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Abstract

The process of gene assembly in ciliates, an ancient group of organisms, is one
of the most complex instances of DNA manipulation known in any organisms.
This process is fascinating from the computational point of view, with ciliates
even using the linked lists data structure. Three molecular operations (ld, hi,
and dlad) have been postulated for the gene assembly process. We initiate here
the study of parallelism in this process, raising several natural questions, such
as: when can a number of operations be applied in parallel to a gene pattern;
or how many steps are needed to assemble (in parallel) a micronuclear gene. In
particular, this gives rise to a new measure of complexity for the process of gene
assembly in ciliates.

“One of the oldest forms of life on Earth has been
revealed as a natural born computer programmer.”

BBC, September 10, 2001.

TUCS Laboratory
Discrete Mathematics for Information Technology



1 Introduction

The ciliates (ciliated protozoa) are an ancient and diverse group of unicellular
organisms. Their diversity can be appreciated by comparing their genomic se-
quences – some ciliate types differ genetically more than humans differ from
fruit flies! A unique feature of the ciliates is their nuclear dualism: each ciliate
possesses two kinds of nuclei in the same cell: a micronucleus and a macronu-
cleus, see [11], [12], and [13]. The micronucleus is a germline nucleus and has no
known function in the growth or the division of the cell. The RNA transcripts
are provided by the macronucleus – the somatic nucleus. The two types of nuclei
are however interrelated: at some stage, in the process of sexual reproduction,
the genome of the micronucleus develops into the genome of the macronucleus,
in a process called gene assembly. What makes this process unusual is the
sophisticated rearrangement that a family of ciliates, the Stichotrichs, have en-
gineered in the DNA sequence of their micronuclear genome. Thus, while genes
in the macronucleus are contiguous sequences, placed (with very few exceptions)
on their own short DNA molecules, the DNA in the micronucleus is organized
in long molecules, with genes occurring individually or in groups, separated by
long stretches of non-coding DNA. Moreover, the genes in the micronucleus are
broken into pieces called MDSs, separated by non-coding segments called IESs.
During gene assembly, the IESs are excised and MDSs are ligated to form tran-
scriptionally competent macronuclear genes. The complexity of this process is
best illustrated in Stichotrichs ciliates (which we consider in this paper), where
the MDSs may be scrambled, i.e., the sequence of MDSs is permuted in the
micronucleus, with some MDSs being inverted.

The gene assembly process is highly interesting from the computational point
of view. One of the amazing features of this process is that ciliates apparently
know linked lists and use them in an elegant pattern matching mechanism.

Three molecular operations, ld, hi, and dlad, have been postulated in [8]
and [14] for the gene assembly process – they were successfully used to give a
uniform explanation to all known experimental data. The gene structure and the
operations themselves have been modelled and formally investigated on three
levels of abstraction based on permutations, strings, and graphs see [1], [6], [8],
and [14]. A detailed discussion on the methodology of model forming can be
found in [4]. This line of research has already answered a number of natural
questions, such as the assembly power of these operations, invariants of the gene
assembly, or micronuclear gene patterns that can be assembled using a subset
of operations, see, e.g. [2], [3], [5], and [7]. We refer to the recent monograph
[4] for details and further topics in this research area.

In our research so far, the process of gene assembly has been mostly consid-
ered as a sequence of folding and recombination operations. While this approach
was adequate for the type of research questions that have been considered, in
order to gain more insight into the gene assembly process, a more general par-
allel application of molecular operations must be investigated – parallelism is
a natural phenomenon in biomolecular processes. In this paper we initiate a
systematic study of parallelism in our model for gene assembly. Intuitively, a
number of operations can be applied in parallel to a gene pattern if each op-
eration’s applicability is independent of the other’s. In other words, a set of
operations can be applied in parallel to a gene pattern if and only if they can
be (sequentially) applied to that pattern in any order – this is consistent with
how concurrency and parallelism are usually defined in Computer Science.

Our notion of parallelism naturally leads to a new measure of complexity for
the gene assembly process, given by the minimal number of steps required to
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assemble a gene in parallel. E.g., micronuclear genes having the MDSs in the
orthodox order, such as C2 and βTP in S. nova, should be intuitively equally
easy to assemble (if the number of MDSs only differs slightly). This is indeed
the case, as we discuss in this paper: the signed graphs associated to such genes
can be reduced to the empty graph (the abstraction of the completion of the
gene assembly process for signed graphs) in one parallel step. This clearly leads
to another question: how many steps are needed in general to reduce a signed
graph (or to assemble a gene pattern)? We conjecture a stunning answer to this
question: any negative graph can be assembled in parallel in at most two steps!
Note however that we assume here maximal parallelism: any operation that
can be applied in a given step of the reduction must be applied at that stage.
Whether or not ciliates actually operate in this way is clearly a different ques-
tion that can be answered only through well-designed laboratory experiments.
Nevertheless, one can assume the hypothesis of maximal parallelism, as we do
here, without loss of generality: if a number of operations is applicable at some
stage of the reduction, then these operations will remain applicable throughout
the reduction.

2 Molecular operations for gene assembly

Three molecular operations were postulated in [8] and [14] for the gene assembly
in ciliates. We only show here in Figs. 1-3 the foldings required by each operation
and the recombinations that take place in each case. We refer to [4] for a detailed
discussion.

(a) (b) (c) (d)

Figure 1: Illustration of the ld molecular operation.

(a) (b) (c) (d)

Figure 2: Illustration of the hi molecular operation.

(a) (b) (c)

Figure 3: Illustration of the dlad molecular operation.
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The central role in gene assembly is played by characteristic short sequences
at the ends of MDSs, called pointers – the pointer in the end of an MDS M
coincides (as a nucleotide sequence) with the pointer in the beginning of the
MDS succeeding M in the macronuclear gene. Each micronuclear gene and its
intermediary successors in the gene assembly process can be thus described by
signed permutations (denoting the sequence and the orientation of the MDSs),
signed double occurrence strings (denoting the sequence and the orientation of
the pointers), and signed graphs (denoting the overlap of the pointers). Surpris-
ingly enough, it has been proved in [1] and [6] that the information given by the
overlap relations among pointers is sufficient for analyzing the whole process of
gene assembly. We refer to [1], [4], and [6] for all details concerning the various
levels of abstraction and for the methodology of model forming. We focus in
this paper on the string and on the graph levels, and formalize the notion of
parallelism in these two frameworks.

3 String reduction rules for gene assembly

We recall in this section some basic definitions related to signed double occur-
rence strings – we refer to [4] for more details.

Let Σ = {a1, a2, . . .} be a set of symbols. The set of all strings over the
alphabet Σ is denoted by Σ∗. If Σ = {a | a ∈ Σ} is a signed copy of Σ,
Σ ∩ Σ = ∅, then Σ ∪ Σ is a signed alphabet and the set of all strings over Σ ∪ Σ
is denoted by Σ� = (Σ∪Σ)∗. A string v ∈ Σ� is called a signed string over Σ.

For two strings v, w ∈ Σ�, we say that v is a substring of u if u = w1vw2,
for some strings w1, w2 ∈ Σ�.

Let v ∈ Σ� be a signed string over Σ. We say that a letter a ∈ Σ∪Σ occurs
in v, if a or a is a substring of v. Let dom(v) ⊆ Σ, called the domain of v, be
the set of (unsigned) letters that occur in v.

We say that a string v ∈ Σ� is a signed double occurrence string, if every
letter a ∈ dom(v) occurs exactly twice in v. In this case, we also say that v is
a legal string. For a ∈ Σ ∪ Σ, if v contains both substring a and a, then a is
positive in v; otherwise, a (or a) is negative in v.

Example 1. The signed string u = 34523524 over {3, 4, 5} is legal. Pointers
2 and 5 are positive in u, while 3 and 4 are negative in u. On the other hand,
the string w = 3452524 is not legal, since 3 has only one occurrence in w.

Let u = a1a2 . . . an ∈ Σ� be a legal string over Σ, where ai ∈ Σ ∪ Σ for
each i. For each a ∈ dom(u), there are indices i and j with 1 ≤ i < j ≤ n such
that ||ai|| = ai = ||aj ||. The substring u(a) = aiai+1 . . . aj is the a−interval
of u. Two different letters a, b ∈ dom(u) are said to overlap in u if the a-interval
and the b-interval of u overlap, i.e., if u(a) = ai1 . . . aj1 and u(b) = ai2 . . . aj2 ,
then either i1 < i2 < j1 < j2 or i2 < i1 < j2 < j1.

Example 2. The string u = 243532657467 is legal. The 2-interval of u is the
substring u(2) = 243532. Also, u(3) = 353, u(4) = 435326574, u(5) = 53265,
u(4,5) = 435326574, and u(5,6) = 53265746. Thus, pointer 7 overlaps with
pointers 4 and 6, and pointer 3 overlaps with pointer 5. On the other hand,
pointer 2 does not overlap with pointer 7.

As noted above, the essential information to trace the gene assembly process
lays in the sequence of pointers of the considered gene. Thus, the MDS structure
of genes can be represented only by the sequence of its pointers. Each MDS Mi,
1 < i < k, can be represented as the string i (i + 1), and the inverse MDS Mi
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can be represented as the string i+ 1 i. The first MDS M1 and the last one, Mk

are special: M1 is represented as 2, Mk is represented as the string k, while M1

is represented as 2 and Mk is represented as k. Clearly, this associates a unique
legal string to each MDS sequence. We refer to [4] and [10] for formal details
on this abstraction.

Example 3. (a) The legal string corresponding to the actin I gene in S.nova,
see Fig. 4 for its MDS sequence, is 3 4 4 5 6 7 5 6 7 8 9 3 2 2 8 9.

6 543M M M M 8M1MM9M7M 2

___

Figure 4: The MDS sequence of the micronuclear gene encoding the actin I
protein in S.nova

(b) The legal string corresponding to the αTP gene in S.nova, see Fig. 5 for its
MDS sequence, is 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 13 13 14 14.

1 3 5 7 9 11 2 4 6 8 10 12 13 14

Figure 5: Structure of the micronuclear gene encoding αTP protein in S. nova.

The three molecular operations ld, hi, and dlad, conjectured in [8] to carry
the gene assembly in ciliates can be formalized in the framework of legal strings
through the string rewriting rules snr, spr and sdr, resp., defined below. In the
following, let k ≥ 2, ∆k = {2, 3, . . . , k}, and Πk = ∆k ∪ ∆k.

• The string negative rule snrp for a pointer p ∈ Πk(k ≥ 2) is applicable to
a legal string u of the form u = u1ppu2, where u1, u2 ∈ ∆�

k and

snrp(u1ppu2) = u1u2.

Let Snr = {snrp | p ∈ Πk, k ≥ 2}.
• The string positive rule sprp for a pointer p ∈ Πk(k ≥ 2) is applicable to

a legal string u of the form u = u1pu2pu3, where u1, u2, u3 ∈ ∆�
k and

sprp(u1pu2pu3) = u1u2u3.

Let Spr = {sprp | p ∈ Πk, k ≥ 2}.
• The string double rule sdrp,q for pointers p, q ∈ Πk(k ≥ 2) is applicable

to a legal string u of the form u = u1pu2qu3pu4qu5, where ui ∈ ∆�
k for

each i, and
sdrp,q(u) = u1u4u3u2u5.

Let Sdr = {sdrp,q | p, q ∈ Πk, k ≥ 2}.
A composition ϕ = ϕn . . . ϕ1 of operations from Snr ∪ Spr ∪ Sdr is a string

reduction of u, if ϕ is applicable to u. Also, ϕ is a successful reduction for u if
ϕ(u) is the empty string Λ.

Example 4. (i) Consider the legal string u = 23342545. Then snr3 is ap-
plicable to u and snr3(u) = 242545. Also, spr4 is applicable to u and
spr4(u) = 233525. Similarly, spr2(u) = 433545. Two successful reductions
of u are the following:

4



(spr2 ◦ spr5 ◦ spr4 ◦ snr3)(u) = (spr2 ◦ spr5 ◦ spr4)(242545) =

= (spr2 ◦ spr5)(2525) = (spr2)(22) = Λ

and

(sdr4,5 ◦ spr2 ◦ snr3)(u) = (sdr4,5 ◦ spr2)(242545) = (sdr4,5)(4545) = Λ.

(ii) Let w = 3432565426 be a legal string. Then spr3(w) = 42565426 and
sdr4,6(w) = 325325. Two successful reductions of w are the following:

(snr6 ◦ spr5 ◦ spr2 ◦ spr4 ◦ spr3)(w) = (snr6 ◦ spr5 ◦ spr2 ◦ spr4)(42565426) =

= (snr6 ◦ spr5 ◦ spr2)(565226) = (snr6 ◦ spr5)(5656) = (snr6)(66) = Λ

and

(snr5 ◦ spr2 ◦ spr3 ◦ sdr4,6)(w) = (snr5 ◦ spr2 ◦ spr3)(325325) =

= (snr5 ◦ spr2)(5225) = (snr5)(55) = Λ.

4 Parallelism in the string-based model

We consider in this section the notion of parallelism in gene assembly, seen here
in the framework of signed double occurrence (i.e., legal) strings.

Definition 1. Let S ⊆ Snr ∪ Spr ∪ Sdr be a set of rules and let u be a legal
string. We say that the rules in S can be applied in parallel to u if for any
ordering ϕ1, ϕ2, . . . , ϕk of S, the composition ϕk ◦ · · · ◦ϕ1 is applicable to u. In
particular, two rules ϕ,ψ ∈ Snr∪Spr∪Sdr can be applied in parallel to u if both
ϕ ◦ ψ and ψ ◦ ϕ are applicable to u.

We consider the following question: given two reduction rules and a legal
string u, can those rules be applied in parallel to u? As it turns out, the answer
is straightforward unless we have two sdr rules.

Let u = a1a2 . . . an ∈ Σ� be a legal string over Σ, where ai ∈ Σ ∪ Σ for
each i, and let ϕ,ψ ∈ Snr ∪ Spr ∪ Sdr be two rules applicable to u. We consider
in the following all possible cases when ϕ and ψ are applied in parallel to u.

Applying two snr rules in parallel If ϕ = snra and ψ = snrb, for a, b ∈
dom(u), then {ϕ,ψ} is applicable to u in parallel. Also, (ϕ◦ψ)(u) = (ψ ◦ϕ)(u).

Applying snr and spr in parallel If ϕ = snra and ψ = sprb, then {ϕ,ψ} is
applicable to u in parallel if and only if u(a) is not a substring of u(b). In this
case, (ϕ ◦ ψ)(u) = (ψ ◦ ϕ)(u).

Example 5. (i) For u = baab, sprb ◦ snra is applicable to u, but snra ◦ sprb is
not. Indeed, snra is not applicable to sprb(u) = aa.

(ii) For ν = aabb, {ϕ,ψ} is applicable to ν in parallel and (sprb ◦ snra)(ν) =
(snra ◦ sprb)(ν).
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Applying snr and sdr in parallel If ϕ = snra and ψ = sdrb,c, a, b, c ∈ dom(u),
then {ϕ,ψ} is applicable to u in parallel. Also, (ϕ ◦ ψ)(u) = (ψ ◦ ϕ)(u).

Applying two spr rules in parallel If ϕ = spra and ψ = sprb, {ϕ,ψ} is
applicable to u in parallel if and only if a and b do not overlap in u. In this
case, (ϕ ◦ ψ)(u) = (ψ ◦ ϕ)(u).

Example 6. (i) For γ = aabb, {ϕ,ψ} is applicable to γ in parallel. Indeed,
(spra ◦ sprb)(γ) = (sprb ◦ spra)(γ).

(ii) For ξ = abba, {ϕ,ψ} is applicable to ξ in parallel, although ξ(b) is a substring
of ξ(a). Moreover, (sprb ◦ spra)(ξ) = (sprb)(bb) = Λ, and (spra ◦ sprb)(ξ) =
(spra)(aa) = Λ.

(iii)For ω = abab, neither spra ◦ sprb nor sprb ◦ spra is applicable to ω.

Applying spr and sdr in parallel If ϕ = spra and ψ = sdr(b,c), then {ϕ,ψ} is
applicable to u in parallel if and only if a does not overlap with b or c in u, also
neither u(b) nor u(c) is a substring of u(a). In this case, (ϕ ◦ψ)(u) = (ψ ◦ϕ)(u).

Example 7. (i) For δ = baacbc, {ϕ,ψ} is applicable to δ in parallel. Indeed,
(sdrb,c ◦ spra)(δ) = (spra ◦ sdrb,c)(δ) = Λ.

(ii) For ζ = abcbca, spra ◦ sdrb,c is applicable to ζ, but sdrb,c ◦ spra is not.
Indeed, sdrb,c is not applicable to spra(ζ) = cbcb. Note that ζ(b) and ζ(c)
are substrings of ζ(a).

(iii) For κ = abcabc, spra ◦ sdrb,c is applicable to κ, but sdrb,c ◦ spra is not.
Indeed, sdrb,c is not applicable to spra(κ) = cbbc. Note that a overlaps
with b and c in κ

(iv) For θ = abacbc, spra ◦ sdrb,c is applicable to θ, but sdrb,c ◦ spra is not.
Indeed, sdrb,c is not applicable to spra(θ) = bcbc. Note that a overlaps
with b in θ.

Applying two sdr rules in parallel To simplify the notation, in the fol-
lowing, we use three dots to denote an arbitrarily long string (possibly empty).
Thus, e.g., if u is of the form u = u1au2bu3au4bu5cu6du7cu8du9, for some
ui ∈ Σ�, 1 ≤ i ≤ 9, then we denote this as:

u = . . . a . . . b . . . a . . . b . . . c . . . d . . . c . . . d . . ..

Let ϕ = sdra,b and ψ = sdrc,d, where a, b, c, d ∈ dom(u). Since both ϕ
and ψ are applicable to u, u can only have one of the forms listed below (here,
we assume without loss of generality that the pointer from the set { a, b, c, d }
which occurs first in u is a). We study in each case whether or not ϕ and ψ
can be applied in parallel to u. We recall that to check this, one needs to verify
that both f = sdra,b ◦ sdrc,d and g = sdrc,d ◦ sdra,b are applicable to u.

• If u = . . . a . . . b . . . a . . . b . . . c . . . d . . . c . . . d . . ., then f(u) = g(u);

• if u = . . . a . . . b . . . a . . . c . . . b . . . d . . . c . . . d . . ., then f(u) = g(u);

• if u = . . . a . . . b . . . a . . . c . . . d . . . b . . . c . . . d . . ., then f(u) = g(u);

• if u = . . . a . . . b . . . a . . . c . . . d . . . c . . . b . . . d . . ., then f(u) = g(u);
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• if u = . . . a . . . b . . . a . . . c . . . d . . . c . . . d . . . b . . ., then f(u) = g(u);

• if u = . . . a . . . b . . . c . . . a . . . b . . . d . . . c . . . d . . ., then f(u) = g(u);

• if u = . . . a . . . b . . . c . . . a . . . d . . . b . . . c . . . d . . ., then neither f nor g is
applicable to u;

• if u = . . . a . . . b . . . c . . . a . . . d . . . c . . . b . . . d . . ., then neither f nor g is
applicable to u;

• if u = . . . a . . . b . . . c . . . a . . . d . . . c . . . d . . . b . . ., then g is not applicable
to u;

• if u = . . . a . . . b . . . c . . . d . . . a . . . b . . . c . . . d . . ., then f(u) = g(u);

• if u = . . . a . . . b . . . c . . . d . . . a . . . c . . . b . . . d . . ., then neither f nor g is
applicable to u;

• if u = . . . a . . . b . . . c . . . d . . . a . . . c . . . d . . . b . . ., then f(u) = g(u);

• if u = . . . a . . . b . . . c . . . d . . . c . . . a . . . b . . . d . . ., then f(u) = g(u);

• if u = . . . a . . . b . . . c . . . d . . . c . . . a . . . d . . . b . . ., then g is not applicable
to u;

• if u = . . . a . . . b . . . c . . . d . . . c . . . d . . . a . . . b . . ., then f(u) = g(u);

• if u = . . . a . . . c . . . b . . . a . . . b . . . d . . . c . . . d . . ., then f(u) = g(u);

• if u = . . . a . . . c . . . b . . . a . . . d . . . b . . . c . . . d . . ., then neither f nor g is
applicable to u;

• if u = . . . a . . . c . . . b . . . a . . . d . . . c . . . b . . . d . . ., then neither f nor g is
applicable to u;

• if u = . . . a . . . c . . . b . . . a . . . d . . . c . . . d . . . b . . ., then g is not applicable
to u;

• if u = . . . a . . . c . . . b . . . d . . . a . . . b . . . c . . . d . . ., then neither f nor g is
applicable to u;

• if u = . . . a . . . c . . . b . . . d . . . a . . . c . . . b . . . d . . ., then f(u) = g(u);

• if u = . . . a . . . c . . . b . . . d . . . a . . . c . . . d . . . b . . ., then neither f nor g is
applicable to u;

• if u = . . . a . . . c . . . b . . . d . . . c . . . a . . . b . . . d . . ., then neither f nor g is
applicable to u;

• if u = . . . a . . . c . . . b . . . d . . . c . . . a . . . d . . . b . . ., then neither f nor g is
applicable to u;

• if u = . . . a . . . c . . . b . . . d . . . c . . . d . . . a . . . b . . ., then g is not applicable
to u;

• if u = . . . a . . . c . . . d . . . b . . . a . . . b . . . c . . . d . . ., then f(u) = g(u);

• if u = . . . a . . . c . . . d . . . b . . . a . . . c . . . b . . . d . . ., then neither f nor g is
applicable to u;

• if u = . . . a . . . c . . . d . . . b . . . a . . . c . . . d . . . b . . ., then f(u) = g(u);
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• if u = . . . a . . . c . . . d . . . b . . . c . . . a . . . b . . . d . . ., then neither f nor g is
applicable to u;

• if u = . . . a . . . c . . . d . . . b . . . c . . . a . . . d . . . b . . ., then neither f nor g is
applicable to u;

• if u = . . . a . . . c . . . d . . . b . . . c . . . d . . . a . . . b . . ., then f(u) = g(u);

• if u = . . . a . . . c . . . d . . . c . . . b . . . a . . . b . . . d . . ., then f(u) = g(u);

• if u = . . . a . . . c . . . d . . . c . . . b . . . a . . . d . . . b . . ., then g is not applicable
to u;

• if u = . . . a . . . c . . . d . . . c . . . b . . . d . . . a . . . b . . ., then g is not applicable
to u;

• if u = . . . a . . . c . . . d . . . c . . . d . . . b . . . a . . . b . . ., then f(u) = g(u).

Consequently, two rules sdra,b and sdrc,d are applicable in parallel to a legal
string u if and only if u has one of the following forms:

1. u = . . . a . . . b . . . a . . . b . . . c . . . d . . . c . . . d . . ., or

2. u = . . . a . . . b . . . a . . . c . . . d . . . c . . . d . . . b . . ., or

3. u = . . . a . . . b . . . c . . . d . . . c . . . d . . . a . . . b . . ., or

4. u = . . . a . . . c . . . d . . . c . . . d . . . b . . . a . . . b . . ., or

5. u = . . . a . . . b . . . a . . . c . . . d . . . b . . . c . . . d . . ., or

6. u = . . . a . . . b . . . c . . . d . . . a . . . b . . . c . . . d . . ., or

7. u = . . . a . . . b . . . c . . . d . . . a . . . c . . . d . . . b . . ., or

8. u = . . . a . . . c . . . d . . . b . . . a . . . c . . . d . . . b . . ., or

9. u = . . . a . . . c . . . d . . . b . . . a . . . b . . . c . . . d . . ., or

10. u = . . . a . . . c . . . d . . . b . . . c . . . d . . . a . . . b . . ., or

11. u = . . . a . . . c . . . b . . . d . . . a . . . c . . . b . . . d . . ., or

12. u = . . . a . . . b . . . a . . . c . . . b . . . d . . . c . . . d . . ., or

13. u = . . . a . . . b . . . c . . . a . . . b . . . d . . . c . . . d . . ., or

14. u = . . . a . . . c . . . b . . . a . . . b . . . d . . . c . . . d . . ., or

15. u = . . . a . . . b . . . a . . . c . . . d . . . c . . . b . . . d . . ., or

16. u = . . . a . . . b . . . c . . . d . . . c . . . a . . . b . . . d . . ., or

17. u = . . . a . . . c . . . d . . . c . . . b . . . a . . . b . . . d . . ..

In each of these cases, (sdra,b ◦ sdrc,d)(u) = (sdrc,d ◦ sdra,b)(u).

Example 8. (i) For u = rpqpsrqs, sdrr,s ◦ sdrp,q is applicable to u, while
sdrp,q ◦ sdrr,s is not. Indeed, sdrp,q is not applicable to sdrr,s(u) = qpqp.

(ii) For ω = rsprqspq, neither sdrr,s ◦ sdrp,q nor sdrp,q ◦ sdrr,s is applicable
to ω. Indeed, sdrr,s is not applicable to sdrp,q(ω) = rssr, also sdrp,q is
not applicable to sdrr,s(ω) = qppq.
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(iii) For θ = rsrpqspq, both sdrr,s ◦ sdrp,q and sdrp,q ◦ sdrr,s are applicable to θ.
Indeed, (sdrr,s ◦ sdrp,q)(θ) = (sdrr,s)(rsrs) = Λ and (sdrp,q ◦ sdrr,s)(θ) =
(sdrp,q)(pqpq) = Λ. Thus, sdrr,s ◦ sdrp,q and sdrp,q ◦ sdrr,s are applicable in
parallel to θ.

(iv) For ζ = rpsqrpsq, the following pairs are applicable in parallel to ζ:

(sdrr,s ◦ sdrp,q)(ζ) = (sdrp,q ◦ sdrr,s)(ζ);

(sdrr,q ◦ sdrp,s)(ζ) = (sdrp,s ◦ sdrr,q)(ζ);

(sdrr,p ◦ sdrs,q)(ζ) = (sdrs,q ◦ sdrr,p)(ζ).

The following result follows from the analysis above.

Lemma 1. If ϕ, ψ ∈ Snr ∪ Spr ∪ Sdr are applicable in parallel to the signed
string u, then (ϕ(ψ(u)) = ψ(ϕ(u)).

Using Lemma 1, we can prove now that for any number of rules, if they can
be applied in parallel to a string u, then the result of the reduction is the same,
regardless of the sequential order in which they are applied to u.

Theorem 2. Let u be a legal string and let S ⊆ Snr∪Spr∪Sdr be a set of rules
applied in parallel to u. Then, for any two compositions ϕ, ϕ′ of the rules in S,
ϕ(u) = ϕ′(u).

Proof. There is a sequence ϕ = ϕ0, ϕ1, . . . , ϕm = ϕ′ of permutations of ϕ, where

ϕi = ϕi2αiβiϕi1 and ϕi+1 = ϕi2βiαiϕi1,

for some compositions ϕi1 and ϕi2 and rules αi and βi. Therefore, it is sufficient
to show the claim for the case, where the compositions are of the form ϕ =
ϕ2αβϕ1 and ϕ′ = ϕ2βαϕ1 for rules α and β. Also, in this case, ϕ(u) = ϕ′(u) if
and only if αβ(ϕ1(u)) = βα(ϕ1(u)). Thus, the claim of the theorem is equivalent
to proving that if αβ(u) and βα(u) are both defined, then αβ(u) = βα(u). This
however follows from Lemma 1.

5 Graph reduction rules for gene assembly

We consider now the formalization of gene assembly through signed graphs. As
it turns out, the higher level of abstraction given by signed graphs with respect
to legal strings is crucial. E.g., while in the string model of gene assembly,
17 cases were needed to describe the parallel applicability of two sdr rules on
strings, the same can be described for graphs in terms of avoiding two simple
subgraph structures!

We recall in the following some basic definitions related signed graphs – we
refer to [15] for more details.

A signed graph G is a structure G = (V,E, σ), where (V,E) is a nondirected
graph and σ : V → {+,−} is a vertex-labelling function. The graph (V,E)
is called the underlying graph of G. G is called the empty graph, denoted ∅
if V = ∅. We denote an edge between vertices u, v as uv – since our graphs
are nondirected, we have uv = vu for all edges uv ∈ E. We say that a vertex
v ∈ V is positive (negative, resp.) if σ(v) = + (σ(v) = −, resp.) We denote
V + = {v ∈ V | σ(v) = +} and V − = V \V +. Let G+ (G−, resp.) be the signed
subgraph of G induced by V + (V −, resp.). For a vertex p ∈ V we will also write
p ∈ G; if p ∈ V − (p ∈ V +, resp.), then we also write p ∈ G− (p ∈ G+). We
say that a signed graph is all-negative (all-positive, resp.) if V = V − (V = V +,
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resp.). The neighbourhood of a vertex v ∈ V is NG(v) = {u ∈ V | uv ∈ E}. The
vertex v is isolated if NG(v) = ∅. The signed graph G is called discrete if all
its vertices are isolated; in this case, the set V of vertices is called stable. G is
called a clique if E = {uv | u, v ∈ V, u 
= v}.

For two signed graphs G1, G2, with Gi = (Vi, Ei, σi), i = 1, 2, V1∩V2 = ∅, we
denote by G1 ⊕G2 the disjoint union of G1 and G2, i.e., the graph (V3, E3, σ3)
with V3 = V1 ∪ V2, E3 = E1 ∪ E2, σ3(u) = σ1(u) if u ∈ V1 and σ3(u) = σ2(u) if
u ∈ V2. We denote by G1 ⊗G2 the complete connection of graphs G1 and G2,
i.e., the signed graph (V4, E4, σ4) with V4 = V1 ∪ V2, E4 = E1 ∪ E2 ∪ {uv | u ∈
V1, v ∈ V2}, σ4 = σ3. Note that the difference between the complete connection
of two signed graphs G1, G2 and their disjoint unions is that the former has
some extra edges: all possible edges between vertices of G1 and vertices of G2.

We say that a signed graph is a complete bipartite graph (with bipartition
(n,m)), denoted by Kn,m, if there are disjoint discrete graphs G1 and G2 with
n and m vertices, resp., such that Kn,m = G1⊗G2. A graph K1,m is also called
a star. A signed graph G is called complete tripartite if there are discrete graphs
G1, G2, G3 such that G = G1 ⊗ G2 ⊗ G3. A signed graph is called a square,
denoted C4 (diamond, resp., denoted D4) if its underlying graph is isomorphic
to the graph illustrated in Figure 6(a) (Figure 6(b), resp.)

5 4
− −

2 3
− −

(b)

5 4
− −

2 3
− −

(a)

Figure 6: (a) The square C4; (b) the diamond D4.

Let u be a legal string over the alphabet Σ. We associate to u a unique
signed graph Gu = (Vu, Eu, σu) as follows:

• Vu = {a ∈ Σ | a ∈ dom(u)};
• (a, b) ∈ Eu if and only if a and b overlap in u;

• σu(a) = + (−, resp.) if a is positive (negative, resp.) in u.

E.g., the signed graph associated to the micronuclear gene actin I in S.
nova, see Fig. 4 for its MDS sequence, is given in Fig. 7. Also, the signed graph
associated to the micronuclear gene αTP in S. nova, see Fig. 5 for its MDS
sequence, is given in Fig. 8 – the graph consists of one negative clique with
vertices {2, 3, . . . , 12} and one negative discrete subgraph with vertices {13, 14}.
We refer to [4] for many other examples.

8

3

9

+

− −

4
− −

7

5 6 −−
2
+

Figure 7: The signed overlap graph associated to the actin I gene in S. nova.

Let G = (V,E, σ) be a signed graph and S ⊆ V . We say that the signed
graph G′ = (V,E′, σ′) is obtained from G by complementing on the set of
vertices S if G′ results from G by replacing the subgraph induced by S with its
complement (including the signs of the vertices in S); G′ is denoted by comS(G).
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Figure 8: The signed graph associated to αTP protein in S. nova consists of one
negative clique with vertices {2, 3, . . . , 12} and one negative discrete subgraph
with vertices {13, 14}.

Moreover, if S is the neighbourhood NG(v) of a vertex v ∈ V , then we get the
local complement locv(G) at v, i.e., locv(G) = comNG(v)(G). For a vertex u ∈ V ,
we denote by G− u the subgraph of G induced by V \ {u}.

The molecular operations ld, hi, and dlad are modelled on signed graphs by
the rules gnr, gpr, and gdr defined bellow.

Let G be a signed graph.

• The graph negative rule for a vertex p is applicable to G if p ∈ G− is
isolated. The result gnrp(G) is the signed graph gnrp(G) = G − p. The
domain of gnrp is {p}.
Let Gnr = {gnrp | p ≥ 1} be the set of all graph negative rules on signed
graphs.

• The graph positive rule for a vertex p is applicable to G if p ∈ G+. The
result gprp(G) is the signed graph gprp(G) = locp(G) − p. The domain of
gprp is {p}.
Let Gpr = {gprp | p ≥ 1} be the set of all graph positive rules on signed
graphs.

• The graph double rule for two different vertices p and q is applicable to G
if p, q ∈ G− are adjacent. The result gdrp,q(G) is the signed graph where
gdrp,q(G) = (V \{p, q}, E′, σ′) is obtained as follows: σ′ equals σ restricted
to V \ {p, q}, and E′ is obtained from E by complementing the edges that
join vertices in NG(p) to vertices in NG(q). This means that the status of
a pair {x, y} (for x, y ∈ V \ {p, q}) as an edge will change if and only if

x ∈ NG(p) \NG(q) and y ∈ NG(q),
x ∈ NG(p) ∩NG(q) and y ∈ (NG(q) \NG(p)) ∪ (NG(p) \NG(q)),
x ∈ NG(q) \NG(p) and y ∈ NG(p).

The domain of gdrp,q is {p, q}.
Let Gdr = {gdrp,q | p, q ≥ 1} be the set of all graph double rules on signed
graphs.

For a signed graph G and some operations ϕ1, ϕ2, . . . , ϕn ∈ Gnr∪Gpr∪Gdr,
we say that ϕ = ϕn ◦ · · · ◦ ϕ2 ◦ ϕ1 is a successful strategy for G if ϕ(G) = ∅.

11



The following result is straightforward to prove (see [4], Lemma 11.3 for its
counterpart for signed double occurrence strings). We skip the proof here.

Lemma 3. Let G = (V,E, σ) be a signed graph and p, q ∈ V . If gdrp,q is
applicable to G, then gdrp,q(G) = gprp(gprq(locp(G))).

6 Parallelism in the graph-based model

In this section we consider the notion of parallelism in the framework of signed
graphs.

Let S ⊆ Gnr ∪ Gpr ∪ Gdr be a set of rules and let G = (V,E, σ) be a signed
graph. We say that the rules in S can be applied in parallel to G if for any
ordering ϕ1, ϕ2, . . . , ϕk of S, the composition ϕk ◦ · · · ◦ϕ1 is applicable to G. In
particular, two rules ϕ,ψ ∈ Gnr ∪ Gpr ∪ Gdr can be applied in parallel to G if
both ϕ ◦ ψ and ψ ◦ ϕ are applicable to G.

The following result is straightforward to prove and provides a simple cri-
terium for two rules to be applicable in parallel.

Theorem 4. Let G = (V,E, σ) be a signed graph and let ϕ,ψ ∈ Gnr∪Gpr∪Gdr
be two rules applicable to G with dom(ϕ) ∩ dom(ψ) = ∅.

(i) If ϕ ∈ Gnr, then ϕ and ψ can be applied in parallel to G.

(ii) If ϕ = gprp with p ∈ V , then ϕ and ψ can be applied in parallel to G if and
only if NG(p) ∩ dom(ψ) = ∅.

(iii) If ϕ,ψ ∈ Gdr, then ϕ and ψ can applied in parallel to G if and only if the
subgraph of G induced by dom(ϕ)∪dom(ψ) is not isomorphic to C4 or D4.

Proof. Claim (i) is trivial. For (ii), note that for any two positive adjacent
vertices p, q, p is negative in the signed graph gprq(G). Thus, gprp and gprq are
applicable in parallel if and only if p and q are not adjacent. Consider also two
adjacent vertices r, s ∈ G− such that r is also adjacent to p. Then r is positive
in gprp(G) and so, gprp and gdrr,s are not applicable in parallel to G.

Case (iii) follows through a simple case analysis observing that for pointers
p, q, r, s ∈ G−, gdrp,q and gdrr,s are applicable in parallel to G if and only if p, q
remain adjacent in gdrr,s(G) and r, s remain adjacent in gdrp,q(G).

Example 9. Let G be the graph illustrated in Figure 9.

(i) Any two of the rules gpr2, gnr7, and gdr4,5 can be applied in parallel to G.

(ii) gpr2 and gpr3 cannot be applied in parallel to G, although each of them is
applicable to G. Indeed, neither gpr2 ◦ gpr3 nor gpr3 ◦ gpr2 is applicable to
G: in the signed graph gpr2(G) (gpr3(G), resp.) the vertex 3 (2, resp.) is
negative, and thus, gpr3 (gpr2, resp.) is not applicable.

(iii) gdr4,5 and gdr5,6 are not applicable in parallel to G since applying one of
them removes vertex 5, thus making the other one unapplicable.

(iv) The rules in each of the following sets are applicable in parallel to G : S1 =
{gpr2, gdr4,5, gnr7}, S2 = {gpr2, gdr5,6, gnr7}, S3 = {gpr3, gdr4,5, gnr7},
S4 = {gpr3, gdr5,6, gnr7}.
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Figure 9: The graph G in Example 9.

Example 10. Let G be the signed overlap graph associated to the actin I gene
in S. nova, illustrated in Figure 7. There are only 6 different maximal parallel
strategies to reduce this graph:

{gpr2, gnr4, gdr5,6, gdr8,9}{gnr7, gpr3};
{gpr2, gnr4, gdr6,7, gdr8,9}{gnr5, gpr3};
{gpr2, gnr4, gdr5,7, gdr8,9}{gnr6, gpr3};

{gpr2, gpr3, gnr4, gdr5,6}{gnr7, gpr8, gpr9};
{gpr2, gpr3, gnr4, gdr5,7}{gnr6, gpr8, gpr9};
{gpr2, gpr3, gnr4, gdr6,7}{gnr5, gpr8, gpr9}.

Note that there are 3060 sequential strategies to reduce this graph (and assemble
the gene) – the reason for this difference is that many sequential strategies
coincide modulo commutation of some rules – as it turns out, these rules may
be applied in parallel.

According to our definition, if a set of rules is applicable in parallel to a
signed graph, then any composition of these rules is applicable to that graph.
This definition does not require that the result of applying different compositions
of rules must be the same. However, we prove in the following that this is indeed
the case.

We consider first the case of two rules and prove that if both ϕ◦ψ and ψ ◦ϕ
are applicable to a graph G, then (ϕ ◦ ψ)(G) = (ψ ◦ ϕ)(G). For this, we first
prove the following lemma.

Lemma 5. Let G be a signed graph, G = (V,E, σ) and S1, S2 ⊆ V . Then
comS1(comS2(G)) = comS2(comS1(G)).

Proof. Let G1 = comS1(comS2(G)) and G2 = comS2(comS1(G)) with Gi =
(V,Ei, σi), i = 1, 2. Then clearly, for any p, q ∈ S1 ∪ S2, we have the following:

(i) (p, q) ∈ E ∩ Ei if and only if p, q ∈ S1 ∩ S2;

(ii) σi(p) = σ(p) if and only if p ∈ S1 ∩ S2.

Also, for any p ∈ V \ (S1 ∪ S2) we have the following:

(iii) for any q ∈ S1 ∪ S2, pq ∈ Ei if and only if pq ∈ E;

(iv) σi(p) = σ(p).

Consequently, G1 = G2, proving the claim.

We are now ready to prove the result announced above. We note again that
the definition of parallelism only presumes that the rules are applicable in any
possible order – this is enough to ensure that the result is always the same
regardless of the order in which they are applied, as shown in the next theorem.

Theorem 6. If ϕ,ψ ∈ Gnr ∪ Gpr ∪ Gdr are applicable in parallel to the signed
graph G, then ϕ(ψ(G)) = ψ(ϕ(G)).

Proof. If ϕ ∈ Gnr or ψ ∈ Gnr, then the result is trivial. The rest of the cases
follow easily from Lemmata 5 and 3 observing that for any S ⊆ V and p, q ∈ V ,
comS(G)−p = comS(G−p) and (G− q)−p = (G−p)− q. Indeed, all our rules
can be expressed as compositions of com and vertex removals.

13



The general case follows now easily from Theorem 6, using a similar proof
as for Theorem 2, the counterpart result for the string-based model.

Theorem 7. Let G be a signed graph and let S ⊆ Gnr ∪ Gpr ∪ Gdr be a set of
rules applicable in parallel to G. Then for any two compositions ϕ,ϕ′ of the
rules in S, ϕ(G) = ϕ′(G).

It is important to note that if the rules in S are applicable in parallel to the
signed graph G, then the rules in any subset of S are applicable in parallel to G.
However, the reverse is not true, as shown by the following example.

Example 11. Let G be the signed graph in Figure 10. Then any two rules from
the set S = {gdr2,3, gdr4,5, gdr6,7} are applicable in parallel to G by Theorem 4.
However, the rules in S are not applicable in parallel to G. Indeed, applying
any two of them to G in an arbitrary order makes the third one unapplicable.
E.g., (gdr2,3 ◦ gdr4,5)(G) is the isolated all-negative graph on the set of vertices
{6, 7}. Clearly, gdr6,7 is not applicable to this graph.

−
2 3

−

4
−

−
56

−

7
−

Figure 10: The graph G in Example 11.

The following problem seems to be difficult: check whether or not a given set
of rules can be applied in parallel to a given signed graph. In the next theorem
we give a simple criterium in the case when at most two gdr-s are among the
rules to be applied.

Theorem 8. Let G be a signed graph and S ⊆ Gnr ∪ Gpr ∪ Gdr a set of rules
containing at most two gdr’s. Let P be the union of domains of rules in S with
P+ = {p ∈ P | σ(p) = +}, and P− = P \ P+. Then the rules in S can be
applied in parallel to G if and only if the following conditions are satisfied:

(i) The subgraph induced by P+ is discrete. Moreover, there is no edge between
vertices in P+ and vertices in P−.

(ii) The subgraph induced by P− does not contain induced squares C4 or dia-
monds D4.

Proof. Condition (i) of the theorem is clearly necessary: if there were an edge
pq with p, q ∈ P+, then gprp ◦ gprq would not be applicable to G, contradicting
the parallelism of the rules in S.

Condition (ii) is also easily seen to be necessary. For this, assume that there
is gdrp,q, gdrr,s ∈ S such that the subgraph induced by {p, q, r, s} is isomorphic
to either C4, or D4. Then there is no edge between r and s in gdrp,q(G) and so,
gdrr,s ◦ gdrp,q is not applicable to G; a contradiction.

Assume now that conditions (i) and (ii) hold and consider an arbitrary com-
position ϕ1 ◦ · · · ◦ ϕn of the rules in S. It is easy to see that property (i)
is preserved throughout the reduction ϕ1 ◦ · · · ◦ ϕn. Indeed, creating an edge
between vertices in P+ or between vertices in P+ and P− is only possible if
such an edge existed before and gpr or gdr was applied, see the definition of
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our rules. For the same reason, the edges between the vertices in P− are not
modified throughout the reduction prior to applying a gdr, if one exists in S.
Since the vertices in P− do not induce C4 or D4, the second gdr, if it exists
in S, will remain applicable to G.

Note however that Theorem 8 does not hold when more than two gdr-s
are in the considered set of rules, as shown in Example 11. Indeed, for the
graph illustrated in Figure 10, gdr2,3, gdr4,5, gdr6,7 are not applicable in parallel,
although no four vertices from {2, 3, . . . , 7} induce a subgraph isomorphic to C4

or D4.

7 Parallel complexity of micronuclear genes

A new natural notion of complexity can be defined for the process of gene assem-
bly using the notion of parallelism. The parallel complexity of a micronuclear
gene (and of its associated signed graph) is the minimal number of steps needed
to reduce in parallel the signed graph associated to that gene. We will investi-
gate this notion now and show how this leads to several intriguing question on
signed graphs.

Example 12. (i) Consider the micronuclear gene C2 in S. nova, having four
MDSs placed in the orthodox order. The signed graph associated to this
gene is the all-negative discrete graph with four vertices. Thus, its parallel
complexity is 1.

(ii) Consider the micronuclear gene actin I in S. nova with the associated
signed graph illustrated in Figure 7, see also Example 9. Its parallel com-
plexity is two and a parallel strategy in two steps is {gpr2, gnr4, gpr3, gdr5,6}
{gnr7, gpr8, gpr9}, see also Example 10.

Example 13. (a) A discrete graph has parallel complexity one.

(b) An all-positive clique G has parallel complexity at most two. Indeed, for
any node u of G, gpru(G) is either empty, or a discrete graph.

(c) An all-negative complete bipartite graph has parallel complexity at most
two. Indeed, for any edge uv of G, gdru,v(G) is either empty, or a discrete
graph.

(d) An all-negative complete tripartite graph has parallel complexity at most
two. To see this, consider an arbitrary edge uv of G and note that for any
other edge pq of G, {p, q, u, v} induces either a subgraph C4 or a subgraph
D4 in G, see Fig. 11. Thus, p and q will not be adjacent in the graph
gdru,v(G). Consequently, gdru,v(G) is either empty, or a discrete graph.

As it turns out, it is difficult to find signed graphs with parallel complexity
higher than 4, or all-negative graphs with parallel complexity higher than 2,
see Conjectures 1 and 2 in Section 8. There are at least two types of graphs
that seem intuitively “difficult to reduce”: graphs on which no two rules can be
applied in parallel in the first step, and graphs that avoid a certain rule (such as
gdr that reduces two vertices at once) in all parallel reductions. We characterize
these two types of graphs in the following.
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Figure 11: An all-negative complete tripartite graph has parallel complexity at
most two.

7.1 Graphs with no parallelism in the first step

The following result is clear by Theorem 4 and Example 13.

Lemma 9. Let G be a signed graph.

(i) G has no two parallel applications of gnr-rules if and only if G has at most
one isolated negative vertex.

(ii) G has no two parallel applications of gpr-rules if and only if G+ is a clique.
Moreover, if G is all-positive, then its parallel complexity is at most two.

Lemma 10. A signed graph G has no two parallel applications of gdr-rules if
and only if the subgraph G− induced by the negative vertices is equal to G− =
(K⊗S1)⊕S2, where K is a complete bipartite graph and S1 and S2 are (possibly
empty) discrete graphs.

Proof. We assume without loss of generality that the graph G is all-negative.
For the direct implication, note that the result holds for graphs with up

to 4 vertices. Consider a larger graph and note that in that graph there can be
several isolated vertices and only one non-trivial connected component. We can
remove the isolated vertices and thus assume without loss of generality that the
graph is connected. Let G = (V,E, σ).

Claim 1. Let x, y ∈ V . If xy /∈ E then N(x) = N(y).

Proof of Claim 1. Assume there exists a vertex z ∈ N(x) \ N(y). Since G is
connected, there exists a vertex z′ ∈ N(y). Now, the set {x, y, z, z′} induces a
subgraph different from C4 and D4 and so, gdrx,z and gdry,z′ are both applicable
to G. This proves the claim.

Let S be a maximal stable subset of G. Hence each vertex x /∈ S is adjacent
to a vertex in S, and, by Claim 1, S and W = V \ S are completely connected.
Since G has no subgraphs K4, W does not have triangles K3 and thus no
subgraphs D4. Therefore all four element induced subgraphs are isomorphic to
C4. This is possible only if W induces a complete bipartite subgraph.

The reverse implication is clearly true.

Note that the above proof could be simplified using a result from [9] stating
that a graph G is complete bipartite if and only if it does not have an induced
K3 nor induced K2 ⊕K1.
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Corollary 11. A signed graph G has no two parallel applications of gdr-rules if
and only if G− consists of a discrete graph and a complete tripartite graph, where
some of the three components can also be empty. Moreover, if G is all-negative,
then its parallel complexity is at most two.

An induced subgraphH is said to be a shadow of a vertex set (or a subgraph)
A if for each x ∈ A and edge uv of H, x is adjacent to u or v or both, and each
isolated vertex of H is adjacent to a vertex in A.

Theorem 12. Let G be a signed graph of at least two vertices. Then G has no
parallel applications of the rules (gnr, gpr, and gdr) if and only if

(i) G+ is a clique,

(ii) G− is a shadow of G+, and

(iii) G− consists of a discrete graph and a complete tripartite graph.

Moreover, if G is all-negative or all-positive, then its parallel complexity is at
most two.

Proof. Condition (i) follows from Lemma 9 and condition (ii) obviously holds
since no gpr can be applied in parallel with a gnr or with a gdr. Condition (iii)
of the theorem follows from Corollary 11.

7.2 Graphs that avoid one type of reduction

The signed graphs that have no reductions using gnr are those that can be
reduced using only gpr and gdr. A string-based characterization was given in [3],
but giving a similar graph-based characterization remains an open problem.

Lemma 13. A signed graph G has no reductions using gpr if and only if G is
all-negative.

Lemma 14. Let G be a connected signed graph with no reduction using gdr.
Then G = G+ ⊗ G−. Moreover, G+ is either a clique, or a disjoint union of
two cliques, and G− is discrete. That is, G = (K ⊕K ′) ⊗ S, where K,K ′ are
all-positive cliques and S is an all-negative discrete graph, where K,K ′, and S
can be empty. Moreover, G can be reduced in at most three parallel steps.

Proof. If there is an induced path P3 of three vertices in G+, then by applying
gpr to the middle vertex v we obtain an edge with negative ends. Hence gdr can
be applied to gprv(G); a contradiction. Obviously, if a connected graph does
not have an induced P3, then it is a clique. Therefore, G+ is a disjoint union of
cliques.

If G− = ∅, then G, being connected, must be an all-positive clique, and the
claim follows. Assume thus that G− is not empty; necessarily, G− is discrete.
Let x ∈ G−. Assume that u ∈ N(x) and u, v ∈ G+ with uv ∈ E. Then also
v ∈ N(x), since xv is an edge in gprv(G) with negative ends. This shows that if
N(x)∩Gi 
= ∅, then Gi ⊆ N(x), which yields that N(x) is a union of cliques Gi.
NowG does not have an inducedK1,m with at least three positive leaves. Indeed,
if u, v, w ∈ N(x) are not pairwise adjacent, then in G′ = gprv(G), the vertices
x, u, w are positive, and they are in the same connected component. However,
uw is not an edge in G′ and so, gdru,w will be applicable to gprx(gprv(G)); a
contradiction. Consequently, any negative vertex is connected to at most two
positive cliques in G.
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Finally, if also y ∈ G−, v ∈ N(x) and u ∈ N(x)∩N(y), then also v ∈ N(y).
Indeed, otherwise, gdrv,y is applicable to gprx(gpru(G)). Consequently, G+ is
either a clique, or a disjoint union of two cliques, proving the first part of the
lemma.

For the second part, note that if G+ is a clique, then applying any gpr
to G transforms it into a disjoint union of a positive clique and a discrete all-
negative graph, reducible in two steps. If G+ is a disjoint union of two cliques,
then applying two gpr rules in parallel, one in each clique, transforms G into a
discrete all-negative graph, thus reducible in one parallel step.

7.3 Some bounds on the parallel complexity

Some upper and lower bounds on the parallel complexity of a signed graph are
given in the next result.

Lemma 15. (i) The parallel complexity of a signed graph with n vertices is at
most n/2 + 3. If the graph is all-negative, then its complexity is at most
n/4 + 2.

(ii) There are signed graphs with parallel complexity four. There are all-
negative graphs with parallel complexity two.

Proof. (i) Consider a signed graph G = (V,E, σ) on n vertices. If at least one
rule gdr or two rules gpr are applicable to G, then the number of vertices is
decreased by at least two in one step. Assume then that no gdr and only at
most one gpr is applicable to G. We may also assume without loss of generality
that G has no isolated vertices. Then G+ is a clique, G− is discrete, and G−

is a shadow of G+. Consider then an arbitrary u ∈ G+ and let A = V + \ {u},
B = NG(u) ∩ V −, and C = V − \ B. If G1 = gpru(G), then A and C induce
all-negative discrete graphs in G1, B induces an all-positive clique, and there
are no edges between B and C.

If at least two gdr rules, or one gpr and one gdr are applicable to G1, then
at least 3 vertices are eliminated. Thus, we eliminate at least 4 vertices from G
in two steps and we can continue the same reasoning as above with G1 instead
of G. If this is not the case, then in G1 no two rules can be applied in parallel
and by Theorem 12, A is completely connected in G1 to B and to C. Thus, in
the signed graph G, A is completely connected to C and no edges exist between
A and B, or between B and C. Consequently, G can be reduced in at most 3
steps. Indeed, the first step of such a strategy for G applies rule gprp for some
p ∈ A. Then, in gprp(G), A and B induce all-negative discrete graphs, C an
all-positive clique, and the only edges are those completely connecting {u} and
B. Clearly, this graph can be then reduced in two steps.

Assume now that the graph G is all-negative. If at least two rules gdr are
applicable to G in parallel, then the order of G is decreased by at least 4 in one
step. If no gdr are applicable to G, then G is discrete and thus reducible in one
step. If exactly one gdr is applicable to G, then, by Lemma 10, G = T ⊕ D,
with T a complete tripartite graph and D a discrete graph. Such a graph can
be reduced in at most two steps, see Example 13.

(ii) The square C4 cannot be reduced using less than two steps. Also, the graph
in Figure 12 cannot be reduced using less than four steps. One strategy reducing
the graph in four steps is the following: {gpr2}{gdr3,6}{gpr4, gnr7}{gnr5}.
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Figure 12: A signed graph irreducible in less than four parallel steps.

8 Conclusions

We have investigated in this paper a notion of parallelism for reducing signed
graphs such as those associated to micronuclear gene patterns. The fact that
parallelism could only be tediously formalized for strings is not surprising:
signed graphs give a higher level of abstraction making easier the analysis of
the gene assembly process.

We also introduced a notion of parallel complexity for micronuclear genes
and their signed graphs, given by the minimal number of steps needed in a
parallel reduction. Surprisingly, we have been unable to find examples of graphs
with high parallel complexity; we conjecture that no such graphs exist. More
specifically, we state the following two conjectures:

Conjecture 1. Any all-negative graph can be reduced in parallel in at most two
steps.

Conjecture 2. Any signed graph can be reduced in parallel in at most four
steps.

Notably, Conjecture 1 is open even for “well-structured” graphs, such as
bipartite graphs. We also state the following interesting graph-theoretical con-
jecture.

Conjecture 3. Let G be a black and white graph of vertices v1, ..., vn, x, where
x is a special sink vertex (output). Let loci be the local complementation at vi,
which is applicable if vi is black in the current graph. If π1 and π2 are any two
permutations of loc1, loc2, ..., locn that are applicable to G, then x has the same
color in both π1(G) and π2(G).

Another interesting question is how one can find an optimal (minimal) par-
allel reduction strategy for a given signed graph. Also, the computational com-
plexity of this optimization problem is yet-to-be established. Clearly, using a
parallel reduction following a greedy strategy (maximize the number of nodes
to be reduced in each step) does not necessarily lead to an optimal result, as
shown by the following example.

Example 14. Let G be the signed diamond D4 in Figure 13. Maximizing the
number of rules to be applied in parallel in the first step of the reduction we
get a parallel strategy reducing G in 3 steps: {gpr3, gpr4}{gpr5}{gpr2}. Note
however that there is another strategy using less rules in the first step, still
reducing the graph in two parallel steps: {gpr5}{gpr2, gdr3,4}.
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