On the Equation $x^{k}=z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n}^{k_{n}}$ in a Free Semigroup

Tero Harju
Dirk Nowotka

Turku Centre for Computer Science, TUCS,
Department of Mathematics, University of Turku

Turku Centre for Computer Science TUCS Technical Report No 602
April 2004
ISBN 952-12-1342-6
ISSN 1239-1891

Abstract

Word equations of the form $x^{k}=z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n}^{k_{n}}$ are considered in this paper. In particular, we investigate the case where x is of different length than z_{i}, for any i, and k and k_{i} are at least 3 , for all $1 \leq i \leq n$, and $n \leq k$. We prove that for those equations all solutions are of rank 1 , that is, x and z_{i} are powers of the same word for all $1 \leq i \leq n$. It is also shown that this result implies a well-known result by K. I. Appel and F. M. Djorup about the more special case where $k_{i}=k_{j}$ for all $1 \leq i<j \leq n$.

Keywords: combinatorics on words, word equations

TUCS Laboratory
Discrete Mathematics for Information Technology

1 Introduction

Word equations of the form

$$
\begin{equation*}
x^{k}=z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n}^{k_{n}} \tag{1}
\end{equation*}
$$

have long been of interest, see for example $[7,5,1]$. Originally motivated from questions concerning equations in free groups special cases of (1) in free semigroups were investigated. For example

$$
x^{k}=z_{1}^{k_{1}} z_{2}^{k_{2}}
$$

is of rank 1 which was shown by Lyndon and Schützenberger [7], and Lentin [5] investigated the solutions of

$$
x^{k}=z_{1}^{k_{1}} z_{2}^{k_{2}} z_{3}^{k_{3}}
$$

which has solutions of higher rank, see Example 6, and Appel and Djorup [1] investigated

$$
x^{k}=z_{1}^{k} z_{2}^{k} \cdots z_{n}^{k}
$$

We show in Theorem 5 of this paper that equations of the form (1) are of rank 1, if all exponents are larger than 2 and $n \leq k$ and x is not a conjugate of z_{i} for any $1 \leq i \leq n$. This result straightforwardly implies Theorem 7 by Appel and Djorup [1].

We continue with fixing some notation. More basic definitions can be found in [6]. Let A be a finite set and A^{*} be the free monoid generated by A. We call A alphabet and the elements of A^{*} words. Let $w=w_{(1)} w_{(2)} \cdots w_{(n)}$ where $w_{(i)}$ is a letter, for every $1 \leq i \leq n$. We denote the length n of w by $|w|$. An integer $1 \leq p \leq n$ is a period of w, if $w_{(i)}=w_{(i+p)}$ for all $1 \leq i \leq n-p$. A nonempty word u is called a border of a word w, if $w=u v=v^{\prime} u$ for some suitable words v and v^{\prime}. We call w bordered, if it has a border that is shorter than w, otherwise w is called unbordered. A word w is called primitive if $w=u^{k}$ implies that $k=1$. We call two words u and v conjugates, denoted by $u \sim v$, if $u=x y$ and $v=y x$ for some words x and y. Let $[u]=\{v \mid u \sim v\}$ and $w^{*}=\left\{w^{i} \mid i \geq 0\right\}$.

Let Σ be an alphabet. A tuple $(u, v) \in \Sigma^{*} \times \Sigma^{*}$ is called word equation in Σ, usually denoted by $u=v$. Let $u, v \in \Sigma^{*}$ be such that every letter of Σ occurs in u or v. A morphism $\varphi: \Sigma^{*} \rightarrow A^{*}$ is called a solution of $u=v$, if $\varphi(u)=\varphi(v)$. The rank of a solution φ of an equation $u=v$ is the minimum rank of a free subsemigroup that contains $\varphi(\Sigma)$. The rank of an equation is the maximum rank of all its solutions.

2 Some Known Results

The following theorem was shown by Fine and Wilf [2]. As usual, gcd denotes the greatest common devisor.

Theorem 1. Let $w \in A^{*}$, and p and q be periods of w. If we have that $|w| \geq p+q-\operatorname{ccd}\{p, q\}$ then $\operatorname{gcd}\{p, q\}$ is a period of w.

The following lemma is a consequence of Theorem 1 ; see [3].
Lemma 2. Let $w \in A^{*}$ and p be the smallest period of w. Then, for any period q of w, with $q \leq|w|-p$, we have that q is a multiple of p.

The following theorem follows Lyndon and Schützenberger's proof [7] for free groups. See also [4] for a short direct proof and the following Lemma 4.

Theorem 3. Let $x, y, z \in A^{*}$ and $i, j, k \geq 2$. If $x^{i}=y^{j} z^{k}$ then $x, y, z \in w^{*}$ for some $w \in A^{*}$.

Lemma 4. Let $x, z \in A^{*}$ be primitive and nonempty words. If z^{m} is a factor of x^{k} for some $k, m \geq 2$, then either $(m-1)|z|<|x|$ or z and x are conjugates.
Proof. Assume that $(m-1)|z| \geq|x|$. Then z^{m} has two periods $|x|$ and $|z|$, and hence, a period $\operatorname{gcd}\{|x|,|z|\}$ by Theorem 1 . Now, $|x|=|z|$ and x and z are conjugates.

3 The Main Result

The following theorem is the main result of this paper. It shows that the solutions of a word equation of the form $x^{k}=z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n}^{k_{n}}$ are necessarily of rank 1 under certain conditions.

Theorem 5. Let $n \geq 2$ and $x, z_{i} \in A^{*}$ and $|x| \neq\left|z_{i}\right|$ and $k, k_{i} \geq 3$, for all $1 \leq i \leq n$. If $x^{k}=z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n}^{k_{n}}$ and $n \leq k$ then $x, z_{i} \in w^{*}$, for some $w \in A^{*}$ and all $1 \leq i \leq n$.

Proof. Assume w.l.o.g. that x, z_{i}, for all $1 \leq i \leq n$, are primitive words. Note, that $\left|z_{i}^{k_{i}-1}\right|<|x|$ by Lemma 4, and therefore $\left|z_{i}\right|<|x|$ for all i.

If $n<k$ then let f be an unbordered conjugate of x, and $x^{k}=x_{0} f^{k-1} x_{1}$ with $x=x_{0} x_{1}$. Let us illustrate this case with the following drawing.

By the pigeon hole principle there exists an i such that f is a factor of $z_{i}^{k_{i}}$. But now, f is bordered; a contradiction.

Assume $n=k$ in the following. Let us illustrate this case with the following drawing.

From $k_{i} \geq 3$, for all $1 \leq i \leq n$, follows that there exists a primitive word $z \in A^{*}$ such that for every i with $|x| \leq\left|z_{i}^{k_{i}}\right|$ we have that $\left|z_{i}\right|$ is the smallest period of x and $z_{i} \in[z]$ by Lemma 2 .

There exists an i such that $|x| \leq\left|z_{i}^{k_{i}}\right|$ by a length argument. We also have for all $1 \leq i<n$ that, if $|x| \leq\left|z_{i}^{k_{i}}\right|$ then $\left|z_{i+1}^{k_{i+1}}\right|<|x|$, otherwise either z is not primitive or $x \in z_{0}^{*}$, with $z_{0} \in[z]$, and x is not primitive. Similarly for z_{i-1}. Moreover, we have that all factors $z_{j}^{k_{j}}$ with $|x| \leq\left|z_{j}^{k_{j}}\right|$ occur in a word u which is a factor of $x x x$ and $|u|<|x|+|z|$ otherwise $z^{k_{i}+1}$, for some $1 \leq i \leq n$, and $x x$ have a common factor of length greater or equal to $|x|+|z|$ and either x or z is not primitive. Consider the following drawing.

Therefore, we have for every i with $|x| \leq\left|z_{i}^{k_{i}}\right|$ that $\left|z_{i+1}^{k_{i+1}}\right|<|z z|$ because $\left|z_{i+1}\right|<|z|$ and otherwise z is not primitive. This proves the case for $k>3$ since then $\left|z_{i}^{k_{i}} z_{i+1}^{k_{i}}\right|<|x x|$ (for $k_{i} \geq 3$ for all $1 \leq i \leq n$ is required), for every i such that $|x| \leq\left|z_{i}^{k_{i}}\right|$, and $\left|z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n}^{k_{n}}\right|<\left|x^{k}\right|$; a contradiction.

The case $k=3$ remains. Since we can construct from one equation a new one of the same rank by cyclic shifts, we can assume that $|x| \leq\left|z_{2}^{k_{2}}\right|$. Let us consider the following drawing for example.

By the arguments above, we have that $\left|z_{1}^{k_{1}}\right|<|x|$ and $\left|z_{3}^{k_{3}}\right|<|x|$. Now, $\left|z^{k_{2}-1}\right|<|x|<\left|z^{k_{2}}\right|$ and $\left|z^{k_{2}}\right|<\left|z_{1}^{k_{1}}\right|+\left|z_{3}^{k_{3}}\right|$. Let $x=z^{\prime k_{2}-1} z_{0}^{\prime}$, where $z^{\prime} \in[z]$ and z_{0}^{\prime} is a prefix of z^{\prime}. Let g be an unbordered conjugate of z^{\prime} such that $z^{\prime} z^{\prime}=g_{1} g g_{0}$, where $g=g_{0} g_{1}$ and $z^{\prime}=g_{1} g_{0}$. We get a contradiction, if
$\left|g_{1} g\right| \leq\left|z_{1}^{k_{1}}\right|$ since then $z_{1}^{k_{1}}$ covers g, and hence, g is bordered. So, assume $\left|g_{1} g\right|>\left|z_{1}^{k_{1}}\right|$. But now, $\left|z_{1}^{k_{1}} z_{2}^{k_{2}}\right|<\left|x x g_{1}\right|$, because we have that $\left|g_{0} z_{0}^{\prime} x\right|<\left|z_{2}^{k_{2}}\right|<|x|+|z|<\left|g_{0} z_{0}^{\prime} x g_{1}\right|$, and g is covered by $z_{3}^{k_{3}}$; a contradiction again.

The following example shows why the condition $|x| \neq\left|z_{i}\right|$ is needed in Theorem 5.

Example 6. Consider $x^{4}=z_{1}^{3} z_{2}^{3} z_{3}^{3}$. There exists a solution φ of rank 2 with $\varphi(x)=\varphi\left(z_{1}\right)=a^{3} b^{3}$ and $\varphi\left(z_{2}\right)=a^{3}$ and $\varphi\left(z_{3}\right)=b^{3}$.

Theorem 5 implies the following result by Appel and Djorup [1].
Theorem 7. Let $n \geq 2$ and $x, z_{i} \in A^{*}$, for all $1 \leq i \leq n$. If $x^{k}=z_{1}^{k} z_{2}^{k} \cdots z_{n}^{k}$ with $n \leq k$, then $x, z_{i} \in w^{*}$, for some $w \in A^{*}$ and all $1 \leq i \leq n$.

Proof. If $n=2$ the result follows from Theorem 3. Assume $n>2$ in the following. Let \bar{x} and \bar{z}_{i} denote the primitive roots of $x=\bar{x}^{\ell}$ and $z_{i}=\bar{z}_{i}^{\ell_{i}}$, for all $1 \leq i \leq n$, respectively. Then we have

$$
\begin{equation*}
\bar{x}^{\ell k}=\bar{z}_{1}^{\ell_{1} k} \bar{z}_{2}^{\ell_{2} k} \cdots \bar{z}_{n}^{\ell_{n} k} \tag{2}
\end{equation*}
$$

If there exists an i such that $\left|\bar{z}_{i}\right|=|\bar{x}|$ then $\bar{z}_{i} \sim \bar{x}$ and we have the equation

$$
\begin{equation*}
\bar{x}^{\left(\ell-\ell_{1}\right) k}=\bar{z}_{1}^{\ell_{1} k} \bar{z}_{2}^{\ell_{2} k} \cdots \bar{z}_{i-1}^{\ell_{i-1} k} \bar{z}_{i+1}^{\ell_{i+1} k} \cdots \bar{z}_{n}^{\ell_{n} k} \tag{3}
\end{equation*}
$$

which has not a higher rank than (2). Since(3) meets our assumptions this reduction can be iterated until either $n=2$ or $\left|\bar{z}_{i}\right| \neq|\bar{x}|$ for all $1 \leq i \leq n$. But, then Theorem 5 gives the result.

References

[1] K. I. Appel and F. M. Djorup. On the equation $z_{1}^{n} z_{2}^{n} \cdots z_{k}^{n}=y^{n}$ in a free semigroup. Trans. Amer. Math. Soc., 134:461-470, 1968.
[2] N. J. Fine and H. S. Wilf. Uniqueness theorem for periodic functions. Proc. Amer. Math. Soc., 16:109-114, 1965.
[3] V. Halava, T. Harju, and L. Ilie. Periods and binary words. J. Combin. Theory, Ser A, 89(2):298-303, 2000.
[4] T. Harju and D. Nowotka. The equation $a^{M}=b^{N} c^{P}$ in a free semigroup. Semigroup Forum, 2004. to appear.
[5] A. Lentin. Sur l'équation $a^{M}=b^{N} c^{P} d^{Q}$ dans un monoïd libre. C. R. Acad. Sci. Paris, 260:3242-3244, 1965.
[6] M. Lothaire. Combinatorics on Words, volume 12 of Encyclopedia of Mathematics and its Applications. Addison-Wesley, Reading, MA, 1983.
[7] R. C. Lyndon and M. P. Schützenberger. The equation $a^{M}=b^{N} c^{P}$ in a free group. Michigan Math. J., 9:289-298, 1962.

Turku Centre for Computer Science
Lemminkäisenkatu 14

FIN-20520 Turku

Finland
http://www.tucs.fi

University of Turku

- Department of Information Technology
- Department of Mathematics

Åbo Akademi University

- Department of Computer Science
- Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

- Institute of Information Systems Science

