
Johanna Tuominen | Juha Plosila

Turku Centre Computer Sciencefor

TUCS Technical Report
No 623, September 2004

High Level Power Estimation

High Level Power Estimation

Johanna Tuominen

Juha Plosila

TUCS Technical Report

No 623, September 2004

Abstract

In a synchronous circuits, the global clock signal couples the computation
and the physical time. Therefore, the clock frequency measures directly the
switching activity of the system which can be used directly in the power
calculation. On the contrary, in a self-timed circuits there is no notion of
physical time. Thus, the operation of such system is based on ordering
events between circuit components. In addition to that, the duration of
given computation depends strongly on the data, which makes it difficult to
use the algorithms developed for synchronous circuits directly.

An overview of selected high-level power estimation techniques is given for
both synchronous and asynchronous systems. In this report, a specification of
a formal high level power estimation is presented. The purpose is to include
this model into our existing formal framework for system specification.

Keywords: asynchronous, power consumption, switching activity, noise

TUCS Laboratory
Communication Systems Laboratory

1 Introduction

The objective of this report is to give a short overview of high level power
estimation methods for ULSI circuits. At first, we discuss power estimation
in a synchronous context, where the power consumption is not localized,
i.e., a significant portion of the power is consumed by a circuit elements not
performing useful computation, at a given time. For example, flip-flops and
clock distribution network consumes power during each clock cycle whether
they are involved in the useful circuit function or not. Techniques to measure
average power per clock cycle in synchronous CMOS circuits, are based on
an probabilistic estimate of the switching activity in the circuit [10, 18]

The operation of a self-timed system is based on ordering events between
circuit components. The absence of the global clock signal gives several ad-
vantages in terms of modularity, robustness, lack of clock-generation and
clock distribution problems etc. However, this introduces an interesting con-
cern when it becomes to measuring power consumed by a circuit. Since, even
though the global clock have a lot of drawbacks, they have one big advan-
tage, i.e. they couple computation and physical time. On the contrary, in
a self-timed circuits there is no notion of physical time [13]. Therefore, it is
difficult to define power consumption in general for a self-timed circuit. Fur-
thermore, it is not possible to directly apply the power estimation techniques
developed for synchronous circuits.

This report will present an overview of two high level power estimation
methods for asynchronous systems. The first one is a Petri net based solu-
tion, where the switching activity is captured from the Petri net graph by
tracing the token flow [13]. The second estimation method is for quasi-delay-
insensitive (QDI) circuit [20]. These circuits use no timing assumptions on
the delays of the operators and wires, only isochronic forks are expected [22].
This means that delays on the different branches of the fork are assumed to
be identical. Finally, the future work section presents a specification of a high
level power estimation for the action systems formalism [3, 4]. The formal
power estimation model is included as a part of our existing framework of
formal system specification. Furthermore, the high level model is extend to
determine a noise estimate for the system.

The overview to the high level power estimation techniques for syn-
chronous circuits is presented in Section 2. The power estimation in asyn-
chronous context is discussed in Section 3. Section 4 gives specification for
the future work, and finally, conclusion of the work is presented in Section 5.

1

2 Power Estimation in Synchronous Circuits

The amount of energy dissipated by a CMOS logic gate each time its output
changes is roughly equal to the change in energy stored in the gate’s output
capacitance. If the gate is a part of the synchronous digital system controlled
by a global clock, it follows that the average power dissipated by the gate is
given by [10]:

Pavg = 0.5 × V 2
dd × Cload × f × E(transitions) (1)

In Equation 1, Pavg denotes the average power, Cload is the load capaci-
tance, Vdd is the supply voltage, f is the frequency of the global clock, and
E(transitions) is the switching activity per clock cycle. In a synchronous
circuit, a node might switch several times before settling to the steady state
value during a clock cycle. These spurious transitions (glitches) complicates
the energy estimation of synchronous circuits. The main reason for this is
that glitches are highly delay dependent, and therefore any attempt to esti-
mate the energy properly has to include an accurate timing model [20].

2.1 Estimation of Average Switching Activity

In CMOS logic circuits, the transition rate of a node is a good indicator of
the circuits susceptibility to runtime failures [18]. However the quantification
of the circuit activity is difficult, because logic signals are, in general, non-
periodic, and thus, have no fixed switching activity.

2.1.1 Static probabilities

Consider the case of dynamic CMOS logic. At the beginning of each clock
cycle, all the gates are precharged, and gates make transitions only if their
associated Boolean functions are satisfied. For example, a three-input AND-
OR gate’s Boolean function might be

(i1 · i2) ∨ (i2 · i3) (2)

where i1, i2, and i3 are primary inputs. In this case, the expected number
of transitions at the gate’s output is

E(transitions) = 2 × P ((i1 · i2) ∨ (i2 · i3) = 1) (3)

where the P(x) is defined as probability that x is true, and the factor of
two in the equation accounts for the reset transition during precharge [10].

2

To evaluate the (3) it is necessary to determine the primary input prob-
abilities. The primary inputs are assumed to be uncorrelated, and that each
is a waveform in time whose value is either zero or one, changing instan-
taneously at global clock edges. Assuming ergodicity, the probability of a
particular input ij being one at a given point in time, denoted pone

j , is given
by

pone
j = lim

N→∞

∑N

k=1
ij(k)

N
(4)

where N is the total number of global clock cycles and ij(k) is the value
of input ij during clock cycle k [10]. Hence, the probability that ij is zero,
denoted as pzero

j is

pzero
j = 1 − pone

j (5)

The probabilities pzero
j and pone

j are referred as static probabilities. Note
that the equation (6) is false, since the first and the second product terms
are not independent.

P ((i1 · i2) ∨ (i2 · i3) = 1) 6= pone
1

pone
2

+ pone
2

pone
3

(6)

Instead, the equation (6) should be write in a form [10]

P ((i1 · i2)∨(i2 · i3) = 1) = P ((i1 · i2)∨(i1 · i2 · i3) = 1) = pone
1

pone
2

+pzero
1

pone
2

pone
3

(7)

where the second equality holds because i1 · i2 is disjoint from i1 · i2 · i3
[10]. In this example, i1 · i2∨ i1 · i2 · i3 is a disjoint cover for the logic function,
and the terms i1 · i2 and i1 · i2 · i3 are referred as cubes in the cover [9]. The
equivalent logical expression i1 · i2 ∨ i2 · i3, does not represent a disjoint cover
because i1 · i2 · i3 is contained in both cubes i1 · i2 and i2 · i3.

In general, given a disjoint cover for a Boolean function of uncorrelated
inputs described by static probabilities, the probability of the function evalu-
ating to ’1’ can be easily determined. The procedure follows the two theorems
given below, whose proof follows directly from the elementary probability
[19].

Theorem 2.1 Given any disjoint cover for a Boolean function, the prob-
ability of the function P(f=1) is equal to the sum of the probabilities of each
of the cubes in the cover evaluating to a ’1’.

Theorem 2.2 Given a logical function of uncorrelated inputs in the form

3

f = iα1 · iα2 · · · iαM · iβ1 · iβ2 · · · iβN

where iαj are the non-negated inputs and the iβk are the negated inputs,
then

P (f = 1) = pone
α1

· pone
α2

· · · pone
αM · pzero

β1
· pzero

β2
· · · pzero

βN

2.1.2 Transition probabilities

Consider the case of static CMOS logic, a gate output can only change when
its inputs change, and then only if the boolean function describing the gate
evaluates differently. For example, a 2-input AND gate’s output, will change
between clock cycle t and t + 1 if

(i1(t) · i2(t)) ⊕ (i1(t + 1) · i2(t + 1)) (8)

evaluates to 1, where i1(t), i2(t) and i1(t + 1), i2(t + 1) are the inputs at
clock cycle t and t + 1, respectively. The disjoint cover for (8) is

(i1(t) · i2(t)) · (i1(t + 1)) ∨

(i1(t) · i2(t)) · (i1(t + 1) · i2(t + 1)) ∨

i1(t)(i1(t + 1) · i2(t + 1)) ∨ (i1(t) · i2(t))(i1(t + 1) · i2(t + 1)) (9)

In this case, the input at time t + 1 is correlated to its behavior at time
t. Therefore, it is not possible to use the theorem (2.2) to evaluate the
probability of (9). Hence, the transition probabilities for the transitions
0 → 0, 0 → 1, 1 → 0, 1 → 1 have to be used [10]. As an example, the Ghosh
et al. defines transition probability for p10

j as follows:

pone
j = lim

N→∞

∑N

k=1
ij(k)ij(k + 1)

N
(10)

where N is the total number of clock cycles and ij(k) is the value of input
ij during clock cycle k. The other transition probabilities follow similarly.

For the dynamic CMOS-logic, static probabilistic calculation is applied.
These probabilities can calculated directly from the transition probabilities,
as shown in Equations (11) and (12) [10].

pone
j = p00

j + p01

j (11)

pzero
j = p10

j + p11

j (12)

4

Both static and transition probabilities are used to calculate the E(transitions)
for static logic circuits, as shown in Equation (13).

p10

1
· pone

2
+ p11

1
· p10

2
+ p01

1
· pone

2
+ p11

1
· p01

2
(13)

For all primary inputs, it may be assumed that successive input vectors
are uncorrelated and ’1’ and ’0’ are equally likely. Thus, all transition prob-
abilities may be assumed to be 0.25, and all static probabilities to be 0.5.

To obtain the expected switching activity in the entire circuit over all
time points corresponding to a clock cycle, the probabilities of all the gates
are summed together. The general delay model [8] of combinational logic is
used to compute the boolean conditions that cause glitching. Thus, in some
cases glitching may account for a significant amount of the dissipated power
or switching activity [20].

Najm in [18] presents transition density calculation for switching activity
estimation. Transition densities corresponds to average switching rates for
gates in the circuit. These densities are propagated through combinational
logic modules without regard to their structure. Correlations between in-
ternal lines due to the re-convergence are ignored during propagation. It is
possible to take into account correlations by lumping all the modules into
one large module, but in this case the information regarding the delay of
the individual modules are lost. Cirit in [5] gives methods to calculate dy-
namic power dissipation based on approximate signal probability evaluation
procedures.

3 Power Estimation in the Asynchronous Con-

text

In synchronous circuits many gates switch without having actual input to
process, because they are connected to the clock. For instance, the clock
buffer must switch regularly to provide a timing reference to the circuit. The
operation of a self-timed system is based on ordering events between circuit
components. Therefore in an asynchronous system the computational events
are a direct measure of the energy consumption. However, it is difficult to
quantify the power dissipation due to the lack of unit of operation, namely,
something like the clock cycle. In addition to that, the duration of given
computation depends strongly on the data, which makes it difficult to use
the algorithms developed for synchronous circuits directly [13].

Kudva et. al presents a Petri-net based solution, which captures the
control flow of the circuit [13]. The switching activity is estimated by tracing

5

the token flow in the Petri net, which is described in Section 3.1. Penzes et.
al are developing an energy estimation technique for quasi-delay-insensitive
(QDI) circuits [20]. QDI circuit use no timing assumptions on the delays of
the operators and wires, only isochronic forks are expected [22]. This means
that delays on the different branches of the fork are assumed to be identical.
This method is described in Section 3.2.

3.1 Power Estimation Using Petri Nets

Petri nets can be used to model a self-timed circuit 1 [6, 17]. The power
estimation method, presented by Kudva et. al, describes the circuit as a
structural composition of the Petri nets corresponding to the individual com-
ponents. The switching activity of the circuit is then estimated by tracing
the token flow in the Petri net [13]. Notion of invocation of a module is
defined to estimate the average input/output activity at the terminals of the
module by adapting the equations developed by Ghosh et. al [10]. The var-
ious transitions in the Petri net are weighted with the energy consumed by
the corresponding self-timed element per invocation [13].

The circuit is partitioned into three blocks, more precisely into control
block (CB), data block (DB), and predicate block (PB), in order to estimate
the amount of transitions accurately in Petri nets [13]. Examples of control
blocks models are XOR, Muller C-element, and call-module [23]. Models
for DB and PB are shown in Figure 1. The DB represents the data-path
model of the circuit, and can be modeled as a combinational circuit with a
parallel delay line. The PB implements a data-dependent control flow, ie. a
conditional branch. The transition on req is sent through T −ack or F −ack

depending on whether the sel signal is set to ’1’ or ’0’. The logic block has
data inputs and it produces the set signal as an output.

logic

select
req

d_val

t_ack

f_ack

sel

a) data block (DB) b) predicate block (PB)

delay

logic

req ack

d_val out_val

Figure 1: Models for DB and PB

1
The reader is assumed to be familiar with the basic semantics of the Petri net.

6

The Petri nets have a special set of places called the initial places (IP)
and final places (FP). These places correspond to the inputs and outputs
of the circuit. The environment is responsible for placing the tokens in IP
and removing the tokens from FP. In this method, [13] the environment is
assumed to work properly, ie. without causing glitching or hazards.

The Petri net presentation of the Muller C-element is shown in Figure 2.
The input wires (i1, i2) and the output wire (out) are denoted as a transitions.
The places, marked with(I), denotes the IP set for the circuit. The FP set
of the circuit is marked with (♯).

#

II

out

i1 i2

out

i1 i2

a) b)

C

Figure 2: a) C-element b) Petri net description of a)

The invocation of a circuit module (DB,PB) can be defined as a pair
of transitions (req, ack) in the Petri net corresponding to its initiation and
completion [13]. The firing of these transitions in the Petri net indicates that
the corresponding DB or PD have been activated.

3.1.1 Switching Energy in Control Blocks

Kudva et. al defines the switching activity of CBs with the help of pre-
defined macro modules [13]. This method is illustrated by calculating the
energy consumption of the Muller C-element. The energy consumed by the
C-element on an output transition is given by:

Ec = Ek + Ev (14)

where Ev = 0.5 × Cload × V 2

dd and Ek is a constant which depends on
the implementation (hence, can be obtained from technology libraries). The
gate implementation of the C-element is used, that is three AND gates at

7

the input and OR-gate at the output. The Ev is obtained by taking account
the fanout of the C-element to other modules and Vdd characteristics of the
circuit. The Ek results as the energy consumed by the input layer of AND
gates.

3.1.2 Energy Per Invocation in Data and Predicate Blocks

The average energy consumed by data and predicate blocks is shown in Equa-
tions (15) and (16), respectively [13]. The D(transitions) indicates the aver-
age number of transitions for the combinational circuit per invocation. The
factor Edl and Eselect presents the energy consumed in the delay element of
the DB and in the selector of the PB, respectively.

Einvocation = 0.5 × V 2

dd × Cload × D(transitions) + Edl (15)

Einvocation = 0.5 × V 2

dd × Cload × D(transitions) + Eselect (16)

The transition probabilities presented in Section 2 can now be applied.
Hence, the key difference is the use of invocations to count the probabilities,
instead of the clock cycle [13].

3.2 Energy Estimation for Quasi-Delay-Insensitive Cir-
cuit

Penzes et. al presented a energy estimation method for quasi-delay-insensitive
(QDI) circuits [22]. According to these guidelines given for the energy simu-
lation of QDI circuits, a simulator has been used to estimate the energy con-
sumption in the different parts of the asynchronous processor (MiniMIPS)
[15]. The esim simulator gives energy estimates within 10 % of a electri-
cal (hspice) simulation [20]. The dynamic energy consumption is defined as
shown in Equation (17). The Ci is the total capacitance at node i, ni is the
transition count of node i during measured period of time and m is the total
number of circuit nodes.

EDynamic =
1

2
V 2

dd

m∑

i=1

Cini (17)

The main difficulty of using this formula is to define ni. In the follow-
ing subsections, we will discuss on how these difficulties are solved for QDI
circuits [20].

8

3.2.1 Production rules as a model for CMOS circuits

The operation of the simulator is based on a logical representation of the
design, called the production rules (PR) [11]. A PR is a construct of the
form G 7→ S, where S is a simple boolean assignment and G is a boolean
expression called guard of the PR [16]. For instance, a nand gate with inputs
x and y and an output z is implemented using two PRs: x ∧ y 7→ c ↓ and
¬x∧¬y 7→ z ↑. The PRs that set and reset the same variable, like ¬g1 7→ z ↑,
g2 7→ z ↓ are implemented as one operator (g1 corresponds to the pull-up,
while g2 to the pull-down circuitry of node z).

The PR set is used as a logical representation of QDI circuits. Further-
more, PRs closely correspond to the intended CMOS implementation of the
circuit. The PR set of given QDI circuit could be either synthesized from a
high level description or can be directly generated by the designer.

3.2.2 Energy estimation error due to glitching

In synchronous circuits the energy simulation is complicated by glitches.
Hence, glitches are delay dependent and therefore any attempt to accurately
model the energy due to them has to include timing model. The QDI design
methodology avoids glitches by enforcing the monotonicity of signal transi-
tions [20]. As a consequence the energy consumed by glitches is null and
there is no need for timing model in this energy estimation method.

3.2.3 Energy estimation error due to spatial dependence (input cor-
relation)

For all data channels, which in QDI circuits are usually encoded as dual-rail
or 1-of-n signals, similar switching activity is expected. Therefore, the cor-
responding CMOS circuit is symmetric, in terms of transistor sizes, for each
data rail within the channel. Furthermore, each activated node transitions
exactly twice in 4-phase signaling. Hence, not all signals become active since
some of them are mutually exclusive. For the above mentioned reasons, this
type of circuit consumes the same amount of energy, independently of the
data being processed [20]. One important exception are adders. For instance,
a carry look-ahead adder has more load in the propagate rails than in the
kill and generate rails, since for uniform input distribution a transition on a
propagate rail is more likely. This generates some input pattern dependence
on the consumed energy. However, when applied in a realistic context of the
QDI design (input/output completions, data/control acknowledges, internal
enable) this dependence is very weak [20].

9

For the control channels the dependence is stronger, since different values
of the control might activate different parts of the circuit. For instance, in
case of a regular add instruction, the two inputs are coming from the register
file. However, in an add immediate instruction one input comes from the
register file and the other one from the immediate bus. Depending on the
implementation this could take a different amount of energy, and therefore
the energy corresponding every distinct control signal of a given circuit block
has to be estimated individually [20].

3.2.4 Energy estimation error due to temporal dependence (cycle-
to-cycle dependency)

In a synchronous circuit, the switching of a signal depends not only on the
data value on the current cycle, but also on the previous value of that node,
causing cycle-to-cycle dependency. For QDI circuits, during operation each
active node will go through two transitions, a charging and a discharging
transition [22]. By the end of the cycle, each node will be at the same
state as it was in the beginning of the cycle, independently of the performed
operation. This property eliminates the cycle-to-cycle dependency altogether
[20]. However, if state variables are implemented as a flip-flops, temporal
dependency exists. Hence, if the current state and the next state has the
same value, the bit will not flip. On the other hand if the two values are
different, the bit will transition and as a result energy is consumed. One
way to deal this is to simulate the system for the worst case, i.e., all bits
changing and for the best case, i.e., no bits changing. Then the resulted
energy estimate is the average value between the worst- and the best-case.
All together the energy variability due to temporal or spatial dependence of
input data is localized and relatively small; thus, in general it can be ignored
[20].

3.2.5 Energy model - the esim simulator

The esim energy simulator estimates the dynamic energy consumption for
QDI circuit using Equation 17 [20]. There are two unknown factors in the
Equation 17, the node capacitance Ci and the number of transitions ni. The
transition count (ni) is taken care of automatically by the simulator: for each
actual transition, the corresponding weight is added to an energy counter.
The capacitance model for PRs is shown in Figure 3. Each node in a PR
set could have the following capacitive components: source / drain diffusion
capacitance due to the PR’s pull-ups and pull-downs (Cd), wiring capacitance
(Cw), capacitance due to the keeper if the node is state holding (Cs), and

10

gate capacitance due to the transistors the node is driving (Cg).

Cg

w

s

d

C

C

C

Figure 3: The esim capacitance model

If a sized but unwired PR set is available for simulation, all capacitive
components, except Cw, can be computed with a good accuracy. The dy-
namic energy consumed by node i can be written as E = ECg +ECd +ECs =
K ×

∑
(transistorwidth) [20]. Where the technology dependent constant K

can be computed directly or calibrated using hspice. The
∑

(transistorwidth)
is computed for each node and assigned to its corresponding weight variable
in the data structure. If a wired up layout exists, the wire information can
be added as explicit PRs into the original PR set.

The general operation is as follows [20]: Once the simulation is launched
on a closed PR set, all nodes are initialized and an energy weight is assigned.
Those PRs that are ready to be fired are collected into the ready queue, ie.
those guards that are true. A step of a simulator consists of taking one PR
out of the ready queue and firing it. The firing of the PR may cause other
PRs to become enabled, in which case their PRs are added to the ready
queue. When the PR is taken of from the ready queue, its assigned energy
weight is added to a counter, which keeps track of the total energy consumed.

There are several energy dissipating sources that the esim is ignoring
[20]. One of the most important one is the energy consumed due to the
leakage currents. The importance of the leakage currents to the overall energy
consumption is increasing due to technology scaling. Furthermore, there are
two elements related to dynamic power consumption which are not captured.
First, the energy due to charge-sharing, and second, the energy spent on
charging and discharging the internal nodes of the transistor stacks are not
accounted for.

11

4 Future Work

In this section, a specification of a formal high level power estimation is
presented. The purpose is to include this model into our existing formal
framework for system specification. The power consumption estimation pro-
cess is divided into two phases, abstract and gate level power estimation.
After the gate level estimation, the purpose is to develop model for a system
noise levels, and include it as a part of the overall framework. Finally, a
simulator for high level power and noise estimation will be implemented.

4.1 Action Systems Formalism

The action system formalism is a framework for specification and correct-
ness preserving development of concurrent programs [3, 4]. It is based on
an extended version of the guarded command language of Dijkstra [7]. The
action system language includes assignment, sequential composition, non-
deterministic choice, and iteration, and is defined using weakest precondi-
tion predicate transformers. The parallel behavior is modeled by interleaved
actions, i.e., by two or more actions which can be executed in any order.
The action systems are developed in a stepwise manner using the refine-
ment calculus which guarantee the correctness of each transformation step
[1, 2]. Furthermore, the action systems formalism is inherently well-suited
for modeling asynchronous concurrent behavior. However, a set of concepts
are introduced in [21], which are useful especially in circuit derivation.

4.2 Abstract Level Power Consumption Estimation

A coarse-grained power estimation is applied to the abstract level system
description by the designer, i.e., the designer specifies the upper limit for the
power consumption of the system. The first power consumption estimate
is then defined as a constant P . After each refinement step, the value of
the power consumed by the subsystems is added together. Thus, this value
cannot exceed the value of the constant P . In other words, during refinement,
the inequality shown in Figure 4 have to hold. Therefore, it will be necessary
to add some guidelines of the amount of power consumed per particular
system structures. The estimation process is illustrated in Figure 4.

4.3 Gate Level Power Consumption Estimation

The Petri net based power estimation analysis is used as a guideline for our
work [13]. In order to determine the circuits switching activity a timing

12

S3 S4 S5

Abstract model

1st refinement step

2nd refinement step

P
Power consumption

P > P + P1 2

P > P + P + P3 4 5

2

S

S1 S

Figure 4: Abstract level power estimation flow

model will be included into the design description. The switching activity is
captured from the action systems description by counting enabled events at
a given time. The gate level power estimation flow is shown in Figure 5.

Technology
dependent
informartion

Timing information

activity
Switching

description
Action systems

Noise estimate

Power consumption estimate
&

Figure 5: Gate level power estimation flow

The power dissipation per library component can be calculated from
Equation 18.

Ptotal = Pdynamic + Pstatic (18)

The dynamic energy consumption of a given node can be calculated from
Equation 17, and the static power consumption per component can be ob-
tained from technology data sheets. Furthermore, the power consumption

13

caused by leakage currents is added as a constant to the overall power con-
sumption.

4.3.1 Noise estimation

Once the switching activity is determined form the action systems descrip-
tion, we can start focusing into the system noise levels. The purpose is to
concentrate to estimate power supply noise and crosstalk. The power supply
noise within a digital chip mainly originates from simultaneous switching of
CMOS circuits which causes high peak current draws from the power source.
Thus, high simultaneous switching activity increases the amount of power
supply noise [14]. The crosstalk estimation is more complicated task. Since,
the crosstalk noise is caused by the inductive and capacitive coupling be-
tween on-chip signal lines. Therefore, the crosstalk estimation have to be
done using some crosstalk model [12, 24]. Furthermore, the amount leakage
noise is included as a constant into the action system description.

4.3.2 Simulator

After the action systems framework for power dissipation and noise is ready,
the purpose is to build simulator for high level power estimation. The
programming language chosen for the implementation will be some object-
oriented language, i.e., C++ or Java. The actions systems description can
be turned into Petri nets description in order to make the software imple-
mentation easier.

5 Conclusion

An overview of selected high level power estimation techniques for ULSI
circuits is presented. In a synchronous circuit, the power consumption is
measured as an average power per clock cycle. Then the switching activity
of the circuit is calculated using static or dynamic probabilities. On the con-
trary, in the self-timed circuit there is no notion of physical time. Therefore,
it is difficult to define the power consumption for an asynchronous circuit.
Furthermore, the techniques presented for the synchronous power estimation
are not directly applicable.

A specification for high level power and noise estimation in action sys-
tems context is presented. The power estimation is divided into two phase,
abstract and gate level power analysis. The formal framework for power es-
timation can be develop further to the system noise estimation. Finally, a
high-level power and noise estimation will be implemented.

14

References

[1] R. J. R. Back. “On the Correctness of Refinement Steps in Program
Development”, Ph.D Thesis Department of Computer Science, University
of Helsinki, Helsinki, Finland, 1978. Report A-1978-4.

[2] R. J. R. Back. “A Calculus of Refinements for Program Derivations”,
Acta Informatica, 25(6):593-624, 1988.

[3] R. J. R. Back and R. Kurki-Suonio. “Decentralization of Process Nets
with Centralized Control”, in Proc. of the 2nd ACM SIGACT-SIGOPS
Symp. on Principles of Distributed Computing, 1983, pp. 131-142.

[4] R. J. R. Back and K. Sere. “From Modular Systems to Action Systems”,
in Formal Methods Europe’94, Spain, October 1994, Lecture Notes in
Computer Science Springer - Verlag, 1994.

[5] M. A. Cirit. “Estimating Dynamic Power Consumption of CMOS Cir-
cuits”, in Proc. ICCAD November 1987, Santa Clara, CA, USA, pp. 534
- 537.

[6] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.
Yakovlev. “ Logic Synthesis of Asynchronous Controllers and Interfaces”,
Springer, 2002

[7] E. W. Dijkstra. “ A Discipline of Programming”, Prentice Hall Series in
Automatic Computation, Prentice Hall, 1976.

[8] S. Devadas, K. Keutzer, and J. White. “Estimation of Power Dissipation
in CMOS Combinational Circuits”, in Proc. Custom Integrated Circuit
Conference, May 1990, Boston, MA, USA, pp.19.7.1- 19.7.6.

[9] D. D. Gajski. “ Principles of Digital Design”, Prentice-Hall, 1997, NJ,
USA.

[10] A. Ghosh, S. Devadas, K. Keutzer, and J. White. “Estimation of
Switching Activity in Combinational and Sequential Circuits”, in Proc.
ACM/IEEE 29th Design Automation Conference, June 1992, pp. 253-259.

[11] M. Hanna, and E. Grinspun. “ A Production Rule Simulation”, Caltech
Computer Science Technical Report, 2000.

[12] H. Kawaguchi and T. Sakurai. “Delay and Noise Formulas for Capaci-
tively Coupled Distributed RC Lines” in Proc. of Asia and South Pacific
Design Automation Conference, Yokohama, Japan, 1998.

15

[13] P. Kudva, and V. Akella. “A Technique for Estimating Power in Asyn-
chronous Circuits”, IEEE, 1994.

[14] P. Liljeberg, J. Tuominen, S. Tuuna, J. Plosila and J. Isoaho. “Self-
Timed Approach for Noise Reduction in NoC Interconnects”, Intercon-
nect Centric Design for Advanced SoC and Noc, Kluwer Academic Pub-
lishers, Boston, April 2004, Chapter 11, pp. 285-313.

[15] A. J. Martin, et al. “The Design of an Asynchronous MIPS R3000
Microprocessor”, in Proc. of the 17th Conf. on Adv. Research in VLSI,
IEEE Computer Society Press, 1997, pp. 164-181.

[16] A. J. Martin. “Synthesis of Asynchronous VLSI Circuits”, in Formal
Methods for VLSI Design, ed. J. Staunstrup, North-Holland, 1990.

[17] T. Murata. “Petri Nets: Properties, Analysis and Applications”, in
Proc. the IEEE, vol. 77, no. 4, April 1989.

[18] F. N. Najm. “Transition Density: A New Measure of Activity in Digital
Circuit”, in IEEE Transaction on Computer-Aided Design of Integrated
Circuits and Systems, vol. 12, no. 2, February 1993.

[19] A. Papoulis. “ Probability, Random Variables and Stochastic Prosesses”,
McGraw Hill, 1984.

[20] P. I. Penzes, and A. J. Martin. “An Energy Estimation Method for
Asynchronous Circuits with Application to an Asynchronous Micropro-
cessor”.

[21] J. Plosila. “Self-Timed Circuit Design - The Action System Approach”,
Ph. D Thesis, University of Turku, 1999.

[22] J. Sparso, and S. Furber. “Principles of Asynchronous System Design
- A Systems Perspective”, editors, Kluwer Academic Publishers, Boston,
2001 .

[23] I. Sutherland. “ Micropipelines”, Communications of the ACM, June
1998, The 1988 ACM Turing Award Lecture.

[24] S. Tuuna and J. Isoaho. “Estimation of Crosstalk Noise for On-Chip
Buses” in Proc. of 13th International Workshop on Power and Timing
Modeling, Optimization and Simulation, Turin, Italy, September 2003.

16

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

Turku

Centre

Computer

Science

for

University of Turku

Department of Information Technology

Department of Mathematics

Åbo Akademi University

Turku School of Economics and Business Administration

Department of Computer Science

Institute for Advanced Management Systems Research

Institute of Information Systems Sciences

�

�

�

�

�

ISBN 952-12-1416-3

ISSN 1239-1891

