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Abstract

Pin’s variety theorem for positive varieties of string languages and varieties of
finite ordered semigroups is proved for trees, i.e., a bijective correspondence
between positive varieties of tree languages and varieties of finite ordered
algebras is established. This, in turn, is extended to generalized varieties
of finite ordered algebras, which corresponds to Steinby’s generalized vari-
ety theorem. Also, families of tree languages and classes of ordered algebras
that are definable by ordered (syntactic or translation) monoids are charac-
terized.
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1 Introduction

The story of variety theory begins with Eilenberg’s celebrated variety theo-
rem [5] which was motivated by characterizations of several families of string
languages by syntactic monoids or semigroups (see [5, 12]), above all by
Schützenberger’s [20] theorem connecting star-free languages and aperiodic
monoids. A fascinating feature of this variety theorem is the existence of lots
of instances of it. Indeed most of interesting classes of algebraic structures
form varieties, and similarly, most of interesting families of tree or string
languages in the literature turn out to be varieties of some kind.

Eilenberg’s theorem has since been extended in various directions. One of
these extensions, which is generalized in this paper for trees, is Pin’s positive
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variety theorem [13] which established a bijective correspondence between
positive varieties of string languages and varieties of ordered semigroups.
Another extension is Thérien’s [24] which includes also varieties of congru-
ences on free monoids.

Concerning trees, which are studied on the level of universal algebra,
Steinby’s variety theorem [21] for varieties of tree languages and varieties of
finite algebras was the first one of this kind. The correspondence to varieties
of congruences, and some other generalizations, were added later by Almeida
[1] and Steinby [22, 23]. Another variety theorem for trees is Ésik’s [6] cor-
respondence between families of tree languages and varieties of theories (see
also [7]).

As Ésik [6] notes any variety theorem connects families of tree languages
to a class of some structures via their ‘syntactic structures’. One of these
syntactic structures is the syntactic semigroup/monoid of a tree language
introduced by Thomas [25] and further studied by Salomaa [16]. A different
formalism, based on the essentially same concept, was brought up by Nivat
and Podelski [11, 15]. Very recently a variety theorem for syntactic semi-
groups/monoids was proved by Salehi [17]. The newest syntactic structure
for binary trees is the ‘syntactic tree algebra’ introduced by Wilke [26] for
which a variety theorem is proved by Salehi and Steinby [18].

In Section 2, we review the basic notions of ordered algebras, ideals and
quotient ordered algebras. Ordered algebras play an important role in the
field, as Bloom and Wright [4] put it “Ever since Scott popularized their
use in [19], ordered algebras have been used in many places in theoretical
computer science”.

In Section 3, positive varieties of tree languages are introduced and a
variety theorem for these varieties and varieties of finite ordered algebras is
proved. Informally speaking, a positive variety is a family of recognizable lan-
guages which satisfies the definition of a variety except for being closed under
complements. Several families of (tree or string) languages are known to be
closed under all the variety operations, including intersections and unions,
but not under complementation. Pin’s positive variety theorem [13] provides
a characterization for these families via their syntactic ordered semigroups,
see also [8, 14].

In Section 4, positive variety theorem from Section 3 is extended to gener-
alized varieties. Generalized varieties were introduced by Steinby [23] where
generalization refers to omitting the condition of having a fixed ranked al-
phabet; indeed a generalized variety of tree languages or of finite algebras
contains tree languages or algebras over any ranked alphabet. This is used
for proving a variety theorem for trees and ordered monoids in Section 5.

In Section 5, the results of [17] are extended to ordered monoids. Roughly
speaking, a triple correspondence between generalized varieties of finite or-
dered algebras, generalized positive varieties of tree languages and varieties
of finite ordered monoids is presented. This suggests the thesis that once the

2



condition of being closed under complements is removed from the definition
of variety, the resulted family (called positive variety) corresponds to a class
of ordered syntactic structures of the variety; see also the positive variety
theorem by Ésik in [6] Section 12.

Throughout the paper some examples are presented for illustrating the
theories and their applicabilities.

2 Ordered Algebras

In this section after reviewing the terminology of ordered sets and ordered
algebras we define the notions of ideals, quotient ordered algebras and syn-
tactic ordered algebras, cf. [3].

2.1 Basic Notions

Let A be a set. The diagonal relation on A is denoted by ∆A, that is ∆A =
{(a, a) | a ∈ A}. For a binary relation δ ⊆ A × A, the reverse of δ is the
relation δ−1 = {(b, a) | (a, b) ∈ δ}, and if σ is also a binary relation on A, the
composition of δ and σ is

δ ◦ σ = {(a, c) | (a, b) ∈ δ& (b, c) ∈ σ for some b ∈ A}.

Let δ be a binary relation on A. The relation δ is

• reflexive, if it contains the diagonal relation, i.e., ∆A ⊆ δ;

• anti-symmetric, if the intersection of it with its reverse is contained in
the diagonal relation, i.e., δ ∩ δ−1 ⊆ ∆A;

• symmetric, if it equals to its reverse, i.e., δ = δ−1; and

• transitive, if it contains its composition with itself, i.e., δ ◦ δ ⊆ δ.

A binary relation on A is called

• a quasi-order on A, if it is reflexive and transitive;

• an order on A, if it is reflexive, anti-symmetric and transitive; and

• an equivalence on A, if it is reflexive, symmetric and transitive.

For an equivalence relation θ on A, the equivalence θ-class of an a ∈ A is
a/θ = {b ∈ A | aθb} and the quotient set A/θ is {a/θ | a ∈ A}.

It is easy to see that for a quasi-order 4 on A, the relation θ =4 ∩ 4−1

is an equivalence relation on A, called the equivalence relation of 4, and the
relation 6 defined on the quotient set A/θ by a/θ 6 b/θ ⇐⇒ a 4 b for
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a, b ∈ A, is a well-defined order on A/θ. This order 6 on A/θ is called the
order induced by the quasi-order 4 on A.

A finite set of function symbols is called a ranked alphabet. If Σ is a ranked
alphabet, the set of m-ary function symbols of Σ is denoted by Σm (m ≥ 0).
In particular, Σ0 is the set of constant symbols of Σ. For a ranked alphabet
Σ, a Σ-algebra is a structure A = (A,Σ) where A is a set, and the operations
of Σ are interpreted in A, that is to say, any c ∈ Σ0 is interpreted by an
element cA ∈ A, and any f ∈ Σm (m > 0) is interpreted by an m-ary
function fA : Am → A.

Let Σ be a ranked alphabet. An ordered Σ-algebra is a structure A =
(A,Σ,6) where the structure (A,Σ) is an algebra and 6 is an order on A
which is compatible with Σ, that is to say, for any f ∈ Σm (m > 0) and
a1, · · · , am, b1, · · · , bm ∈ A,

if a1 6 b1, · · · , am 6 bm, then fA(a1, · · · , am) 6 fA(b1, · · · , bm).

An equivalence relation θ on A is Σ-congruence, if for any f ∈ Σm (m > 0)
and a1, · · · , am, b1, · · · , bm ∈ A,

if a1 θ b1, · · · , am θ bm, then fA(a1, · · · , am) θ fA(b1, · · · , bm).

We note that any algebra (A,Σ) in the classical sense is an ordered algebra
(A,Σ,∆A) in which the order relation is equality.

Let A = (A,Σ,6) and B = (B,Σ,6′) be two ordered algebras.

• The structure B is an order subalgebra of A, in notation B ⊆ A, if
(B,Σ) is a subalgebra of (A,Σ) and 6′ is the restriction of 6 on B.

• A mapping ϕ : A → B is an order morphism, if it is a Σ-morphism,
that is to say cAϕ = cB and fA(a1, · · · , am)ϕ = fB(a1ϕ, · · · , amϕ) for any
c ∈ Σ0, f ∈ Σm (m > 0) and a1, · · · , am ∈ A, and preserves the orders, i.e.,
for any a, b ∈ A, if a 6 b then aϕ 6′ bϕ. In that case we write ϕ : A → B.
The order morphism ϕ is an order epimorphism, if it is surjective, and then
B is an order epimorphic image of A, in notation B ← A. If B is an order
epimorphic image of an order subalgebra of A, then we say that B divides
A and we write B ≺ A. If ϕ is injective, then it is an order monomorphism.
When ϕ is bijective and its reverse is also an order morphism, then it is an
order isomorphism. We write A ∼= B when A and B are order isomorphic.

• The direct product of A and B is the structure (A×B,Σ,6 × 6′) where
(A×B,Σ) is the product of the algebras (A,Σ) and (B,Σ), and the relation
6 × 6′ is defined on A× B by (a, b) 6 × 6′ (c, d) ⇐⇒ a 6 b & c 6′ d for
(a, b), (c, d) ∈ A×B. It is easy to see that the structure (A×B,Σ,6 × 6′)
is an order algebra which is denoted by A× B.

A variety of finite ordered algebras, a VFOA for short, is a class of finite
ordered algebras closed under order subalgebras, order epimorphic images,
and direct products.
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2.2 Ideals and Quotient Ordered Algebras

Let A = (A,Σ,6) be an ordered algebra.

Definition 2.1 A quasi-order on A is a quasi-order 4 on A that contains
6, i.e., 4 ⊇ 6, and is compatible with Σ, i.e., for any f ∈ Σm (m > 0) and
a1, · · · , am, b1, · · · , bm ∈ A, if a1 4 b1, · · · , am 4 bm, then

fA(a1, · · · , am) 4 fA(b1, · · · , bm).

Let 4 be a quasi-order on A. The relation θ =4 ∩ 4−1 is a congruence
on (A,Σ). So, the quotient structure (A/θ,Σ) is a Σ-algebra. Moreover, the
relation ≤ defined on A/θ by a/θ ≤ b/θ ⇐⇒ a 4 b for a, b ∈ A, is a
well-defined order compatible with Σ. Hence the structure (A/θ,Σ,≤) is an
ordered algebra. It can be noticed that quasi-orders on ordered algebras play
the role of congruences on ordinary algebras.

Definition 2.2 For a quasi-order 4 on A, the quotient of A under 4 is
the structure A/ 4= (A/θ,Σ,≤) where θ =4 ∩ 4−1 is the Σ-congruence
induced by 4 and ≤ is the order induced by 4.

Lemma 2.3 For ordered algebras A = (A,Σ,6) and B = (B,Σ,6′), and
order morphism ϕ : A → B, if 4 is a quasi-order on B, then the relation
ϕ◦ 4 ◦ϕ−1 satisfies a ϕ◦ 4 ◦ϕ−1 c ⇐⇒ aϕ 4 cϕ for all a, c ∈ A, and is a
quasi-order on A.

Moreover, if θ is the congruence on B induced by 4, then the congruence
on A induced by ϕ◦ 4 ◦ϕ−1 is ϕ ◦ θ ◦ ϕ−1.

Proof. The first claim is obvious. For the second we note that
ϕ◦ 4 ◦ϕ−1 ∩ (ϕ◦ 4 ◦ϕ−1)−1 = ϕ ◦ (4 ∩ 4−1) ◦ ϕ−1 = ϕ ◦ θ ◦ ϕ−1. �

Proposition 2.4 Let A = (A,Σ,6) and B = (B,Σ,6′) be two ordered
algebras, 4 be a quasi-order on B, and ϕ : A → B be an order morphism.
Then

(1) the image of A, Aϕ = (Aϕ,Σ,6′′) where 6′′ is the restriction of 6′ on
Aϕ, is an order subalgebra of B,

(2) A/ϕ◦ 4 ◦ϕ−1 ∼= Aϕ/ 4′ where 4′ is the restriction of 4 on Aϕ, and

(3) moreover, if ϕ is an order epimorphism, then A/ϕ◦ 4 ◦ϕ−1 ∼= B/ 4.

Proof. The statement (1) is straightforward and (3) follows from (2). For
proving (2) we note that the mapping ψ : A/ϕ◦ 4 ◦ϕ−1 → Aϕ/ 4′ defined
by (a/ϕ ◦ θ ◦ ϕ−1)ψ = aϕ/θ for a ∈ A, where θ =4 ∩ 4−1, is an order
isomorphism, cf. Lemma 2.3. �
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The particular case of the Proposition 2.4 when 4=6′ is of interest: then
θ = ∆B and ϕ ◦ θ ◦ ϕ−1 = kerϕ, hence we get the first homomorphism
theorem for ordered algebras, namely A/ϕ◦ 6′ ◦ϕ−1 ∼= Aϕ. Similar results
for semigroups can be found in [9, 10].

Proposition 2.5 Let A = (A,Σ,6) be an ordered algebra, and 4,4′ be
two quasi-orders on A.

(1) If 4 ⊆ 4′, then A/ 4′ ← A/ 4.

(2) The relation 4 ∩ 4′ is a quasi-order on A and the following holds:

A/ 4 ∩ 4′ ⊆ A/ 4 ×A/ 4′ .

The proof is straightforward.
Let us recall the definition of translations of an algebra (see e.g. [21, 22,

23]). For an algebra A = (A,Σ), an m-ary function symbol f ∈ Σm (m > 0)
and elements a1, · · · , am ∈ A, the term fA(a1, · · · , ξ, · · · , am) where the new
symbol ξ sits in the i-th position (for some i ≤ m) determines a unary func-
tion A → A defined by a 7→ fA(a1, · · · , a, · · · , am) which is an elementary
translation of A. The set of translations of A denoted by Tr(A) is the small-
est set that contains the identity function and elementary translations, and
is closed under the compositions of unary functions. The composition of
translations p and q is denoted by q · p, that is (q · p)(a) = p(q(a)) for all
a ∈ A. We note that the set Tr(A) equipped with the composition operation
is a monoid, called the translation monoid of A.

Definition 2.6 For an ordered algebra A = (A,Σ,6), a subset I ⊆ A is an
ideal of A, in notation I E A, if for every a, b ∈ A, a 6 b ∈ I implies a ∈ I.
For any a ∈ A, (a] = {b ∈ A | b 6 a} is the ideal of A generated by a.
The syntactic quasi-order of an ideal I, denoted by 4I , is defined by

a 4I b ≡
(
∀p ∈ Tr(A)

)(
p(b) ∈ I ⇒ p(a) ∈ I

)
for a, b ∈ A. Note that 4I is a quasi-order on A. The syntactic ordered
algebra of I is the quotient ordered algebra SOA(I) = A/ 4I , also denoted
by A/I (cf. [13]).

We note that the equivalence relation of 4I for any ideal I is the syntactic
congruence of I in the classical sense:

a(4I ∩ 4−1
I )b ⇐⇒ (∀p ∈ Tr(A))(p(a) ∈ I ⇔ p(b) ∈ I),

which is denoted by θI , that is θI =4I ∩ 4−1
I (see e.g. [21, 22]).

Trivially, any subset I ⊆ A of the ordered algebra A = (A,Σ,∆A) is an
ideal of A. The following is essentailly Lemma 3.2 of [22].
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Proposition 2.7 Let A = (A,Σ,6) and B = (B,Σ,6′) be two ordered
algebras, and ϕ : A → B be an order morphism. The mapping ϕ induces a
monoid morphism Tr(A)→ Tr(B), p 7→ pϕ such that p(a)ϕ = pϕ(aϕ) for all
a ∈ A. Moreover, if ϕ is an order epimorphism then the induced map is a
monoid epimorphism.

Proof. For any elementary translation p = fA(a1, · · · , ξ, · · · , am) of A where
f ∈ Σm (m > 0) and a1, · · · , am ∈ A, the unary function pϕ on B defined
by b 7→ fB(a1ϕ, · · · , b, · · · , amϕ) is an elementary translation of B, and if
ϕ is surjective then every elementary translation of B is in this form. The
mapping p 7→ pϕ can be extended to all translations by setting (1A)ϕ = 1B

and (p · q)ϕ = pϕ · qϕ. The identity pϕ(aϕ) = p(a)ϕ obviously holds for all
a ∈ A and p ∈ Tr(A). �

For a subset D ⊆ A and a translation p ∈ Tr(A), the inverse translation
of D under p is p−1(D) = {a ∈ A | p(a) ∈ D}, and for an order morphism
ϕ : B → A, the inverse image of D under ϕ is Dϕ−1 = {b ∈ B | bϕ ∈ D}.
Positive Boolean operations are intersection and union of sets, while Boolean
operations also include the complement operation.

Lemma 2.8 The collection of all ideals of any ordered algebra is closed
under positive Boolean operations, inverse translations and inverse order
morphisms. That is to say, for ordered algebras A and B, ideals I, J E A,
K E B, and order morphism ϕ : A → B, the sets I ∩ J, I ∪ J, p−1(I) and
Kϕ−1 are ideals of A.

The proof is straightforward (cf. [13]). We note that the complement of
an ideal may not be an ideal.

Proposition 2.9 LetA = (A,Σ,6) and B = (B,Σ,6′) be ordered algebras,
I, J EA, K E B be ideals, and ϕ : A → B be an order morphism. Then the
following inclusions hold:

(1) 4I∩J ,4I∪J ⊇ 4I ∩ 4J .

(2) 4p−1(I) ⊇ 4I .

(3) 4Kϕ−1 ⊇ ϕ◦ 4K ◦ϕ−1, and if ϕ is an order epimorphism then the
equality holds: 4Kϕ−1 = ϕ◦ 4K ◦ϕ−1.

Proof. The statements (1) and (2) are obvious. We prove (3): suppose
(a, b) ∈ ϕ◦ 4K ◦ϕ−1 for some a, b ∈ A. Then aϕ 4K bϕ. So, for any
p ∈ Tr(A),

p(b) ∈ Kϕ−1 ⇒ p(b)ϕ ∈ K
⇒ pϕ(bϕ) ∈ K
⇒ pϕ(aϕ) ∈ K
⇒ p(a)ϕ ∈ K
⇒ p(a) ∈ Kϕ−1.
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Therefore a 4Kϕ−1 b, and hence ϕ◦ 4K ◦ϕ−1 ⊆4Kϕ−1 . In the case when ϕ
is surjective we note that by Proposition 2.7 every translation q ∈ Tr(B) is
in the form pϕ for some p ∈ Tr(A). Thus in this case 4Kϕ−1 ⊆ ϕ◦ 4K ◦ϕ−1

holds and so does the equality 4Kϕ−1 = ϕ◦ 4K ◦ϕ−1. �

Combining Propositions 2.9, 2.5 and 2.4 we get the following.

Corollary 2.10 For ordered algebras A = (A,Σ,6) and B = (B,Σ,6′),
ideals I, J EA and K E B, and order morphism ϕ : A → B,
(1) SOA(I ∩ J), SOA(I ∪ J) ≺ SOA(I)× SOA(J).
(2) SOA(p−1(I))← SOA(I).
(3) SOA(Kϕ−1) ≺ SOA(K) and, moreover, if ϕ is an order epimorphism
then SOA(Kϕ−1) ∼= SOA(K).

2.3 Examples

We introduce some classes of ordered algebras and prove some of their ele-
mentary properties which will be used later.

For an algebra A = (A,Σ), the set of non-trivial translations TrS(A) of A
consists of the elementary translations fA(a1, · · · , ξ, · · · , am) for any f ∈ Σm

(m > 0) and a1, · · · , am ∈ A, and their compositions. We note that TrS(A)
does not automatically include the identity translation 1A. The set TrS(A)
is a semigroup with the composition operation which is the translation semi-
group of A.

2.3.1 Ordered nilpotent algebras

Definition 2.11 An ordered algebra A = (A,Σ,6) is ordered n-nilpotent
(n ∈ N), when p1 · · · pn(a) 6 b holds for all a, b ∈ A and non-trivial transla-
tions p1, · · · , pn ∈ TrS(A).

An ordered algebra is ordered nilpotent if it is ordered n-nilpotent for
some n ∈ N.

The class of all ordered nilpotent Σ-algebras is denoted by Nil(Σ).
An element a0 ∈ A is a trap of A, if p(a0) = a0 holds for any p ∈ Tr(A).

Lemma 2.12 Every order n-nilpotent algebra A = (A,Σ,6) has a unique
trap which is the least element of the algebra.

Proof. For every p1, · · · , pn, q1, · · · , qn ∈ TrS(A) and a, b ∈ A we have

p1 · · · pn(a) 6 q1 · · · qn(b) 6 p1 · · · pn(a).

Thus p1 · · · pn(a) = q1 · · · qn(b) and let a0 be this element. Clearly p(a0) = a0

and a0 6 a for every p ∈ TrS(A) and every a ∈ A. So, a0 is the unique trap
of A which is the least element. �
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Proposition 2.13 The class Nil(Σ) of all ordered nilpotent Σ-algebras is a
VFOA (variety of finite ordered algebras).

Proof. It can be easily seen that the class of ordered n-nilpotent algebras is
closed under order subalgebras and direct products. To see that it is closed
under order epimorphic images, let A = (A,Σ,6) and B = (B,Σ,6′) be
two ordered algebras such that A is an ordered n-nilpotent algebra and let
ϕ : A → B be an order epimorphism. Let b, d ∈ B be two elements and
q1, · · · , qn ∈ TrS(B) be non-trivial translations. There are a, c ∈ A such that
b = aϕ and d = cϕ, and by Proposition 2.7, there are p1, · · · , pn ∈ TrS(A)
such that (pj)ϕ = qj for all j ≤ n. From p1 · · · pn(a) 6 c, the inequality
p1 · · · pn(a)ϕ 6′ cϕ follows and this implies (p1)ϕ · · · (pn)ϕ(aϕ) 6′ cϕ, thus
q1 · · · qn(b) 6′ d holds. Hence, B is an ordered n-nilpotent algebra.

Finally, the claim follows from the fact that an ordered n-nilpotent algebra
is an ordered (n+ 1)-nilpotent algebra as well. �

Lemma 2.14 If A = (A,Σ,6) is an order n-nilpotent algebra, then the
translation semigroup TrS(A) of A is a nilpotent semigroup.

Proof. For every p1, · · · , pn, q1, · · · , qn ∈ TrS(A) and a ∈ A we have

p1 · · · pn(a) 6 q1 · · · qn(a) 6 p1 · · · pn(a).

Thus p1 · · · pn = q1 · · · qn, so p1 · · · pn ∈ TrS(A) is the zero element of TrS(A)
and the product of every n elements of this semigroup is zero. �

2.3.2 Semilattice algebras and symbolic ordered algebras

Sequence of elements of a set D are denoted in the bold face, for example
d is a (possibly empty) sequence 〈d1, · · · , dm〉 where d1, · · · , dm ∈ D. For
simplicity we write d ∈ D to mean that the components of the sequence d
belong to D. In that case for a function symbol f ∈ Σm+1, f(d,d) stands for
f(d, d1, · · · , dm).

Definition 2.15 An algebraA = (A,Σ) is a semilattice algebra, if it satisfies
the following two identities for every f, g ∈ Σ and a,b, c,d, a ∈ A:

fA(a, fA(a, a,b),b) = fA(a, a,b);

fA(a, gA(c, a,d),b) = gA(c, fA(a, a,b),d).

A monoid (M, ·) is a semilattice monoid, if it is commutative and idempotent,
i.e., for every a, b ∈M , a · a = a and a · b = b · a hold.

Lemma 2.16 An algebra is semilattice if and only if its translation monoid
is semilattice.
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Fix a semilattice algebra A = (A,Σ) where Tr(A) is its translation monoid.

Lemma 2.17 For an element a ∈ A and translations p, q ∈ Tr(A), if
p(q(a)) = a then p(a) = q(a) = a.

Proof. Suppose p, q ∈ Tr(A). Since q · q = q, p · p = p and q · p = p · q, we
have q(a) = q(p(q(a))) = q(q(p(a))) = q(p(a)) = p(q(a)) = a, and similarly
p(a) = p(p(q(a))) = p(q(a)) = a. �

Corollary 2.18 For a, b ∈ A and p, q ∈ Tr(A), if p(a) = b and a = q(b) then
a = b.

Lemma 2.19 For a,b, c, a, b ∈ A and f ∈ Σ,
(s1) fA(a, a,b, b, c) = fA(a, b,b, a, c).

Proof.
fA(a, a,b, b, c) =
fA(a, fA(a, a,b, b, c),b, b, c) =
fA(a, a,b, fA(a, b,b, b, c), c) =
fA(a, b,b, fA(a, a,b, b, c), c) =
fA(a, fA(a, b,b, a, c),b, b, c) =
p(fA(a, b,b, a, c)).

where p = fA(a, ξ,b, b, c). By the same argument and swapping a and b it
can be proved that fA(a, b,b, a, c) = q(fA(a, a,b, b, c)) for some q ∈ Tr(A).
Thus, from Corollary 2.18, it follows that fA(a, a,b, b, c) = fA(a, b,b, a, c).
�

Lemma 2.20 For a, a, b ∈ A and f ∈ Σ,
(s2) fA(a, a, b, a) = fA(a, b, b, a).

Proof. The equality of the third and fourth lines of the following is implied
by (s1) Lemma 2.19:

fA(a, a, b, a) =
fA(fA(a, a, b, a), a, b, a) =
fA(a, a, fA(b, a, b, a), a) =
fA(fA(a, b, b, a), a, a, a) =
p(fA(a, b, b, a))

where p = fA(ξ, a, a, a). By the same argument and swapping a and b it can
be proved that fA(a, b, b, a) = q(fA(a, a, b, a)) for some q ∈ Tr(A). Hence,
fA(a, a, b, a) = fA(a, b, b, a) by Corollary 2.18. �
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Lemma 2.21 For a,b, a, b ∈ A and f, g ∈ Σ,
(s3) fA(gA(a, a), b,b) = fA(gA(b, a), a,b).

Proof. The second equality follows from (s1) Lemma 2.19:

fA(gA(a, a), b,b) =
gA(fA(a, b,b), a) =
gA(fA(b, a,b), a) =
fA(gA(b, a), a,b).

�

Lemma 2.22 For a1, a2, · · · , am ∈ A and f ∈ Σm,
(s4) fA(fA(a1, · · · , a1), a2, · · · , am) = fA(a1, a2, · · · , am).

Proof. The third equality is implied by (s2) Lemma 2.20:

fA(fA(a1, · · · , a1), a2, · · · , am) =
fA(a1, · · · , a1, f

A(a1, a2, · · · , am)) =
fA(a1, f

A(a1, · · · , a1, a1, a2), a3, · · · , am) =
fA(a1, f

A(a1, · · · , a1, a2, a2), a3, · · · , am) =
fA(a1, · · · , a1, a2, f

A(a1, a2, a3, · · · , am)).

Now, we show for any j < m,

fA(a1, · · · , a1, a1, a2, . . . , aj, f
A(a1, a2, a3, · · · , am)) =

fA(a1, · · · , a1, a2, . . . , aj, aj+1, f
A(a1, a2, a3, · · · , am)),

as follows, where the second equality follows from (s1), (s2) and Lemma 2.20,

fA(a1, · · · , a1, a2, . . . , aj, f
A(a1, a2, a3, · · · , am)) =

fA(a1, a2, · · · , aj, f
A(a1, · · · , a1, a1, a2, . . . , aj, aj+1), aj+2, · · · , am) =

fA(a1, a2, · · · , aj, f
A(a1, · · · , a1, a2, . . . , aj, aj+1, aj+1), aj+2, · · · , am) =

fA(a1, · · · , a1, a2, . . . , aj, aj+1, f
A(a1, a2, a3, · · · , am)).

By repeating this argument m− 1 times, we get

fA(fA(a1, · · · , a1), a2, · · · , am) =
fA(a1, · · · , am−1, f

A(a1, a2, a3, · · · , am)) =
fA(a1, a2, · · · , am).

�

Lemma 2.23 For a, b, a,b ∈ A and f ∈ Σ,
(s5) fA(gA(a, b, a), a,b) = fA(gA(a, b, a), b,b).
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Proof. We distinguish two cases:
(1) The sequence a is empty: By using identities (s4), (s3), (s1), (s3),

(s3) and (s4) consecutively, we get:

fA(gA(a, b), a,b) =
fA(gA(a, gA(b, b)), a,b) =
fA(gA(b, gA(a, b)), a,b) =
fA(gA(gA(a, b), b), a,b) =
fA(gA(gA(a, b), a), b,b) =
fA(gA(gA(a, a), b), b,b) =
fA(gA(a, b), b,b).

(2) The sequence a is not empty: Write a = (c, c) and use identities (s3),
(s1), (s2) and (s3) consecutively:

fA(gA(a, b, a), a,b) =
fA(gA(a, b, c, c), a,b) =
fA(gA(a, b, a, c), c,b) =
fA(gA(a, a, b, c), c,b) =
fA(gA(a, b, b, c), c,b) =
fA(gA(a, b, c, c), b,b) =
fA(gA(a, b, a), b,b).

�

Lemma 2.24 For f ∈ Σm, g ∈ Σn wherem ≤ n (n ≥ 2) and a, b, a,b, c ∈ A,
the following identity, where the sequence b consists of n−m times b, holds:

(s6) fA(fA(gA(a, b, a),b), c) = fA(gA(gA(a,b, b), b, a), c).

Proof. Use identities (s1), (s3) and (s4) alternatively:

fA(fA(gA(a, b, a),b), c) =
fA(fA(gA(a, gA(b, · · · , b), a),b), c) =
fA(gA(fA(gA(b, · · · , b),b), a, a), c) =

fA(gA(gA(fA(b, · · · , b), b,b), a, a), c) =

gA(fA(gA(fA(b, · · · , b), b,b), c), a, a) =

gA(gA(fA(fA(b, · · · , b), c), b,b), a, a) =

gA(gA(fA(b, c), b,b), a, c) =

gA(fA(gA(b, b,b), c), a, a) =

fA(gA(gA(b, b,b), a, a), c) =

fA(gA(gA(a,b, b), b, a), c).

�

We note that the identity corresponding to (s6) for m = n = 1 also holds,
i.e., fA(fA(gA(a))) = fA(gA(a)) = fA(gA(gA(a))).
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Definition 2.25 An ordered algebra A = (A,Σ,6) is symbolic, if it is a
semilattice algebra and fA(a1, · · · , am) 6 aj holds for every a1, · · · , am ∈ A,
f ∈ Σm (m > 0) and j ≤ m.

An ordered monoidM = (M, ·,.) is symbolic, if it is a semilattice monoid
and the unit is the greatest element of the monoid, i.e., m . 1M holds for all
m ∈M and the unit element 1M ∈M .

The class of all semilattice Σ-algebras is denoted by SL(Σ) and Sym(Σ)
denotes the class of all symbolic ordered Σ-algebras.

The proofs of the followings are easy and thus we omit them.

Lemma 2.26 An ordered algebra A = (A,Σ,6) is symbolic if and only if it
is a semilattice algebra such that p(a) 6 a holds for all a ∈ A and p ∈ Tr(A).

Proposition 2.27 The class SL(Σ) is a variety of finite algebras and the
class Sym(Σ) is a VFOA.

3 Positive Variety Theorem

Recall that a ranked alphabet is a finite set of function symbols, and if Σ is
a ranked alphabet, the set of m-ary function symbols of Σ is denoted by Σm

(for every m ≥ 0); in particular, Σ0 is the set of constant symbols of Σ. For
a ranked alphabet Σ and a leaf alphabet X, the set of ΣX-trees T(Σ, X) is
the smallest set satisfying

(1) Σ0 ∪X ⊆ T(Σ, X), and for any m > 0

(2) f(t1, · · · , tm) ∈ T(Σ, X) for all f ∈ Σm, t1, · · · , tm ∈ T(Σ, X).

Any subset of T(Σ, X) is a tree language.
The ΣX-term algebra T (Σ, X) = (T(Σ, X),Σ) is defined by setting

(1) cT (Σ,X) = c for each c ∈ Σ0, and
(2) fT (Σ,X)(t1, · · · , tm) = f(t1, · · · , tm) for all m > 0, f ∈ Σm, and

t1, · · · , tm ∈ T(Σ, X).
Let ξ be a (special) symbol which does not appear in any ranked alphabet or
leaf alphabet considered here. The set of ΣX-contexts, denoted by C(Σ, X),
consists of the Σ(X ∪{ξ})-trees in which ξ appears exactly once. For P,Q ∈
C(Σ, X) and t ∈ T(Σ, X) the context Q · P , the composite of P and Q,
results from P by replacing the special leaf ξ with Q, and the term t · P
results from P by replacing ξ with t. Note that C(Σ, X) is a monoid with
the composition operation, and that t ·(Q ·P ) = (t ·Q) ·P holds for all P,Q ∈
C(Σ, X), t ∈ T(Σ, X). There is a bijective correspondence between C(Σ, X)
and the translations of the term algebra Tr(T (Σ, X)) in a natural way: an
elementary context P = f(t1, · · · , ξ, · · · , tm) corresponds with P T (Σ,X) =
fT (Σ,X)(t1, · · · , ξ, · · · , tm), and the composition P ·Q of the contexts P and
Q corresponds with the composition P T (Σ,X) ·QT (Σ,X) of translations.
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Definition 3.1 For a tree language T ⊆ T(Σ, X) the syntactic quasi-order
4T of T is defined by the following for t, s ∈ T(Σ, X)

t 4T s ⇐⇒ (∀P ∈ C(Σ, X))
(
s · P ∈ T ⇒ t · P ∈ T

)
.

We note that the equivalence relation θT =4T ∩ 4−1
T of 4T is the syn-

tactic congruence of T :

t θT s ⇐⇒ (∀P ∈ C(Σ, X))
(
t · P ∈ T ⇔ s · P ∈ T

)
.

The syntactic ordered algebra of T is the structure

SOA(T ) = (T(Σ, X)/θT ,Σ,6T ),

where 6T is the order induced by 4T :

t/θT 6T s/θT ⇔ t 4T s for t, s ∈ T(Σ, X).

The syntactic morphism of T is the mapping ϕT : T (Σ, X) → SOA(T )
defined by tϕT = t/θT for t ∈ T(Σ, X).

It can be easily seen that not every ordered algebra is the syntactic ordered
algebra of a tree language. However, these syntactic ordered algebras can be
characterized as follows (cf. [22] Proposition 3.6).

Proposition 3.2 A finite ordered algebra A = (A,Σ,6) is order isomorphic
to the syntactic ordered algebra of a tree language if and only if there exists
an ideal I EA such that 4I=6.

Proof. First, suppose A ∼= SOA(T ) for some tree language T . Then the
subset I = T/θT = {t/θT | t ∈ T} is an ideal of SOA(T ) and 4I=6T holds.
Next, suppose for IEA, 4I=6 holds. Let the Σ-morphism ϕ : T (Σ, A)→ A
be resulted by extending the identity mapping 1A : A → A. Since ϕ is
an epimorphism then 4Iϕ−1 = ϕ◦ 4I ◦ϕ−1 by Proposition 2.9(3). Hence,
Proposition 2.4 implies that T (Σ, A)/ 4Iϕ−1

∼= A/ 4I , and since 4I=6, then
SOA(Iϕ−1) ∼= A. �

3.1 Recognizability by ordered algebras

Let Σ be a ranked alphabet, X be a leaf alphabet, and A = (A,Σ,6) be
an ordered algebra. A tree language T ⊆ T(Σ, X) is recognized by A, if
there exist an ideal I E A and a Σ-morphism ϕ : T (Σ, X) → A such that
T = Iϕ−1.

In fact every homomorphism ϕ : T (Σ, X) → A is uniquely determined
by a mapping α : X → A which is an initial assignment for A. It can be
extended to the homomorphism αA : T (Σ, X)→ A inductively by cαA = cA

and f(t1, · · · , tm)αA = fA(t1α
A, · · · , tmαA) for all c ∈ Σ0, f ∈ Σm (m > 0)

and t1, · · · , tm ∈ T(Σ, X). In that case we say that T is recognized by (A, α, I)
or, in other words, T = {t ∈ T(Σ, X) | tαA ∈ I}.
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Proposition 3.3 For a tree language T ⊆ T(Σ, X) and an ordered algebra
A = (A,Σ,6), SOA(T ) ≺ A if and only if T is recognized by A.

Proof. Suppose T = Iϕ−1 for a morphism ϕ : T (Σ, X) → A and an ideal
IEA. Let the ordered Σ-algebra B be the image of ϕ, and define the mapping
ψ : B → SOA(T ) by (tϕ)ψ = t/θT for t ∈ T(Σ, X).

We show that tϕ 6 sϕ implies t 4T s for all t, s ∈ T(Σ, X). This also
proves that ψ is well-defined. Suppose tϕ 6 sϕ, then tϕ 4I sϕ since 6 ⊆ 4I .
Now, for any translation p ∈ Tr(A),

p(s) ∈ T ⇒ p(s)ϕ ∈ I
⇒ pϕ(sϕ) ∈ I
⇒ pϕ(tϕ) ∈ I
⇒ p(t)ϕ ∈ I
⇒ p(t) ∈ T.

That is t 4T s. It can also be seen that ψ is a Σ-morphism. Thus ψ is an
order epimorphism, hence SOA(T )← B ⊆ A.

Now suppose for an ordered algebra B, SOA(T ) ← B ⊆ A, and let
ψ : B → SOA(T ) be an order epimorphism. A Σ-morphism ϕ : T (Σ, X)→ A
can be defined by choosing xϕ to be an element of B such that (xϕ)ψ = x/θT

for every x ∈ X ∪ Σ0. By induction on t it can be shown that tϕψ = t/θT

holds for every t ∈ T(Σ, X). The set {t/θT ∈ SOA(T ) | t ∈ T}ψ−1 is an ideal
of B. If I is the ideal of A generated by this set, then T = Iϕ−1. �

From Proposition 3.3 it follows that the syntactic ordered algebra of a
tree language is the least ordered algebra which recognizes the tree language.

Let us recall that for a tree language T ⊆ T(Σ, X), a context P ∈
C(Σ, X), and a Σ-morphism ϕ : T (Σ, Y ) → T (Σ, X), the inverse trans-
lation of T under P is P−1(T ) = {t ∈ T(Σ, X) | t · P ∈ T}, and the inverse
morphism of T under ϕ is Tϕ−1 = {t ∈ T(Σ, Y ) | tϕ ∈ T} (cf. [22]).

The following is an immediate consequence of Corollary 2.10.

Corollary 3.4 For tree languages T, T ′ ⊆ T(Σ, X), a context P ∈ C(Σ, X),
and a Σ-morphism ϕ : T (Σ, Y )→ T (Σ, X),

(1) SOA(T ∩ T ′), SOA(T ∪ T ′) ≺ SOA(T )× SOA(T ′).

(2) SOA(P−1(T ))← SOA(T ).

(3) SOA(Tϕ−1) ≺ SOA(T ) and, moreover, when ϕ is surjective then
SOA(Tϕ−1) ∼= SOA(T ).

From the clause (2) of the above corollary it follows that for a recognizable
tree language T the set {P−1(T ) | P ∈ C(Σ, X)} is finite, since the ordered
algebra SOA(T ) is finite.
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3.2 Positive Variety Theorem

Let Σ be a fixed ranked alphabet.
Recall that a class of finite ordered Σ-algebras is a variety (of finite ordered

algebras) if it is closed under order subalgebras, order epimorphic images, and
finite direct products.

Definition 3.5 An indexed family of recognizable tree languages is a family
V = {V (X)} in which V (X) consists of a collection of recognizable ΣX-tree
languages for any leaf alphabet X. An indexed family is a positive variety of
tree languages, abbreviated by PVTL, if it is closed under positive Boolean
operations (intersections and unions), inverse translations, and inverse mor-
phisms.

Definition 3.6 For a variety of finite ordered algebras K , let the indexed
family K t = {K t(X)} be the family of tree languages whose syntactic
ordered algebras are in K , that is

K t(X) = {T ⊆ T(Σ, X) | SOA(T ) ∈ K }.

For a positive variety of tree languages V , let V a be the variety of finite
ordered algebras generated by syntactic ordered algebras of tree languages
in V , that is V a is the VFOA generated by the class

{SOA(T ) | T ∈ V (X) for a leaf alphabet X}.

By Corollary 3.4, for a variety of finite ordered algebras K , the family
K t is a positive variety of tree languages.

Lemma 3.7 (1) The operations K 7→ K t and V 7→ V a are monotone, i.e.,
if K ⊆ L and V ⊆ W , then K t ⊆ L t and V a ⊆ W a.

(2) V ⊆ V at, and K ta ⊆ K .

Proof. The statement (1) and the inclusion V ⊆ V at are obvious. For the
inclusion K ta ⊆ K we note that if A ∈ K ta, then for some T1, · · · , Tn in
K t, A ≺ SOA(T1) × · · · × SOA(Tn) holds. Since Tj’s are in K t, then by
definition, SOA(Tj) ∈ K for every j, hence A ∈ K . �

The following was proved for classical algebras in [16].

Lemma 3.8 For any finite ordered algebra A = (A,Σ,6) there are tree
languages T1, · · · , Tm recognizable by A such that

A ⊆ SOA(T1)× · · · × SOA(Tm).

16



Proof. Let A = (A,Σ,6) be a finite ordered algebra, and suppose the epi-
morphism ψ : T (Σ, A) → A is obtained by extending the identity mapping
∆A : A → A. Recall that for any a ∈ A, (a] = {b ∈ A | b 6 a} is the
ideal of A generated by a. By Corollary 2.10(3), SOA((a]ψ−1) ∼= A/(a] for
every a ∈ A. We show A ⊆

∏
a∈AA/(a]. This will finish the proof since

(a]ψ−1 is recognizable by A. Define the mapping φ : A →
∏

a∈AA/(a]
by uφ =

(
u/θ(a]

)
a∈A

for u ∈ A. Clearly φ is an order morphism. All
we have to show is that φ is injective. Suppose uφ = vφ for u, v ∈ A.
Then u/θ(a] = v/θ(a] for every a ∈ A. In particular u/θ(u] = v/θ(u] and
u/θ(v] = v/θ(v], which imply v ∈ (u] and u ∈ (v], respectively. So, u 6 v and
v 6 u, thus u = v. �

Corollary 3.9 (1) Every VFOA is generated by syntactic ordered algebras
of some tree languages.

(2) For any PVTL V and any finite ordered algebra A, if every tree
language recognizable by A belongs to V , then A ∈ V a.

Lemma 3.10 For every variety of finite ordered algebras K , K ⊆ K ta.

Proof. By Corollary 3.9(1), it is enough to show that ordered syntactic
algebras of tree languages that belong to K are in K ta. Suppose for a tree
language T , SOA(T ) ∈ K . Then T is in K t by definition, so SOA(T ) ∈ K ta

which finishes the proof. �

The essential part of the positive variety theorem is the following.

Lemma 3.11 For every positive variety of tree languages V , V at ⊆ V .

Proof. Suppose T ∈ V at(X). Then there are leaf alphabets X1, · · · , Xn

and tree languages T1 ∈ V (X1), · · · , Tn ∈ V (Xn) such that SOA(T ) divides
the product A = SOA(T1) × · · · × SOA(Tn). So, by Proposition 3.3, T is
recognized by A, and so there is an order morphism ϕ : T (Σ, X) → A and
an ideal IEA such that T = Iϕ−1. Let SOA(Tj) = Aj = (Aj,Σ,6j) for each
j ≤ n. Recall that (a] is the ideal of A generated by a ∈

∏
iAi, and similarly

(aj] is the ideal of Aj generated by aj ∈ Aj. For any a = (a1, · · · , an) ∈
∏

iAi

we have
(
a
]

= (a1]× · · · × (an]. Let ϕj : T (Σ, X)→ Aj be the composition
of ϕ with the j-th projection mapping

∏
iAi → Aj. Then

T = Iϕ−1 =
⋃
a∈I

(a]ϕ−1 =
⋃

(a1,··· ,an)∈I

⋂
j≤n

(aj]ϕ
−1
j .

We aim at showing T ∈ V (X). It is enough to show (aj]ϕ
−1
j ∈ V (X) for

every j ≤ n. Fix a j ≤ n. Let ϕTj
: T (Σ, Xj) → Aj be the syntactic

morphism of Tj. One can construct a Σ-morphism χj : T (Σ, X)→ T (Σ, Xj)
such that χjϕTj

= ϕj. Then (aj]ϕ
−1
j = (aj]ϕ

−1
Tj
χ−1

j , and since V is closed
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under inverse morphisms, for showing (aj]ϕ
−1
j ∈ V (X) it is enough to show

(aj]ϕ
−1
Tj
∈ V (Xj).

There exists a t ∈ T(Σ, Xj) such that aj = tϕTj
. We show

(aj]ϕ
−1
Tj

=
⋂
{P−1(Tj) | P ∈ C(Σ, Xj), P (t) ∈ Tj}.

For any s ∈ T(Σ, Xj),

s ∈ (aj]ϕ
−1
Tj

⇔ sϕTj
6j aj = tϕTj

⇔ s 4Tj
t

⇔ (∀P ∈ C(Σ, Xj))(P (t) ∈ Tj ⇒ P (s) ∈ Tj)
⇔ (∀P ∈ C(Σ, Xj))(P (t) ∈ Tj ⇒ s ∈ P−1(Tj))
⇔ s ∈

⋂
{P−1(Tj) | P ∈ C(Σ, Xj), P (t) ∈ Tj}.

By Tj ∈ V (Xj) and the fact that V is closed under inverse translations and
positive Boolean operations, it follows that (aj]ϕ

−1
Tj
∈ V (Xj). So, (aj]ϕ

−1
j

belongs to V (X) for all j, thus T ∈ V (X). �

Summing up, we showed the following.

Proposition 3.12 (Positive Variety Theorem) The operations K 7→
K t and V 7→ V a are mutually inverse lattice isomorphisms between the
class of all varieties of finite ordered algebras and the class of all positive
varieties of recognizable tree languages, i.e., V at = V and K ta = K .

3.3 Examples

Here, we introduce some families of tree languages and provide some instances
for Positive Variety Theorem (Proposition 3.12).

3.3.1 Cofinite tree languages

Definition 3.13 A tree language T ⊆ T(Σ, X) is cofinite if its complement
T(Σ, X) \ T is finite.
The family of cofinite ΣX-tree languages is denoted by Cof(Σ, X), and
CofΣ = {Cof(Σ, X)} is the family of cofinite tree languages for all leaf al-
phabets X.

Proposition 3.14 A language T ⊆ T(Σ, X) is cofinite if and only if it can
be recognized by a finite ordered nilpotent algebra.

Proof. Suppose T ⊆ T(Σ, X) is cofinite. There exists an n ∈ N such that
P1 · · · Pn(t) ∈ T holds for all P1, · · · , Pn ∈ C(Σ, X) \ {ξ} and t ∈ T(Σ, X).
Therefore, P1 · · · Pn(t) 4T s holds for all P1, · · · , Pn ∈ C(Σ, X) \ {ξ} and all
t, s ∈ T(Σ, X). This immediately implies that the syntactic algebra SOA(T )
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of T satisfies p1 · · · pn(a) 6T b for all p1, · · · , pn ∈ TrS(SOA(T )) and all
a, b ∈ SOA(T ). Thus, SOA(T ) is an ordered n-nilpotent algebra.

Conversely, suppose that a tree language T ⊆ T(Σ, X) is recognized by
an ordered n-nilpotent algebra A = (A,Σ,6). Let ϕ : T(Σ, X) → A be an
order morphism and I E A be an ideal such that T = Iϕ−1. The mapping
ϕ∗ : C(Σ, X) \ {ξ} → TrS(A) obtained from setting

f(t1, · · · , ξ, · · · , tm)ϕ∗ = fA(t1ϕ, · · · , ξ, · · · , tmϕ)

for all f ∈ Σm (m > 0) and t1, · · · , tm ∈ T(Σ, X), and (P · Q)ϕ∗ = Pϕ∗ ·
Qϕ∗, is a semigroup morphism which satisfies Pϕ∗(tϕ) = P (t)ϕ for all t ∈
T(Σ, X), P ∈ C(Σ, X) \ {ξ}. Since A is an ordered n-nilpotent algebra,
then p1 · · · pn(a) ∈ I holds for all p1, · · · , pn ∈ TrS(A) and a ∈ A. In
particular, P1ϕ∗ · · ·Pnϕ∗(tϕ) ∈ I holds for all P1, · · · , Pn ∈ C(Σ, X) \ {ξ}
and t ∈ T(Σ, X). The statement P1ϕ∗ · · ·Pnϕ∗(tϕ) ∈ I is equivalent to
P1 · · ·Pn(t)ϕ ∈ I and P1 · · ·Pn(t) ∈ Iϕ−1 = T . Hence, T is cofinite. �

Corollary 3.15 The family CofΣ is a PVTL and CofΣ = Nil(Σ)t.

Proof. This follows immediately from Propositions 3.14, 2.13 and 3.12;
though it can be verified directly that the family of cofinite tree languages is
closed under finite unions and intersection, inverse translations and inverse
morphisms. �

3.3.2 Semilattice and symbolic tree languages

We can assume that the leaf alphabets X are always disjoint from the ranked
alphabet Σ.

Definition 3.16 For a tree t ∈ T(Σ, X), the contents c(t) of t is the set of
symbols from Σ ∪X which appear in t. It can be defined inductively as:

(1) c(x) = {x} for x ∈ Σ0 ∪X;

(2) c(f(t1, · · · , tm)) = {f}∪c(t1)∪· · ·∪c(tm) for t1, · · · , tm ∈ T(Σ, X) and
f ∈ Σm.

For a subset Z ⊆ Σ∪X, the tree language T (Z) consists of trees in which
all symbols of Z appear, i.e.,

T (Z) = {t ∈ T(Σ, X) | Z ⊆ c(t)}.

A tree language T ⊆ T(Σ, X) is symbolic, if it is a union of tree languages of
the form T (Z) for some subsets Z ⊆ Σ ∪X.

The family of symbolic ΣX-tree languages is denoted by Sym(Σ, X), and
SymΣ = {Sym(Σ, X)} is the family of symbolic tree languages for all leaf
alphabets X.
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Lemma 3.17 For a tree language T ⊆ T(Σ, X) the following properties are
equivalent:

(1) T is symbolic;

(2) For all trees t, t′ ∈ T(Σ, X), c(t) ⊆ c(t′) and t ∈ T imply t′ ∈ T ;

(3) T =
⋃

t∈T T (c(t)).

Proof. The implications (1) ⇒ (2) and (3) ⇒ (1) are straightforward. For
the implication (2) ⇒ (3), the inclusion T ⊆

⋃
t∈T T (c(t)) always holds.

Suppose t′ ∈ T (c(t)) for some t ∈ T . Then c(t) ⊆ c(t′), thus t′ ∈ T . Hence,
the opposite inclusion

⋃
t∈T T (c(t)) ⊆ T holds too. �

Definition 3.18 A tree language T ⊆ T(Σ, X) is a semilattice tree language,
if for all trees t, t′ ∈ T(Σ, X), c(t) = c(t′) and t ∈ T imply t′ ∈ T .

The family of semilattice ΣX-tree languages is denoted by SL(Σ, X), and
SLΣ = {SL(Σ, X)} is the family of semilattice tree languages for all leaf
alphabets X.

The rest of this subsection is devoted to proving the facts that semilattice
tree languages are definable by semilattice algebras and symbolic tree lan-
guages are definable by symbolic ordered algebras, i.e., SLΣ = SL(Σ)t and
SymΣ = Sym(Σ)t.

Fix a ranked alphabet Σ and a leaf alphabet X. The sequences of trees
are denoted by bold face fonts, e.g., t is a sequence like (t1, · · · , tm) for
t1, · · · , tm ∈ T(Σ, X).

Let σ be a Σ-congruence on T (Σ, X) such that T (Σ, X)/σ is a semilattice
algebra, i.e., it satisfies the following relations for all function symbols f, g ∈
Σ and trees t, r,u,v, t ∈ T(Σ, X):

(d1) f(t, f(t, t, r), r) σ f(t, t, r); and

(d2) f(t, g(u, t,v), r) σ g(u, f(t, t, r),v).

The following lemma is implied by Lemmas 2.19, 2.20, 2.21, 2.22, 2.23
and 2.24.

Lemma 3.19 The following relations hold for any f ∈ Σm, g ∈ Σn, and any
ΣX-trees t, s, r, t, s:

(s1) f(t, t, r, r,u) σ f(t, r, r, t,u);

(s2) f(t, t, r, t) σ f(t, r, r, t);

(s3) f(g(t, t), r, r) σ f(g(r, t), t, r);

(s4) f(f(t, · · · , t), t) σ f(t, t);
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(s5) f(g(t, r, t), t, r) σ f(g(t, r, t), r, r);

(s6) f(f(g(t, s, t), r),u) σ f(g(g(t, r, r), r, t),u)
where m ≤ n and the sequence r consists of n−m times r.

The family of Σ-congruences on T (Σ, X) satisfying (d1) and (d2) is closed
under intersections and contains the universal relation T(Σ, X) × T(Σ, X),
and so has the smallest element τ .

In the forthcoming we prove that for any trees t1 and t2,

t1 τ t2 iff c(t1) = c(t2).

Suppose the elements of Σ\Σ0 are linearly ordered in such a way that the
function symbols with smaller arity are smaller than the function symbols
with greater arity. Similarly suppose the leaves X ∪Σ0 are linearly ordered.

Let cΣ(t) ⊆ Σ \Σ0 be the set of nodes of a tree t ∈ T(Σ, X) and cX(t) ⊆
X ∪ Σ0 be its set of leaves.

A tree t is in the canonical form if:

(1) either t ∈ X ∪ Σ0, or

(2) t = f(t1, x2, . . . , xm) where
(a) t1 is in the canonical form and x2, · · · , xm ∈ Σ0 ∪X,
(b) f is the smallest in cΣ(t),
(c) either f /∈ cΣ(t1) or cΣ(t1) = {f},
(d) if |cX(t)| ≥ m−1, then x2, . . . , xm are the smallest m−1 elements

in cX(t) in that order, and
(e) otherwise, if cX(t) = {x2, . . . , xn} with x2 � . . . � xn, n < m,

then xn+1 = . . . = xm = xn and cX(t1) = {xn}.

In other words, a tree is in the canonical form if on each its level only the
leftmost node is from Σ \ Σ0, all the others are leaves from Σ0 ∪ X, nodes
grow from root downwards and the leaves grow from left to right and from
top to down. As soon as the set of nodes or leaves are exhausted, the last
symbol from the set is repeated as long as there are still symbols in the other
set to be used.

Let us fix σ to be any congruence on T (Σ, X) satisfying (d1) and (d2).
Our aim is to show that every tree t is σ-equivalent to a tree t′ in the canonical
form where c(t) = c(t′).

We are proving this by induction on the complexity of t. The claim clearly
holds for t ∈ Σ0 ∪X. Suppose t = f(t1, t2, . . . , tn) and that t1, . . . , tm are in
the canonical form. The transformation consists of several phases:

Step 1. Shaping the tree into a leftmost branching tree while arranging the
nodes in the increasing order from top to down.

Step 2. Organizing repetitions of nodes so that any repetition of a smaller
node is changed by a repetition of the next greater node.
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Step 3. Arranging the order of leaves.

Step 4. Organizing repetitions of leaves so that any repetition of a smaller
leaf is changed by a repetition of the next greater leaf.

Step 5. Fold the unnecessary part.

Step 1 : Let g = min{root(t1), . . . , root(tm)}. Without loosing generality, by
(s1), we can assume that g = root(t1). Write t1 = g(t′1, x2, . . . , xn). We
distinguish two cases:

First g ≤ f : Then n ≤ m and by (d2) we have

t = f(g(t′1, x2, . . . , xn), t2, . . . , tm) σ g(f(t′1, t2, . . . , tm), x2, . . . , xn),

and now we can apply the induction hypotheses to f(t′1, t2, . . . , tm).

Second f < g: Then m ≤ n and by (d2),(s3) we have

t = f(g(t′1, x2, . . . , xn), t2, . . . , tm) σ

σ f(g(t′1, t2, . . . , tm, x2, . . . , xn−m+1), xn−m+2, . . . , xn),

and then we can continue by induction.

We get a tree of the the desired shape, the order of the nodes is in-
creasing from top to down, but there may be repetitions of a same node
following each other.

Step 2 : The clause (s6) of Lemma 3.19 provides a transformation that pushes
repetitions, i.e., if f ≤ g then the transformation will replace a copy of
f by a copy of g.

After these transformations we get a tree σ-equivalent to t, branching
only in the leftmost node and with increasing nodes where only the
greatest node is possibly repeated. The tree is still not in the canonical
form since leaves are not necessarily already arranged.

Step 3 : The sequence of leaves is read starting from left to right and from top
downwards. This sequence can be sorted using standard algorithms for
sorting sequences which assumes comparing the first symbol with the
rest one by one and when a smaller one appears swap them and continue
comparing with the rest of the variables. After this the smallest leaf
is on the first place. Repeat the same with the second one and rest of
the sequence, etc. We note that this swapping is supported by σ, since
places of leaves on the same level can be changed by (s1), and if they
are on different levels then (s3) is applied.

After this, leaves will be in increasing order, but there are possibly
repetitions of those leaves which are not the greatest.

Step 4 : The idea is the same as in Step 2, the repetition of a smaller leaf is
replaced by the repetition of the next greater leaf, so that repetitions
are pushed trough the sequence and finaly only the greatest leaf may

22



be repeated. In other words, if x < y then the subsequence xxy is
replaced by xyy. We distinguish four cases.

First, xxy appears on the same level, i.e., as the components of the
same node. This case is solved by applying (s2).

Second, the first x is on one level and x and y are both on the next.
This is solved easily by applying first (s5) and so changing the first x
into y, and then applying (s3) to swap x and outer y:

f(g(t, x, y,x), x,y) σ f(g(t, x, y,x), y,y) σ f(g(t, y, y,x), x,y).

Third, both x’s are on the upper level and y is on the lower. We proceed
as

f(g(t, y,x),y, x, x)
σ f(g(x, y,x),y, x, t)
σ f(g(x, y,x),y, y, t)
σ f(g(t, y,x),y, y, x)
σ f(g(t, y,x),y, x, y).

Note that t plays an important role here and existence of such a tree
follows from the fact that f < g and thus the arity of g is at least 2.

Fourth, all three leaves appear on different levels. The tree is in
the form f(g(h(t, y, z), x), x) where f, g ∈ Σ2. The first x should be
changed into y. The transformation is as follows:

f(g(h(t, y, z), x), x)
σ f(g(h(x, y, z), t), x)
σ f(g(h(x, y, z), x), t)
σ f(g(h(x, y, z), y), t)
σ f(g(h(x, y, z), t), y)
σ f(g(h(t, y, z), x), y)
σ f(g(h(t, y, z), y), x).

After this, our tree has almost the canonical form, the only disturbing
thing may be too long subtree at the end having only the greatest
symbol from cΣ(t) as nodes and the greatest element from cX(t) as
leaves.

Step 5 : Applying (s4) as many times as needed the tree is folded into one
without repetitions of the greatest symbol from cΣ(t), or with its repe-
titions but not with only the greatest element of cX(t) as leaves on the
deepest level.

Clearly, the procedure results a unique tree in the canonical form which
is σ-equivalent to a given tree.

For example suppose h ∈ Σ3, f, g ∈ Σ2, c ∈ Σ0, x ∈ X, and the
ordering on the nodes and leaves are as f < g < h and x < c. Let
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t = h(g(x, f(x, c)), x, g(x, c)). Then by applying the above steps we get
the tree rj in the j-th step as follows:

t σ r1 = f(g(g(h(x, x, x), c), c), x)
σ r2 = f(g(h(h(x, x, x), x, x), c), x)
σ r3 = f(g(h(h(c, x, x), x, x), x), x)
σ r4 = f(g(h(h(c, c, c), c, c), c), x)
σ r5 = f(g(h(c, c, c), c), x).

It can be noticed that the canonical form tree corresponding to a given tree
t is determined by c(t) and can be constructed from this set. The procedure
can roughly be described as follows:

1. put the smallest node in the root of the tree, draw the necessary
branches, put the next smallest symbol from cΣ(t) in the left most
node, continue doing this as long as cΣ(t) is not exhausted;

2. put the smallest leaf in the first drawn leaf place, choose the next
smallest and put in the next place, etc.

3. if there are still empty nodes put the greatest symbol from cX(t) there;

4. if not all cX(t) is used, continue building the tree by shifting all symbols
from X ∪Σ0 on the last level by one place to the right, return the last
leaf to cX(t), put the greatest element of cΣ(t) to the leftmost place, add
its arity new branches, fill them with remaining symbols from cX(t),
and repeat this step as many times as needed.

Recall that τ is the smallest congruence satisfying (d1) and (d2).

Lemma 3.20 For any trees t1 and t2, t1τt2 iff c(t1) = c(t2).

Proof. Define τ ′ by t1τ
′t2 iff c(t1) = c(t2). Then τ ′ satisfies (d1) and (d2).

Let σ be any congruence satisfying (d1) and (d2). We are proving that τ ′ ⊆ σ.
Assume t1τ

′t2. There are canonical trees t′1 and t′2 such that t1σt
′
1 and t2σt

′
2.

Then c(t′1) = c(t′2) and since the canonical tree is uniquely determined by
its contents, it follows that t′1 = t′2 which immediately implies that t1σt2.
Therefore, τ = τ ′. �

For a context P ∈ C(Σ, X), the set of contents c(P ) of P is the set of
symbols from Σ∪X which appear in P . We note that c(P (t)) = c(P )∪ c(t)
holds for any context P ∈ C(Σ, X) and tree t ∈ T(Σ, X).

Proposition 3.21 (1) A tree language T ⊆ T(Σ, X) is semilattice if and
only if it is recognizable by a finite semilattice algebra.

(2) A tree language T ⊆ T(Σ, X) is symbolic if and only if it is recogniz-
able by a finite symbolic ordered algebra.
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Proof. (1) By Lemma 3.20, T is a semilattice tree language if and only if
τ ⊆ θT if and only if the syntactic algebra of T is a semilattice algebra.

(2) Every symbolic tree language is also a semilattice tree language. So,
if T is symbolic then the syntactic algebra of T is semilattice. On the other
hand, since c(t) ⊆ c(P (t)) holds for all t ∈ T(Σ, X) and P ∈ C(Σ, X), then
P (t) 4T t always holds. This shows that SOA(T ) is a symbolic ordered
algebra. Conversely, if SOA(T ) is a symbolic ordered algebra, then τ ⊆ θT

and P (t) 4T t. Suppose for trees t and t′, c(t) ⊆ c(t′) and t ∈ T hold. Then
there exists a context P such that c(t′) = c(P (t)). By Lemma 3.20, t′ τ P (t),
and so t′ θT P (t) holds. On the other hand P (t) 4T t implies t′ 4T t, and
this by t ∈ T implies t′ ∈ T . Hence, T is a symbolic tree language by Lemma
3.17. �

Corollary 3.22 The family SLΣ is a variety of tree languages and SLΣ =
SL(Σ)t, also the family SymΣ is a positive variety of tree languages and
SymΣ = Sym(Σ)t.

We note that SLΣ is closed under complements while SymΣ is not. Clearly,
varieties of tree languages are special cases of positive varieties, thus theory
of positive varieties applies to varieties in general.

4 Generalized Positive Variety Theorem

Generalized varieties of tree languages and generalized varieties of finite al-
gebras were introduced by Steinby [23] who proved a generalized variety
theorem for these classes. A variety of finite algebras is a class of finite
algebras over a fixed ranked alphabet as the notions of subalgebras, homo-
morphic images and direct products are defined for algebras over the same
ranked alphabet. These notions can be generalized for algebras over different
ranked alphabets. A generalized variety of finite algebras is a class of finite
algebras over any ranked alphabet that satisfies certain closure properties.
Similarly a generalized variety of tree languages is defined.

In this section we generalize our Positive Variety Theorem 3.12 for gen-
eralized positive varieties of tree languages and generalized varieties of finite
ordered algebras.
The following definition is the ordered version of Definitions 3.1, 3.2, 3.3,
3.14 from [23].

Definition 4.1 Let A = (A,Σ,6) and B = (B,Ω,6′) be ordered algebras.
• The algebra B is an order g-subalgebra of A, in notation B ⊆g A, if

B ⊆ A, Ωm ⊆ Σm for all m ≥ 0, fB is the restriction of fA to B for every
f ∈ Ωm, and 6′ is the restriction of 6 on B.
• An assignment is a mapping κ : Σ → Ω such that κ(Σm) ⊆ Ωm for

all m ≥ 0. An order g-morphism from A to B is a pair (κ, ϕ) where the
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mapping κ : Σ → Ω is an assignment and ϕ : A → B is an order preserving
mapping satisfying fA(a1, · · · , am)ϕ = (fκ)B(a1ϕ, · · · , amϕ) for any m ≥ 0,
f ∈ Σm, and a1, · · · , am ∈ A. Note that order preserving means that a 6 b
implies aϕ 6′ bϕ for all a, b ∈ A. If both κ and ϕ are surjective, then (κ, ϕ)
is a order g-epimorphism, and in that case we write B ←g A meaning that
B is an order g-epimorphic image of A. When B is an order g-epimorphic
image of an order g-subalgebra of A, we write B ≺g A. When both κ and
ϕ are bijective and (κ−1, ϕ−1) is an order g-morphism, (κ, ϕ) is an order
g-isomorphism, and B ∼=g A means that B and A are order g-isomorphic.
• Let Σ1, · · · ,Σn and Γ be ranked alphabets. The product Σ1× · · · ×Σn

is a ranked alphabet such that (Σ1 × · · · × Σn)m = Σ1
m × · · · × Σn

m for every
m ≥ 0. For any assignment κ : Γ→ Σ1 × · · · × Σn and any finite number of
ordered algebras A1 = (A1,Σ

1,61), · · · ,An = (An,Σ
n,6n), the κ-product of

A1, · · · ,An is the ordered Γ-algebra

κ(A1, · · · ,An) = (A1 × · · · × An,Γ,61 × · · ·× 6n)

defined by the following:
For c ∈ Γ0, f ∈ Γm (m > 0) and ai = (ai1, · · · , ain) ∈ A1× · · · ×An (i ≤ m),

(1) cκ(A1,··· ,An) = (cA1
1 , · · · , cAn

n ) where cκ = (c1, · · · , cn),
(2) fκ(A1,··· ,An)(a1, · · · , am) = (fA1

1 (a11, · · · , am1), · · · , fAn
n (a1n, · · · , amn))

where fκ = (f1, · · · , fn), and
(3) a1 61 × · · ·× 6n a2 ⇐⇒ a11 61 a21 & · · · & a1n 6n a2n.
Without specifying the assignment κ, such algebras are g-products.

A generalized variety of finite ordered algebras, a gVFOA for short, is a class
K = {K (Σ)} which consists of a class of finite ordered Σ-algebras K (Σ)
for any ranked alphabet Σ, and is closed under order g-subalgebras, ordered
g-epimorphic images, and g-products.

In the sequel we prove the necessary facts about generalized algebras
needed for generalizing our positive variety theorem.

Proposition 4.2 Let A = (A,Σ,6) and B = (B,Ω,6′) be two ordered al-
gebras, 4 be a quasi-order on B and (κ, ϕ) : A → B be an order g-morphism.
Then

(1) the image of A, A(κ, ϕ) = (Aϕ,Σκ,6′′) where 6′′ is the restriction of
6′ on Aϕ, is an order g-subalgebra of B,

(2) the relation ϕ◦ 4 ◦ϕ−1 is a quasi-order on A and when 4′ is the
restriction of 4 on Aϕ, then A/ϕ◦ 4 ◦ϕ−1 ∼=g Aϕ/ 4′, and

(3) moreover, if ϕ is an order g-epimorphism, then A/ϕ◦ 4 ◦ϕ−1 ∼=g B/ 4.

The proof is a direct generalization of that of Proposition 2.4.
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Proposition 4.3 Let A = (A,Σ,6) and B = (B,Ω,6′) be two ordered
algebras, and (κ, ϕ) : A → B be an order g-morphism. The mappings (κ, ϕ)
induce a monoid morphism Tr(A) → Tr(B), p 7→ p(κ,ϕ) such that p(a)ϕ =
p(κ,ϕ)(aϕ) for all a ∈ A. Moreover, if (κ, ϕ) is an order g-epimorphism then
the induced map is a surjection.

Proof. For any elementary translation p = fA(a1, · · · , ξ, · · · , am) of A where
f ∈ Σm (m > 0) and a1, · · · , am ∈ A, the unary function p(κ,ϕ) defined by
b 7→ (fκ)B(a1ϕ, · · · , b, · · · , amϕ) is an elementary translation of B, and if κ
and ϕ are surjective then every elementary translation of B is of this form.
�

Lemma 4.4 For ordered algebras A = (A,Σ,6) and B = (B,Ω,6′), ideal
K E B, and order g-morphism (κ, ϕ) : A → B, Kϕ−1 is an ideal of A and
6Kϕ−1 ⊇ ϕ◦ 6K ◦ϕ−1, also SOA(Kϕ−1) ≺g SOA(K).
Moreover, if (κ, ϕ) is an order g-epimorphism, then 6Kϕ−1 = ϕ◦ 6K ◦ϕ−1

and SOA(Kϕ−1) ∼=g SOA(K).

The proof is very similar to that of Proposition 2.9.
Let Σ and Ω be ranked alphabets, X be a leaf alphabet, and A = (A,Ω,6)
be an ordered algebra. A tree language T ⊆ T(Σ, X) is g-recognized by A, if
there exist an ideal I E A and an order g-morphism (κ, ϕ) : T (Σ, X) → A
such that T = Iϕ−1.

Lemma 4.5 A tree language T is g-recognized by A if SOA(T ) ≺g A.

Proof. If SOA(T ) ←g B ⊆g A and (ι, ψ) : B → SOA(T ) is an order g-
epimorphism, then there exists an order g-morphism (κ, ϕ) : T (Σ, X) → A
such that (tϕ)ψ = t/θT and (fκ)ι = f for any t ∈ T(Σ, X), f ∈ Σ. Moreover,
if I is the ideal of A generated by the set {t/θT | t ∈ T}ψ−1, then T = Iϕ−1.
�

Contrary to Proposition 3.3, the converse of Lemma 4.5 does not hold, for
more details see the definition of reduced syntactic algebra in Section 6 of
[23].

By Lemma 4.4, for any g-morphism (κ, ϕ) : T (Ω, Y ) → T (Σ, X) and
tree language T ⊆ T(Σ, X), SOA(Tϕ−1) ≺g SOA(T ) holds, and if (κ, ϕ) is a
g-epimorphism then SOA(Tϕ−1) ∼=g SOA(T ).

Definition 4.6 A family of recognizable tree languages is a family V =
{V (Σ, X)} where V (Σ, X) consists of a collection of recognizable ΣX-tree
languages for any ranked alphabet Σ and leaf alphabet X is a generalized
positive variety of tree languages, abbreviated by gPVTL, if it is closed under
positive Boolean operations (intersections and unions), inverse translations,
and inverse g-morphisms.
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Definition 4.7 Let K = {K (Σ)} be a gVFOA. Define the family K t =
{K t(Σ, X)} to be the family of tree languages whose syntactic ordered al-
gebras are in K , that is

K t(Σ, X) = {T ⊆ T(Σ, X) | SOA(T ) ∈ K (Σ)}.

For a gPVTL V = {V (Σ, X)}, let V a = {V a(Σ)} be the gVFOA generated
by the class {SOA(T ) | T ∈ V (Σ, X) for some Σ, X}.

Both of the following lemmas can be proved by arguments similar to their
classical counterparts, Lemmas 3.7, 3.10 and Corollary 3.9.

Lemma 4.8 (1) The operations K 7→ K t and V 7→ V a are monotone, i.e.,
if K ⊆ L and V ⊆ W , then K t ⊆ L t and V a ⊆ W a.

(2) V ⊆ V at, and K ta ⊆ K .
(3) For a gVFOA K , the family K t is a gPVTL, and K ⊆ K ta holds.

Lemma 4.9 (1) Every gVFOA is generated by syntactic ordered algebras
of some tree languages.

(2) For any gPVTL V and any finite ordered algebra A, if every tree
language recognizable by A belongs to V , then A ∈ V a.

The essential part of the positive variety theorem can be generalized as
follows.

Lemma 4.10 For every gPVTL V , V at ⊆ V .

Proof. Suppose T ∈ V at(Σ, X). There are ranked alphabets Σ1, · · · ,Σn,
leaf alphabets X1, · · · , Xn and tree languages

T1 ∈ V (Σ1, X1), · · · , Tn ∈ V (Σn, Xn)

such that SOA(T ) ≺g κ(SOA(T1), · · · , SOA(Tn)) where κ : Γ→ Σ1×· · ·×Σn

is an assignment for a ranked alphabet Γ. Let Aj = SOA(Tj) for j ≤ n. By
Lemma 4.5, T is g-recognized by κ(A1, · · · ,An). So, there exist an order g-
morphism (λ, ϕ) : T (Σ, X)→ κ(A1, · · · ,An) and an ideal IEκ(A1, · · · ,An)
such that T = Iϕ−1. Let ϕj : T(Σ, X)→ Aj be the composition of ϕ with the
j-th projection function

∏
iAi → Aj, and λj : Σ→ Σj be the composition of

λκ : Σ→ Σ1 × · · · × Σn with the j-th projection Σ1 × · · · × Σn → Σj. Then
(λj, ϕj) : T (Σ, X) → Aj is an order g-morphism, and similarly to the proof
of Lemma 3.11,

T = Iϕ−1 =
⋃
a∈I

(a]ϕ−1 =
⋃

(a1,··· ,an)∈I

⋂
j≤n

(aj]ϕ
−1
j .

For showing T ∈ V (Σ, X) it is enough to show (aj]ϕ
−1
j ∈ V (Σ, X) for every

j ≤ n. Fix a j ≤ n. Let ϕTj
: T (Σj, Xj) → Aj be the syntactic morphism
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of Tj. One can construct a g-morphism (λj, χj) : T (Σ, X) → T (Σj, Xj)
such that χjϕTj

= ϕj. Then (aj]ϕ
−1
j = (aj]ϕ

−1
Tj
χ−1

j , and since V is closed

under inverse g-morphisms, for showing (aj]ϕ
−1
j ∈ V (Σ, X) it is enough to

show (aj]ϕ
−1
Tj
∈ V (Σj, Xj). In the proof of Lemma 3.11, it was shown that

(aj]ϕ
−1
Tj

=
⋂
{P−1(Tj) | P ∈ C(Σj, Xj), P (t) ∈ Tj} for some t ∈ T(Σj, Xj).

So, by Tj ∈ V (Σj, Xj) and the fact that V is closed under inverse translations
and positive Boolean operations, it follows that (aj]ϕ

−1
Tj
∈ V (Σj, Xj). So,

(aj]ϕ
−1
j ∈ V (Σ, X) for all j, thus T ∈ V (Σ, X). �

Proposition 4.11 (Generalized Positive Variety Theorem) The oper-
ations K 7→ K t and V 7→ V a are mutually inverse lattice isomorphisms
between the class of all gVFOA’s and the class of gPVTL’s, i.e., V at = V
and K ta = K .

4.1 Examples

The examples of families of recognizable tree languages and classes of finite
ordered algebras in the previous sections do not heavily depend on their
ranked alphabets. Here we will see that the collection of those varieties for
various ranked alphabets form generalized varieties.

4.1.1 Order nilpotent algebras and cofinite tree languages

Let Nil = {Nil(Σ)} be the class of all ordered nilpotent algebras for every
ranked alphabet Σ, and Cof = {Cof(Σ, X)} be the family of all cofinite tree
languages for all ranked alphabets Σ and leaf alphabets X.

Proposition 4.12 The class Nil is a gVFOA, the family Cof is a gPVTL,
and Cof = Nilt.

That Cof is a gPVTL can be verified directly: the family is closed under
positive Boolean operations, inverse translations and inverse g-morphisms.
Similarly, Nil can be proved to be a gVFOA. From Proposition 3.14 it follows
that for all tree languages T ⊆ T(Σ, X),

T ∈ Cof(Σ, X)⇔ SOA(T ) ∈ Nil(Σ),

which implies that Cof = Nilt.

4.1.2 Semilattice algebras, semilattice tree languages, symbolic
ordered algebras and symbolic tree languages

Let SL = {SL(Σ)} and Sym = {Sym(Σ)} be respectively the classes of all
semilattice algebras and symbolic ordered algebras for every ranked alphabet
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Σ, and SL = {SL(Σ, X)} and Sym = {Sym(Σ, X)} be respectively the fami-
lies of all semilattice and symbolic tree languages for all ranked alphabets Σ
and leaf alphabets X.

The following instance of generalized positive variety theorem holds.

Proposition 4.13 (1) The class SL is a generalized variety of finite algebras
and the family SL is a generalized variety of recognizable tree languages,
moreover SL = SLt

(2) The class Sym is a gVFOA and the family Sym is a gPVTL, moreover
Sym = Symt.

Proposition 4.14 For a semilattice algebra A = (A,Σ), the structure As =
(A,Σ,6) where 6 is defined by

a 6 b ⇐⇒ there is a p ∈ Tr(A) such that a = p(b)

for all a, b ∈ A, is a symbolic ordered algebra.

Proof. The relation 6 is an order:
• a 6 a holds since 1A(a) = a for the identity translation 1A;
• if a 6 b and b 6 a then a = p(b) and b = q(a) for some p, q ∈ Tr(A), so
a = b by Corollary 2.18;
• if a 6 b and b 6 c then a = p(b) and b = q(c) for some p, q ∈ Tr(A) thus
a = p(q(c)) whence a 6 c.

The order 6 is compatible with Σ since :
• if a 6 b then a = p(b) for some p ∈ Tr(A), so q(a) = q(p(b)) = p(q(b)) for
every q ∈ Tr(A), thus q(a) 6 q(b) for every q ∈ Tr(A); and
• it satisfies p(a) 6 a since p(a) = p(a).

Hence, As is a symbolic ordered algebra by Lemma 2.26. �

Definition 4.15 For a semilattice algebra (A,Σ), a subset D ⊆ A is trans-
lation closed, if d ∈ D then p(d) ∈ D for all p ∈ Tr(A).

Lemma 4.16 A subset D ⊆ A for a semilattice algebra A = (A,Σ) is
translation closed if and only if D is an ideal of the symbolic ordered algebra
As where As is defined in Proposition 4.14.

Proposition 4.17 Let T ⊆ T(Σ, X) be a tree language.
(1) T is a semilattice tree language if and only if there exist a finite semilattice
algebra A = (A,Σ), a morphism ϕ : T (Σ, X)→ A and a subset F ⊆ A such
that T = Fϕ−1.
(2) T is a symbolic tree language if and only if there exist a finite semilattice
algebra A = (A,Σ), a morphism ϕ : T (Σ, X) → A and a translation closed
subset F ⊆ A such that T = Fϕ−1.
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5 Definability by Ordered Monoids

An important class of ordered algebras is the class of ordered monoids. Let
us recall that an ordered monoid is a structure M = (M, ·,.) where (M, ·)
is a monoid and . is an order on M compatible with · (called “stable order”
in [13]), i.e., for any a, b,m,m′ ∈M , if a . b then m · a ·m′ . m · b ·m′.

5.1 Ordered Algebras Definable by Ordered Monoids

The translations of ordered algebras can be ordered as follows:

Definition 5.1 For an ordered algebra A = (A,Σ,6), the ordered transla-
tion monoid of A is the structure OTr(A) = (Tr(A), ·,.A) where (Tr(A), ·)
is the translation monoid of A and the binary relation .A is defined on Tr(A)
by the following for p, q ∈ Tr(A),

p .A q ⇐⇒ (∀a ∈ A)
(
p(a) 6 q(a)

)
.

The relation .A is indeed an order on Tr(A) compatible with the com-
position of translations: if p .A q then p · r .A q · r and r · p .A r · q for any
p, q, r ∈ Tr(A).

The following proposition is the ordered version of Lemma 10.7 of [23].

Proposition 5.2 For any finite ordered algebras A and B,
(1) if A ⊆g B, then OTr(A) ≺ OTr(B);
(2) if A ←g B, then OTr(A)← OTr(B); and
(3) OTr(κ(A,B)) ⊆ OTr(A)×OTr(B) for any g-product κ(A,B).

Proof. Let A = (A,Σ,6) and B = (B,Ω,6′).
(1) LetM be the order submonoid of OTr(B) generated by the elementary

translations of the form fB(a1, · · · , ξ, · · · , am) for any f ∈ Σm (m > 0) and
a1, · · · , am ∈ A. The mapping

fB(a1, · · · , ξ, · · · , am) 7→ fA(a1, · · · , ξ, · · · , am)

can be uniquely extended to an order monoid epimorphism M → OTr(A).
Thus OTr(A)←M⊆ OTr(B).

(2) Suppose (κ, ϕ) : B → A is an order g-epimorphism. By Proposition
4.3, the mapping OTr(B) → OTr(A), p 7→ p(κ,ϕ) is a monoid epimorphism.
We show that it also preserves the translation orders. For any p, q ∈ OTr(B),

p .B q ⇒ p(b) 6′ q(b) for all b ∈ B
⇒ p(b)ϕ 6 q(b)ϕ for all b ∈ B
⇒ p(κ,ϕ)(bϕ) 6 q(κ,ϕ)(bϕ) for all b ∈ B
⇒ p(κ,ϕ)(a) 6 q(κ,ϕ)(a) for all a ∈ A
⇒ p(κ,ϕ) .A q(κ,ϕ).
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(3) Let Γ be a ranked alphabet and κ : Γ→ Σ× Ω be an assignment. It
is easy to verify that the mapping

gκ(A,B)
(
(a1, b1), · · · , ξ, · · · , (am, bm)

)
7→(

fA(a1, · · · , ξ, · · · , am), hB(b1, · · · , ξ, · · · , bm)
)

for a1, · · · , am ∈ A, b1, · · · , bm ∈ B and g ∈ Γm (m > 0) where gκ = (f, h),
can be extended to a monomorphism ψ : OTr(κ(A,B))→ OTr(A)×OTr(B)
which satisfies p(a, b) = (pψ1(a), pψ2(b)) for all a ∈ A, b ∈ B and p ∈
Tr(κ(A,B)), where ψ1 and ψ2 are the components of ψ: pψ = (pψ1, pψ2).
We show that ψ is also order preserving. For p, q ∈ Tr(κ(A,B)),

p .κ(A,B) q ⇒ p(a, b) 6 × 6′ q(a, b) for all a ∈ A, b ∈ B
⇒ pψ1(a) 6 qψ1(a) & pψ2(b) 6′ qψ2(b) for all a ∈ A, b ∈ B
⇒ pψ1 .A qψ1 & pψ2 .B qψ2

⇒ (pψ1, pψ2) .A × .B (qψ1, qψ2)
⇒ pψ .A × .B qψ.

�

Definition 5.3 A variety of finite ordered monoids, VFOM in notation, is
a class of finite ordered monoids closed under order submonoids, order epi-
morphic images and finite direct products.

For a VFOM M, Ma is the class of all finite ordered algebras whose
ordered translation monoids are in M, i.e.,

Ma = {A | A is an ordered algebra such that OTr(A) ∈M}.

A class of finite ordered algebras K is said to be definable by ordered
translation monoids, if there is a VFOM M such that Ma = K .

Corollary 5.4 For any VFOM M, the class Ma is a gVFOA.

It is well-known that not every gVFOA is definable by syntactic ordered
monoids. In this section we give necessary and sufficient conditions for a
gVFOA to be of the form Ma for some VFOA M.

Definition 5.5 For any set D, let ΛD = {d | d ∈ D} be the unary ranked
alphabet consisting of unary function symbols d for each d ∈ D.

LetM = (M, ·,.) be a finite ordered monoid. The unary ordered algebra
Mν = (M,ΛM ,.) is defined by mMν

(a) = a ·m for all a,m ∈M .

The structure Mν for a finite ordered monoid M is indeed an ordered
algebra, since for any a, b,m ∈M ,

a . b⇒ a ·m . b ·m⇒ mMν

(a) . mMν

(b).
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Proposition 5.6 For a finite ordered monoidM = (M, ·,.),

OTr(Mν) ∼=M.

Proof. The elementary translations of Mν are of the form mMν
(ξ) where

m ∈M , and clearly mMν
(ξ) ·m′M

ν

(ξ) = m ·m′M
ν

(ξ) for all m,m′ ∈M . For

the identity element 1M ofM, the translation 1M
Mν

(ξ) is the identity trans-
lation of Mν . This means that Tr(Mν) = {mMν

(ξ) | m ∈ M}. Moreover,

mMν
(ξ) 6= m′M

ν

(ξ) whenever m 6= m′, since mMν
(ξ) = m′M

ν

(ξ) implies

m = 1M ·m = mMν

(1M) = m′M
ν

(1M) = 1M ·m′ = m′.

Hence, the mapping M → OTr(Mν), m 7→ mMν
(ξ) is a monoid isomor-

phism. We show that it is also an order isomorphism. For any m,m′ ∈M ,

m . m′ ⇔ a ·m . a ·m′ for all a ∈M
⇔ mMν

(a) . m′M
ν

(a) for all a ∈M
⇔ mMν

(ξ) .Mν m′M
ν

(ξ).

�

Proposition 5.7 For all finite ordered monoidsM and P ,

(1) ifM⊆ P , thenMν ⊆g Pν ;

(2) ifM← P, thenMν ←g Pν ; and

(3) (M×P)ν ∼=g κ(Mν ,Pν) for some g-product κ(Mν ,Pν).

Proof. WriteM = (M, ·,.) and P = (P, ·,.′).
The statement (1) is obvious. For (2), we note that if ϕ : P → M is an

order monoid epimorphism, then (ϕ, ϕ) : Pν →Mν , where ϕ : ΛP → ΛM is
defined by (m)ϕ = mϕ, is an order g-epimorphism. For proving (3) define
the assignment κ : ΛM×P → ΛM ×ΛP by (m, p)κ = (m, p) for m ∈M, p ∈ P ,
and let κ(Mν ,Pν) be the corresponding g-product ofMν and Pν . It is easy
to verify that the mappings (λ, ϕ) : (M×P)ν → κ(Mν ,Pν) where λ is the
identity mapping on ΛM×P and ϕ is the identity mapping on M × P , is an
order g-isomorphism. �

The clause (3) of Proposition 5.7 can be generalized to any finite number of
finite ordered monoidsM1, · · · ,Mn: (M1×· · ·×Mn)ν ∼=g κ(Mν

1, · · · ,Mν
n)

for some g-product κ(Mν
1, · · · ,Mν

n).

Definition 5.8 For a finite ordered algebra A, the unary algebra Aρ is de-
fined to be

(
OTr(A)

)ν
.
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An immediate consequence of Proposition 5.7 is the following.

Corollary 5.9 For any finite ordered algebras A,A1, · · · ,An,
if OTr(A) ≺ OTr(A1)× · · · ×OTr(An) then Aρ ≺g κ(Aρ

1, · · · ,Aρ
n)

for some g-product κ(Aρ
1, · · · ,Aρ

n).

Our characterization of gVFOA’s definable by syntactic ordered monoids is
the following.

Proposition 5.10 For a class K of finite ordered algebras the following
conditions are equivalent:

(1) K is definable by ordered translation monoids;

(2) K is a gVFOA such that for all finite ordered algebras A and B, if
OTr(A) ∼= OTr(B) and A ∈ K then B ∈ K ;

(3) K is a gVFOA such that A ∈ K if and only if Aρ ∈ K for any A.

Proof. The implication (1) ⇒ (2) is obvious, and (2) ⇒ (3) follows from
Proposition 5.6. For (3) ⇒ (1), suppose the gVFOA K satisfies the equiv-
alence A ∈ K ⇔ Aρ ∈ K for any finite ordered algebra A. Let M
be the VFOM generated by {OTr(A) | A ∈ K }. We show that K =
Ma. Obviously K ⊆ Ma. For the opposite inclusion let B ∈ Ma. So,
OTr(B) ≺ OTr(A1) × · · · × OTr(An) for some A1, · · · ,An ∈ K . By Corol-
lary 5.9, Bρ ≺g κ(Aρ

1, · · · ,Aρ
n) for some g-product κ(Aρ

1, · · · ,Aρ
n). Since

Aρ
1, · · · ,Aρ

n ∈ K then Bρ ∈ K , hence B ∈ K . Thus Ma ⊆ K . �

Remark 5.11 Proposition 5.7 and the proof of Proposition 5.10 also yield
the fact that for any gVFOA K definable by ordered translation monoids,
the class {OTr(A) | A ∈ K } is a variety of finite ordered monoids.

5.1.1 Examples

Ordered nilpotent algebras

Lemma 5.12 If A = (A,Σ,6) is an ordered n-nilpotent algebra, then the
ordered translation semigroup OTrS(A) = (TrS(A), ·,.A) of A is a nilpotent
semigroup where zero element is the least element.

Proof. It was shown in Lemma 2.14 that TrS(A) is a nilpotent semigroup,
where p1 · · · pn is the zero element for every p1, · · · , pn ∈ TrS(A). On the
other hand p1 · · · pn(a) 6 q(a) holds for all q ∈ TrS(A) and a ∈ A. Thus
p1 · · · pn .A q, so zero is the least element of the semigroup TrS(A). �

The converse of Lemma 5.12 does not hold:
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Example 5.13 Let Λ = Λ1 = {α} and A = {a, b}, B = {a, b, c}. De-
fine the ordered Λ-algebras A = (A,Λ,6) and B = (B,Λ,6′) by αA(a) =
αA(b) = b, αB(a) = αB(b) = b, αB(c) = c, and 6= {(a, a), (b, a), (b, b)},
6′= {(a, a), (b, a), (b, b), (c, c)}. Then the ordered translation semigroups of
A and B are the trivial semigroup which consists of a single zero element,
while A is an ordered nilpotent algebra and B is not.

Hence, Nil is not definable by ordered translation monoids or semigroups.

Semilattice algebras

By Lemma 2.16 the class SL is definable by semilattice monoids.

Symbolic ordered algebras

Lemma 5.14 An ordered algebra is symbolic if and only if its ordered trans-
lation monoid is a symbolic monoid.

Proof. By Lemma 2.26, an ordered algebra A = (A,Σ,6) is symbolic if and
only if (A,Σ) is a semilattice algebra and p(a) ≤ a holds for all a ∈ A and
p ∈ Tr(A). The statement “p(a) ≤ a for all a ∈ A” is equivalent to p .A 1A.
Thus, from Lemma 2.16, it follows that A is symbolic if and only if OTr(A)
is a symbolic ordered monoid. �

So, the class Sym is definable by symbolic ordered monoids.

5.2 Tree Languages Definable by Ordered Monoids

Let Σ be a ranked alphabet and X be a leaf alphabet.

Definition 5.15 For any tree language T ⊆ T(Σ, X), the quasi-order -T is
defined on ΣX-contexts by

P -T Q ⇐⇒ (∀R ∈ C(Σ, X))(∀t ∈ T(Σ, X))
(
t ·Q ·R ∈ T ⇒ t · P ·R ∈ T

)
for P,Q ∈ C(Σ, X).

We note that the equivalence relation of -T is the m-congruence of T :

PµTQ ⇐⇒ (∀R ∈ C(Σ, X))(∀t ∈ T(Σ, X))
(
t · P ·R ∈ T ⇔ t ·Q ·R ∈ T

)
.

Note that the quotient structure (C(Σ, X)/µT , ·) is a monoid where the op-
eration (·) is defined by P/µT ·Q/µT = (P ·Q)/µT for P,Q ∈ C(Σ, X). This
is called the syntactic monoid of T .
The syntactic ordered monoid of T is the structure

SOM(T ) = (C(Σ, X)/θT , ·,.T ),
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where .T is the order induced by -T : P/µT .T Q/µT ⇔ P -T Q for
P,Q ∈ C(Σ, X); cf. [23] or [25]. It is easy to verify that P -T Q implies
R · P · S -T R · Q · S for any P,Q,R, S ∈ C(Σ, X). Thus the structure
SOM(T ) is indeed an ordered monoid.

It is known that the syntactic monoid of a tree language is the translation
monoid of the syntactic algebra of the language ([16, 23]). Here we show
the corresponding proposition for ordered translation monoids and syntactic
ordered algebras.

Proposition 5.16 For a tree language T ⊆ T(Σ, X),

OTr(SOA(T )) ∼= SOM(T ).

Proof. It is easy to see that the mapping

f(t1, · · · , ξ, · · · , tm) 7→ fSOA(T )(t1/θt, · · · , ξ, · · · , tm/θT )

can be extended to a monoid epimorphism ϕ : C(Σ, X) → OTr(SOA(T ))
which satisfies Pϕ(t/θT ) = (t · P )/θT for all t ∈ T(Σ, X), P ∈ C(Σ, X). We
show that for any P,Q ∈ C(Σ, X), P -T Q iff Pϕ .SOA(T ) Qϕ:

P -T Q ⇔ (∀t ∈ T(Σ, X)) (∀R ∈ C(Σ, X))
(
t ·Q ·R ∈ T → t · P ·R ∈ T

)
⇔ t · P 4T t ·Q for all t ∈ T(Σ, X)
⇔ (t · P )/θT 6T (t ·Q)/θT for all t ∈ T(Σ, X)
⇔ Pϕ(t/θT ) 6T Qϕ(t/θT ) for all t ∈ T(Σ, X)
⇔ Pϕ .SOA(T ) Qϕ.

Thus ϕ◦ .SOA(T ) ◦ϕ−1 = -T , and then from Proposition 2.4 it follows that
SOM(T ) ∼= OTr(SOA(T )). �

The following is implied by Corollary 3.4, Lemma 4.4 and Propositions
5.2 and 5.16.

Corollary 5.17 For ranked alphabets Σ and Ω, leaf alphabets X and Y , a
ΣX-context P ∈ C(Σ, X), an order g-morphism (κ, ϕ) : T (Ω, Y )→ T (Σ, X),
and tree languages T, T ′ ⊆ T(Σ, X),
(1) SOM(T ∩ T ′), SOM(T ∪ T ′) ≺ SOM(T )× SOM(T ′).
(2) SOM(P−1(T ))← SOM(T ).
(3) SOM(Tϕ−1) ≺ SOM(T ) and, moreover, if (κ, ϕ) is a g-epimorphism then
SOM(Tϕ−1) ∼= SOM(T ).

Definition 5.18 For a VFOM M, let Mt be the family of all recognizable
tree languages whose syntactic ordered monoids are in M, that is to say, for
any tree language T ⊆ T(Σ, X), T ∈Mt(Σ, X)⇔ SOM(T ) ∈M holds.

A family of recognizable tree languages V is said to be definable by syn-
tactic ordered monoids if there is a VFOM M such that Mt = V .
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By Corollary 5.17, the family Mt for any VFOM M is a gPVTL. In
this subsection we characterize the gPVTL’s that are definable by syntactic
ordered monoids.

Lemma 5.19 For any VFOM M the following hold:
(1) Mat = Mt,
(2) Mta = Ma.

Proof. (1) For any tree language T ⊆ T(Σ, X) by Proposition 5.16,
T ∈ Mat(Σ, X) ⇔ SOA(T ) ∈ Ma ⇔ OTr(SOA(T )) ∈ M ⇔ SOM(T ) ∈

M⇔ T ∈Mt(Σ, X).
(2) By (1) and Lemma 4.8, (Mt)a = (Mat)a = (Ma)ta = Ma. �

Corollary 5.20 (1) A gPVTL V is definable by syntactic ordered monoids
iff V a is a gVFOA definable by ordered translation monoids.

(1) A gVFOA K is definable by ordered translation monoids iff K t is a
gPVTL definable by syntactic ordered monoids.

Definition 5.21 Let Σ,Ω be ranked alphabets and X, Y be leaf alphabets.
A tree homomorphism is a mapping ϕ : T(Σ, X) → T(Ω, Y ) determined

by some mappings ϕX : X → T(Ω, Y ) and ϕm : Σm → T(Ω, Y ∪{ξ1, · · · , ξm})
where Σm 6= ∅ and the ξi’s are new variables, inductively as follows

(1) xϕ = ϕX(x) for x ∈ X, cϕ = ϕ0(c) for c ∈ Σ0, and
(2) f(t1, · · · , tn)ϕ = ϕn(f)[ξ1 ← t1ϕ, · · · , ξn ← tnϕ] in which ξi is re-

placed with tiϕ for all i ≤ n (cf. [23], page 7).
A tree homomorphism ϕ : T(Σ, X)→ T(Ω, Y ) is regular if for every f ∈ Σm

(m ≥ 1) each ξ1, · · · , ξm appears exactly once in ϕm(f), cf. [16].

For a regular tree homomorphism ϕ : T(Σ, X)→ T(Ω, Y ), the unique exten-
sion ϕ∗ : C(Σ, X)→ C(Ω, Y ) to contexts is obtained by setting ϕ∗(ξ) = ξ (cf.
[23], Proposition 10.3). We note that the identities (Q · P )ϕ∗ = Qϕ∗ · Pϕ∗
and (t ·Q ·P )ϕ = tϕ ·Qϕ∗ ·Pϕ∗ hold for all P,Q ∈ C(Σ, X) and t ∈ T(Σ, X).

For a tree language T ⊆ T(Σ, X) the syntactic monoid morphism of
T is the mapping λT : C(Σ, X) → SOM(T ) defined by PλT = P/µT for
P ∈ C(Σ, X).

Definition 5.22 A regular tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) is
said to be full with respect to a tree language T ⊆ T(Ω, Y ), if the mappings
ϕϕT : T(Σ, X) → SOA(T ), tϕϕT = tϕ/θT and ϕ∗λT : C(Σ, X) → SOM(T ),
Pϕ∗λT = Pϕ∗/µT are surjective.

An equivalent definition is:

Lemma 5.23 A regular tree homomorphism ϕ : T(Σ, X)→ T(Ω, Y ) is full
with respect to T ⊆ T(Ω, Y ) iff for every Q ∈ C(Ω, Y ) and every s ∈ T(Ω, Y ),
there are P ∈ C(Σ, X) and t ∈ T(Σ, X) such that QµT Pϕ∗ and s θT tϕ hold.
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Lemma 5.24 If ϕ : T(Σ, X) → T(Ω, Y ) is a regular tree homomorphism
and T ⊆ T(Ω, Y ), then SOM(Tϕ−1) ≺ SOM(T ), and if ϕ is full with respect
to T , then SOM(Tϕ−1) ∼= SOM(T ).

Proof. We note that ϕ∗ : C(Σ, X) → C(Ω, Y ) is a monoid homomorphism.
Let S ⊆ C(Ω, Y ) be the image of ϕ∗, - be the restriction of -T to S and µ
be the equivalence relation of -. Then S/µ is a submonoid of C(Ω, Y )/µT .
We show that Pϕ∗ - Qϕ∗ implies P -Tϕ−1 Q for all P,Q ∈ C(Σ, X).
Suppose Pϕ∗ - Qϕ∗ and take arbitrary t ∈ T(Σ, X) and R ∈ C(Σ, X).
Then

t ·Q ·R ∈ Tϕ−1 ⇒ tϕ ·Qϕ∗ ·Rϕ∗ ∈ T
⇒ tϕ · Pϕ∗ ·Rϕ∗ ∈ T
⇒ t · P ·R ∈ Tϕ−1,

that is P -Tϕ−1 Q. So the mapping ψ : S/µ → C(Σ, X)/µTϕ−1 defined by
((Pϕ∗)µ)ψ = PµTϕ−1 is well-defined, order preserving and surjective. It is
also a monoid morphism, since ((Pϕ∗)µ · (Qϕ∗)µ)ψ = ((P ·Q)ϕ∗µ)ψ = (P ·
Q)µTϕ−1 = PµTϕ−1 ·QµTϕ−1 = ((Pϕ∗)µ)ψ ·((Qϕ∗)µ)ψ for all P,Q ∈ C(Σ, X).
Hence SOM(Tϕ−1)← S/ - ⊆ SOM(T ), so SOM(Tϕ−1) ≺ SOM(T ).

Now, suppose ϕ is full with respect to T . We show P -Tϕ−1 Q iff
Pϕ∗ -T Qϕ∗ for any P,Q ∈ C(Σ, X). Clearly, Pϕ∗ -T Qϕ∗ implies
P -Tϕ−1 Q (see above). For the converse, suppose P -Tϕ−1 Q, and take
arbitrary R′ ∈ C(Ω, Y ) and t′ ∈ T(Ω, Y ). There are R ∈ C(Σ, X) and
t ∈ T(Σ, X) such that Rϕ∗ µT R

′ and tϕ θT t
′. Hence

t′ ·Qϕ∗ ·R′ ∈ T ⇒ tϕ ·Qϕ∗ ·Rϕ∗ ∈ T
⇒ (t ·Q ·R)ϕ ∈ T
⇒ t ·Q ·R ∈ Tϕ−1

⇒ t · P ·R ∈ Tϕ−1

⇒ tϕ · Pϕ∗ ·Rϕ∗ ∈ T
⇒ t′ · Pϕ∗ ·R′ ∈ T,

which shows that Pϕ∗ -T Qϕ∗. Hence P -Tϕ−1 Q iff Pϕ∗ -T Qϕ∗, and
since the function ϕ∗ : C(Σ, X)→ C(Ω, Y ) is a monoid homomorphism, then
by Proposition 2.4, SOM(Tϕ−1) ∼= SOM(T ). �

In the following two lemmas some connections between tree languages
recognizable by a finite ordered algebra A and tree languages recognizable
by Aρ are presented. Recall that unary ranked alphabet of the algebra Aρ is
{p | p ∈ Tr(A)}; for simplicity we denote this alphabet by ΛA.

Suppose A = (A,Σ) is a finite algebra. Every context in C(Σ, A) cor-
responds to a translation in Tr(A) in a natural way: With the elemen-
tary context f(a1, · · · , ξ, · · · , am) we associate the elementary translation
fA(a1, · · · , ξ, · · · , am) where f ∈ Σm (m > 0) and a1, · · · , am ∈ A. This
correspondence can be extended to a mapping −A : C(Σ, A)→ Tr(A) which
satisfies ξA = 1A (the identity translation) and (P · Q)A = PA · QA for all
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P,Q ∈ C(Σ, A). We note that for any translation p ∈ Tr(A), there is a
P ∈ C(Σ, A) such that PA = p and this P may not be unique. In other
words, −A is a non-injective monoid epimorphism.

We also note that the mapping −A : C(Σ, A) \ {ξ} → TrS(A) is a semi-
group epimorphism that assigns non-unit contexts of C(Σ, A) to translations
of A.

Lemma 5.25 Let A = (A,Σ,6) be a finite ordered algebra, and X be a leaf
alphabet disjoint from A. For any tree language L ⊆ T(ΛA, X) recognized by
Aρ there exists a regular tree homomorphism ϕ : T(ΛA, X) → T(Σ, X ∪ A)
and a tree language T ⊆ T(Σ, X ∪ A) such that L = Tϕ−1 and T can be
recognized by a finite power An where n = |A|.

Proof. Let α : X → Tr(A) be an initial assignment for Aρ and F ⊆ Tr(A)
be an ideal of OTr(A) such that L = {t ∈ T(ΛA, X) | tαAρ ∈ F}. Define
the tree homomorphism ϕ : T(ΛA, X) → T(Σ, X ∪ A) by ϕX(x) = x for
all x ∈ X, and for every p ∈ Tr(A) choose a ϕ1(p) ∈ C(Σ, A) such that
ϕ1(p)

A = p. Obviously ϕ is a regular tree homomorphism. Suppose that A =
{a1, · · · , an}. Let F ′ be the ideal of An generated by {(p(a1), · · · , p(an)) ∈
An | p ∈ F}, i.e.,

(b1, · · · , bm) ∈ F ′ ⇔ for some p ∈ F
(
bj 6 p(aj) for all j ≤ n

)
,

and define the initial assignment β : X∪A→ An for An by aβ = (a, · · · , a) ∈
An for all a ∈ A and xβ =

(
(xα)(a1), · · · , (xα)(an)

)
for all x ∈ X.

Let T be the subset of T(Σ, X ∪ A) recognized by (An, β, F ′), that is
T = {t ∈ T(Σ, X ∪ A) | tβAn ∈ F ′}. We show that L = Tϕ−1. Every tree w
in T(ΛA, X) is of the form

w = p1

(
p2

(
· · · pk(x) · · ·

))
for some p1, · · · , pk ∈ Tr(A) (k ≥ 0) and x ∈ X. For such a tree w,

wαA
%

= xα · pk · . . . · p2 · p1, and

(wϕ)βA
n

=
(
xα · pk · . . . · p2 · p1(a1), · · · , xα · pk · . . . · p2 · p1(an)

)
. So,

wϕ ∈ T ⇔ (wϕ)βA
n ∈ F ′

⇔ for some p ∈ F, xα · pk · . . . · p2 · p1(a) 6 p(a) for all a ∈ A
⇔ for some p ∈ F, xα · pk · . . . · p2 · p1 .A p
⇔ xα · pk · . . . · p2 · p1 ∈ F
⇔ wαA

% ∈ F
⇔ w ∈ L.

�
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Lemma 5.26 Let A = (A,Σ,6) be a finite ordered algebra and X be a
leaf alphabet disjoint from A ∪ Σ. For any tree language T ⊆ T(Σ, X)
recognized by A there exists a unary ranked alphabet Λ and a regular tree
homomorphism ϕ : T(Λ, X ∪Σ0)→ T(Σ, X) such that ϕ is full with respect
to T , and for every z ∈ X ∪ Σ0, Tϕ

−1 ∩ T(Λ, {z}) can be recognized as a
subset of T(Λ, {z}) by Aρ.

Proof. Let B = (B,Σ,6′) be the syntactic ordered algebra of T . Then
B ≺ A. Suppose T = {t ∈ T(Σ, X) | tβB ∈ F} where β : X → B is an
initial assignment for B and F EB. Since B is the least ordered algebra that
recognizes T , the algebra B is generated by β(X). The mapping β : X →
B can be uniquely extended to a monoid homomorphism βc : C(Σ, X) →
C(Σ, B). Since B is generated by β(X), the mapping βBc : C(Σ, X)→ Tr(B),
βBc (Q) = βc(Q)B is surjective. Define the tree homomorphism ϕ : T(ΛB, X ∪
Σ0) → T(Σ, X) by ϕX(x) = x for all x ∈ X ∪ Σ0, and for every q ∈ Tr(B)
choose a ϕ1(q) = Q ∈ C(Σ, X) such that βc(Q)B = q. Note that ϕ is a regular
tree homomorphism. It remains to show that ϕ is full with respect to T and
that for every z ∈ X ∪ Σ0, Lz = Tϕ−1 ∩ T(Λ, {z}) can be recognized as a
subset of T(Λ, {z}) by Bρ. This will finish the proof since OTr(B) ≺ OTr(A)
follows from B ≺ A by Proposition 5.2, and so Bρ ≺ Aρ by Proposition 5.7,
which implies that Lz can also be recognized by Aρ.
First, we show that ϕ is full with respect to T . Let Q ∈ C(Σ, X) be a context.
For q = βc(Q)B ∈ Tr(B), q(ξ)ϕ∗ µT Q holds. By induction on the height of t
we show that for any t ∈ T(Σ, X) there is an s ∈ T(ΛB, X ∪ Σ0) such that
t θT sϕ. If t = x ∈ X ∪ Σ0, then sϕ θT t for s = t. If t = t′ · P for some
P ∈ C(Σ, X) and t′ ∈ T(Σ, X) such that the height of t′ is less than the height
of t, then by the induction hypothesis there is an s′ ∈ T(ΛB, X ∪ Σ0) such
that t′ θT s

′ϕ. Also, for some p ∈ Tr(B), p(ξ)ϕ∗ µT P holds. Let s = p(s′).
Then sϕ = s′ϕ · p(ξ)ϕ∗ θT t′ · P = t. Thus, ϕ is full with respect to T by
Lemma 5.23.
Second, we show that Lz can be recognized by Bρ for a fixed z ∈ X ∪ Σ0.
Let 1B be the identity translation of B. Define the initial assignment α :
{z} → Tr(B) for Bρ by zα = 1B, and let Fz = {q ∈ Tr(B) | q(zβB) ∈ F}.
We show that Fz E Bρ and Lz is recognized by (Bρ, α, Fz). For p, q ∈ Tr(B),
if p .B q ∈ Fz, then p(zβB) 6′ q(zβB) ∈ F , so p(zβB) ∈ F , thus p ∈ Fz.
Hence Fz E Bρ. Every w ∈ T(ΛB, {z}) can be written in the form

w = q1

(
q2

(
· · · qh(z) · · ·

))
for some q1, · · · , qh ∈ Tr(B) (h ≥ 0). For such a tree w,

wαB
ρ

= 1B · qh · . . . · q2 · q1, and (wϕ)βB = qh · . . . · q2 · q1(zβB). Thus,

w ∈ Lz ⇔ wϕ ∈ T ⇔ (wϕ)βB ∈ F
⇔ qh · . . . · q2 · q1(zβB) ∈ F
⇔ qh · . . . · q2 · q1 ∈ Fz

⇔ wαB
ρ ∈ Fz.
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So, Lz = {w ∈ T(Λ, {z}) | wαBρ ∈ Fz}. �

Now, we are almost ready to characterize the gPVTL’s definable by syn-
tactic ordered monoids. Before that we note a remark.

Remark 5.27 Let Λ be a unary ranked alphabet. For every leaf alphabet
X and every subset Y ⊆ X, C(Λ, Y ) = C(Λ, X), and the quasi-order -T for
a tree language T ⊆ T(Λ, Y ) on C(Λ, Y ) is the same relation -T on C(Λ, X)
when T is viewed as a subset of T(Λ, X).

So, if a family of tree languages V = {V (Σ, X)} is definable by syntac-
tic ordered monoids, then for any unary ranked alphabet Λ, and any leaf
alphabets X and Y , if Y ⊆ X then V (Λ, Y ) ⊆ V (Λ, X).

Proposition 5.28 A family of recognizable tree languages V is definable
by syntactic ordered monoids if and only if V is a gPVTL that satisfies the
following properties:
(1) The family V is closed under inverse regular tree homomorphisms.
(2) For every unary ranked alphabet Λ, and any leaf alphabets X and Y , if
Y ⊆ X then V (Λ, Y ) ⊆ V (Λ, X).
(3) For any regular tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) which is
full with respect to a tree language T ⊆ T(Ω, Y ), if Tϕ−1 ∈ V (Σ, X) then
T ∈ V (Ω, Y ).

Proof. The fact that for any VFOM M, Mt is a gPVTL follows from Corol-
lary 5.17, that it satisfies the conditions (1) and (3) follows from Proposition
5.24 and that it satisfies the condition (2) follows from Remark 5.27.

For the converse, suppose a gPVTL V = {V (Σ, X)} satisfies the con-
ditions of the proposition. By Corollary 5.20 it is enough to show that V a

satisfies the condition of Proposition 5.10.
Let A = (A,Σ,6) be a finite ordered algebra in V a. By Lemma 5.25, any

tree language L ⊆ T(ΛA, X) recognized by Aρ can be written as L = Tϕ−1

where ϕ : T(ΛA, X)→ T(Σ, X ∪ A) is a regular tree homomorphism, and T
is a tree language recognized by some power An of A. Then An ∈ V a implies
that T ∈ V (Σ, X ∪A), and hence L = Tϕ−1 ∈ V (ΛA, X) by (1). This holds
for every tree language L recognizable by Aρ, so by Lemma 4.9, Aρ ∈ V a.

Now, suppose Aρ ∈ V a for a finite ordered algebra A = (A,Σ,6). Let
T ⊆ T(Σ, X) be a tree language recognizable by A. By Lemma 5.26, there
exists a unary ranked alphabet Λ and a full regular tree homomorphism
ϕ : T(Λ, X ∪ Σ0) → T(Σ, X) with respect to T such that for every z in
X ∪ Σ0, Lz = Tϕ−1 ∩ T(Λ, {z}) can be recognized as a subset of T(Λ, {z})
by Aρ. So, Lz ∈ V (Λ, {z}), thus Lz ∈ V (Λ, X ∪ Σ0) by (2). Hence, Tϕ−1 =⋃

z∈X∪Σ0
Lz ∈ V (Λ, X ∪ Σ0). Since ϕ is full with respect to T , then T ∈

V (Σ, X) by (3). This holds for every tree language T recognizable by A,
hence A ∈ V a by Lemma 4.9. �

41



5.2.1 Examples

Cofinite tree languages

It can be shown that the gPVTL Cof is closed under inverse regular tree
homomorphisms. Since Nil = Cofa is not definable by ordered translation
monoids, then Cof is not definable by syntactic ordered monoids. We can
show this directly: Let Λ = Λ1 = {α} be a unary ranked alphabet and
X = {x, y} be a leaf alphabet. Let T = {α(y), α(α(y)), α(α(α(y))), · · · }.
Clearly T ∈ Cof(Λ, {y}), but T 6∈ Cof(Λ, X). Hence, Cof does not satisfy
the condition (2) of Proposition 5.28.

Semilattice tree languages

The family SL is definable by syntactic monoids, since a tree language is
semilattice if and only if its translation monoid is a semilatiice monoid.

Symbolic tree languages

A tree language is symbolic if and only if its ordered translation monoid
is a symbolic ordered monoid, thus the family Sym is definable by syntactic
ordered monoids.

6 Conclusions

We proved three variety theorems:

(1) a variety theorem connecting families of recognizable tree languages
to classes of finite ordered algebras,

(2) generalized form of the above variety theorem, and

(3) a variety theorem connecting families of recognizable tree languages
to classes of finite ordered monoids.

We also characterized classes of finite ordered algebras that are definable
by ordered monoids.

Three examples were studied along the paper:

(1) the family Cof of cofinite tree languages is a gPVTL, is characterizable
by ordered nilpotent algebras but is not definable by ordered monoids or
semigroups,

(2) the family SL of semilattice tree languages is a generalized variety
of tree languages, is characterizable by semilattice algebras and definable by
semilattice monoids, and

(3) the family Sym of symbolic tree languages is a gPVTL, is charac-
terizable by symbolic ordered algebras and definable by symbolic ordered
monoids.
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