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Abstract

As a framework for characterizing families of regular languages of binary
trees, Wilke introduced a formalism for defining binary trees that uses six
many-sorted operations involving letters, tress and contexts. In this paper
a completeness property of these operations is studied. It is shown that all
functions involving letters, binary trees and binary contexts which preserve
congruence relations of the free tree algebra over an alphabet, are generated
by Wilke’s functions, if the alphabet contains at least seven letters. That is
to say, the free tree algebra over an alphabet with at least seven letters is
affine-complete. The proof yields also a version of the theorem for ordinary
one-sorted term algebras: congruence preserving functions on contexts and
members of a term algebra are substitution functions, provided that the
signature consists of constant and binary function symbols only, and contains
at least seven symbols of each rank. Moreover, term algebras over signatures
with at least seven constant symbols are affine-complete.

Keywords: Tree Languages, Term Algebra, Congruence Preserving Func-
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1 Introduction

A new framework for characterizing families of tree languages was intro-
duced by Wilke [15], which can be regarded as a combination of the uni-
versal algebraic framework of Steinby [11],[12] and Almeida [1], in the case
of binary trees, which is based on syntactic algebras, and of the syntactic
monoid/semigroup framework of Thomas [14] and Nivat and Podelski [7],[8].
It is based on three-sorted algebras, whose signature Σ consists of six oper-
ation symbols involving the sorts Alphabet, Tree and Context. Binary
trees over an alphabet are represented by terms over Σ, namely as Σ-terms
of sort Tree. A tree algebra is a Σ-algebra satisfying every identity that
consists of two Σ-terms representing the same tree or context. Wilke [15]
axiomatized these algebras by four identities. The syntactic tree algebra con-
gruence relation of a tree language is defined in a natural way (Definition
2.1 below.) The Tree-sort component of the syntactic tree algebra of a tree
language is the syntactic algebra of the language in the sense of [12], while
its Context-component is the syntactic semigroup of the tree language, cf.
[14]. A rather comprehensive study of tree algebras and Wilke’s formalism
has been initiated by Steinby and Salehi [10].

In this paper we give a detailed proof of what was claimed, without pre-
senting the full proof, in Theorem 1 of [9]: Wilke’s functions generate all
congruence preserving operations on the term algebra of trees, when the
alphabet contains at least seven letters. A one-sorted version of this theo-
rem, presented in Section 3 below, is interesting by itself: every congruence
preserving function on contexts and members of a term algebra is a substi-
tution function, when the signature consists of constant and binary function
symbols and contains at least seven symbols of each rank.

2 Preliminaries

For an alphabet A, let ΣA be the signature which contains a constant symbol
ca and a binary function symbol fa for every a ∈ A, that is ΣA = (ΣA)0 ∪
(ΣA)2, where (ΣA)0 = {ca | a ∈ A} and (ΣA)2 = {fa | a ∈ A}.

The set of binary trees over A, denoted by TA, is defined inductively by:

• ca ∈ TA for every a ∈ A, and

• fa(t1, t2) ∈ TA whenever t1, t2 ∈ TA and a ∈ A.

A binary tree language over an alphabet A is any subset of TA.
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Fix a new symbol ξ which does not appear in A. Binary contexts over A are
binary trees over A ∪ {ξ} in which ξ appears exactly once as a leaf. The set
of non-unit binary contexts over A, denoted by CA, is defined inductively by:

• fa(t, ξ), fa(ξ, t) ∈ CA whenever a ∈ A, t ∈ TA, and

• fa(t, p), fa(p, t) ∈ CA whenever a ∈ A, t ∈ TA, and p ∈ CA.

The set of A-contexts is C1
A = CA ∪ {ξ}.

Definition 2.1 ([15], page 92) For a tree language L ⊆ TA we define the
syntactic tree algebra congruence relation of L, denoted by (≈L

A,≈L
C,≈L

T), as
follows:

1. For any a, b ∈ A, a ≈L
A b ≡ ∀p ∈ C1

A{p(ca) ∈ L↔ p(cb) ∈ L}&

∀p ∈ C1
A∀t1, t2 ∈ TA{p(fa(t1, t2)) ∈ L↔ p(fb(t1, t2)) ∈ L}.

2. For any p, q ∈ CA, p ≈L
C q ≡

∀r ∈ C1
A∀t ∈ TA{r(p(t)) ∈ L↔ r(q(t)) ∈ L}.

3. For any t, s ∈ TA, t ≈L
T s ≡ ∀p ∈ C1

A{p(t) ∈ L↔ p(s) ∈ L}.

Definition 2.2 ([15], page 88) Wilke’s functions over an alphabet A are:

ιA : A→ TA ιA(a) = ca

κA : A× T
2

A → TA κA(a, t1, t2) = fa(t1, t2)
λA : A× TA → CA λA(a, t) = fa(ξ, t)
ρA : A× TA → CA ρA(a, t) = fa(t, ξ)

σA : C
2

A → CA σA(p1, p2) = p1(p2)
ηA : CA × TA → TA ηA(p, t) = p(t)

The above definition is the interpretation of the signature Σ = {ι, κ, λ, ρ, η, σ}
in the 3-sorted Σ-structure F= (A, CA, TA, Σ), defined in [15], page 89.

Definition 2.3 ([9], Definition 4) A function F : A
n

× C
k

A × T
m

A → X
where X ∈ {A, CA, TA} is called congruence preserving, if for every tree
language L ⊆ TA and for all a1, b1, · · · , an, bn ∈ A, p1, q1, · · · , pk, qk ∈ CA,
t1, s1, · · · , tm, sm ∈ TA, if

a1 ≈
L
A b1, · · · , an ≈

L
A bn, p1 ≈

L
C q1, · · · , pk ≈

L
C qk, t1 ≈

L
T s1, · · · , tm ≈

L
T sm,

then

F (a1, · · · , an, p1, · · · , pk, t1, · · · , tm) ≈L
x F (b1, · · · , bn, q1, · · · , qk, s1, · · · , sm),

where x is A, C, or T, if X = A, X = CA, or X = TA, respectively.
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Remark 2.4 In universal algebra, the functions which preserve congruence
relations of an algebra, are called congruence preserving functions. On the
other hand it is known that every congruence relation over an algebra is the
intersection of some syntactic congruence relations (see Remark 2.12 of [1]
or Lemma 6.2 of [12].) So, a function preserves all congruence relations of
an algebra iff it preserves the syntactic congruence relations of all subsets of
the algebra. This justifies the notion of congruence preserving function in
our Definition 2.3, even though we require that the function preserves only
the syntactic tree algebra congruence relations of tree languages, which is
the case if and only if the function preserves all the congruence relations of
the 3-sorted Σ-structure F.

Definition 2.5 For sets B1, · · · , Bn, the projection functions πn
j : B1×· · ·×

Bn → Bj are defined by πn
j (b1, · · · , bn) = bj. Each element b ∈ Bj, deter-

mines the constant function B1×· · ·×Bn → Bj, defined by (b1, · · · , bn) 7→ b.
Let B be a collection of sets, and let C be a collection of functions of the
form B1 × · · · × Bn → B for any B1, · · · , Bn, B ∈ B. The Pclone generated
by C is the smallest class of functions of the form B1 × · · · × Bn → B, for
some B1, · · · , Bn, B ∈ B, denoted by Pclone〈C〉, that contains C and the
projection and constant functions, and is closed under the composition of
functions. Cf. the definition of clone in [6].

It is easy to see that all functions in the Pclone generated by Wilke’s
functions are congruence preserving.

The main result of the present paper is ([9], Theorem 1): For an alphabet
A which contains at least seven letters, every congruence preserving function
over A is in the Pclone generated by Wilke’s functions.

More precisely, we prove the following theorems in Section 4.

Theorem 2.6 If |A| ≥ 3, then for all n, m, k ∈ N, every congruence preserv-
ing function A

n

× C
k

A × T
m

A → A, is in Pclone〈∅〉, i.e., it is either a constant
function or a projection function over A.

Theorem 2.7 If |A| ≥ 7, then for all n, m, k ∈ N, every congruence preserv-
ing functions A

n

× C
k

A × T
m

A → TA, is in Pclone〈{ιA, κA, ηA}〉.

Theorem 2.8 If |A| ≥ 7, then for all n, m, k ∈ N, every congruence preserv-
ing function A

n

× C
k

A × T
m

A → CA, is in Pclone〈{ιA, κA, ηA, λA, ρA, σA}〉.

Remark 2.9 An algebra is called congruence-primal or hemi-primal, if all
its congruence preserving functions are term functions, and is called affine-
complete, if all its congruence preserving functions are polynomials, see e.g.
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[6]. However, usually finite congruence-primal and affine-complete algebras
are studied in universal algebra. Our main theorems imply that if |A| ≥ 7,
then the 3-sorted tree algebra F= (A, CA, TA, Σ) is affine-complete, though
apparently TA is infinite. Moreover, Theorem 2 of [9] states that any term al-
gebra whose signature contains at least 7 constant symbols is affine-complete.
We note that since in term algebras polynomials coincide with term functions,
a term algebra is affine-complete iff it is congruence-primal.

3 Congruence preserving functions on con-

texts

In this section, Theorem 2 of [9] is generalized for contexts. For one-sorted
term algebras we show that the congruence preserving functions on terms and
contexts are substitution functions, when the signature consists of constant
and binary function symbols and contains at least seven symbol of each rank
(Theorem 3.6 below).

Our notation, as in [9], follows mainly [2], [4], [5], [6], [12], and [13]. A
ranked alphabet is a finite nonempty set of symbols each of which has a unique
non-negative arity (or rank). For each m ≥ 0, the set of m-ary symbols in
a ranked alphabet Σ is denoted by Σm. For a set of variables X, the set of
ΣX-terms, denoted by T (Σ, X), is defined inductively by

– Σ0 ∪X ⊆ T (Σ, X), and

– f(t1, · · · , tm) ∈ T (Σ, X), for f ∈ Σm (m > 0) and t1, · · · , tm ∈ T (Σ, X).

For empty X it is simply written as TΣ. We note that T (Σ, X) is the Σ-
algebra (T (Σ, X), Σ) with the interpretation

– cT (Σ,X) = c, for every c ∈ Σ0, and

– fT (Σ,X)(t1, · · · , tm) = f(t1, · · · , tm), for every f ∈ Σm and t1, · · · , tm ∈
T (Σ, X);

is a Σ-algebra, and (TΣ, Σ) is called the term algebra over Σ. Members of
T (Σ, X) are called ΣX−tree as well. That is to say, in this framework a tree
is a term over a ranked alphabet and a (possibly empty) set of variables.

Fix ξ to be a new symbol which does not appear in Σ or X. A ΣX-
context is a Σ(X ∪ {ξ})-term in which ξ appears exactly once. The set of
ΣX-contexts is denoted by C1(Σ, X), and C(Σ, X) = C1(Σ, X) \ {ξ} is the
set of non-unit ΣX-contexts. Again for empty X, we write CΣ and C1

Σ for
C(Σ, ∅) and C1(Σ, ∅), respectively.

If p, q ∈ C1
Σ, and t ∈ TΣ, then p(q) ∈ C1

Σ and p(t) ∈ TΣ are obtained
from p by replacing the occurrence of ξ with q and with t, respectively. By
convection p(ξ) = p. For convenience, we sometimes write p · q instead of
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p(q) and similarly p · t instead of p(t).
For L ⊆ TΣ, let ≈L be the syntactic congruence relation of L ([11],[12]), i.e.,
the greatest congruence on the term algebra TΣ saturating L. For t, t′ ∈ TΣ,
the relation t ≈L t′ holds when (p · t ∈ L ⇐⇒ p · t′ ∈ L) for every p ∈ C1

Σ.
Another syntactic congruence of the language L, denoted by ∼L, is defined
on CΣ: for p, q ∈ CΣ, p ∼L q if (r · p · t ∈ L ⇐⇒ r · q · t ∈ L) for every
r ∈ C1

Σ and t ∈ TΣ, cf. [14],[13].
The following lemma is an immediate consequence of the above definitions.

Lemma 3.1 For L ⊆ TΣ and p, q ∈ CΣ, p ∼L q iff p(t) ≈L q(t) for every
t ∈ TΣ.

In [9], congruence preserving functions of the form (TΣ)n → TΣ were defined.
Here we extend the definition to functions involving contexts as well:

Definition 3.2 Functions F : (CΣ)m × (TΣ)n → TΣ and F ′ : (CΣ)m ×
(TΣ)n → CΣ are called congruence preserving if for every p1, q1 · · · , pm, qm ∈
CΣ, t1, s1, · · · , tn, sn ∈ TΣ, and every subset L ⊆ TΣ,

if p1 ∼
L q1, · · · , pm ∼

L qm, t1 ≈
L s1, · · · , tn ≈

L sn, then
F (p1, · · · , pm, t1, · · · , tn) ≈L F (q1, · · · , qm, s1, · · · , sn), and
F ′(p1, · · · , pm, t1, · · · , tn) ∼

L F ′(q1, · · · , qm, s1, · · · , sn).

Let {%1, %2, %3, · · · } be a set of unary function symbols disjoint from Σ,
and Σ{%1, · · · , %m} be the signature Σ augmented by {%1, · · · , %m}.

Definition 3.3 Let r ∈ TΣ{%1,··· ,%m} be a term. We present r as r[%1, · · · , %m]
to emphasis the appearances of %i’s. For contexts p1, · · · , pm ∈ CΣ, the term
r[p1, · · · , pm] ∈ TΣ is obtained from r by replacing all the occurrences of %i(t),
for any t ∈ TΣ{%1,··· ,%m}, with pi(t) for all i ∈ {1, 2, · · · , m}.
We call the function (CΣ)m → TΣ defined by (p1, · · · , pm) 7→ r[p1, · · · , pm],
for all p1, · · · , pm ∈ CΣ, a substitution function defined by r[%1, · · · , %m].
A term t ∈ T

(
Σ{%1, · · · , %m}, {x1, · · · , xn}

)
, where x1, · · · , xn are variables,

is also written as t[x1, · · · , xn, %1, · · · , %m]. For terms s1, · · · , sn and contexts
p1, · · · , pm, the term t[s1, · · · , sn, p1, · · · , pm] is obtained from t by replac-
ing all xi’s with si and all %j’s with pj, for all i, j. The function (TΣ)n ×
(CΣ)m → TΣ defined by (s1, · · · , sn, p1, · · · , pm) 7→ t[s1, · · · , sn, p1, · · · , pm],
for all s1, · · · , sn ∈ TΣ and p1, · · · , pm ∈ CΣ, is also called a substitution
function defined by t. Similarly for a context q[x1, · · · , xn, %1, · · · , %m], the
substitution function defined by q is (TΣ)n × (CΣ)m → CΣ which maps
(s1, · · · , sn, p1, · · · , pm) to q[s1, · · · , sn, p1, · · · , pm], for all s1, · · · , sn ∈ TΣ

and p1, · · · , pm ∈ CΣ. (See also the definition of tree substitution operation
in page 61 of [3].)
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Example 3.4 The composition function of contexts CΣ×CΣ → CΣ, defined
by (p1, p2) 7→ p1·p2, is a substitution function defined by %1(%2(ξ)) ∈ CΣ{%1,%2}.
Also, the evaluation function TΣ × CΣ → TΣ, (t, p) 7→ p · t, is a substitution
function defined by %1(x1) ∈ T (Σ{%1}, {x1}).

The following is a classical lemma in universal algebra.

Lemma 3.5 All substitution functions are congruence preserving.

The rest of this section is devoted to the proof of the following Theorem:

Theorem 3.6 Let Σ = Σ0∪Σ2 be a ranked alphabet such that |Σ0|, |Σ2| ≥ 7.

1. Every congruence preserving function F : (TΣ)n×(CΣ)m → TΣ, is a sub-
stitution function, i.e., there is a term t[x1, · · · , xn, %1, · · · , %m] in the set
T (Σ{%1, · · · , %m}, {x1, · · · , xn}) such that for all s1, · · · , sn ∈ TΣ and
p1, · · · , pm ∈ CΣ, F (s1, · · · , sn, p1, · · · , pm) = t[s1, · · · , sn, p1, · · · , pm].

2. Every congruence preserving function F : (TΣ)n × (CΣ)m → CΣ, is a
substitution function, i.e., there is a context q[x1, · · · , xn, %1, · · · , %m] in
C(Σ{%1, · · · , %m}, {x1, · · · , xn}) such that for all s1, · · · , sn ∈ TΣ and
p1, · · · , pm ∈ CΣ, F (s1, · · · , sn, p1, · · · , pm) = q[s1, · · · , sn, p1, · · · , pm].

Remark 3.7 In [9], it was shown by an example that when Σ = Σ0 ∪ Σ1

with |Σ0| = |Σ1| = 1, there is a congruence preserving function TΣ → TΣ

which is not a substitution function. So, some lower bound must be set
on |Σ0| in Theorem 3.6, although it is not yet known whether the bound
7 is the best possible. Here we show that the theorem does not hold for
Σ = Σ0 ∪ Σ1, with |Σ1| = 1. For such a Σ suppose Σ1 = {α} (note that
no condition is set on |Σ0|). So, CΣ = {αn(ξ) | n ∈ N}, and TΣ{%1} =
{αn1%m1 · · ·αnk%mk(c) | nj, mj ∈ N, c ∈ Σ0}. Hence, all the substitution
functions CΣ → TΣ are of the form αm(ξ) 7→ αkm+n(c), for some fixed
k,n ∈ N and c ∈ Σ0. Let, for a fixed c0 ∈ Σ0, F : CΣ → TΣ be defined
by F (αm(ξ)) = αm2

(c0), for all m ∈ N. Obviously F is not a substitution
function, however we show that it is congruence preserving: for any subset
L ⊆ TΣ and m, n ∈ N, if αm(ξ) ∼L αn(ξ), then by induction on j, it can
be shown that αj+m(c0) ≈

L αj+n(c0), for all j ∈ N. By putting j = m and
once again j = n, we can conclude that α2m(c0) ≈

L α2n(c0). From this and
αm(ξ) ∼L αn(ξ), we infer that αm(α2m(c0)) ≈

L αn(α2n(c0)), and so on, by
induction on j, it can be shown that αjm(c0) ≈

l αjn(c0). Again by putting
j = m and once again j = n, we can infer that αm2

(c0) ≈
L αn2

(c0), or in
other words, F (αm(ξ)) ≈L F (αn(ξ)).
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A conference paper ([9]) was devoted to the proof of Theorem 3.6 for the
functions of the form (TΣ)n → TΣ. The next subsection contains a detailed
proof of the theorem for the functions of the form (CΣ)n → TΣ. In the last
subsection we give a proof of the theorem in its claimed generality.

3.1 Congruence preserving functions (CΣ)n → TΣ

In this rather technical subsection, we provide the necessary definitions and
lemmas for proving Theorem 3.18 below, which are generalizations of Defi-
nition 6 through Theorem 2 of [9].

Definition 3.8 A C-interpretation is a function δ : {%1, · · · , %m} → CΣ.
The extension δ∗ : TΣ{%1,··· ,%m} → TΣ of such a C-interpretation is defined
inductively by
– δ∗(c) = c, for c ∈ Σ0,
– δ∗(%i(t)) = δ(%i) · δ

∗(t), for t ∈ TΣ{%1,%2,··· ,%m}, and
– δ∗(f(t1, · · · , tn)) = f(δ∗(t1), · · · , δ

∗(tn)), for f ∈ Σn, and t1, · · · , tn ∈
TΣ{%1,%2,··· ,%m}.
In other words δ∗(t) = t[δ(%1), · · · , δ(%m)], for any t[%1, · · · , %m] ∈ TΣ{%1,··· ,%m}.
A function F : CΣ → TΣ{%1 ,··· ,%m} is said to be congruence preserving if for
every C-interpretation δ, δ∗ ◦ F : CΣ → TΣ is congruence preserving.

The notion of subtree is the same as of subterm in Universal Algebra.

Definition 3.9 Let p and q be non-unit contexts, and t be a term.

1. p is a subcontext of t if p(s) is a subtree of t for some tree s.

2. p is a subcontext of q if either p is a subtree of q or p(s) is a subtree of
q for some tree s.

3. q is independent from p if for every context r and every tree or context
s, if q is a subcontext of r · p · s, then q is a subcontext of either r or s.

4. q is non-overlapping if for every context r and tree or context s such
that q is not a subcontext of r or s, q occurs only once as a subcontext
of r · q · s.

5. q is independent from t if for every context r, if q is a subcontext of
r · t, then q is a subcontext of r.

6. t is independent from q if for every context r and every tree or context
s, if t is a subtree of r · q · s, then t is a subtree of either r or s.
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Example 3.10 Suppose f ∈ Σ2, and a, b ∈ Σ0.

1. q = f(f(a, f(ξ, a)), a) is not independent from p = g(b, f(f(a, ξ), a)),
since q is a subcontext of p · f(a, a) = g(b, f(f(a, f(a, a)), a)), and that
is because q · a = f(f(a, f(a, a)), a) is a subtree of p · f(a, a).

2. f(a, f(a, f(ξ, a))) and f(b, f(b, f(ξ, b))) are non-overlapping and inde-
pendent from each other.

3. q = f(f(ξ, a), a) is not non-overlapping, since the term f(ξ, a) · q =
f(f(f(ξ, a), a), a) has two q subcontexts.

Lemma 3.11 For p, q ∈ CΣ and t ∈ TΣ, q is independent from p iff p is
independent from q, and q is independent from t iff t is independent from q.

Proof.

1. Assume q is independent from p and p is a subcontext of r · q · s for a
context r and a term or context s such that p is not a subcontext of
r or s. We note that p can not be a subcontext of q, since otherwise
there would have been a subcontext u of q, and a tree or context v such
that u · p · v = q, and hence by the independence of q from p, q should
have been a subcontext of either u or v, a contradiction. Hence by the
above assumptions we can infer the existence of a subcontext of q, call
it u, and a context v such that either u ·p = q ·v or p ·u = v · q. Both of
these possibilities lead to contradictions since they imply that q must
a subcontext of u. Hence independence is a symmetric relation.

2. Assume q is independent from t and t is a subtree of r · q ·s for contexts
r, s such that t is not a subtree of r or s. We note that q can not be
a subcontext of t by the independence of q from t. Hence, there must
be a subcontext u of q and a term s′ such that u · t = q · s′. Then by
the independence of q from t, q must be a subcontext of u as well, a
contradiction.

3. Assume t is independent from q and q is a subcontext of u·t for a context
u such that q is not a subcontext of u. Then either q is a subcontext
of t or t is a subtree of q. The former leads to a contradiction since
from the existence of a subcontext u of t and a subtree s of t such that
t = u · q · s and from the independence of t from q we must have that
t is a subtree of either u or s. The latter (that t is a subtree of q) is
obviously impossible from the independence of t from q.
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Being independent from a set of trees or contexts, means being indepen-
dent from each member of the set.

Proposition 3.12 Let Σ and Σ′ be ranked alphabets such that Σ′ = Σ′
0∪Σ′

2,
Σ ⊆ Σ′, and |Σ2|, |Σ0| ≥ m, for some m ≥ 1. Then for any D ⊂ CΣ′ ∪ TΣ′

such that |D| < m, there exist a non-overlapping context in CΣ and a term
in TΣ which are independent from D.

Proof. For every f ∈ Σ2, and c ∈ Σ0, define pf,c
n by induction on n:

p
f,c
1 = f(c, ξ), p

f,c
n+1 = f(pf,c

n , c), and let tf,c
n = pf,c

n (c).
Obviously every pf,c

n is non-overlapping. We show that there are n ∈ N and
f ∈ Σ2, c ∈ Σ0 such that pf,c

n and tf,c
n are independent from D:

Take n to be a natural number greater than the height of all the members
of D. Take a f ∈ Σ2 that does not appear as the root symbol of any member
of D, the assumption |Σ2| > |D| enables us to pick such a symbol. For a tree
t, denote the leftmost leaf of t by lf(t). For a context q in CΣ′, we note that
there is a unique subtree of q in the form g(t1, t2) where g ∈ (Σ′)2 and one
of the ti’s is ξ. Let lf(q) be lf(t1) if t1 6= ξ, and lf(q) =lf(t2) otherwise. By
|Σ0| > |D|, there is a c ∈ Σ0 which is not equal to lf(u) for any u ∈ D.

Assume for some context q ∈ D, a context r and a tree or context s,
that pf,c

n is a subcontext of r · q · s, but not of r or s. Since the height of
pf,c

n is greater than the height of q, then either the root of q must appear in
pf,c

n or lf(q) must be a subtree of pf,c
n , and both of these are in contradiction

with the choice of f and c. A very similar argument shows that pf,c
n is also

independent from all trees in D. This also implies that tf,c
n = pf,c

n · c is
independent from D. �

For contexts u and v, the rewriting rule u(x) → v(x) when applied to a
term t, changes some subtree u(t′) of t, for a term t′, to v(t′). Recall that
(cf. [5]) ∆∗

{u(x)→v(x)}(t), for a term t, is the set of descendants of t under the

rewriting rule u(x)→ v(x).

Lemma 3.13 Let F : CΣ → TΣ be congruence preserving. If for u, v ∈
CΣ, v is non-overlapping and independent from {u, F (u)}, then F (v) ∈
∆∗

{u(x)→v(x)}(F (u)).

Moreover, F (v) results from F (u) by replacing some subcontexts u with v.

Proof. Let L = ∆∗
{u(x)→v(x)}(F (u)) be the closure of {F (u)} under the

rewriting rule u(x)→ v(x). Sine v is non-overlapping and independent from
{u, F (u)}, no application of the rule u(x)→ v(x) results in a new subcontext
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of the form u, and all the v’s appearing in the members of L (as subcontexts)
are obtained by applying the rewriting rule u(x) → v(x). So u ≈L v, and
then F (u) ≈L F (v) which implies that F (v) ∈ L since F (u) ∈ L. The second
statement is straightforward. �

In what follows, we suppose Σ = Σ0 ∪ Σ2 and |Σ2|, |Σ0| ≥ 7.

Lemma 3.14 Let F : CΣ → TΣ{%1 ,··· ,%k} be congruence preserving (for a
k ∈ N). If v is non-overlapping and independent from {u, F (u)}, for some
u, v ∈ CΣ, then F (v) results from F (u) by replacing some of its subcontexts
u with the context v.

Proof. By Proposition 3.12, there are non-overlapping w, w′ ∈ CΣ such
that w is independent from {u, F (u), v, F (v)}, and w′ is independent from
{w, u, F (u), v, F (v)}.

Define the C-interpretation δ : {%1, %2, · · · , %k} → CΣ by δ(%i) = w for
all i ∈ {1, · · · , k}. By the choice of w, v is independent from {u, δ∗(F (u))}.
So we can apply Lemma 3.13 to infer that δ∗(F (v)) results from δ∗(F (u))
by replacing some subcontexts u with v. Note that F (v) is obtained by
substituting all w’s in δ∗(F (v)) by members of {%1, · · · , %k}. The same is
true about F (u) and δ∗(F (u)).

The positions of δ∗(F (v)) in which w appears are exactly the same posi-
tions of δ∗(F (u)) in which w appears (by the choice of w). So, the positions
of F (v) in which a member of {%1, · · · , %k} appears are exactly the same
positions of F (u) in which a member of {%1, · · · , %k} appears. We claim that
members of {%1, · · · , %k} that appear in identical positions of F (u) and F (v),
are identical: if not, there are non-identical i, j ∈ {1, · · · , k} such that %i ap-
pears in F (v) at some position and %j appears in F (u) at the same position
(of F (u) and F (v)).

Define the C-interpretation γ : {%1, · · · , %k} → CΣ by γ(%i) = w, and
γ(%l) = w′, for all l 6= i. Then w appears in γ∗(F (v)) at a position, call it p,
and w′ appears in γ∗(F (u)) at the same position p. On the other hand, since
v is non-overlapping and independent from {u, γ∗(F (u))}, by Lemma 3.13,
γ∗(F (v)) results from γ∗(F (u)) by replacing some subcontexts u with v. By
the choice of w and w′, such a replacement can not affect the occurrences of
w or w′, and hence the subcontexts of γ∗(F (v)) and γ∗(F (u)) at the position
p must be identical, a contradiction. This proves the claim which implies
that F (v) results from F (u) by replacing some subcontexts u with v. �

Lemma 3.15 Let F : CΣ → TΣ{%1 ,··· ,%k} be congruence preserving. Then for
any u, v ∈ CΣ, F (v) results from F (u) by replacing some subcontexts u with
the context v.
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Proof. By Proposition 3.12, there is a non-overlapping w ∈ CΣ indepen-
dent from {u, F (u), v, F (v)}. By Lemma 3.14, F (w) is obtained from F (u)
by replacing some subcontexts u with w, and also it results from F (v) by
replacing some subcontexts v with w. By the choice of w, all w’s appearing
in F (w) have been obtained either by replacing u with w in F (u) or by re-
placing v with w in F (v). Since the only difference between F (v) and F (w)
is in the positions of F (w) where w appears, and the same is true for the
difference between F (u) and F (w), then F (v) can be obtained from F (u) by
replacing some u subcontexts of it, the same u subcontexts which have been
replaced by w to get F (w), with v. �

Lemma 3.16 Every congruence preserving function F : CΣ → TΣ{%1,··· ,%k}

is a substitution function, i.e., there is a term t[%1, · · · , %k, %k+1] in the set
TΣ{%1,··· ,%k,%k+1}, such that F (u) = t[%1, · · · , %k, u] for all u ∈ CΣ.

Proof. Fix a u0 ∈ CΣ, and choose a non-overlapping v ∈ CΣ independent
from {u0, F (u0)}. By Proposition 3.12 such a v exists. Then by Lemma
3.15, F (v) results from F (u0) by replacing some subcontexts u0 with v. Let
t ∈ TΣ{%1,··· ,%k,%k+1} result from F (u0) by putting %k+1 exactly in the same
positions that u0’s are replaced with v’s to get F (v). By the independence of v
from {u0, F (u0)} such a t can be uniquely found. So, F (u0) = t[%1, · · · , %k, u0]
and also F (v) = t[%1, · · · , %k, v], moreover all v’s in F (v) are obtained from
t by substituting all %k+1’s by v. We show that for any u ∈ CΣ, F (u) =
t[%1, · · · , %k, u] holds: By Proposition 3.12, there exists a non-overlapping w
which is independent from the set {u0, F (u0), v, F (v), u, F (u)}. By Lemma
3.15, F (w) results from F (v) by replacing some subcontexts v with w. We
claim that all v’s are replaced with w’s in F (v) to get F (w). If not, then v
must be a subcontext of F (w). By Lemma 3.15, F (u0) results from F (w)
by replacing some subcontexts w with u0, and so by the choice of w, we
can infer that v is a subcontext of F (u0) which is in contradiction with
the choice of v. So the claim is proved and then we can write F (w) =
t[%1, · · · , %k, w]. Moreover all w’s in F (w) are obtained from t by substituting
%k+1 by w. Again by Lemma 3.15, F (u) results from F (w) by replacing some
w subcontexts with u. We can claim that all w’s appearing in F (w) are
replaced with u to get F (u). Since otherwise w would have been a subcontext
of F (u) which is in contradiction with the choice of w. This shows that
F (u) = t[%1, · · · , %k, u]. �

The following example illustrates obtaining such a tree t in the above lemma.

Example 3.17 For a ranked alphabet Σ suppose f ∈ Σ2 and c ∈ Σ0. Define
the function F : CΣ → TΣ{%1} by F (p) = f

(
%1(p(c)), p(p(%1(c)))

)
, for all
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p ∈ CΣ. It can be easily seen that F is congruence preserving. Moreover, F
is a substitution function defined by t[%1, %2] = f

(
%1(%2(c)), %2(%2(%1(c)))

)
∈

TΣ{%1,%2}. Indeed, F (p) = t[%1, p], for all p ∈ CΣ.

Theorem 3.18 Every congruence preserving F : (CΣ)n → TΣ (n ∈ N) is a
substitution function (recall that Σ = Σ0 ∪ Σ2 and |Σ2|, |Σ0| ≥ 7).

Proof. We proceed by induction on n. For n = 1 the theorem is Lemma
3.16 with k = 0. For the induction step let F : (CΣ)n+1 → TΣ be a con-
gruence preserving function. For any u ∈ CΣ define Fu : (CΣ)n → TΣ by
Fu(u1, · · · , un) = F (u1, · · · , un, u). By the induction hypothesis every Fu is
a substitution function, i.e., there is an tu[%1, · · · , %n] in TΣ{%1,··· ,%n} such that
Fu(u1, · · · , un) = tu[u1, · · · , un] for all u1, · · · , un ∈ CΣ. Note that such a
term tu is unique for every u. The mapping CΣ → TΣ{%1,··· ,%n} defined by
u 7→ tu is also congruence preserving. Hence by Lemma 3.15, it is a sub-
stitution function. So there is a t[%1, · · · , %n, %n+1] in TΣ{%1,··· ,%n,%n+1} such
that tu = t[%1, · · · , %n, u], hence F (u1, · · · , un, un+1) = Fun+1

(u1, · · · , un) =
tun+1

[u1, · · · , un] = t[%1, · · · , %n, un+1][u1, · · · , un].
Thus F (u1, · · · , un, un+1) = t[u1, · · · , un, un+1] is a substitution function. �

3.2 Proof of Theorem 3.6

Here, we generalize Theorem 3.18 for the functions of the form (TΣ)n ×
(CΣ)m → TΣ or (TΣ)n × (CΣ)m → CΣ (Theorem 3.6 below.) We recall the
following definition from [9]:

Definition 3.19 An interpretation of X in TΣ is a function ε : X → TΣ. Its
unique extension to a Σ-homomorphism TΣ(X)→ TΣ is denoted by ε∗.

Definition 3.20 A function F : CΣ → T (Σ{%1, · · · , %m}, X) is congruence
preserving if ε∗ ◦ F : CΣ → TΣ{%1,··· ,%m} is congruence preserving (recall Defi-
nition 3.8), for every interpretation ε : X → TΣ.

Lemma 3.21 For a variable x, every congruence preserving function from
CΣ to T (Σ{%1, · · · , %k}, {x}), is a substitution function.

Proof. Let F : CΣ → T (Σ{%1, · · · , %k}, {x}) be congruence preserving
and take a p0 ∈ CΣ, and an s ∈ TΣ independent from {p0, F (p0)}, by Propo-
sition 3.12. Let the interpretation ε : {x} → TΣ be defined by ε(x) = s. By
Lemma 3.16, ε∗◦F is a substitution function, defined by an r[%1, · · · , %k, %k+1]
in TΣ{%1,··· ,%k,%k+1}, i.e., ε∗F (u) = r[%1, · · · , %k, u], for all u ∈ CΣ. By the choice
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of s, all the occurrences of s in ε∗F (p0) result from ε (by replacing x with s)
so we can write F (p0) = ε∗F (p0)[s ← x] (all s’s are replaced with x). Let
t = r[s ← x] be the term in T (Σ{%1, · · · , %k, %k+1}, {x}) which results from
r by replacing all subtrees s with x. Then F (p0) = t[x, %1, · · · , %k, p0]. We
show that F is defined by t, i.e., F (q) = t[x, %1, · · · , %k, q], for all q ∈ CΣ. Let
a q ∈ CΣ be given. By Proposition 3.12, there is an s′ ∈ TΣ independent from
{p0, F (p0), F (q0), s}. Define the interpretation δ : {x} → TΣ by δ(x) = s′. By
Lemma 3.16, δ∗◦F is a substitution function defined by an r′[%1, · · · , %k, %k+1]
in TΣ{%1,··· ,%k,%k+1}. In particular δ∗F (p0) = r′[%1, · · · , %k, , p0], and δ∗F (q) =
r′[%1, · · · , %k, q]. Choose a non-overlapping q0 independent from {r, r′, s, s′}
by Proposition 3.12. From r′[%1, · · · , %k, q0] = δ∗F (q0) = ε∗F (q0)[s ← s′] =
r[%1, · · · , %k, q0][s ← s′], and by the the choice of q0, it follows that r′ re-
sults from r by replacing all the subtrees s with s′. On the other hand, by
the independence of s′ from {q, F (q)}, F (q) = δ∗F (q)[s′ ← x], so F (q) =
r′[%1, · · · , %k, q][s

′ ← x], which implies F (q) = r[s ← x][%1, · · · , %k, q], hence
F (q) = t[%1, · · · , %k, q]. �

Lemma 3.22 For any set of variables X, every congruence preserving func-
tion F : CΣ → T (Σ{%1, · · · , %k}, X) is a substitution function.

Proof. Let x 6∈ X, and let g : X → {x} be the constant function which
maps every member of X to x. It can be uniquely extended to a homo-
morphism g∗ : T (Σ{%1, · · · , %k}, X) → T (Σ{%1, · · · , %k}, {x}). By Lemma
3.21, g∗ ◦ F is a substitution function, defined by a r[x, %1, · · · , %k, %k+1

] in
T (Σ{%1, · · · , %k, %k+1}, {x}). So, for every u ∈ CΣ, F (u) can be obtained
from r[x, %1, · · · , %k, u] by replacing x’s with some appropriate members of
X. For any p, q ∈ CΣ, take some t, t′ in T (Σ{%1, · · · , %k, %k+1}, X) such that
F (p) = t[X, %1, · · · , %k, p], and F (q) = t′[X, %1, · · · , %k, q]. All we have to
show is that t = t′, which immediately implies that F (u) = t[X, %1, · · · , %k, u],
for all u ∈ CΣ. If not, there are x1, x2 ∈ X such that for a position z of t
and t′, x1 appears in t at position z, and x2 appears in t′ at the same po-
sition, note that the only difference of t and t′, could be the appearance of
the members of X. Take an s ∈ TΣ independent from {p, F (p), t, q, F (q)},
and an s′ ∈ TΣ independent from {p, F (p), t, q, F (q), s}, by Proposition 3.12.
Note that s and s′ are independent from t′ as well. Define the interpretation
ε : X → TΣ by ε(x1) = s, and ε(y) = s′, for all y ∈ X \ {x1}. Then s appears
at the position z of ε∗F (p), and s′ appears at the same position of ε∗F (q).
On the other hand, we know from Lemma 3.16 that ε∗ ◦ F is a substitution
function. This leads to a contradiction by the choice of s and s′. �
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Definition 3.23 For a t ∈ TΣ, ηt : CΣ → TΣ is defined by ηt(p) = p · t for
every p ∈ CΣ. A function F : CΣ → C(Σ{%1, · · · , %m}, X) is congruence
preserving if ηt ◦ F : CΣ → T (Σ{%1, · · · , %m}, X) is congruence preserving
(recall Definition 3.20), for every t ∈ TΣ.

Lemma 3.24 For any set of variables X, every congruence preserving F :
CΣ → C(Σ{%1, · · · , %k}, X) is a substitution function.

Proof. Let ı : C(Σ{%1, · · · , %k}, X)→ T (Σ{%1, · · · , %k}, X ∪ {ξ}) be the
inclusion function. The lemma immediately follows from Lemma 3.22 once
we note that F is congruence preserving iff ı ◦F is congruence preserving. �

With an argument very similar to the proofs of Lemmas 3.21, 3.22, and
3.24, the following lemma can be proved:

Lemma 3.25 For any set of variables X, all congruence preserving functions
TΣ → T (Σ{%1, · · · , %k}, X), or TΣ → C(Σ{%1, · · · , %k}, X) are substitution
functions.

Finally, we can prove the main theorem of this section.
Theorem 3.6 If Σ = Σ0 ∪ Σ2 and |Σ0|, |Σ2| ≥ 7, then every congruence
preserving function (TΣ)n × (CΣ)m → TΣ, or (TΣ)n × (CΣ)m → CΣ, is a
substitution function.

Proof. Let F : (TΣ)n × (CΣ)m → TΣ be congruence preserving. For
m = 0, the theorem follows from Theorem 2 of [9]. Suppose m 6= 0. For
any (p1, · · · , pm) ∈ (CΣ)m, define the function F(p1,··· ,pm) : (TΣ)n → TΣ

by F(p1,··· ,pm)(t1, · · · , tn) = F (t1, · · · , tn, p1, · · · , pm). By Theorem 2 of [9],
F(p1,··· ,pm) is a substitution function, i.e., there is a t(p1,··· ,pm)[x1, · · · , xn] ∈
T (Σ, {x1, · · · , xn}) such that for all s1, · · · , sn ∈ TΣ, F(p1,··· ,pm)(s1, · · · , sn) =
t(p1,··· ,pm)[s1, · · · , sn]. Now, the function F ′ : (CΣ)m → T (Σ, {x1, · · · , xn}),
F ′(p1, · · · , pm) = t(p1,··· ,pm) is congruence preserving. By induction on m
with an argument similar to the proof of Theorem 3.18 (and the proof of
Theorem 2 in [9]) using Lemma 3.22, it can be shown that F ′ is a substi-
tution function as well, i.e., there is a term t[x1, · · · , xn, %1, · · · , %m] in the
set T (Σ{%1, · · · , %m}, {x1, · · · , xn}) such that F ′(p1, · · · , pm) = t[p1, · · · , pm].
So, F (s1, · · · , sn, p1, · · · , pm) = F(p1,··· ,pm)(s1, · · · , sn) =

F ′(p1, · · · , pm)[s1, · · · , sn] = t[s1, · · · , sn][p1, · · · , pm] =
t[s1, · · · , sn, p1, · · · , pm] is a substitution function.

Now let F : (TΣ)n × (CΣ)m → CΣ be congruence preserving. For m = 0, the
theorem follows from Lemma 3.25. And for m 6= 0, the claim, that F is a
substitution function, can be proved by an argument very similar to the one
used in the previous case and making use of Lemma 3.24. �
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4 Congruence preserving functions of Tree

Algebras

In this final section we prove the main theorems of the paper. Note that
as a direct consequence of Theorem 3.6, we have that for |A| ≥ 7, every
congruence preserving function of the form T

m

A ×C
k

A → TA or T
m

A ×C
k

A → CA

is a substitution function, where TΣA = TA and CΣA = CA.

4.1 Congruence preserving functions A
n

×T
m

A
×C

k

A
→ A

First we note that the condition |A| ≥ 3, in Theorem 2.6 can not be improved.

Remark 4.1 The Theorem does not hold for |A| = 2: for A = {a, b}, let
F : A → A be defined by F (a) = b and F (b) = a. The function F is
obviously congruence preserving but is not a constant or projection function
(cf. Remark 3 of [9]).

We aim at showing that every congruence preserving function An → A is
either a constant or projection function, if |A| ≥ 3. For A′ ⊆ A, the subset
TA′ ⊆ TA is defined in a natural way.

Lemma 4.2 Let F : A→ A be a congruence preserving function and a, b ∈
A. If F (a) ∈ {a, b}, then F (b) ∈ {a, b}.

Proof. Suppose F (a) is a or b. Let L = T{a,b}. Then a ≈L
A b, hence F (a) ≈L

A

F (b). Since cF (a) ∈ L, then cF (b) ∈ L. The fact that the only trees with
height one in L are ca and cb, implies that F (b) is either a or b. �

Lemma 4.3 Let F : A→ A be a congruence preserving function and a ∈ A.
Then (1) F (F (a)) ∈ {a, F (a)}, and

(2) if F (a) = a, then for every b ∈ A, F (b) ∈ {a, b}.

Proof. Immediate from Lemma 4.2. �

Lemma 4.4 If |A| ≥ 3, then every congruence preserving function F : A→
A has a fixed point, i.e., there is an a ∈ A such that F (a) = a.
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Proof. Take an arbitray b ∈ A and assume that neither b nor F (b) are
fixed points of F , i.e., F (b) 6= b, and F (F (b)) 6= F (b). By Lemma 4.3 (1),
F (F (b)) ∈ {b, F (b)}, so F (F (b)) = b. By |A| ≥ 3, there is an a ∈ A non-
identical to b and F (b). Since F (b) 6∈ {a, b}, then by Lemma 4.2, F (a) 6∈
{a, b}. Similarly from F (F (b)) = b 6∈ {a, F (b)} and Lemma 4.2, one gets
F (a) 6∈ {a, F (b)}. Hence F (a) 6∈ {a, b, F (b)}. Now, let L = T{a,b,F (b)}. Since
a ≈L

A F (b), then F (a) ≈L
A F (F (b)) = b. From cb ∈ L one can infer that

cF (a) ∈ L, which implies that F (a) ∈ {a, b, F (a)}. Contradiction. �

Lemma 4.5 For |A| ≥ 3, every congruence preserving function F : A → A
is either a constant function or the identity function over A.

Proof. By Lemma 4.4, there is an a ∈ A such that F (a) = a. Take an
arbitrary b ∈ A. By Lemma 4.3 (2), F (b) ∈ {a, b}. We distinguish two cases:

(1) F (b) = b. We show that F is the identity function. For every c ∈ A
(other than a or b) by using Lemma 4.3 (2) twice, we get F (c) ∈ {a, c}
and F (c) ∈ {b, c}, which implies that F (c) = c, or in other words, F is the
identity function.

(2) F (b) = a. We show that F is the constant function that maps every
member of A to a. For every c ∈ A\{a, b}, by Lemma 4.3 (2), F (c) ∈ {a, c}. If
F (c) = c, then again by Lemma 4.3 (2), F (b) ∈ {c, b}, that is in contradiction
with F (b) = a. So, F (c) = a. �

By an argument very similar to the proof of Lemma 4.2, we can show the
following lemma.

Lemma 4.6 Let F : A
n+1

→ A be a congruence preserving function and
a, b, d1, · · · , dn ∈ A. If F (a, d1, · · · , dn) ∈ {a, b}, then F (b, d1, · · · , dn) ∈
{a, b}.

Theorem 4.7 For |A| ≥ 3, every congruence preserving F : A
n

→ A, for
every n ∈ N, is either a constant function or a projection function over A.

Proof. By induction on n. For n = 1 the theorem is Lemma 4.5. For the
induction step (n + 1), suppose F : A

n+1

→ A is congruence preserving. For
each a ∈ A, let Fa : A

n

→ A be defined by Fa(a1, · · · , an) = F (a, a1, · · · , an).
Since each such Fa is congruence preserving, by induction hypothesis it is
either a constant function or a projection function over A.

We show that either all Fa’s (a ∈ A), are constant functions or all Fa’s
are projection functions over A. Assume this is not the case. So, there
are a, b ∈ A such that Fa is a constant function, say Fa(a1, · · · , an) = d
for a d ∈ A, and Fb is a projection function, say Fb(a1, · · · , an) = ai. We
distinguish two cases:
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1. d ∈ {a, b}, or Fa(a1, · · · , an) ∈ {a, b}. There is an e ∈ A such that
a 6= e 6= b, since |A| ≥ 3. Since F (a, e, · · · , e) = Fa(e, · · · , e) = d ∈
{a, b}, then by lemma 4.6, e = Fb(e, · · · , e) = F (b, e, · · · , e) ∈ {a, b},
contradiction.

2. d 6∈ {a, b}. In this case the relations F (b, a · · · , a) = Fb(a, · · · , a) =
a ∈ {a, b}, and F (a, a · · · , a) = Fa(a, · · · , a) = d 6∈ {a, b} are in con-
tradiction with Lemma 4.6.

Hence the claim is proved: either for every a ∈ A, Fa is a constant function,
or for every a ∈ A, Fa is a projection function. We treat each case separately:

1. All Fa’s are projection functions. We show that they are all equal as
well. If not, there are a, b ∈ A such that Fa(a1, · · · , an) = ai and
Fb(a1, · · · , an) = aj, for all a1, · · · , an ∈ A, where i 6= j. Choose a
d ∈ A non-identical to a and b. Let (a1, · · · , an) ∈ An be ak = d for
k 6= j, and aj = a. Then F (a, a1, · · · , an) = Fa(a1, · · · , an) = ai = d 6∈
{a, b}, and F (b, a1, · · · , an) = Fb(a1, · · · , an) = aj = a ∈ {a, b}. We get
contradiction by Lemma 4.6.

So the claim is proved: all Fa’s are equal, say to πn
i , and hence F equals

to πn+1
i+1 , that is F (a1, a2, · · · , an+1) = Fa1

(a2, · · · , an+1) = ai+1.

2. All Fa’s are constant functions. So for every a ∈ A, there is a (unique)
da ∈ A such that Fa(a1, · · · , an) = da. Now the mapping F ′ : A → A
defined by a 7→ da is congruence preserving as well, hence by Lemma
4.5, F ′ is either a constant function or the identify function over A. If
F ′ is a constant function, then clearly F is also a constant function:
F (a1, a2, · · · , an, an+1) = F ′(a1). If F ′ is the identity function over A,
then F is the projection function πn+1

1 , that is F (a1, a2, · · · , an+1) =
F ′(a1) = a1.

�

In the following lemma we show that every congruence preserving CA → A
is a constant function, when |A| ≥ 2. A very similar proof can be applied for
showing that every congruence preserving TA → A, if |A| ≥ 2, is a constant
function as well. Theorem 2.6 follows from these observations.

Lemma 4.8 If |A| ≥ 2, then every congruence preserving F : CA → A is a
constant function.

Proof.
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Recall that ξ 6∈ CA. For every a ∈ A, define the sequence {pa
n}n ⊂ CA

inductively by pa
1 = fa(ξ, ca), and pa

n+1 = fa(p
a
n, ca).

We note that for any distinct a, b ∈ A, pa
m is independent from pb

n, for all
m, n.

Firstly, we show that there is an a ∈ A such that F (pa
1) = a. Take an

arbitrary a ∈ A. If F (pa
1) = b 6= a, then for L = {pa

1 · ca, p
b
1 · ca}, the relation

pa
1 ≈

L
C pb

1 holds, and so F (pa
1) ≈

L
A F (pb

1) or b ≈L
A F (pb

1) holds too. This implies
that F (pb

1) = b, since if F (pb
1) = d 6= b, then by d ≈L

A b, the set L would
have had more than two elements, like fd(cb, ca), fd(cd, ca), fb(cd, ca), etc., a
contradiction. So, we showed that if F (pa

1) = b 6= a, then F (pb
1) = b.

Secondly, we note that there is an a ∈ A such that F (pb
n) = a for every

b ∈ A and every natural n. Take the above claimed a with F (pa
1) = a and

take a n ∈ N and b ∈ A with b 6= a. Then for L = {pa
1 · ca, p

b
n · ca}, no x ∈ A

can satisfy x ≈L
A a other than a, since otherwise, with an argument similar to

the previous case, L would have had more than two elements. In particular,
since pa

1 ≈
L
C pb

n and hence a = F (pa
1) ≈

L
A F (pb

n), we have F (pb
n) = a. Now the

same argument with L′ = {pa
n · ca, p

b
1 · ca} shows that F (pa

n) = F (pb
1) = a.

Finally, we show that there is an a ∈ A such that F (p) = a for every
p ∈ CA. Take the above a with F (pb

n) = a (for every b ∈ A and natural
n). Take an arbitrary p ∈ CA and suppose its height is m. There is a
b ∈ A such that p is independent from pb

2m (cf. Proposition 3.12). So, for
L = {pb

2m · ca, p · ca}, we have p ≈L pb
2m, and thus F (p) ≈L F (pb

2m) = a, and
this implies that F (p) = a, since otherwise if F (p) = d 6= a, then d ≈L a
implies that pb

2m · cd ∈ L which means that L has at least two elements of
height 2m (namely pb

2m · cd and pb
2m · ca), a contradiction. �

Suppose |A| ≥ 3. An argument similar to the one used in the proof
of the previous lemmas shows that every congruence preserving TA → A
is a constant function. By induction on m and k it can be shown that
every congruence preserving (TA)m × (CA)k → A is a constant function as
well. Combining this with Theorem 4.7, Theorem 2.6, that every congruence
preserving A

n

× C
k

A × T
m

A → A is either a constant function or a projection
function over A, follows.

4.2 Congruence preserving functions A
n

× T
m

A
× C

k

A
→

TA/CA

In what follows we take A to be an alphabet containing at least seven let-
ters. By Theorem 3.6, every congruence preserving T

m

A × C
k

A → TA is
a substitution function defined by a term t[x1, · · · , xm, %1, · · · , %k] in the
set T (ΣA{%1, · · · , %k}, {x1, · · · , xm}), similarly every congruence preserving
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function T
m

A × C
k

A → CA is a substitution function defined by a context
q[x1, · · · , xm, %1, · · · , %k] in C(ΣA{%1, · · · , %k}, {x1, · · · , xm}).

By the techniques elaborated in subsection 4.1 this result can be general-
ized to show that every congruence preserving function F : A

n

×T
m

A ×C
k

A →
TA is a substitution function. That is to say, for a fixed set of new symbols
{z1, z2, · · · } disjoint from A ∪ {x1, x2, · · · , %1, %2, · · · }, there is a term

t[z1, · · · , zn, x1, · · · , xm, %1, · · · .%k], in

T (ΣA∪{z1,··· ,zn}{%1, · · · , %k}, {x1, · · · , xm}),

such that

F (a1, · · · , an, s1, · · · , sm, p1, · · · , pk) = t[a1, · · · , an, s1, · · · , sm, p1, · · · , pk],

for every a1, · · · , an ∈ A, s1, · · · , sm ∈ TA, and p1, · · · , pk ∈ CA; similarly ev-
ery congruence preserving function F ′ : A

n

×T
m

A ×C
k

A → CA is a substitution
function defined by a context

q[z1, · · · , zn, x1, · · · , xm, %1, · · · .%k], in

C(ΣA∪{z1,··· ,zn}{%1, · · · , %k}, {x1, · · · , xm}),

such that

F ′(a1, · · · , an, s1, · · · , sm, p1, · · · , pk) = q[a1, · · · , an, s1, · · · , sm, p1, · · · , pk].

Obviously, the term t[a1, · · · , an, s1, · · · , sm, p1, · · · , pk] results from t by re-
placing all czj

’s with caj
’s, by replacing fzj

(s, r)’s with faj
(s, r)’s, and by re-

placing %j(r)’s with pj(r)’s and xj’s with sj’s, for every possible j and terms
r, s. By similar replacements, the context q[a1, · · · , an, s1, · · · , sm, p1, · · · , pk]
results from q.

Theorems 2.7 and 2.8, follow from the above observations.

Remark 4.9 For an alphabet A, Wilke’s functions over A (Definition 2.2)
are substitution functions: ιA, κA, and ηA are defined by cz1

, fz1
(x1, x2),

and %1(x1) in T (ΣA∪{z1}{%1}, {x1, x2}), respectively. Also λA, ρA, and σA are
defined by fz1

(ξ, x1), fz1
(x1, ξ), and %1(%2(ξ)) in C(ΣA∪{z1}{%1, %2}, {x1}),

respectively.

Recall that the alphabet A satisfies |A| ≥ 7.
Theorem 2.7 Every congruence preserving function A

n

× C
k

A × T
m

A → TA,
is in Pclone〈{ιA, κA, ηA}〉.
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Proof. We show that the substitution function defined by any term

t[z1, · · · , zn, x1, · · · , xm, %1, · · · .%k], in

T (ΣA∪{z1,··· ,zn}{%1, · · · , %k}, {x1, · · · , xm}),

is in Pclone〈{ιA, κA, ηA}〉.
For such a t, let t̂ be the substitution function defined by t. The proof is

by the induction on the complexity of t.
First we note that for a ∈ A, i ∈ {1, · · · , n}, and j ∈ {1, · · · , m}, and for

all letters a1, · · · , an ∈ A, trees s1, · · · , sm ∈ TA, and contexts p1, · · · , pk ∈
CA,

– x̂j is the projection function (a1, · · · , an, s1, · · · , sm, p1, · · · , pk) 7→ sj,
– ĉa is the constant function (a1, · · · , an, s1, · · · , sm, p1, · · · , pk) 7→ ιA(a),

and
– ĉzi

is a combination of ιA and a projection function, satisfying

(a1, · · · , an, s1, · · · , sm, p1, · · · , pk) 7→ ιA(ai).

For the induction step, suppose for terms t and r the functions t̂ and r̂ are in
Pclone〈{ιA, κA, ηA}〉. For simplicity write (a1, · · · , an) = a, (s1, · · · , sm) = s,
and (p1, · · · , pk) = p. Then for a ∈ A, i ∈ {1, · · · , n}, and j ∈ {1, · · · , k},

– %̂j(t) maps (a, s,p) to ηA
(
pj, t̂(a, s,p)

)
,

– f̂a(t, r) maps (a, s,p) to κA
(
a, t̂(a, s,p), r̂(a, s,p)

)
, and

– ̂fzi
(t, r) maps (a, s,p) to κA

(
ai, t̂(a, s,p), r̂(a, s,p)

)
.

Hence, %̂j(t), f̂a(t, r), and f̂zi
(t, r) are in Pclone〈{ιA, κA, ηA}〉 too. �

Theorem 2.8 Every congruence preserving function A
n

× C
k

A × T
m

A → CA,
is in Pclone〈{ιA, κA, ηA, λA, ρA, σA}〉.

Proof. Let P = Pclone〈{ιA, κA, ηA, λA, ρA, σA}〉. Following the notation
of the proof of Theorem 2.7, we show that for any context q the substitution
function defined by q, denoted by q̂, is in P. Note that for any term t, the
function t̂ belongs to P as well.
For a ∈ A, i ∈ {1, · · · , n}, j ∈ {1, · · · , k}, and term t,

– %̂j(ξ) is the projection function (a1, · · · , an, s1, · · · , sm, p1, · · · , pk) 7→ pj,

– f̂a(ξ, t) maps (a, s,p) to λA
(
a, t̂(a, s,p)

)
,

– ̂fzi
(ξ, t) maps (a, s,p) to λA

(
ai, t̂(a, s,p)

)
,

– f̂a(t, ξ) maps (a, s,p) to ρA
(
a, t̂(a, s,p)

)
, and

– ̂fzi
(t, ξ) maps (a, s,p) to ρA

(
ai, t̂(a, s,p)

)
.

So, for every elementary context q, q̂ ∈ P.
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For the induction step, suppose for a context p, p̂ ∈ P. Then for a ∈ A,
i ∈ {1, · · · , n}, j ∈ {1, · · · , k}, and term t,

– %̂j(p) maps (a, s,p) to σA
(
pj, p̂(a, s,p)

)
,

– f̂a(p, t) maps (a, s,p) to σA
(
λA

(
a, t̂(a, s,p)

)
, p̂(a, s,p)

)
,

– ̂fzi
(p, t) maps (a, s,p) to σA

(
λA

(
ai, t̂(a, s,p)

)
, p̂(a, s,p)

)
,

– f̂a(t, p) maps (a, s,p) to σA
(
ρA

(
a, t̂(a, s,p)

)
, p̂(a, s,p)

)
, and

– ̂fzi
(t, p) maps (a, s,p) to σA

(
ρA

(
ai, t̂(a, s,p)

)
, p̂(a, s,p)

)
.

Hence, %̂j(p), f̂a(p, t), ̂fzi
(p, t), f̂a(t, p), and ̂fzi

(t, p) are in P too. �

We close the paper with an example (cf. Example 1 of [9]).

Example 4.10 Let A = {a, b}. The function F : A×TA×CA → CA defined
by

F (a1, t1, p1) = fa

(
fa1

(
fb(ca, ca), ξ

)
, p1

(
fb(t1, ca1

)
))

,

for a1 ∈ A, t1 ∈ TA and p1 ∈ CA, is a substitution function defined by

r = fa

(
fz1

(
fb(ca, ca), ξ

)
, %1

(
fb(x1, cz1

)
))
∈ T (ΣA∪{z1}{%1}, {x1}).

That is to say F (a1, t1, p1) = r̂(a1, t1, p1).
Moreover, F ∈ Pclone〈{ιA, κA, ηA, λA, ρA, σA}〉, since r̂(a1, t1, p1) =

σA
(
λA

(
a, ηA

(
p1, κ

A(b, t1, ι
A(a1))

))
, ρA

(
a1, κ

A(b, ιA(a), ιA(a))
))

.
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