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1 Introduction

A Variety Theorem establishing a bijective correspondence between general
varieties of tree languages definable by syntactic monoids and varieties of
finite monoids, is proved. This has been a relatively long-standing open
problem, the most recent references to which are made by Ésik [4] as “No
variety theorem is known in the semigroup [monoid] approach” (page 759),
and by Steinby [18] as “there are no general criteria for deciding whether
or not a given GVTL [general variety of tree languages] can or cannot be
defined by syntactic monoids” (page 41). The question was also mentioned
in the last section of Wilke’s paper [21].

Most of the interesting classes of algebraic structures form varieties, and
similarly, most of the interesting families of tree or string languages studied
in the literature turn out to be varieties of some kind. The first Variety The-
orem was proved by Eilenberg [3] who established a correspondence between
varieties of finite monoids and varieties of regular (string) languages. It was
motivated by characterizations of several families of languages by syntac-
tic monoids or semigroups (see [3],[10]), above all by Schützenberger’s [15]
theorem connecting star-free languages and aperiodic monoids.

Eilenberg’s theorem has since been extended in various directions. One
could mention Pin’s [11] Variety Theorem for positive varieties of string
languages and varieties of ordered monoids, or Thérien’s [19] extension that
includes also varieties of congruences on free monoids. On the level of univer-
sal algebra, where tree automata and tree languages are studied, a Variety
Theorem was proved by Steinby [16] for recognizable subsets of finitely gen-
erated free algebras. Both Eilenberg’s *-varieties and +-varieties, as well as
varieties of regular tree languages (which was worked out in [17]), are special
cases of the results of [16]. The correspondence to varieties of congruences,
and some other generalizations, were added later by Almeida [1] and Steinby
[17, 18]. Another example is Ésik’s [4] Variety Theorem between tree lan-
guages and theories (see also [5]). As Ésik observes in [4], page 758: “The
crucial concept in any ‘Variety Theorem’ is that of the ‘syntactic structure’
or ‘syntactic algebra’.” For almost all those syntactic structures associated
to tree languages in the literature, one (or some) variety theorem(s) have
been proved. The most famous ‘syntactic structure’ for which a variety the-
orem was not known, is the syntactic semigroup/monoid of a tree language,
introduced by Thomas [20], and further studied by Salomaa [14]. A different
formalism, based on the essentially same concept, was brought up by Nivat
and Podelski [6], [13].

To establish our correspondence between varieties of tree languages and
varieties of finite monoids, we add three more closure properties to the defin-
ition of a general tree language variety introduced in [18]. One of them, that
of being closed under inverse tree homomorphisms, is already investigated
by Ésik [4], and the other two are stated in Theorem 4.14.
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2 Notation and Preliminaries

Our notation is mainly based on [18]. However for understanding our results
it is not necessary to read the whole of [18]. Here, we list the terminology
used throughout the paper.

A finite set of function symbols is called a ranked alphabet. If Σ is a
ranked alphabet, for every m ≥ 0, the set of m-ary function symbols of Σ is
denoted by Σm. In particular, Σ0 is the set of constant symbols of Σ. For
a ranked alphabet Σ and a leaf alphabet X, the set of ΣX-trees T(Σ, X) is
the smallest set satisfying

(1) Σ0 ∪X ⊆ T(Σ, X), and
(2) f(t1, · · · , tm) ∈ T(Σ, X), for all f ∈ Σm (m > 0) and t1, · · · , tm ∈

T(Σ, X).
Any subset of T(Σ, X) is called a tree language.
The ΣX-term algebra T (Σ, X) = (T(Σ, X),Σ) is defined by setting

(1) cT (Σ,X) = c for each c ∈ Σ0, and
(2) fT (Σ,X)(t1, · · · , tm) = f(t1, · · · , tm) for all m > 0, f ∈ Σm, and

t1, · · · , tm ∈ T(Σ, X).
Let ξ be a (special) symbol which does not appear in any ranked alpha-

bet or leaf alphabet considered here. The set of ΣX-contexts, denoted by
C(Σ, X), consists of the Σ(X ∪ {ξ})-trees in which ξ appears exactly once.
For P,Q ∈ C(Σ, X) and t ∈ T(Σ, X) the context Q · P , the composite of
P and Q, results from P by replacing the special leaf ξ with Q, and the
term t · P results from P by replacing ξ with t. Note that C(Σ, X) is a
monoid with composition as the operation and ξ as the unit element, and
that t·(Q·P ) = (t·Q)·P holds for all P,Q ∈ C(Σ, X), t ∈ T(Σ, X). For a tree
language T ⊆ T(Σ, X) and context P , the inverse translation of T under P
is P−1(T ) = {t ∈ T(Σ, X) | t·P ∈ T}. Also the inverse morphism of T under
a homomorphism ϕ : T(Σ, Y )→ T(Σ, X) is Tϕ−1 = {t ∈ T(Σ, Y ) | tϕ ∈ T}.

A ΣX-recognizer (A, α, F ) consists of a finite Σ-algebra A = (A,Σ), an
initial assignment α : X → A, and a set of final states F ⊆ A. The function
α can uniquely be extended to a homomorphism αA : T (Σ, X) → A, and
the tree language recognized by (A, α, F ) is {t ∈ T(Σ, X) | tαA ∈ F}. In
that case we also simply say that T is recognized by the algebra A.

All algebras considered in this paper, except for term algebras, are finite,
and the tree languages studied here are recognizable by finite algebras. A
class of finite algebras of a fixed type is called a variety of finite algebras
if it is closed under subalgebras, homomorphic images, and finite products.
They are sometimes called pseudo-varieties, to be differentiated from real
varieties whose members need not to be finite. Birkhoff’s variety theorem
[2] provides a logical characterization of those “original” varieties. In par-
ticular, a variety of finite monoids, abbreviated by VFM, is a class of finite
monoids closed under submonoids, homomorphic images, and finite monoid
products. A family V = {V (X)} of tree languages of a fixed type Σ is a
mapping which assigns to every finite leaf alphabet a collection V = {V (X)}
of recognizable ΣX-tree languages. A family V is called a variety of tree
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languages if each V (X) is closed under Boolean operations and inverse trans-
lations, and the whole collection is closed under the inverse homomorphisms
between term algebras (see [17]; below we will consider generalized varieties
of tree languages).

Let A = (A,Σ) be an algebra. Every elementary context
P = f(a1, · · · , ξ, · · · , am) ∈ C(Σ, A),

where f ∈ Σm and a1, · · · , am ∈ A, induces a unary function on A defined
by PA(a) = fA(a1, · · · , a, · · · , am) for each a ∈ A. Such functions are called
elementary translations of A. The functions induced by compositions of
such elementary contexts are defined by setting (Q · P )A(a) = PA(QA(a))
for any two contexts P and Q and any a ∈ A. These functions constitute the
set of translations of A denoted by Tr(A). Note that two different contexts
may induce the same translation.

The set Tr(A) is a monoid with composition as the operation, called
the translation monoid of A, which is also denoted by Tr(A). We note
that Tr(A) includes the identity translation ξA = 1A. The composition of
translations p and q is denoted by q · p, that is (q · p)(a) = p(q(a)) for all
a ∈ A (cf. Section 5 of [18]).
For a tree language T ⊆ T(Σ, X), the syntactic congruence θT of T is defined
by

t θT s ⇐⇒ ∀P ∈ C(Σ, X)
(
t · P ∈ T ↔ s · P ∈ T

)
,

for t, s ∈ T(Σ, X), and the syntactic algebra SA(T ) of T is the quotient
Σ-algebra T(Σ, X)/θT (see Definition 5.9 of [18]).
Also, the m-congruence µT of T on the monoid C(Σ, X) is defined by
P µT Q ⇐⇒ ∀R ∈ C(Σ, X)∀t ∈ T(Σ, X)

(
t · P ·R ∈ T ↔ t ·Q ·R ∈ T

)
,

for P,Q ∈ C(Σ, X), and the syntactic monoid SM(T ) of T is the quotient
monoid C(Σ, X)/µT (cf. [20] or Definition 10.1 of [18]).

Remark 2.1 It was shown in [14] that the translation monoid of the syn-
tactic algebra of a tree language is isomorphic to the syntactic monoid of
the tree language, i.e., Tr(SA(T )) ∼= SM(T ) for every tree language T .

A tree homomorphism is a mapping ϕ : T(Σ, X) → T(Ω, Y ) for ranked
alphabets Σ and Ω, and leaf alphabets X and Y , determined by some map-
pings ϕX : X → T(Ω, Y ), and ϕm : Σm → T(Ω, Y ∪ {ξ1, · · · , ξm}), where
Σm 6= ∅ and the ξi’s are new variables, inductively as follows

(1) xϕ = ϕX(x) for x ∈ X, cϕ = ϕ0(c) for c ∈ Σ0, and
(2) f(t1, · · · , tn)ϕ = ϕn(f)[ξ1 ← t1ϕ, · · · , ξn ← tnϕ] that is ξi is replaced

with tiϕ for all i (cf. [18], page 7).
A tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) is called regular if for

every f ∈ Σm (m ≥ 1), each ξ1, · · · , ξm appears exactly once in ϕm(f).
The unique extension ϕ∗ : C(Σ, X) → C(Ω, Y ) of a regular tree ho-

momorphism ϕ to contexts is obtained by setting ϕ∗(ξ) = ξ (cf. [18],
Proposition 10.3).1 We note that the identities (Q · P )ϕ∗ = Qϕ∗ · Pϕ∗ and
(t ·Q · P )ϕ = tϕ ·Qϕ∗ · Pϕ∗ hold for all P,Q ∈ C(Σ, X) and t ∈ T(Σ, X).

1Indeed any tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) can be extended to eϕ :
C(Σ, X) → T(Ω, Y ∪ {ξ}) by setting ξ eϕ = ξ, but if ϕ is not regular the range of eϕ may
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3 Algebras Definable by Translation Monoids

The notions of subalgebra, homomorphism, and direct product are defined as
usual in Universal Algebra, whereas for their generalizations, g-subalgebra,
g-homomorphism, and generalized product, are defined for algebras which
are not necessarily of the same type. We recall the following definitions
from [18] (Definitions 3.1, 3.2, 3.3, 3.14).

Definition 3.1 Let A = (A,Σ) and B = (B,Ω) be finite algebras.
The algebra B is a g-subalgebra ofA, in notation B ⊆g A, ifB ⊆ A, Ωm ⊆ Σm

for all m ≥ 0, and for every g ∈ Ωm, gB is the restriction of gA to B.
An assignment is a mapping κ : Σ→ Ω such that κ(Σm) ⊆ Ωm for all m ≥ 0.
A g-morphism from A to B is a pair (κ, ϕ), where κ : Σ → Ω is an as-
signment and ϕ : A → B is a mapping satisfying fA(a1, · · · , am)ϕ =
(fκ)B(a1ϕ, · · · , amϕ) for any m ≥ 0, f ∈ Σm, and a1, · · · , am ∈ A. If
both κ and ϕ are surjective, then (κ, ϕ) is called a g-epimorphism, and in
that case we write B ←g A (B is a g-epimorphic image of A). When B is a
g-epimorphic image of a g-subalgebra of A, we write B ≺g A. When both
κ and ϕ are bijective, (κ, ϕ) is called a g-isomorphism, and B ∼=g A means
that B and A are g-isomorphic.

Let Σ1, · · · ,Σn and Γ be ranked alphabets. The product Σ1 × · · · × Σn

is a ranked alphabet such that (Σ1 × · · · ×Σn)m = Σ1
m × · · · ×Σn

m for every
m ≥ 0. For any assignment κ : Γ → Σ1 × · · · × Σn, and any algebras
A1 = (A1,Σ1), · · · ,An = (An,Σn), the κ-product of A1, · · · ,An is the Γ-
algebra κ(A1, · · · ,An) = (A1 × · · · ×An,Γ) defined by
(1) cκ(A1,··· ,An) = (cA1

1 , · · · , cAn
n ) for c ∈ Γ0, where cκ = (c1, · · · , cn), and

(2) fκ(A1,··· ,An)(a1, · · · ,am) = (fA1
1 (a11, · · · , am1), . . . , fAn

n (a1n, · · · , amn))
for f ∈ Γm (m > 0) and ai = (ai1, · · · , ain) ∈ A1 × · · · × An, where fκ =
(f1, · · · , fn).

Without specifying the assignment κ, such algebras are called g-products.
In the notations ⊆g,←g,≺g, and ∼=g, the subscript g is dropped when A and
B are of the same type, say Σ, and the assignment κ : Σ→ Σ is the identity
mapping.

The abbreviation GVFA stands for general variety of finite algebras
which is a class of finite algebras, of all finite types, closed under g-sub-
algebras, g-epimorphic images, and g-products (Definition 4.3 of [18]). It is
easy to see that a class of algebras K is a GVFA, if for any A1, · · · ,An ∈ K,
any g-product κ(A1, · · · ,An), and any algebra A, if A ≺g κ(A1, · · · ,An)
then A ∈ K (cf. Corollary 4.8 of [18]).

Definition 3.2 For a VFM M, Ma is the class of all finite algebras whose
translation monoids are in M, i.e., A ∈ Ma ⇔ Tr(A) ∈ M for any finite
algebra A.

not be C(Ω, Y ). Hence the regularity of ϕ is needed for the existence of the extension ϕ∗,
see also Example 4.8.
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A class of finite algebras K is said to be definable by translation monoids,
if there is a VFM M such that Ma = K.

By Proposition 10.8 of [18], a class of finite algebras definable by translation
monoids is a GVFA. In fact, any such class can be proved to be a d-variety
of finite algebras (see page 758 of [4]). An algebraic characterization of the
classes of finite algebras definable by translation monoids is given in the
main theorem of this section.

Definition 3.3 Let A be a finite algebra. With each translation p ∈ Tr(A)
we associate a unary function symbol p. Let ΛA = {p | p ∈ Tr(A)} be
the unary ranked alphabet formed by these symbols and let the ΛA-algebra
A% = (Tr(A),ΛA) be defined by pA

%
(q) = q · p for all p, q ∈ Tr(A).

The proof of the main theorem of this section is based on the following
lemmas (cf. [8, 9] for similar results for unary algebras).

Lemma 3.4 For any finite algebra A, Tr(A) ∼= Tr(A%).

Proof. The elementary translations of A% are of the form pA
%
(ξ) where

p ∈ Tr(A), and clearly qA
%
(ξ) · pA%

(ξ) = q · pA%
(ξ) for all q, p ∈ Tr(A).

For the identity translation 1A of A the translation 1A
A%

(ξ) is the iden-
tity translation of A%. This means that Tr(A%) = {pA%

(ξ) | p ∈ Tr(A)}.
Moreover, pA

%
(ξ) 6= qA

%
(ξ) whenever p 6= q, since pA

%
(ξ) = qA

%
(ξ) im-

plies p = 1A · p = pA
%
(1A) = qA

%
(1A) = 1A · q = q. Hence, the mapping

Tr(A)→ Tr(A%), p 7→ pA
%
(ξ) is a monoid isomorphism. �

Lemma 3.5 Let A = (A,Σ) and B = (B,Ω) be two finite algebras.

1. If Tr(A) ≺ Tr(B), then A% ≺g B%.

2. Tr(A)× Tr(B) ∼= Tr(κ(A%,B%)) for some g-product κ(A%,B%).

Proof. 1. Suppose Tr(A) ← M ⊆ Tr(B) for some monoid M . Let ΛM =
{p ∈ ΛB | p ∈ M}. Then clearly M = (M,ΛM ) ⊆g B%, where M is
defined by pM(q) = q · p (p, q ∈ M). Let ϕ : M → Tr(A) be a monoid
epimorphism. Define the assignment κ : ΛM → ΛA by qκ = qϕ for all
q ∈ M . It is clear that κ is surjective and for all q, r ∈ M ⊆ Tr(B),(
qB

%
(r)

)
ϕ = (r · q)ϕ = rϕ · qϕ = qϕA

%
(rϕ) = (qκ)A

%
(rϕ). Hence (κ, ϕ) :

M→A% is a g-epimorphism. Thus A% ←gM⊆g B%.
2. Let Γ = {〈p, q〉 | p ∈ Tr(A), q ∈ Tr(B)} be a set of unary function
symbols, and define the assignment κ : Γ→ ΛA×ΛB by 〈p, q〉κ = (p, q). Let
P = κ(A%,B%) be the corresponding g-product of A% and B%. We show that
Tr(P) = {〈p, q〉P(ξ) | p ∈ Tr(A), q ∈ Tr(B)}. Firstly, we note that if 1A and
1B are the identity translations of A and B respectively, then 〈1A, 1B〉

P
(ξ)
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is the identity translation of P. Secondly, by the definition of κ-products,
for all p, p′ ∈ Tr(A), q, q′ ∈ Tr(B),

〈p, q〉P(p′, q′) = (pA
%
(p′), qB

%
(q′)) = (p′ · p, q′ · q).

So, if 〈p, q〉P(ξ) = 〈p′, q′〉P(ξ), then (p, q) = (1A · p, 1B · q) = 〈p, q〉P(1A, 1B)

= 〈p′, q′〉P(1A, 1B) = (1A · p′, 1B · q′) = (p′, q′). So, 〈p, q〉P(ξ) 6= 〈p′, q′〉P(ξ),
when p 6= p′ or q 6= q′. Finally, we show that the set {〈p, q〉P(ξ) | p ∈
Tr(A), q ∈ Tr(B)} is closed under the composition of translations.

For all p, p′, p′′ ∈ Tr(A), q, q′, q′′ ∈ Tr(B),

〈p′, q′〉P · 〈p, q〉P(p′′, q′′) = 〈p, q〉P(p′′ · p′, q′′ · q′)
=

(
(p′′ · p′) · p, (q′′ · q′) · q

)
=

(
p′′ · (p′ · p), q′′ · (q′ · q)

)
= 〈p′ · p, q′ · q〉P(p′′, q′′).

Hence, 〈p′, q′〉P(ξ)·〈p, q〉P(ξ) = 〈p′ · p, q′ · q〉P(ξ). It follows that the mapping
Tr(A)× Tr(B)→ Tr(P), (p, q) 7→ 〈p, q〉P(ξ), is a monoid isomorphism. �

Since g-products of g-products are g-isomorphic to a g-product of the
original algebras (Lemma 4.2 of [18]), Lemma 3.5(2) can be generalized as
follows.

Lemma 3.6 For any algebras A1, · · · ,An (n ≥ 1) there is a g-product
κ(A%1, · · · ,A

%
n) such that Tr(A1)× · · · × Tr(An) ∼= Tr(κ(A%1, · · · ,A

%
n)).

Now we are ready to prove the main theorem.

Theorem 3.7 Any class of finite algebras K is definable by translation
monoids iff it is a GVFA such that A ∈ K iff A% ∈ K, for any A.

Proof. Suppose K = Ma for a VFM M. Then by Lemma 3.4, Tr(A) ∼=
Tr(A%), so A ∈ K ⇔ Tr(A) ∈ M ⇔ Tr(A%) ∈ M ⇔ A% ∈ K. For the
converse, suppose the GVFA K satisfies the equivalence A ∈ K⇔ A% ∈ K
for any finite algebra A. Let M be the VFM generated by {Tr(A) | A ∈ K}.
We show that K = Ma. Obviously K ⊆ Ma. For the opposite inclusion,
let B ∈ Ma. So, there are A1, · · · ,Am ∈ K such that Tr(B) ≺ Tr(A1) ×
· · · × Tr(Am). By Lemma 3.6, Tr(B) ≺ Tr(P) for some g-product P of
A%1, · · · ,A

%
m. By the property of K, A%1, · · · ,A

%
m ∈ K, and so P ∈ K, hence

P% ∈ K. By Lemma 3.5 (1) from Tr(B) ≺ Tr(P) we get B% ≺g P%, and
since P% ∈ K, also B% ∈ K, which implies that B ∈ K. Thus Ma ⊆ K. �

Remark 3.8 The proof of Theorem 3.7 also yields the fact that for any
GVFA K definable by translation monoids, the class {Tr(A) | A ∈ K} is a
variety of finite monoids.

6



Another characterization of the classes of finite algebras definable by trans-
lation monoids which follows from Lemmas 3.4 and 3.5 is the following.

Theorem 3.9 Any class of finite algebras K is definable by translation
monoids iff it is a GVFA such that for all finite algebras A and B, if Tr(A) ∼=
Tr(B) and A ∈ K, then B ∈ K.

4 Families of Tree Languages Definable by Syn-
tactic Monoids

A general variety of tree languages (GVTL) is a family V = {V (Σ, X)}
which assigns to every ranked alphabet Σ and leaf alphabetX, a set V (Σ, X)
of recognizable ΣX-tree languages, and is closed under all Boolean opera-
tions, inverse translations, and inverse g-morphisms. That is to say, for any
ranked alphabets Σ,Ω, leaf alphabets X,Y , context P ∈ C(Σ, X), and g-
morphism ϕ : T(Ω, Y ) → T(Σ, X) (see Definition 3.1), if T, T ′ ∈ V (Σ, X),
then T(Σ, X) \ T, T ∩ T ′, P−1(T ) ∈ V (Σ, X), and Tϕ−1 ∈ V (Ω, Y ) (Defini-
tion 7.1 of [18]).

For a family of recognizable tree languages V , V a is the GVFA generated
by the class {SA(T ) | T ∈ V (Σ, X), for some Σ, X}.

Remark 4.1 The General Variety Theorem in [18], Proposition 9.15, im-
plies that:

(1) For any GVTL V , the class V a satisfies the following equivalence for
any tree language T ⊆ T(Σ, X): T ∈ V (Σ, X)⇔ SA(T ) ∈ V a.

(2) For any GVFA K there is a unique GVTL V such that V a = K.

Definition 4.2 For a VFM M, let Mt be the family of all recognizable
tree languages whose syntactic monoids are in M, that is to say for any tree
language T ⊆ T(Σ, X), T ∈Mt(Σ, X)⇔ SM(T ) ∈M holds.

A family of recognizable tree languages V is said to be definable by
syntactic monoids if there is a VFM M such that Mt = V .

Steinby has shown that for any VFM M, Mt is a GVTL ([18], Proposition
10.3). His proof can be applied to show that Mt is also closed under inverse
of regular tree homomorphisms. The general varieties of tree languages
closed under inverse (arbitrary) tree homomorphisms are studied by Ésik
[4] who characterized them by their syntactic theories. Theorem 14.2 of
[4] establishes a correspondence between d-varieties of finite algebras and
general tree language varieties closed under inverse tree homomorphisms.
However, those varieties may not be definable by syntactic monoids, as the
following example shows.

Example 4.3 Let Def1 = {Def1(Σ, X)} be the family of 1-definite tree
languages, i.e., T ∈ Def1(Σ, X) iff for all ΣX-trees t and s, root(t) = root(s)
and t ∈ T imply s ∈ T , where root(t) is the root symbol of t. It is a
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GVTL ([18]) which can be shown to be closed under inverse strict regular
tree homomorphisms (see [4] Subsection 11.1 and Section 5 below). Let
Σ = Σ2 = {f, g}, X = {x, y}, and T = {x} ∪ {f(t1, t2) | t1, t2 ∈ T(Σ, X)}.
Clearly T ∈ Def1(Σ, X). It can be easily shown that the syntactic monoid
of T consists of an identity element and two right zeros. This is also the
syntactic monoid of the language T ′ of the ΣX-trees whose leftmost leaves
are x, by Example 10.4 of [18]. Since T ′ 6∈ Def1(Σ, X), then Def1 is not
definable by syntactic monoids.

This actually shows that the GVTL of all definite tree languages is not
definable by syntactic monoids, since T ′ is not k-definite for any k ≥ 1.

Remark 4.4 In [7] it is claimed that the variety of definite tree languages
can be characterized by the property that all the non-identity idempotents
of their syntactic monoids are right zeros (left zeros in the formalism of [7]).
This clearly stands in conflict with the above Example 4.3.

Indeed, it can be shown that Theorem 1 of [7] does not hold. When the
syntactic semigroup of a tree language is defined as the syntactic monoid
with the identity element removed, the authors clearly overlook the possi-
bility that the identity element may be obtained also as the product of some
non-identity elements, and the proof of the theorem of [7] holds in just one
direction. A concrete example showing that the equality between lines 9 and
10 on page 189 does not necessarily hold, can be obtained by considering
the tree language T ′ of our Example 4.3.
It can also be noted that finite monoids whose non-identity idempotents are
right zeros, do not form a VFM. Finally, in Section 5 we shall see that a
more appropriate definition of the syntactic semigroup and omitting trees
that in a sense correspond to the empty word, does not save the result of
[7].

We shall characterize the general varieties of tree languages that are
definable by syntactic monoids by requiring them to satisfy two more condi-
tions in addition to being closed under inverse regular tree homomorphisms.

Definition 4.5 A regular tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) is
said to be full with respect to a tree language T ⊆ T(Ω, Y ), if for every
Q ∈ C(Ω, Y ) and every s ∈ T(Ω, Y ), there are P ∈ C(Σ, X) and t ∈ T(Σ, X),
such that QµT Pϕ∗ and s θT tϕ hold.

Remark 4.6 At first glance it seems that verifying fullness of ϕ with re-
spect to T requires checking the existence of P ∈ C(Σ, X) and t ∈ T(Σ, X)
for all (infinitely many) Q ∈ C(Ω, Y ) and s ∈ T(Ω, Y ) such that QµT Pϕ∗
and s θT tϕ hold. In fact it is decidable for a recognizable T to check
whether or not ϕ is full with respect to T : let ϕT : T(Ω, Y )→ T(Ω, Y )/θT ,
tϕT = t/θT and λT : C(Ω, Y ) → C(Ω, Y )/µT , PλT = P/µT be the natural
morphisms. Then the tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) is full
with respect to T iff both the mappings ϕϕT : T(Σ, X) → T(Ω, Y )/θT and
ϕ∗λ

T : C(Σ, X)→ C(Ω, Y )/µT are surjective.
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Recall that for an equivalence relation θ on a set A, the quotient set of
A under θ is denoted by A/θ, and aθ is the equivalence θ-class containing
a ∈ A.

Lemma 4.7 If ϕ : T(Σ, X)→ T(Ω, Y ) is a regular tree homomorphism and
T ⊆ T(Ω, Y ), then SM(Tϕ−1) ≺ SM(T ), and if ϕ is full with respect to T ,
then SM(Tϕ−1) ∼= SM(T ).

Proof. We note that ϕ∗ : C(Σ, X) → C(Ω, Y ) is a monoid homomorphism.
Let S ⊆ C(Ω, Y ) be the image of ϕ∗, and let µ be the restriction of µT to S.
Then S/µ is a submonoid of C(Ω, Y )/µT . We show that Pϕ∗ µQϕ∗ implies
P µTϕ−1 Q for all P,Q ∈ C(Σ, X).
Suppose Pϕ∗ µQϕ∗ and take arbitrary t ∈ T(Ω, Y ) and R ∈ C(Ω, Y ). Then

t · P ·R ∈ Tϕ−1 ⇔ tϕ · Pϕ∗ ·Rϕ∗ ∈ T
⇔ tϕ ·Qϕ∗ ·Rϕ∗ ∈ T
⇔ t ·Q ·R ∈ Tϕ−1,

that is P µTϕ−1 Q. So the mapping ψ : S/µ → C(Σ, X)/µTϕ−1 defined
by ((Pϕ∗)µ)ψ = PµTϕ−1 is well-defined and surjective. It is also a monoid
homomorphism, since ((Pϕ∗)µ·(Qϕ∗)µ)ψ = ((P ·Q)ϕ∗µ)ψ = (P ·Q)µTϕ−1 =
PµTϕ−1 · QµTϕ−1 = ((Pϕ∗)µ)ψ · ((Qϕ∗)µ)ψ for all P,Q ∈ C(Σ, X). Hence
SM(Tϕ−1)← S/µ ⊆ SM(T ), so SM(Tϕ−1) ≺ SM(T ).
Now, suppose ϕ is full with respect to T . We show P µTϕ−1 Q iff Pϕ∗ µT Qϕ∗
for any P,Q ∈ C(Σ, X). Clearly, Pϕ∗ µT Qϕ∗ implies P µTϕ−1 Q. For the
converse, suppose P µTϕ−1 Q, and take arbitrary R′ ∈ C(Ω, Y ), and t′ ∈
T(Ω, Y ). There are R ∈ C(Σ, X) and t ∈ T(Σ, X) such that Rϕ∗ µT R′ and
tϕ θT t

′. Hence

t′ · Pϕ∗ ·R′ ∈ T ⇔ tϕ · Pϕ∗ ·Rϕ∗ ∈ T
⇔ (t · P ·R)ϕ ∈ T
⇔ t · P ·R ∈ Tϕ−1

⇔ t ·Q ·R ∈ Tϕ−1

⇔ tϕ ·Qϕ∗ ·Rϕ∗ ∈ T
⇔ t′ ·Qϕ∗ ·R′ ∈ T,

which shows that Pϕ∗ µT Qϕ∗. Hence P µTϕ−1 Q iff Pϕ∗ µT Qϕ∗, and since
the function ϕ∗ : C(Σ, X) → C(Ω, Y ) is a monoid homomorphism, the
mapping C(Σ, X)/µTϕ−1 → C(Ω, Y )/µT , P µTϕ−1 7→ (Pϕ∗)µT is a monoid
isomorphism between SM(Tϕ−1) and SM(T ). �

In the following example we show that the regularity condition on ϕ in
the previous lemma can not be relaxed.

Example 4.8 Define the ranked alphabets Ω = Ω2 = {f} and Σ = Σ1 =
{g, h}, and the leaf alphabet X = {u, v, w}. Let (Z3,+) be the cyclic group
of order 3. Define χ : T(Ω, X) → Z3 inductively by uχ = 0, vχ = 1,
wχ = 2, and f(t, s)χ = tχ+ sχ. Let T = {0}χ−1. It is easy to see that the
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syntactic monoid of T consists of the µT -classes of the elementary contexts
f(u, ξ), f(v, ξ), f(w, ξ), and in fact SM(T ) ' (Z3,+).

Define the tree homomorphisms ϕ,ψ : T(Σ, X) → T(Ω, X) by ϕX(x) =
ψX(x) = x for x ∈ X, and ϕ1(g) = ψ1(g) = f(v, ξ), ϕ1(h) = f(ξ, ξ), and
ψ1(h) = u. These tree homomorphisms are not regular: ξ appears twice in
ϕ1(h) and does not appear at all in ψ1(h).

We show that neither SM(Tϕ−1) nor SM(Tψ−1) can divide SM(T ). The
following identities can be verified by straightforward computations:

– (v · h(ξ) · g(ξ))ϕχ = 0, (v · g(ξ) · h(ξ))ϕχ = 1, and
– (v · h(ξ) · g(ξ))ψχ = 1, (v · g(ξ) · h(ξ))ψχ = 0.

So, (h(ξ) ·g(ξ), g(ξ) ·h(ξ)) 6∈ µTϕ−1 , µTψ−1 which proves that SM(Tϕ−1) and
SM(Tψ−1) are not commutative.

Remark 4.9 Let C be the variety of finite commutative monoids. By Ex-
ample 4.8, the GVTL Ct is not closed under inverse non-regular tree homo-
morphisms; cf. Theorem 4.14. So, Ct is not definable by syntactic theories
in the sense of [4]. On the other hand, by Example 4.3, the family of defi-
nite tree languages is not definable by syntactic monoids, even though it is
definable by syntactic theories, cf. [4] Subsection 11.1.

Thus, the concepts of “definability by syntactic theories” and of “defin-
ability by syntactic monoids” are not comparable to each other, though they
are both weaker than “definability by syntactic algebras”.

Lemma 4.10 Let A = (A,Σ) be a finite algebra, and X be a leaf alphabet
disjoint from A. For any tree language L ⊆ T(ΛA, X) recognized by A%,
there exists a regular tree homomorphism ϕ : T(ΛA, X) → T(Σ, X ∪ A),
and a tree language T ⊆ T(Σ, X ∪ A) such that L = Tϕ−1, and T can be
recognized by a finite power An where n = |A|.

Proof. Let α : X → Tr(A) be an initial assignment for A% and F ⊆ Tr(A) be
a subset such that L = {t ∈ T(ΛA, X) | tαA% ∈ F}. Define the tree homo-
morphism ϕ : T(ΛA, X)→ T(Σ, X ∪A) by ϕX(x) = x for all x ∈ X, and for
every p ∈ Tr(A) choose a ϕ1(p) ∈ C(Σ, A) such that ϕ1(p)A = p. Obviously
ϕ is a regular tree homomorphism. Suppose that A = {a1, · · · , an}. Let
F ′ = {(p(a1), · · · , p(an)) ∈ An | p ∈ F}, and define the initial assignment
β : X∪A→ An for An by xβ =

(
(xα)(a1), · · · , (xα)(an)

)
for all x ∈ X, and

aβ = (a, · · · , a) ∈ An for all a ∈ A. Let T be the subset of T(Σ, X∪A) recog-
nized by (An, β, F ′). We show that L = Tϕ−1. Every tree w in T(ΛA, X) is
of the form w = p1

(
p2

(
· · · pk(x) · · ·

))
for some p1, · · · , pk ∈ Tr(A) (k ≥ 0)

and x ∈ X. For such a tree w,
wαA

%
= xα · pk · . . . · p2 · p1, and

(wϕ)βA
n

= (xα · pk · . . . · p2 · p1(a1), · · · , xα · pk · . . . · p2 · p1(an)). So,

wϕ ∈ T ⇔ (wϕ)βA
n ∈ F ′

⇔ for some p ∈ F, p(a) = xα · pk · . . . · p2 · p1(a) for all a ∈ A
⇔ xα · pk · . . . · p2 · p1 ∈ F
⇔ wαA

% ∈ F
⇔ w ∈ L.
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Lemma 4.11 Let A = (A,Σ) be a finite algebra and X be a leaf alphabet
disjoint from A ∪ Σ. For any tree language T ⊆ T(Σ, X) recognized by A
there exists a unary ranked alphabet Λ, and a regular tree homomorphism
ϕ : T(Λ, X ∪ Σ0) → T(Σ, X) such that ϕ is full with respect to T , and
for every z ∈ X ∪ Σ0, Tϕ−1 ∩ T(Λ, {z}) can be recognized as a subset of
T(Λ, {z}) by A%.

Proof. Let B = (B,Σ) be the syntactic algebra of T . Then B ≺ A. Suppose
T = {t ∈ T(Σ, X) | tβB ∈ F}, where β : X → B is an initial assignment for
B and F ⊆ B. Since B is the minimal tree automaton recognizing T , the set
B is generated by β(X). The mapping β : X → B can be uniquely extended
to a monoid homomorphism βc : C(Σ, X)→ C(Σ, B). Since B is generated
by β(X), the mapping βBc : C(Σ, X)→ Tr(B), βBc (Q) = βc(Q)B is surjective.
Define the tree homomorphism ϕ : T(ΛB, X ∪Σ0)→ T(Σ, X) by ϕX(x) = x
for all x ∈ X ∪ Σ0, and for every q ∈ Tr(B) choose a ϕ1(q) = Q ∈ C(Σ, X)
such that βc(Q)B = q. Note that ϕ is a regular tree homomorphism. It
remains to show that ϕ is full with respect to T and that for every z ∈ X∪Σ0,
Lz = Tϕ−1 ∩ T(Λ, {z}) can be recognized as a subset of T(Λ, {z}) by B%.
This will finish the proof since Tr(B) ≺ Tr(A) follows from B ≺ A by Lemma
10.7 of [18], and so B% ≺ A% by Lemma 3.5, which implies that Lz can also
be recognized by A%.
Firstly, we show that ϕ is full with respect to T . Let Q ∈ C(Σ, X) be a
context. For q = βc(Q)B ∈ Tr(B), q(ξ)ϕ∗ µT Q holds. By induction on the
height of t we show that for any t ∈ T(Σ, X) there is an s ∈ T(ΛB, X ∪ Σ0)
such that t θT sϕ. If t = x ∈ X ∪ Σ0, then sϕ θT t for s = t. If t = t′ · P for
some P ∈ C(Σ, X) and t′ ∈ T(Σ, X) such that the height of t′ is less than the
height of t, then by the induction hypothesis there is an s′ ∈ T(ΛB, X ∪Σ0)
such that t′ θT s′ϕ. Also, for some p ∈ Tr(B), p(ξ)ϕ∗ µT P holds. Let s =
p(s′). Then

sϕ = s′ϕ · p(ξ)ϕ∗ θT t′ · P = t.
Secondly, we show that Lz can be recognized by B% for a fixed z ∈ X ∪ Σ0.
Let 1B be the identity translation of B. Define the initial assignment α :
{z} → Tr(B) for B% by zα = 1B, and let Fz = {q ∈ Tr(B) | q(zβB) ∈ F}.
We show that Lz is recognized by (B%, α, Fz). Every w ∈ T(ΛB, {z}) can be
written in the form

w = q1

(
q2

(
· · · qh(z) · · ·

))
for some q1, · · · , qh ∈ Tr(B) (h ≥ 0). For such a tree w,
wαB

%
= 1B · qh · . . . · q2 · q1, and (wϕ)βB = qh · . . . · q2 · q1(zβB). Thus,

w ∈ Lz ⇔ wϕ ∈ T ⇔ (wϕ)βB ∈ F
⇔ qh · . . . · q2 · q1(zβB) ∈ F
⇔ qh · . . . · q2 · q1 ∈ Fz
⇔ wαB

% ∈ Fz.

So, Lz = {w ∈ T(Λ, {z}) | wαB% ∈ Fz}. �
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We end the section by proving a Variety Theorem for tree languages and
syntactic monoids, and presenting some examples that justify the theorem
(another interesting example is presented in [12]).

Before presenting the main theorem we note two remarks.

Remark 4.12 Let Λ be a unary ranked alphabet. For every leaf alphabet
X and every subset Y ⊆ X, C(Λ, Y ) = C(Λ, X), and the relation µT for a
tree language T ⊆ T(Λ, Y ) on C(Λ, Y ) is the same relation µT on C(Λ, X)
when T is viewed as a subset of T(Λ, X).

So, if a family of tree languages V = {V (Σ, X)} is definable by syntactic
monoids, then for every unary ranked alphabet Λ, and any leaf alphabets
X and Y , if Y ⊆ X then V (Λ, Y ) ⊆ V (Λ, X).

Recall the notion of V a at the beginning of the section.

Remark 4.13 By Propositions 6.13 and 5.8(b) of [18] it follows that every
finite algebra can be represented as a subdirect product of the syntactic
algebras of some tree languages that are recognizable by the algebra. This
implies that for any GVTL V and any finite algebra A, if every tree language
recognizable by A belongs to V , then A ∈ V a.

Theorem 4.14 A family of recognizable tree languages V is definable by
syntactic monoids iff V is a GVTL that is closed under inverse regular tree
homomorphisms and satisfies the following conditions:
(1) For every unary ranked alphabet Λ, and any leaf alphabets X and Y , if
Y ⊆ X then V (Λ, Y ) ⊆ V (Λ, X).
(2) For any regular tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) which is
full with respect to a tree language T ⊆ T(Ω, Y ), if Tϕ−1 ∈ V (Σ, X) then
T ∈ V (Ω, Y ).

Proof. That for any VFM M, Mt satisfies the conditions of Theorem 4.14
follows from Lemma 4.7, Remark 4.12, and the facts mentioned at the be-
ginning of the section. For the converse, suppose the GVTL V satisfies the
conditions presented in the theorem. We complete the proof of the theorem
by showing that V a satisfies the condition of Theorem 3.7. Indeed, Theorem
3.7 implies then that there is a VFM M such that V a = Ma, and

T ∈ V ⇔ SA(T ) ∈ V a ⇔ Tr(SA(T )) ∈M ⇔ SM(T ) ∈M
holds for every tree language T by Remarks 4.1 and 2.1, which proves that
V = Mt. So, all we have to show is that A ∈ V a iff A% ∈ V a for any A.

Let A = (A,Σ) be a finite algebra in V a. By Lemma 4.10, any tree
language L ⊆ T(ΛA, X) recognized by A% can be written as L = Tϕ−1,
where ϕ : T(ΛA, X) → T(Σ, X ∪ A) is a regular tree homomorphism, and
T is a tree language recognized by some power An of A. Then An ∈ V a

implies that T ∈ V (Σ, X ∪ A), and hence L = Tϕ−1 ∈ V (ΛA, X). This
holds for every tree language L recognizable by A%, so A% ∈ V a by Remark
4.13.
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Now, suppose A% ∈ V a for a finite algebra A = (A,Σ). Let T ⊆ T(Σ, X)
be a tree language recognizable by A. By Lemma 4.11, there is a unary
ranked alphabet Λ and a regular tree homomorphism ϕ : T(Λ, X ∪ Σ0) →
T(Σ, X) full with respect to T such that for every z ∈ X ∪Σ0, Lz = Tϕ−1∩
T(Λ, {z}) can be recognized by A% as a subset of T(Λ, {z}). So, Lz ∈
V (Λ, {z}), thus Lz ∈ V (Λ, X∪Σ0). Hence Tϕ−1 =

⋃
z∈X∪Σ0

Lz ∈ V (Λ, X∪
Σ0). Since ϕ is full with respect to T , then T ∈ V (Σ, X). This holds for
every tree language T recognizable by A, hence A ∈ V a by Remark 4.13. �

Example 4.15 It was shown in Example 4.3 that Def1 is not definable by
syntactic monoids. Here we show that it does not satisfy condition (2) of
Theorem 4.14. Let Σ, X, T, T ′ be as in Example 4.3. Define the regular tree
homomorphism ϕ : T(Σ, X) → T(Σ, X), by ϕX(x) = x, ϕX(y) = y, and
ϕ2(f) = f(x, f(ξ1, ξ2)), ϕ2(g) = g(y, g(ξ1, ξ2)). Now ϕ is full with respect
to T ′ since for any t ∈ T(Σ, X), if t ∈ T ′ then f(y, x)ϕθT ′ t, and if t 6∈ T ′
then g(y, x)ϕθT ′ t. Similarly, for P ∈ C(Σ, X), if the leftmost leaf of P is x
then f(y, ξ)ϕ∗ µT ′ P , if the leftmost leaf of P is y then g(y, ξ)ϕ∗ µT ′ P , and
if the leftmost leaf of P is ξ then ξϕ∗ µT ′ P . Clearly T ′ϕ−1 = T , since for
any t ∈ T(Σ, X), the leftmost leaf of tϕ is x iff either t = x or the root of t
is f . By Example 4.3, T ′ϕ−1 = T ∈ Def1, but T ′ 6∈ Def1.

Example 4.16 Let Ap = {Ap(Σ, X)} be the family of aperiodic tree lan-
guages. It was shown to be a GVTL in Example 7.8 of [18]. It is also known
that Ap is definable by the variety of aperiodic (syntactic) monoids, see
[20]. The argument of Example 7.8 in [18] showing that Ap is closed under
inverse g-morphisms can be applied to show that Ap is in fact closed under
inverse regular tree homomorphisms. It is also straightforward to see that
Ap satisfies condition (1) of Theorem 4.14. We show that it also satisfies
condition (2). Suppose ϕ : T(Σ, X) → T(Ω, Y ) is a regular tree homomor-
phism full with respect to T ⊆ T(Ω, Y ), and Tϕ−1 ∈ Ap(Σ, X). There is
an n such that for all t ∈ T(Σ, X) and all P,Q ∈ C(Σ, X), t · Pn · Q ∈
Tϕ−1 ⇔ t ·Pn+1 ·Q ∈ Tϕ−1. For any s ∈ T(Ω, Y ) and any R,U ∈ C(Ω, Y ),
there are t ∈ T(Σ, X) and P,Q ∈ C(Σ, X) such that tϕ θT s, Pϕ∗ µT R, and
Qϕ∗ µT U . So, s ·Rn ·U ∈ T ⇔ tϕ ·Pnϕ∗ ·Qϕ∗ ∈ T ⇔ t ·Pn ·Q ∈ Tϕ−1 ⇔

t · Pn+1 ·Q ∈ Tϕ−1 ⇔ tϕ · Pn+1ϕ∗ ·Qϕ∗ ∈ T ⇔ s ·Rn+1 · U ∈ T,
which shows that T ∈ Ap(Ω, Y ).

Example 4.17 The family of nilpotent tree languages Nil = {Nil(Σ, X)}
which consists of finite and cofinite tree languages is a GVFA (see [18],
Example 7.5). Let Λ = Λ1 = {α} be a unary ranked alphabet and X =
{x, y} be a leaf alphabet. Let T = {α(y), α(α(y)), α(α(α(y))), · · · }. Clearly
T ∈ Nil(Λ, {y}), but T 6∈ Nil(Λ, X). Hence, Nil does not satisfy the condition
(1) of Theorem 4.14, so it is not definable by syntactic monoids.
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5 Definability by Semigroups

In this section, we show how to modify the above results as to yield charac-
terizations of varieties of finite algebras definable by translation semigroups
and of varieties of tree languages definable by syntactic semigroups.

5.1 Algebras Definable by Translation Semigroups

The difference between the translation monoid and the translation semi-
group of an algebra is that the latter does not automatically contain the
identity translation, although it may be included as an elementary transla-
tion or as a composition of some elementary translations.

Denote the translation semigroup of an algebra A = (A,Σ) by TrS(A)
and let ΛA be as in Definition 3.3 except that Tr(A) is replaced with TrS(A).
We associate withA a new symbol IA that does not appear in A∪Σ∪TrS(A).
Define the ΛA-algebra Aς = (TrS(A) ∪ {IA},ΛA) by pA

ς
(q) = q · p and

pA
ς
(IA) = p for all p, q ∈ TrS(A).

Lemma 5.1 For any finite algebras A = (A,Σ) and B = (B,Ω),
(1) TrS(A) ∼= TrS(Aς);
(2) If TrS(A) ≺ TrS(B), then Aς ≺g Bς ; and
(3) TrS(A)× TrS(B) ∼= Tr(κ(Aς ,Bς)) for some g-product κ(Aς ,Bς).
Moreover, for any k ≥ 1, and algebras A1, · · · ,Ak, there is a g-product

P of Aς1, · · · ,A
ς
k such that TrS(A1)× · · · × TrS(Ak) ∼= TrS(P).

Proof. The statements (1) and (3) can be proved similarly as their counter-
parts in Lemmas 3.4, 3.5, and 3.6 just by replacing the identity translation
1A (and 1B) with IA (with IB). We prove (2):

For a semigroup S that satisfies TrS(A) ← S ⊆ TrS(B), let ΛS = {p ∈
ΛB | p ∈ S}. Then clearly S = (S ∪ {IB},ΛM ) ⊆g Bς where the inter-
pretation of p ∈ ΛS in S is defined by pS(q) = q · p and pS(IB) = p for
p, q ∈ S. Suppose ϕ : S → TrS(A) is a semigroup epimorphism. Define the
assignment κ : ΛS → ΛA by qκ = qϕ for all q ∈ S. It is clear that κ is
surjective and for all q, r ∈ S ⊆ TrS(B),

(
qB

ς
(r)

)
ϕ = (r · q)ϕ = rϕ · qϕ =

qϕA
ς
(rϕ) = (qκ)A

ς
(rϕ). Hence (κ, ϕ̃) : S → Aς defined by sϕ̃ = sϕ for

s ∈ S and IBϕ̃ = IA, is a g-epimorphism. Thus A% ←g S ⊆g B%. �

The following characterization of the class of finite algebras definable by
translation semigroups can be proved similarly as Theorem 3.7.

Theorem 5.2 A class of finite algebras K is definable by translation semi-
groups iff it is a GVFA such that the equivalence A ∈ K iff Aς ∈ K holds
for any finite algebra A.

5.2 Languages Definable by Syntactic Semigroups

Let X be a leaf alphabet and Σ be a ranked alphabet such that Σ 6= Σ0.
A trivial tree language T consists of constant or leaf symbols only, i.e., T ⊆
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Σ0∪X. For such a tree language T , the syntactic semigroup of T is the trivial
semigroup consisting of a zero element, while its syntactic monoid consists of
a zero element and an identity element. Since the trivial semigroup belongs
to every variety of finite semigroups, any family of tree languages definable
by syntactic semigroups should contain all these trivial tree languages. So,
it is reasonable to consider +–varieties of tree languages (cf. [4] Section 11).

The sets of non-trivial ΣX-trees and non-trivial ΣX-contexts are de-
fined by T+(Σ, X) = T(Σ, X) \ (Σ0 ∪ X) and C+(Σ, X) = C(Σ, X) \ {ξ},
respectively. Any subset of T+(Σ, X) is called a trivial-free tree language.

For a trivial-free tree language T ⊆ T+(Σ, X) the syntactic semigroup
of T is the quotient semigroup C+(Σ, X)/µT where µT is restricted to
C+(Σ, X).

A regular tree homomorphism ϕ : T(Σ, X)→ T(Ω, Y ) is called strict, if
ϕm(f) is not trivial for any f ∈ Σm withm > 0, and ϕX(X), ϕ0(Σ0) ⊆ Y ∪Ω0

(cf. Definition 11.1 of [4]). We note that if ϕ is strict and regular, then
T+(Σ, X)ϕ−1 = T+(Ω, Y ).
A family of regular trivial-free tree languages {V (Σ, X)} ⊆ {T+(Σ, X)} is
called a +–GVTL if it is closed under Boolean operations, inverse transla-
tions and inverse strict regular tree homomorphisms, and moreover satisfies
the following conditions:
(1) For every unary ranked alphabet Λ, and any leaf alphabets X and Y , if
Y ⊆ X then V (Λ, Y ) ⊆ V (Λ, X).
(2) For any strict regular tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) full
with respect to T ⊆ T+(Ω, Y ), if Tϕ−1 ∈ V (Σ, X) then T ∈ V (Ω, Y ).

That any variety of trivial-free tree languages definable by syntactic semi-
groups is a +–GVTL can be proved analogously to that of the monoid case.
We claim the converse in the following theorem.

Theorem 5.3 A family of trivial-free tree languages is definable by syntac-
tic semigroups iff it is a +–GVTL of tree languages.

The proof, once we have proved the following semigroup counterparts of
Lemmas 4.10 and 4.11, is very similar to that of Theorem 4.14.

Lemma 5.4 Let A = (A,Σ) be a finite algebra, and X be a leaf alphabet
disjoint from A ∪ Σ.

(1) For any trivial-free tree language L ⊆ T+(ΛA, X) recognized by Aς ,
there exists a strict regular tree homomorphism ϕ : T(ΛA, X) → T(Σ, X ∪
A), and a trivial-free tree language T ⊆ T+(Σ, X ∪A), such that L = Tϕ−1,
and T can be recognized by a finite power of A.

(2) For any trivial-free tree language T ⊆ T+(Σ, X) recognized by A
there exists a unary ranked alphabet Λ and a strict regular tree homomor-
phism ϕ : T(Λ, X ∪ Σ0) → T(Σ, X) such that ϕ is full with respect to T ,
and for every z ∈ X ∪ Σ0, Tϕ−1 ∩ T(Λ, {z}) can be recognized by Aς as a
subset of T(Λ, {z}).
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Proof. (1) Suppose for an initial assignment α : X → Tr(A) ∪ {IA} and
a subset F ⊆ Tr(A) ∪ {IA}, L = {t ∈ T(ΛA, X) | tαA% ∈ F} holds.
Since L is trivial-free, we can assume that IA 6∈ F , or equivalently F ⊆
Tr(A). Let Y = {x ∈ X | xα = IA}. Define the tree homomorphism
ϕ : T(ΛA, X) → T(Σ, X ∪ A) by ϕX(x) = x for all x ∈ X, and for every
p ∈ Tr(A) choose a ϕ1(p) ∈ C(Σ, A) such that ϕ1(p)A = p. Obviously ϕ is
a strict regular tree homomorphism. Suppose that A = {a1, · · · , am}. Let
F ′ = {(p(a1), · · · , p(am)) ∈ Am | p ∈ F}, and define the initial assignment
β : X ∪ A → Am by xβ =

(
(xα)(a1), · · · , (xα)(am)

)
for all x ∈ X \ Y ,

yβ =
(
a1, · · · , am

)
for all y ∈ Y , and aβ = (a, · · · , a) ∈ Am for all a ∈ A.

Let T be the subset of T(Σ, X ∪ A) recognized by (Am, β, F ′). We show
L = Tϕ−1. Every trivial-free tree w in T+(ΛA, X) is of the form w =
p1

(
p2

(
· · · pk(x) · · ·

))
for some p1, · · · , pk ∈ Tr(A) (k > 0) and x ∈ X. For

such a tree w, wαA
%

= xα·pk ·. . .·p2·p1 if x ∈ X\Y , and wαA
%

= pk ·. . .·p2·p1

if x ∈ Y ; also (wϕ)βA
m

= (xα ·pk · . . . ·p2 ·p1(a1), · · · , xα ·pk · . . . ·p2 ·p1(am))
holds. So, for x ∈ X \ Y we have wϕ ∈ T iff (wϕ)βA

m ∈ F ′ iff “for some
p ∈ F , p(a) = xα ·pk · . . . ·p2 ·p1(a), for all a ∈ A” iff xα ·pk · . . . ·p2 ·p1 ∈ F iff
wαA

% ∈ F iff w ∈ L. Similarly, for x ∈ Y we have wϕ ∈ T iff (wϕ)βA
m ∈ F ′

iff “for some p ∈ F , p(a) = pk ·. . .·p2 ·p1(a), for all a ∈ A” iff pk ·. . .·p2 ·p1 ∈ F
iff wαA

% ∈ F iff w ∈ L.
(2) The proof is almost identical to that of Lemma 4.11, only 1A is replaced
with IA.

�

It was shown in Example 4.3 that the variety of 1-definite tree languages
is not definable by syntactic monoids. In the following example we show
that its trivial-free counterpart is not definable by syntactic semigroups.

Example 5.5 The syntactic semigroup of the trivial-free 1-definite tree lan-
guage T \ {x} where T is defined in Example 4.3, consists of two elements
both of which are right zeros. Let Λ = Λ1 = {α, β} and X = {x, y}.
Let T ′′ be the set of all ΛX-trees which either have root label α and leaf
label x or have root label β and leaf label y, i.e., T ′′ = {α(p(x)) | p ∈
C(Λ, X)} ∪ {β(p(y)) | p ∈ C(Λ, X)}. It is easy to see that the syntactic
semigroup of T ′′ consists of two right zero elements, but clearly T ′′ is not
1-definite. So, the trivial-free 1-definite tree languages are not definable by
syntactic semigroups.

Indeed, T ′′ is not k-definite for any k ≥ 1, thus the trivial-free definite
tree languages are not definable by syntactic semigroups.

5.3 Monoids vs. Semigroups

In this subsection we show that the concepts of “definability by semigroups”
and “definability by monoids” are not comparable to each other.

The abbreviation VFS stands for variety of finite semigroups. For a VFS
S, let Sa be the class of all finite algebras whose translation semigroups are
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in S, and St be the family of all recognizable trivial-free tree languages
whose syntactic semigroups are in S (cf. Definitions 3.2 and 4.2).

We recall Proposition 10.9 of [18] which can be extended to VFS’s.

Theorem 5.6 For any VFM M and VFS S, the identities Mat = Mt,
Mta = Ma, Sat = St and Sta = Sa hold.

Theorem 5.7 (1) There is a VFM M for which no VFS S, satisfies Ma =
Sa or Mt = St.
(2) There is a VFS S such that for no VFM M, Ma = Sa or Mt = St holds.

Proof. (1) Let M be the class of all finite monoids which satisfy the equation
y ·x ·x = y. Obviously, M is a VFM. Let Σ = Σ1 = {f} and put the algebras
A = (A,Σ) and B = (B,Σ) be defined by A = {a}, fA(a) = a, and
B = {a, b}, fB(a) = fB = a. Then Tr(A) ∼= TrS(A) ∼= TrS(B) is the trivial
semigroup, but the monoid Tr(B) consists of a zero element (0) and a unit
(1). Now, A ∈ Ma, but B 6∈ Ma since Tr(B) does not satisfy the equation
y · x · x = y: 1 · 0 · 0 = 0 6= 1. Hence, Ma is not definable by translation
semigroups. Now if Mt = St hold for a VFS S, then by Theorem 5.6 we
would have Ma = Mta = Sta = Sa, contradiction.

(2) Let S be the variety of finite right zero semigroups, i.e., the class of
all semigroups that satisfy the equation y · x = x. It can be easily seen that
if T and T ′ are the tree languages of Example 4.3, then T \ {x} ∈ St(Σ, X)
since the syntactic semigroup of T \ {x} has two elements both of which are
right zeros. On the other hand, the syntactic semigroup of T ′ consists of
an identity element and two right zeros (like its syntactic monoid). Thus
T ′ 6∈ St(Σ, X). This shows that St is not definable by syntactic monoids
(since T \ {x} and T ′ have isomorphic syntactic monoids) whence Mt = St

does not hold for any VFM M. On the other hand, if Ma = Sa holds for
some VFM M, then by Theorem 5.6, Mt = Mat = Sat = St, contradiction.
�

Theorems 5.7 justifies the task of studying the definability by semigroup
separately from the monoid case.

6 String languages definable by translation monoids

In this final section, we present for strings the results corresponding to those
of the previous sections. Familiarity with the basic notions of string lan-
guages and automata are presumed.

Let X be a finite alphabet, and X∗ be the set of words over X. A string
language over X is any subset of X∗. In the literature the syntactic monoid
SM(L) of a string language L ⊆ X∗ is defined to be the quotient monoid
X∗/θL where w θLw′ ⇐⇒ ∀u, v ∈ X∗(uwv ∈ L↔ uw′v ∈ L).

For a monoidM = (M, ·) the translations ofM are the unary functions
on M defined by x 7→ m ·x ·m′ for some m,m′ ∈M . Denote the composition
of the translations p and q by p ◦ q, that is p ◦ q(m) = p(q(m)) for all
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m ∈M . We note that the set of translations ofM is a monoid with respect
to composition operation. Denote the translation monoid of M by Tr(M).
For a string language L, let the translation monoid TM(L) of L be the
translation monoid of the syntactic monoid of L, i.e., TM(L) = Tr(SM(L)).

Note that by necessity the terms ‘syntactic monoid’ and ‘translation
monoid’ have different meanings and interpretations in this section.

Eilenberg’s [3] variety theorem establishes a correspondence between a
variety of finite monoids M and a variety of string languages L = {L (X)}
such that for any L ⊆ X∗, L ∈ L (X) ⇐⇒ SM(L) ∈M.

A variety of string languages V = {V (X)} is definable by translation
monoids if there exists a variety of finite monoids M such that for any
L ⊆ X∗, L ∈ V (X) ⇐⇒ TM(L) ∈ M. We shall characterize these
varieties of string languages in Theorem 6.6 below.

It is known that not any variety of string languages can be defined by
translation monoids (one example is the class of reverse definite, or frontier
testable, string languages, cf. [21]).

For a monoidM = (M, ·), the reverse ofM is the monoidMR = (M, ·R)
where m ·Rm′ = m′ ·m for m,m′ ∈M . Clearly (MR)R =M. We show that
a variety of finite monoids is definable by translation monoids (see Definition
3.2) iff it is closed under the reversing operation.

First, we show that the reverse of a monoid and the original monoid have
isomorphic translation monoids.

Lemma 6.1 For a monoidM = (M, ·), Tr(M) ∼= Tr(MR).

Proof. For any translation p(x) = m · x ·m′ (m,m′ ∈M) of M let pR(x) =
m′ · x ·m. The mapping Tr(M)→ Tr(MR), p 7→ pR is an isomorphism. �

Next, we present some connections between the translation monoid of a
monoid and the original monoid.

Lemma 6.2 For any monoid M, (1) M ⊆ Tr(M), and (2) Tr(M) ←
M×MR.

Proof. LetM = (M, ·). (1) For anym ∈M , let pm be the translation defined
by pm(x) = m · x on M . It is easy to see that the mapping m 7→ pm is a
monoid monomorphism that embedsM into Tr(M). (2) For any m,n ∈M ,
let q(m,n) be the translation ofM defined by q(m,n)(x) = m · x · n. It can be
easily seen that (m,n) 7→ m·x·n yields an epimorphismM×MR → Tr(M).
�

Finally, we characterize the varieties of finite monoids definable by trans-
lation monoids.

Theorem 6.3 A variety of finite monoids M is definable by translation
monoids iff it is closed under the reversing operation, i.e.,M∈M⇒MR ∈
M for any monoidM.
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Proof. By Lemma 6.1, every variety of finite monoids definable by translation
monoids is closed under the reversing operation. Now suppose a variety of
finite monoids M is closed under the reversing operation. We show that
M ∈M ⇐⇒ Tr(M) ∈M for any monoid M. The implication Tr(M) ∈
M ⇒ M ∈ M follows from Lemma 6.2(1). For the converse, let M ∈ M.
Then also MR ∈M, and hence Tr(M) ∈M by Lemma 6.2(2). �

The proof also implies that:

Corollary 6.4 If a variety of finite monoids M is definable by translation
monoids, then M is generated by the translation monoids of its members.

In the sequel we characterize the varieties of string languages definable
by translation monoids.

For a string w = x1x2 . . . xn ∈ X∗ define the reverse of w as wR =
xn . . . x2x1. We note that uRvR = (vu)R holds for all u, v ∈ X∗. For a string
language L ⊆ X∗, LR = {wR ∈ X∗ | w ∈ L}.

The following lemma is a known fact (see e.g. [3]).

Lemma 6.5 For any string language L ⊆ X∗, SM(LR) ∼= SM(L)R.

Our characterization of the varieties of string languages definable by
translation monoids is the following.

Theorem 6.6 A class of string languages V is definable by translation
monoids iff it is a variety of string languages closed under the reversing
operation, i.e., L ∈ V (X)⇒ LR ∈ V (X) for any string language L ⊆ X∗.

Proof. Since Lemmas 6.5 and 6.1 imply that TM(L) ∼= TM(LR) for any
string language L, any variety of string languages definable by translation
monoids is closed under the reversing operation. Now, suppose V is a variety
of string languages closed under the reversing operation. By Eilenberger’s
variety theorem there is a variety of finite monoids M such that for any
string language L ⊆ X∗, L ∈ V (X) ⇔ SM(L) ∈ M. We show that the
class M also defines the translation monoids of V , that is to say, for any
L ⊆ X∗, L ∈ V (X) ⇔ TM(L) ∈ M. First, suppose L is in V (X). Then
also LR ∈ V (X), so SM(L) ∈ M and SM(LR) ∈ M. By Lemma 6.5,
SM(L)R ∈M, and since TM(L) is an epimorphic image of SM(L)×SM(L)R

by Lemma 6.2, TM(L) ∈ M. Next, suppose TM(L) ∈ M for a string
language L ⊆ X∗. Since by Lemma 6.2, SM(L) is isomorphic to a submonoid
of TM(L), then SM(L) ∈M, and hence L ∈ V (X). �

Corollary 6.7 Let V be a variety of string languages definable by transla-
tion monoids. Then the variety generated by the translation monoids of V
is equal to the variety generated by the syntactic monoids of V .
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An analogue of Theorem 6.6 can be proved for translation semigroups.
Unlike Theorems 4.14 and 5.3 for tree languages, by Theorem 6.6 check-

ing whether or not a variety of string languages is definable by translation
monoids or semigroups is rather easy. For example the variety of definite
string languages and the variety of reverse definite string languages are not
definable by translation semigroups, while the variety of aperiodic string
languages and the variety of commutative string languages (i.e., having com-
mutative syntactic monoids) are definable by translation monoids.
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