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Abstract 
 
This paper reports results on using an artificial neural network (ANN) for 
predicting the estrogen receptor (ER) status, which is not always available, 
but has a place in therapy selection of breast cancer. Our results show that in 
more than two thirds of the cases, the ANN is able to predict the correct ER 
status. An optimum neural architecture was researched, and optimal cutpoint 
for prediction was selected on the basis of clinical data. 
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1. Introduction 
 

Artificial Neural Networks (ANNs) are modelling tools having the ability to adapt 
to and to learn complex topologies of inter-correlated multidimensional data. The goal 
of our research was to find a mathematical model describing the relationship between 4 
(or 3) inputs and one-output variables. The medical problem in this paper was as 
follows: Can estrogen receptor (ER) status of breast cancer be predicted with the help of 
clinical data, and with what level of accuracy? ER status has a place in therapy 
selection, but the status is not always available. The tumor may be so small (during this 
era of breast cancer screening) that there is not tissue enough for determining the ER 
status. In certain locations (e.g. in developing countries or in unusually warm weather 
conditions) immunohistochemical status cannot be determined because of the extra 
expenses it causes, or because the necessary laboratory facilities cannot be created 
under conditions in which the interruptions of electric main supply and the weather 
make the use of refrigerators unreliable. 
      Earlier studies clearly indicate that cancers showing high concentration of ERs 
have characteristic morphological features [1]: cells and nuclei are smaller and more 
uniform than in cancers with low concentration or absence of ERs. Correspondingly it is 
well known that ER-positive tumors are better differentiated, have lower histological 
grade and better prognosis [2]. ER determination plays a role in deciding about the use 
of antiestrogenic therapy [3]. Harbeck et al. [4] forecasted the relapse-free survival by 
using ER among other different parameters as input of an ANN model. At the time 
when the determination of the ER status was based on a biochemical test, Baak and 
Persijn [5] tested whether ER positivity could be predicted by morphometric 
measurements, and found it possible. 
  Today, the ER receptor status is evaluated by immunohistochemistry, and we 
decided to try the ANN in determination of the ER status when only basic clinical 
features are available.  

The structure of this paper is as follows. Section 2 presents the problems that 
concern medical data, model structure and training procedure. The main features of our 
experimental results, regarding efficiency, sensitivity and specificity are given in next 
section, where we also discuss specific aspects. Conclusions are formulated in the last 
section of the paper. 
 

2. Description of the data  
 

There were two sets of data under study, which had 487 (Set I) and 387 (Set II) 
rows of patients. Each set of data included: age of the patient, tumor size (in cms), nodal 
status (presence or absence of cancer foci in the regional lymph nodes), histological 
grade of the neoplasm (from G1 to G3) and ER (percent of ER positive nuclei). The first 
set (487 samples) was from Jyväskylä Central Hospital, Jyväskylä, Finland. The 
estrogen receptor (ER) status was based on ER staining of the imprint upon a cut 
surface of breast cancer tissue. The positive staining was evaluated with an image 
analytic methodology on a glass slide by the CAS 200 instrument (Cell Analysis 
Systems, Inc., Division of Becton Dickinson, Inc., Elmhurst, IL 60126-4944, USA). 
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The positivity was determined as the fraction of stained nuclei of all nuclei in the 
sample. 

The second set (387 samples) was from Turku University Hospital, Finland. The 
method for evaluating ER positivity was based on ER staining on paraffin sections of 
breast cancer. The area in the paraffin section, which showed the most consistent 
staining was evaluated, and in that area the fraction of positive nuclei of all nuclei was 
defined as ER positivity. The method used for determining ER positivity slightly 
differed in the two sets of data, but the form of presentation was the same in the two 
datasets, and the positivity was evaluated by the fraction of positive nuclei of all nuclei. 

 
Table 1. Minimum and maximum values in the two datasets studied (note the 

comparable range of datasets values). 
 

 Age Size Nodal status GR ER 
 min max min max min max min max min max

Set I  (training) 26 95 0.2 10 0 1 1 3 0 97.4 

Set II (test) 31 98 0.17 15 0 1 1 3 0 100 
 

Since there is no reason to believe that the two methodological approaches to 
evaluate ER positivity could give different results, the datasets were considered 
comparable in terms of ER staining methodology. 
 

3. Model structure and training procedure  
 

A good choice of the training data set is not a trivial task when one wants to make a 
good prediction. Data preprocessing and data selection remain essential steps in the 
knowledge discovery process for real world applications and greatly improve the 
network’s ability to capture valuable information when correctly carried out [6]. In Fig. 
1 we present our idea in training a feedforward ANN for predicting ER positivity on the 
basis of age of the patient, tumor size, nodal status, and histological grade. 
 
 

 
 

Figure 1. Training process of the feedforward ANN. 
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We preprocessed the inputs and outputs using normalization. We applied the 
reverse process of normalization in defining the simulated outputs. During the training 
process the ANN used the correlations that existed between the age, size, nodal status 
and grade, on one hand, and ER on the other. The basic training algorithm was the Scale 
Conjugate Gradient (SCG) algorithm [7]. In order to avoid the over-fitting phenomenon 
we have applied the early stopping method [8] during the training process. As splitting 
criterion we have randomly chosen approximately 85% of the Set I for training and the 
remaining for validation. 
      We designed a feedforward ANN with two hidden layers in order to achieve a good 
approximation function because in our preliminary research we obtained better results 
for two hidden layers than for one hidden layer, maintaining a similar ratio (approx. 
10/1) between the number of the training samples and the total number of the weights. 
First step was performed in order to decide the proper number of neurons for each 
hidden layer (Nh1 and Nh2). Each of the trainings started with the weights initialized to 
small uniformly distributed values. We chose the best model according to the smallest 
error between the desired and simulated outputs. This error (Etr) was calculated for data 
that include both training sets. The supplementary condition for the error of validation 
sets (Eval) was: 
  

trval EE ⋅≤
5
6  

 
We tested several architectures with different combinations of Nh1 and Nh2, where:  
2 ≤  Nh1 ≤ 6 and 2 ≤  Nh2 ≤  Nh1. 
 

4. Experimental results 
 
      After the training process with Set I our tool predicted the ER status of Set II. In 
order to evaluate the results, we used a cutpoint that assigns the original 
immunohostochemical values of ER versus ANN outputs in a 2×2 table (Fig. 2a). 
      The numbers of samples in each square allow the evaluation of the efficiency, 
sensitivity and specificity (as well as the fractions of false positives and false negatives) 
of the ANN method in determining the ER status [9]: 
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where Nk is the number of points in square k, and q is a small constant value (q=0.001) 
used to avoid improper computations (like 0/0). 
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     By varying the value of cutpoint between 0 and 100 we have obtained the following 
graphs that show the evolutions of the predictions for Set I, and Set II. We split the 
problem in two cases where we used ANN with four (Case 1), and three (Case 2) inputs, 
respectively. 
     In Case 1 (four inputs: Age, Size, Node, Grade), after an iterative process, we tested 
25 ANN architectures for each combination of Nh1 and Nh2. We chose the best model 
according to the smallest error between the desired and simulated outputs after training 
process. Consequently we obtained: Nh1= 5 and Nh2= 4. 
 

 
Figure 2. The squares of the correspondences between ANN outputs and originally 

defined immunohistochemical results (a), and ANN values (A) vs. target values (T) for 
Set I (b). 

 
     Plotting the ANN outputs versus original values indicated the accuracy of results 
(Fig. 2b). The correlation coefficient (R-value) between the outputs (A) and targets (T) 
was 0.64 and the regression line did not show the expected  (45 degree) inclination. The 
significance of this result revealed us that the value of ER could not be perfectly 
approximated by using age of the patient, tumor size, nodal status, and histological 
grade. For instance, in the data sets there were some patients who presented similar 
pattern of the input parameters but different values of ER. Moreover we found (Fig. 2b) 
a few negative values of the ANN output that were provided by validation set, which 
was used during the training process as an indicator for stopping the training. It was not 
complicated to automatically adjust all negative values to zeros but we preferred to 
show the real values of the ANN output. The imperfect correlation was the reason why 
we used the cutpoint to estimate the status of the system output (positive or negative). 
The results were basically similar with both available datasets. 
     We also wanted to test at which scale cutpoint the ER value gave the best 
performance with respect to specificity, sensitivity, or efficiency. 
     The fraction of squares I + IV (Fig. 2a) is equal to the efficiency of the method in 
correctly predicting individual cases (Fig. 3, Table 2). For Set I (training set), efficiency 
varies between 70% and 100% (Fig. 3a). Values were lowest at the cutpoints 25-55, 
highest at cutpoints 1-20 and cutpoints greater than 60. The lowest efficiency (about 
70%) is reached in the vicinity of cutpoint 35, and it is in line with the falsely evaluated 
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patients (about 30% in the same region). The maximum fraction of false negatives 
(around 15%) is seen at 50. 
 

 
Figure 3. Efficiency, fraction of false results (from squares II+III), and fraction of false 
negative results (square II) versus cutpoint for Set I (a), and for Set II (b), respectively. 
The fraction of false positive results (sq. III) is the interval between the two graphs at 

the bottom of the figures. 
 
In Fig. 4a we show the sensitivity and the specificity for Set I. Sensitivity decreases 
abruptly after the cutpoint value 30. There is a remarkable improvement of specificity 
above the cutpoint value of 20. 
 

 
Figure 4. Sensitivity and specificity versus cutpoint for Set I (a), and for Set II (b), 

respectively. 
 

Corresponding data (sensitivity, specificity, efficiency, and fractions of false 
positives and false negatives) for Set II (test set) are shown in Fig. 3b and Fig. 4b. We 
noticed the same behavior as the one presented for Set I (training set). It is quite clear 
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for the Set II that efficiency is lower (minimum 55%, in Fig. 3b, versus 70% in Fig. 3a), 
and also sensitivity and specificity are lower than in the training set (Set I). For 
sensitivity and specificity, the average difference is about 10% over the whole range of 
the scale, but there are places where the difference is up to 30 percent units (Fig. 4a 
versus Fig. 4b, in the vicinity of cutpoint 40). Consequently, the fractions of false 
results (false negatives, especially) are higher in the Set II (Fig. 3a versus Fig. 3b). All 
these phenomena are due to the fact that Set II was not used during the training process 
of ANN. 
      The parameter age might not have the same relevance in Northern Europe as in the 
developing countries. Therefore we repeated the experiment without age as input. In 
Case 2 (three inputs:  Size, Node, Grade), the best model, according to the smallest 
error between the desired and simulated outputs, had  Nh1 = 5 and  Nh2 = 3.  We noticed 
that in this case the graphs are similar with those that were already presented in Fig. 3 
and Fig. 4. 
      Table 2 shows efficiency, sensitivity, and specificity values, respectively, for 
ANNs with age input and without age input at eleven values of the cutpoint. These 
values are selected in the interval [10, 60] that is considered reasonable for medical 
purposes. The results for the training set (Set I) and the test set (Set II) are shown 
separately. It seems that the cutpoint 20, which is usually used in clinical practice, 
performs well and gives reasonably high sensitivity and efficiency figures. However, at 
this cutpoint only half of the negative cases are truly negative (specificity around 50%). 
Change in the cutpoint to improve specificity will necessarily lead to lower sensitivity 
and efficiency values. At the cutpoint 20 at least two thirds of the situations will be 
correctly evaluated by ANN (lowest efficiency 66.4%). 
 

Table 2. Efficiency, sensitivity, and specificity versus cutpoint for Case 1: with 
age as input (Set I / Set II) and Case 2: without age as input (Set I / Set II). 

 
Efficiency Sensitivity Specificity  

With age as 
input 

Without age as 
input 

With age as 
input 

Without age as 
input 

With age as 
input 

Without age as 
input 

Cutpoint 
value 

 
Set I 

 
Set II 

 
Set I 

 
Set II 

 
Set I 

 
Set II 

 
Set I 

 
Set II 

 
Set I 

 
Set II 

 
Set I 

 
Set II 

10 82.9569 70.0258 75.77 72.3514 95.5056 81.6176 98.5955 95.2206 48.8549 42.6087 13.7404 18.2609

15 79.4661 67.9587 78.2341 72.093 93.5294 80.6949 93.5294 87.6448 46.9387 42.1875 42.8571 40.625 

20 79.8768 66.4083 77.8234 68.9922 92.8571 77.4703 92.8571 75.8893 54.5454 45.5224 48.4848 55.9701

25 76.7967 64.3411 72.8953 65.1163 89.6193 74.074 92.3875 69.9588 58.0808 47.9166 44.4444 56.9444

30 73.922 62.2739 69.8152 60.9819 87.5 66.8103 80.0781 56.4655 58.8744 55.4838 58.4415 67.7419

35 71.2526 58.3979 70.2259 59.6899 75.1111 45.045 76.000 53.1531 67.9389 76.3636 65.2672 68.4848

40 72.8953 55.5556 70.4312 52.7132 68.3937 38.2488 61.1399 34.1014 75.8503 77.647 76.5306 76.4705

45 72.6899 55.814 70.8419 50.646 60.606 33.1707 53.9394 19.5122 78.882 81.3186 79.5031 85.7142

50 75.77 52.4548 73.7166 48.8372 34.5323 20.8955 17.2662 12.4378 92.2414 86.5591 96.2643 88.172 

55 79.2608 55.5556 78.4394 53.7468 25.2252 16.3158 9.9099 7.89473 95.2127 93.401 98.6702 97.9695

60 82.5462 53.23 81.1088 53.7468 18.9473 9.18918 5.26315 5.4054 97.9592 93.5643 99.4898 98.0198
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      It is worth to mention that the age input does not significantly improve efficiency, 
sensitivity or specificity. The average improvements ( pI ) with age (in percent units), 
presented in Table 3, are computed by using the following formula: 
 

N

kI
I

N

k
p

p

∑
== 1

)(
 

 
where: )()()( 21 kpkpkI CaseCasep −=  is the improvement for cutpoint k, and N = 100 is 
the total number of cutpoints considered. 
 

Table 3. Average improvements ( pI ) and improvements for cutpoint 20. 
 

 Efficiency Sensitivity Specificity 
 Set I 

(training + 
validation set) 

Set II 
(test set) 

Set I 
(training + 

validation set) 

Set II 
(test set) 

Set I 
(training + 

validation set) 

Set II 
(test set) 

pI  1.44559 -5.04 ⋅ 10-15 3.94526 1.18234 2.16132 -0.888556 

)20(pI  2.05339 -2.58398 1.84 ⋅ 10-13 1.58103 6.0606 -10.4478 

 
We noticed that there are slightly better results (positive values) in Case 1 with respect 
to efficiency, sensitivity and specificity for training set (Set I) and also sensitivity for 
test set (Set II). But, there are slightly better results in Case 2 with respect to efficiency 
and specificity just for test set (Set II). Specificity and efficiency present opposite 
tendencies as regards Set I and Set II, for Case 1 in contrast with Case 2. This effect is 
appreciable for cutpoint 20 with respect to specificity. Therefore we appreciate that the 
average improvements with age are relatively small and not consistent.  
 

5. Discussion and conclusions 
 

The prognostic value of various clinical features is variable. The best 
prognosticators are tumor size, lymph node status or mitotic activity [10]. Even though 
the mitotic activity is an extremely efficient prognosticator [11] we did not consider it in 
our study, because the feature is not always available. On the other hand, tumor size and 
lymph node status can, and are consistently evaluated, for every patient who has gone 
through the surgical treatment. We decided to consider histological grade as a variable 
in our ANN model because the grade is determined for every patient and also includes 
subjective evaluation of mitotic activity. Since ER-positive breast cancers are better 
differentiated and they have better prognosis, one can expect that the three prognostic 
features could predict ER positivity. 
      Our method exploits the correlations that exist among previous mentioned 
parameters. During the training process, ANN tried to reach the values defined by 
immunohistochemichal methodology. Perfect regression is, however, impossible to 
reach. 
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      Training can be improved if we use more data and eventually more input 
parameters. Adding a new parameter as input must be done carefully, since the age, for 
example, might not play an important role in predicting the ER status.  
      Current research targets the implementation of an adaptive system, which will be 
periodically retrained, in order to continuously improve the model accuracy using new 
medical databases. 
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