1) in free
semigroups were investigated. For example

xk = zk1

1 zk2

2

is of rank 1 which was shown by Lyndon and Schützenberger [7], and Lentin
[5] investigated the solutions of

xk = zk1

1 zk2

2 zk3

3

which has solutions of higher rank, see Example 6, and Appel and Djorup
[1] investigated

xk = zk
1z

k
2 · · · z

k
n .

We show in Theorem 5 of this paper that equations of the form (1) are of
rank 1, if all exponents are larger than 2 and n ≤ k and x is not a conjugate
of zi for any 1 ≤ i ≤ n. This result straightforwardly implies Theorem 7
by Appel and Djorup [1].

We continue with fixing some notation. More basic definitions can be
found in [6]. Let A be a finite set and A∗ be the free monoid generated by A.
We call A alphabet and the elements of A∗ words. Let w = w(1)w(2) · · ·w(n)

where w(i) is a letter, for every 1 ≤ i ≤ n. We denote the length n of w by |w|.
An integer 1 ≤ p ≤ n is a period of w, if w(i) = w(i+p) for all 1 ≤ i ≤ n− p.
A nonempty word u is called a border of a word w, if w = uv = v ′u for some
suitable words v and v′. We call w bordered, if it has a border that is shorter
than w, otherwise w is called unbordered. A word w is called primitive if
w = uk implies that k = 1. We call two words u and v conjugates, denoted
by u ∼ v, if u = xy and v = yx for some words x and y. Let [u] = {v | u ∼ v}
and w∗ = {wi | i ≥ 0}.

Let Σ be an alphabet. A tuple (u, v) ∈ Σ∗ × Σ∗ is called word equation

in Σ, usually denoted by u = v. Let u, v ∈ Σ∗ be such that every letter of Σ
occurs in u or v. A morphism ϕ : Σ∗ → A∗ is called a solution of u = v, if
ϕ(u) = ϕ(v). The rank of a solution ϕ of an equation u = v is the minimum
rank of a free subsemigroup that contains ϕ(Σ). The rank of an equation is
the maximum rank of all its solutions.
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2 Some Known Results

The following theorem was shown by Fine and Wilf [2]. As usual, gcd denotes
the greatest common devisor.

Theorem 1. Let w ∈ A∗, and p and q be periods of w. If we have that

|w| ≥ p + q − gcd{p, q} then gcd{p, q} is a period of w.

The following lemma is a consequence of Theorem 1; see [3].

Lemma 2. Let w ∈ A∗ and p be the smallest period of w. Then, for any

period q of w, with q ≤ |w| − p, we have that q is a multiple of p.

The following theorem follows Lyndon and Schützenberger’s proof [7] for
free groups. See also [4] for a short direct proof and the following Lemma 4.

Theorem 3. Let x, y, z ∈ A∗ and i, j, k ≥ 2. If xi = yjzk then x, y, z ∈ w∗

for some w ∈ A∗.

Lemma 4. Let x, z ∈ A∗ be primitive and nonempty words. If zm is a fac-

tor of xk for some k,m ≥ 2, then either (m − 1)|z| < |x| or z and x are

conjugates.

Proof. Assume that (m − 1)|z| ≥ |x|. Then zm has two periods |x| and |z|,
and hence, a period gcd{|x|, |z|} by Theorem 1. Now, |x| = |z| and x and z

are conjugates.

3 The Main Result

The following theorem is the main result of this paper. It shows that the
solutions of a word equation of the form xk = zk1

1 zk2

2 · · · z
kn
n are necessarily of

rank 1 under certain conditions.

Theorem 5. Let n ≥ 2 and x, zi ∈ A∗ and |x| 6= |zi| and k, ki ≥ 3, for all

1 ≤ i ≤ n. If xk = zk1

1 zk2

2 · · · z
kn
n and n ≤ k then x, zi ∈ w∗, for some w ∈ A∗

and all 1 ≤ i ≤ n.

Proof. Assume w.l.o.g. that x, zi, for all 1 ≤ i ≤ n, are primitive words. Note,
that |zki−1

i | < |x| by Lemma 4, and therefore |zi| < |x| for all i.
If n < k then let f be an unbordered conjugate of x, and xk = x0f

k−1x1

with x = x0x1. Let us illustrate this case with the following drawing.

x0 f f f f x1

x x x x x

zk1

1 zk2

2 zk3

3 zk4

4
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By the pigeon hole principle there exists an i such that f is a factor of zki

i .
But now, f is bordered; a contradiction.

Assume n = k in the following. Let us illustrate this case with the
following drawing.

x x x x

zk1

1 zk2

2 zk3

3 zk4

4

From ki ≥ 3, for all 1 ≤ i ≤ n, follows that there exists a primitive word
z ∈ A∗ such that for every i with |x| ≤ |zki

i | we have that |zi| is the smallest
period of x and zi ∈ [z] by Lemma 2.

There exists an i such that |x| ≤ |zki

i | by a length argument. We also

have for all 1 ≤ i < n that, if |x| ≤ |zki

i | then |z
ki+1

i+1 | < |x|, otherwise either
z is not primitive or x ∈ z∗0 , with z0 ∈ [z], and x is not primitive. Similarly

for zi−1. Moreover, we have that all factors z
kj

j with |x| ≤ |z
kj

j | occur in

a word u which is a factor of xxx and |u| < |x| + |z| otherwise zki+1, for
some 1 ≤ i ≤ n, and xx have a common factor of length greater or equal to
|x|+ |z| and either x or z is not primitive. Consider the following drawing.

z
kj

j

x x x

u

z
kj′

j′

Therefore, we have for every i with |x| ≤ |zki

i | that |z
ki+1

i+1 | < |zz| because
|zi+1| < |z| and otherwise z is not primitive. This proves the case for k > 3
since then |zki

i zki

i+1| < |xx| (for ki ≥ 3 for all 1 ≤ i ≤ n is required), for every

i such that |x| ≤ |zki

i |, and |z
k1

1 zk2

2 · · · z
kn
n | < |x

k|; a contradiction.
The case k = 3 remains. Since we can construct from one equation a new

one of the same rank by cyclic shifts, we can assume that |x| ≤ |zk2

2 |. Let us
consider the following drawing for example.

x x x

zk1

1 zk2

2 zk3

3

By the arguments above, we have that |zk1

1 | < |x| and |zk3

3 | < |x|. Now,
|zk2−1| < |x| < |zk2 | and |zk2 | < |zk1

1 |+ |z
k3

3 |. Let x = z′k2−1z′0, where z′ ∈ [z]
and z′0 is a prefix of z′. Let g be an unbordered conjugate of z′ such that
z′z′ = g1gg0, where g = g0g1 and z′ = g1g0. We get a contradiction, if
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|g1g| ≤ |zk1

1 | since then zk1

1 covers g, and hence, g is bordered. So, as-
sume |g1g| > |zk1

1 |. But now, |zk1

1 zk2

2 | < |xxg1|, because we have that
|g0z

′
0x| < |z

k2

2 | < |x|+ |z| < |g0z
′
0xg1|, and g is covered by zk3

3 ; a contradiction
again.

The following example shows why the condition |x| 6= |zi| is needed in
Theorem 5.

Example 6. Consider x4 = z3
1z

3
2z

3
3. There exists a solution ϕ of rank 2 with

ϕ(x) = ϕ(z1) = a3b3 and ϕ(z2) = a3 and ϕ(z3) = b3.

Theorem 5 implies the following result by Appel and Djorup [1].

Theorem 7. Let n ≥ 2 and x, zi ∈ A∗, for all 1 ≤ i ≤ n. If xk = zk
1z

k
2 · · · z

k
n

with n ≤ k, then x, zi ∈ w∗, for some w ∈ A∗ and all 1 ≤ i ≤ n.

Proof. If n = 2 the result follows from Theorem 3. Assume n > 2 in the
following. Let x̄ and z̄i denote the primitive roots of x = x̄` and zi = z̄`i

i , for
all 1 ≤ i ≤ n, respectively. Then we have

x̄`k = z̄`1k
1 z̄`2k

2 · · · z̄`nk
n . (2)

If there exists an i such that |z̄i| = |x̄| then z̄i ∼ x̄ and we have the equation

x̄(`−`1)k = z̄`1k
1 z̄`2k

2 · · · z̄
`i−1k

i−1 z̄
`i+1k

i+1 · · · z̄`nk
n (3)

which has not a higher rank than (2). Since(3) meets our assumptions this
reduction can be iterated until either n = 2 or |z̄i| 6= |x̄| for all 1 ≤ i ≤ n.
But, then Theorem 5 gives the result.
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Acad. Sci. Paris, 260:3242–3244, 1965.

[6] M. Lothaire. Combinatorics on Words, volume 12 of Encyclopedia

of Mathematics and its Applications. Addison-Wesley, Reading, MA,
1983.

[7] R. C. Lyndon and M. P. Schützenberger. The equation aM = bNcP in a
free group. Michigan Math. J., 9:289–298, 1962.

5



Turku Centre for Computer Science
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