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Abstract

We consider varieties of recognizable subsets of many-sorted finitely gener-
ated free algebras over a given variety, varieties of congruences of such al-
gebras, and varieties of finite many-sorted algebras. A variety theorem that
establishes bijections between the classes of these three types of varieties is
proved. For this, appropriate notions of many-sorted syntactic congruences
and algebras are needed. Also an alternative type of varieties is considered
where each subset consists of elements of just one sort.
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1 Introduction

S. Eilenberg’s [7] famous Variety Theorem establishes a bijective correspon-
dence between varieties of regular languages (∗–varieties) and varieties of fi-
nite monoids or, alternatively, between varieties of regular languages without
the empty word (+–varieties) and varieties of finite semigroups. The theo-
rem provides a general framework for the classification of regular languages
and it describes the families of regular languages that can be characterized
by syntactic monoids or by syntactic semigroups.

The Variety Theorem has been extended or adapted to other kinds of reg-
ular sets in several ways. A useful addition was the correspondence between
varieties of regular languages and varieties of congruences of free monoids or
free semigroups introduced by Thérien [20]. Another notable extension of the
basic theory is Pin’s [15] theory of positive varieties. In [17] Steinby proposes
a theory of varieties of recognizable subsets of free algebras that encompasses
both Eilenberg’s theory and a theory of varieties of regular tree languages
as special cases. The idea of recognizable subsets of arbitrary algebras goes
back to Mezei and Wright [13]. The similar generalization developed in the
more extensive study [1] by Almeida includes also varieties of congruences.
Varieties of congruences appear also in the theory of varieties of tree lan-
guages presented in [18] and in the theory of generalized varieties of tree
languages of [19]. The theories in [1, 17, 18, 19] are all based on syntactic
algebras. As one more extension along these lines, we should mention Ésik’s
theory [9] where the place of varieties of finite algebras is taken by varieties
of finitary theories.

It appears that Maibaum [11] was the first one to consider many-sorted
tree languages. Many-sorted trees are used also by Engelfriet and Schmidt
[8] in their study of the equational semantics of context-free tree languages.
Recognizable subsets of general many-sorted algebras were studied by Cour-
celle [4, 5].

In this paper we join the above two lines of research by developing a
theory of varieties of recognizable subsets of free many-sorted algebras. Thus
we actually generalize the theories of [17, 18] and [1] to the many-sorted case.
It should be mentioned that, although not considered here, Wilke’s [21] tree
algebras gave an important impetus to this work; they are 3-sorted algebras
used for characterizing families of (binary) tree languages. These algebras
we study in [16].

In Section 2 we present some basic definitions and our notation for many-
sorted algebras. Also some more specialized notions relevant to our work
are introduced. The references [10] and [12] may be consulted for general
treatments of the theory of many-sorted algebras. In Section 3 recognizable
subsets of many-sorted algebras are considered. There are actually two types
of these, recognizable sorted subsets and the ’pure’ recognizable subsets con-
sidered in [5, 8, 11] in which all elements are of some given sort. We mainly
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consider the former type but we will show how the theory applies also to
other kind of sets.

Syntactic congruences and syntactic algebras of subsets of many-sorted
algebras are introduced in Section 4, and it is shown that they enjoy all the
same general properties as their counterparts for monoids [7, 14] or term
algebras, or one-sorted algebras in general [1, 17, 18].

In Section 5 we define our varieties of recognizable sets and varieties of
congruences. For this a finite set of sorts S and variety V of some finite
S-sorted type Ω are fixed. A variety of recognizable V-sets consists then of
recognizable subsets of the finitely generated free algebras over V. Similarly,
a variety of V-congruences consists of congruences of finite index on these
algebras. Finally, V-variety of finite algebras is defined as a variety of finite
algebras contained in V. In Section 6 we define six mappings that transform
varieties of recognizable V-sets, varieties of V-congruences and V-varieties
of finite algebras to each other. Then we prove our Variety Theorem that
essentially says that these six mappings form three pairs of mutually inverse
isomorphisms between the complete lattices of the three kinds of varieties
considered. The proof is very similar to the one presented in [18], but there
are naturally some technical differences and for the reader’s convenience a
rather detailed proof is presented.

In Section 7 we define varieties of pure recognizable V-sets in which each
recognizable set is a subset of the set of elements of some given sort of a
finitely generated free algebra over V. By establishing a natural correspon-
dence between the two types of varieties of recognizable V-sets, a Variety
Theorem is derived also for varieties of pure recognizable V-sets.

2 Many-sorted algebras

In what follows, S is always a non-empty set of sorts. We will consider various
families of objects indexed by S. Such families are said to be S-sorted, or just
sorted. The sort of an object is usually shown as a subscript or in parentheses
(to avoid multiple subscripts). An S-sorted set A = 〈As〉s∈S is an S-indexed
family of sets; for each s ∈ S, As is the set of elements of sort s in A, and we
write it also as A(s). The basic set-theoretic notions are defined for S-sorted
sets in the natural sortwise manner. In particular, for any S-sorted sets
A = 〈As〉s∈S and B = 〈Bs〉s∈S, A ⊆ B means that As ⊆ Bs for every s ∈ S,
A∪B = 〈As ∪Bs〉s∈S, A∩B = 〈As ∩Bs〉s∈S and A−B = 〈As−Bs〉s∈S, and
general sorted unions and intersections are defined similarly. The notation ∅
is used also for the S-sorted empty set 〈∅〉s∈S.

We shall also consider subsets of one given sort of sorted sets. With
any subset T ⊆ Au of some sort u ∈ S of an S-sorted set A = 〈As〉s∈S we
associate the sorted subset 〈T 〉 ⊆ A such that 〈T 〉u = L and 〈T 〉s = ∅ for
every s ∈ S \ {u}.
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A sorted relation θ = 〈θs〉s∈S on A = 〈As〉s∈S is an S-sorted family of
relations such that for each s ∈ S, θs is a relation on As. Such a θ could also
be viewed as a relation on the disjoint union of the sets As (s ∈ S) such that
any two θ-related elements are always of the same sort. A sorted equivalence
on A = 〈As〉s∈S is a sorted relation θ = 〈θs〉s∈S where θs is an equivalence
relation on As for each s ∈ S. Let EqS(A) denote the set of all sorted
equivalences on A. If θ = 〈θs〉s∈S ∈ EqS(A), then the corresponding quotient
set is the S-sorted set A/θ = 〈As/θs〉s∈S, where As/θs = {a/θs | a ∈ As}
(s ∈ S). Of course, EqS(A) forms with respect to the sorted inclusion relation
a complete lattice in which least upper bounds and greatest lower bounds
are formed sortwise as for usual equivalences. The least element is the sorted
diagonal relation ∆A = 〈∆A(s)〉s∈S and the greatest element is the sorted
universal relation ∇A = 〈∇A(s)〉s∈S, where ∆A(s) = {(a, a) | a ∈ A(s)} and
∇A(s) = A(s)× A(s) for each s ∈ S.

A sorted mapping ϕ : A → B from an S-sorted set A = 〈As〉s∈S to an
S-sorted set B = 〈Bs〉s∈S is an S-sorted family ϕ = 〈ϕs〉s∈S of mappings
ϕs : As → Bs (s ∈ S). The kernel of ϕ is the sorted equivalence kerϕ =
〈kerϕs〉s∈S on A. For any sorted subset H = 〈Hs〉s∈S of A, Hϕ denotes the
sorted subset 〈Hsϕs〉s∈S of B. Similarly, if H = 〈Hs〉s∈S is a sorted subset of
B, then Hϕ−1 denotes the sorted subset 〈Hsϕ

−1
s 〉s∈S of A. The composition

of two S-sorted mappings ϕ : A → B and ψ : B → C, where C = 〈Cs〉s∈S

is also an S-sorted set, is defined as the sorted mapping ϕψ : A → C such
that (ϕψ)s = ϕsψs for each s ∈ S. Here the mappings were composed
from left to right, as we shall do especially with homomorphisms. Hence,
ϕsψs : a 7→ (aϕs)ψs for all s ∈ S and a ∈ As.

Treating S as an alphabet, S∗ denotes the set of finite strings over S,
including the empty string e, and S+ is the set of non-empty strings over S.
An S-sorted signature Ω is a set of operation symbols each of which has been
assigned a type that is an element of S∗ × S. For any (w, s) ∈ S∗ × S, let
Ωw,s be the set of symbols of type (w, s), and Ω may be given by specifying
the non-empty sets Ωw,s. If f ∈ Ωw,s, then w is the domain type of f , and
s is its sort. In particular, every element of Ωe,s, for the empty word e, is a
constant symbol of sort s. The fact that f ∈ Ωw,s is expressed also by writing
f : w → s. For a finite S, a finite S-sorted signature is called an S-sorted
ranked alphabet. Later S is assumed to be finite and Ω is always an S-sorted
ranked alphabet. However, the following basic definitions and facts do not
depend on this assumption.

An Ω-algebra A = (A,Ω) consists of an S-sorted set A = 〈As〉s∈S, where
As 6= ∅ for every s ∈ S, equipped with constants and operations as follows:

(1) for each constant symbol c ∈ Ωe,s of sort s ∈ S, an element cA ∈ As of
sort s is specified;

(2) for any function symbol f ∈ Ωw,s with w ∈ S+ and s ∈ S, there is an
operation fA : Aw → As of type (w, s), domain type w and sort s. Here
Aw = As(1) × · · · × As(m) for w = s(1) . . . s(m).
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Such an algebra A is said to be S-sorted. For each s ∈ S, As is the set
of elements of A of sort s. The algebra A is trivial if every As (s ∈ S) is
a singleton set. We may write A = (〈As〉s∈S,Ω) to emphasize the fact that
A is S-sorted. However, when we speak about the Ω-algebras A = (A,Ω),
B = (B,Ω) and C = (C,Ω), it will usually be assumed that A = 〈As〉s∈S,
B = 〈Bs〉s∈S and C = 〈Cs〉s∈S.

An Ω-algebra B = (B,Ω) such that B ⊆ A is a subalgebra of A = (A,Ω),
and this we may express by writing B ⊆ A, if

(1) cB = cA whenever c ∈ Ωe,s for some s ∈ S, and

(2) fB = fA|Bw for any f ∈ Ωw,s with w ∈ S+ and s ∈ S.

If B is a subalgebra of A, then B = 〈Bs〉s∈S is a closed subset of A, that is,

(1) cA ∈ Bs whenever c ∈ Ωe,s and s ∈ S, and

(2) fA(b1, . . . , bm) ∈ Bs whenever m > 0, f : s(1) . . . s(m) → s and b1 ∈
Bs(1), . . . , bm ∈ Bs(m).

On the other hand, any closed subset B with Bs 6= ∅ for every s ∈ S, is the
carrier set of a unique subalgebra of A. Hence, subalgebras coincide with
the closed subsets whose all components are non-empty. The set of all closed
subsets of A is denoted by Sub(A), and let Sub+(A) denote the set of closed
subsets with non-empty components.

Since the intersection
⋂
S of any set S ⊆ Sub(A) of closed subsets of

an Ω-algebra A is also closed, any subset H = 〈Hs〉s∈S of A is contained in
a unique minimal closed subset [H] =

⋂
{B | H ⊆ B, B ∈ Sub(A)}, the

closed subset generated by H. If Hs ∪ Ωe,s 6= ∅ for every s ∈ S, then [H]
is a subalgebra of A, but note that this may be the case even otherwise. If
[H] ∈ Sub+(A), then [H] is called the subalgebra generated by H.

A sorted equivalence θ = 〈θs〉s∈S on A is a congruence on A = (A,Ω) if

a1 θs(1) b1, . . . , am θs(m) bm ⇒ fA(a1, . . . , am) θs f
A(b1, . . . , bm),

whenever f : s(1) . . . s(m) → s and a1, b1 ∈ As(1), . . . , am, bm ∈ As(m). The
corresponding quotient algebra A/θ = (A/θ,Ω) is defined by setting

(1) cA/θ = cA/θs for any c ∈ Ωe,s, and

(2) fA/θ(a1/θs(1), . . . , am/θs(m)) = fA(a1, . . . , am)/θs for f : s(1) . . . s(m)→
s and a1 ∈ As(1), . . . , am ∈ As(m).

Since θ is a congruence, the operations fA/θ are well-defined.
A sorted mapping ϕ : A → B is a homomorphism from A = (A,Ω) to

B = (B,Ω), and we express this by writing ϕ : A → B, if

(1) cAϕs = cB whenever c ∈ Ωe,s for some s ∈ S, and

(2) fA(a1, . . . , am)ϕs = fB(a1ϕs(1), . . . , amϕs(m)) for any f : s(1) . . . s(m)→
s and a1 ∈ As(1), . . . , am ∈ As(m).

4



A homomorphism ϕ is a monomorphism, an epimorphism or an isomorphism,
if every ϕs (s ∈ S) is injective, surjective or bijective, respectively. If there
exists an epimorphismA → B, then B is an image ofA, and we write B ← A.
If there is an isomorphism ϕ : A → B, the algebras are isomorphic, A ∼= B
in symbols. An Ω-algebra A divides an Ω-algebra B, and we write A � B, if
A is an image of a subalgebra of B.

We shall sometimes use the observation that A � B iff there is an Ω-
algebra C for which there exist a monomorphism ϕ : C → B and an epimor-
phism ψ : C → A.

The natural map corresponding to a sorted equivalence θ = 〈θs〉s∈S on a
sorted set A, is the sorted map θ\ : A → A/θ, where θ\

s : As → As/θs, a 7→
a/θs, for each s ∈ S. It is easy to verify that if θ is a congruence on an
Ω-algebra A, then θ\ is an epimorphism from A onto A/θ. Moreover, the
Homomorphism Theorem (cf. [2], for example) extends in a straightforward
manner to many-sorted algebras as follows (cf. [12], for example).

Proposition 2.1 If ϕ : A → B is a homomorphism of Ω-algebras, then kerϕ
is a congruence on A and ψ : A/ kerϕ→ B, a/ kerϕs 7→ aϕs, is a monomor-
phism such that (kerϕ)\ψ = ϕ. If ϕ is an epimorphism, then ψ is an iso-
morphism.

Next we introduce the many-sorted version of a notion that has proved
very useful for dealing with congruences.

Let A = (A,Ω) be an Ω-algebra. For any pair s, s′ ∈ S of sorts, an
elementary s, s′-translation is any mapping As → As′ of the form

α(ξs) = fA(a1, . . . aj−1, ξs, aj+1 . . . , am),

where m ≥ 1, f : s(1) . . . s(m) → s′, 1 ≤ j ≤ m, s(j) = s, and ai ∈ As(i) for
every i 6= j. Here and later, ξs is a variable of sort s that does not appear in
the other alphabets considered.

Let ETr(A, s, s′) denote the set of all elementary s, s′-translations of A.
The S × S-sorted set Tr(A) = 〈Tr(A, s, s′)〉s,s′∈S of all translations of A is
now defined inductively by the following clauses:

(1) ETr(A, s, s′) ⊆ Tr(A, s, s′) for all s, s′ ∈ S,

(2) for each s ∈ S, the identity map 1A(s) : A(s) → A(s) is in Tr(A, s, s),
and

(3) if α(ξs) ∈ Tr(A, s, s′) and β(ξs′) ∈ Tr(A, s′, s′′), for some s, s′, s′′ ∈ S,
then β(α(ξs)) ∈ Tr(A, s, s′′).

For any s, s′ ∈ S, the elements of Tr(A, s, s′) are the s, s′-translations of A.
The following lemma is an immediate generalization of the corresponding

fact about one-sorted algebras (see e.g. [2, 3, 6]).
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Lemma 2.2 Let A = (A,Ω) be an Ω-algebra. Every congruence θ = 〈θs〉s∈S

on A is invariant with respect to all translations of A, that is to say, a θs b
implies α(a) θs′ α(b) for all s, s′ ∈ S, a, b ∈ As and α(ξs) ∈ Tr(A, s, s′). On
the other hand, a sorted equivalence θ on A is a congruence if it is invariant
with respect to every elementary translation of A.

The following generalization of a lemma from the one-sorted case [17, 18]
is frequently needed.

Lemma 2.3 Let ϕ : A → B be a homomorphism of Ω-algebras from A =
(A,Ω) to B = (B,Ω). For any s, s′ ∈ S and every α(ξs) in Tr(A, s, s′), there
exists a translation αϕ(ξs) ∈ Tr(B, s, s′) such that

α(a)ϕs′ = αϕ(aϕs)

for every a ∈ As. If ϕ is an epimorphism, then for all s, s′ ∈ S and every
β(ξs) in Tr(B, s, s′) there exists an α(ξs) ∈ Tr(A, s, s′) such that β = αϕ.

Proof. Because the claim clearly holds for the identity translations and all
other non-elementary translations are products of elementary translations, it
suffices to note that for any elementary s, s′-translation

α(ξs) = fA(a1, . . . aj−1, ξs, aj+1 . . . , am)

with f : s(1) . . . s(m)→ s′ and s(j) = s, we may choose

αϕ(ξs) = fB(a1ϕs(1), . . . aj−1ϕs(j−1), ξs, aj+1ϕs(j+1) . . . , amϕs(m)).

If ϕ is surjective, then every elementary translation of B is obtained this way,
which also holds for all translations of B. �

Translations and their inverses of an Ω-algebraA = (A,Ω) are applied to sub-
sets of a given sort and to sorted subsets as follows. Let α(ξs) ∈ Tr(A, s, s′)
for some s, s′ ∈ S. For any u ∈ S and T ⊆ Au, let

• α(T ) = {α(a) | a ∈ T} (⊆ As′) if u = s, and α(T ) = ∅ if u 6= s;

• α−1(T ) = {a ∈ As | α(a) ∈ T} if u = s′, and α−1(T ) = ∅ if u 6= s′.

Furthermore, for any sorted subset L = 〈Ls〉s∈S of A, we set

• α(L) = 〈Ku〉u∈S, where Ks′ = α(Ls), and Ku = ∅ for each u 6= s′, and

• α−1(L) = 〈Ku〉u∈S, where Ks = α−1(Ls′), and Ku = ∅ for each u 6= s.

The direct product of two Ω-algebras A = (A,Ω) and B = (B,Ω) is the
Ω-algebra A× B = (A×B,Ω), where

(1) A×B = 〈As ×Bs〉s∈S,

(2) cA×B = (cA, cB) for any s ∈ S and c ∈ Ωe,s, and
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(3) fA×B((a1, b1), . . . , (am, bm)) = (fA(a1, . . . , am), fB(b1, . . . , bm)) for any
a1 ∈ As(1), b1 ∈ Bs(1), . . . , am ∈ As(m), bm ∈ Bs(m) and any function
symbol f : s(1) . . . s(m)→ s.

The direct product A1 × · · · × An of any finite family A1, . . . ,An, or the
direct product

∏
i∈I Ai of a general family Ai (i ∈ I) of Ω-algebras, are

defined correspondingly.
If ϕ : A→ B is a sorted mapping from an S-sorted set A = 〈As〉s∈S to an

S-sorted set B = 〈Bs〉s∈S and θ = 〈θs〉s∈S is a sorted equivalence on B, then
ϕ ◦ θ ◦ ϕ−1 is the sorted equivalence on A defined by the condition

a1 (ϕ ◦ θ ◦ ϕ−1)s a2 ⇔ a1ϕs θs a2ϕs (s ∈ S, a1, a2 ∈ As).

In the following lemma we note a few basic facts about quotient algebras.

Lemma 2.4 Let A = (A,Ω) and B = (B,Ω) be Ω-algebras, θ, θ′ ∈ Con(A),
ρ ∈ Con(B), and let ϕ : A → B be a homomorphism.

(1) If θ ⊆ θ′, then A/θ′ ← A/θ.
(2) A/θ ∩ θ′ ⊆ A/θ ×A/θ′.
(3) The relation ϕ◦ρ◦ϕ−1 is a congruence on A, and A/ϕ◦ρ◦ϕ−1 � B/ρ.

If ϕ is an epimorphism, then A/ϕ ◦ ρ ◦ ϕ−1 ∼= B/ρ

Proof. Statements (1) and (2) are direct generalizations of well-known facts.
In the many-sorted case they follow, for example, from Theorem 3.4.20 and
Lemma 4.1.5 of [12].

Let us prove (3). If a (ϕ ◦ ρ ◦ ϕ−1)s b, for some s ∈ S and a, b ∈ As, then
aϕs ρs bϕs. By Lemma 2.3, for any s′ ∈ S and every α ∈ Tr(A, s, s′), there
is an αϕ ∈ Tr(B, s, s′) such that αϕ(dϕs) = α(d)ϕs′ for every d ∈ As. Since
αϕ(aϕs) ρs′ αϕ(bϕs) by Lemma 2.2, we also have α(a)ϕs′ ρs′ α(b)ϕs′ , that is
to say, α(a) (ϕ ◦ ρ ◦ϕ−1)s′ α(b). Hence, ϕ ◦ ρ ◦ϕ−1 ∈ Con(A) by Lemma 2.2.
It is now easy to see that ψ : A/(ϕ ◦ ρ ◦ ϕ−1) → B/ρ is a monomorphism if
we define

ψs : As/(ϕ ◦ ρ ◦ ϕ−1)s → Bs/ρs, a/(ϕ ◦ ρ ◦ ϕ−1)s 7→ aϕs/ρs,

for each s ∈ S. Finally, we note that if ϕ is surjective, then so is ψ. �

The class operators S, H, P and Pf are defined exactly as in the one-sorted
case: for any class K of Ω-algebras and any Ω-algebra A,

(1) A ∈ S(K) iff A is isomorphic to a subalgebra of a member of K,

(2) A ∈ H(K) iff A is an image of some member of K,

(3) A ∈ P(K) iff A is isomorphic to the direct product of a family of
algebras in K, and

(4) A ∈ Pf(K) iff A is isomorphic to the direct product of a finite family
of algebras in K.
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A class K of Ω-algebras is a variety if S(K),H(K),P(K) ⊆ K. Birkhoff’s
well-known theorem by which a class of algebras is definable by equations iff
it is a variety, holds also for many-sorted algebras (cf. Section 5 of [12]).

A class K of finite Ω-algebras is called a variety of finite Ω-algebras, an
Ω-VFA for short, if it is closed under subalgebras, homomorphic images,
and finite direct products, i.e., if S(K),H(K),Pf(K) ⊆ K. It is easy to
show that a class K of finite Ω-algebras is an Ω-VFA iff A ∈ K whenever
A � A1× . . .×An for some n ≥ 0 and A1, . . . ,An ∈ K. When we deal with
varieties of finite Ω-algebras, both S and Ω are assumed to be finite.
Let X = 〈Xs〉s∈S be an S-sorted alphabet disjoint from Ω. The S-sorted set
TΩ(X) = 〈TΩ(X, s)〉s∈S of Ω-terms with variables in X is defined inductively:

(1) Ωe,s ∪Xs ⊆ TΩ(X, s) for every s ∈ S, and

(2) f(t1, . . . , tm) ∈ TΩ(X, s) for any function symbol f : s1 . . . sm → s and
terms t1 ∈ TΩ(X, s1), . . ., tm ∈ TΩ(X, sm).

The alphabet X is said to be full for Ω if TΩ(X, s) 6= ∅ for every sort s ∈ S.
Note that a given TΩ(X, s) may be non-empty even when Xs = Ωe,s = ∅.
If X = 〈Xs〉s∈S is full for Ω, then the ΩX-term algebra TΩ(X) = (TΩ(X),Ω)
is defined in the natural way:

(1) cTΩ(X) = c for any s ∈ S and c ∈ Ωe,s, and

(2) fTΩ(X)(t1, . . . , tm) = f(t1, . . . , tm) whenever m > 0, f : s1 . . . sm → s
and t1 ∈ TΩ(X, s1), . . ., tm ∈ TΩ(X, sm).

Of course, TΩ(X) is freely generated by X over the class of all Ω-algebras,
that is to say, for any Ω-algebra A = (A,Ω), any sorted mapping α : X → A
has a unique extension to a homomorphism αA : TΩ(X)→ A.
More generally, if V is a class of Ω-algebras, an Ω-algebra F = (〈Fs〉s∈S,Ω)
is generated freely over V by a sorted subset G ⊆ F , if F ∈ V, F is gener-
ated by G, and for any A = (A,Ω) in V, any sorted mapping ϕ0 : G → A
can be extended to a homomorphism ϕ : F → A. If such an F exists, it
is determined uniquely up to isomorphism by V and G, and we denote it
FV(G) = (FV(G),Ω) with FV(G) = 〈FV(G, s)〉s∈S.

Let Ω be an S-sorted ranked alphabet and let X be an S-sorted alphabet
disjoint from Ω. For each s ∈ S, let ξs be again a special symbol of sort s.
The S × S-sorted set CΩ(X) = 〈CΩ(X, s, s′)〉s,s′∈S of ΩX-contexts is defined
inductively by the conditions

(1) ξs ∈ CΩ(X, s, s) for each s ∈ S, and

(2) f(t1, . . . , tj−1, p, tj+1 . . . , tm) ∈ CΩ(X, s, s′) whenever s, s′, s1, . . . , sm ∈
S, m ≥ 1, f : s1 . . . sm → s′, 1 ≤ j ≤ m, p ∈ CΩ(X, s, sj), and ti ∈
TΩ(X, si) for all i 6= j.

The product p · q = q(p) of two ΩX-contexts p ∈ CΩ(X, s, s′) and q ∈
CΩ(X, s′, s′′) (s, s′, s′′ ∈ S) is the ΩX-context obtained from q when ξs′ is
replaced with p.
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Let A = (A,Ω) be any Ω-algebra. Every translation of A is represented
in a natural way by an ΩA-context of a matching type:

(1) an elementary translation α(ξs) = fA(a1, . . . aj−1, ξs, aj+1 . . . , am) is
represented by the ΩA-context f(a1, . . . aj−1, ξs, aj+1 . . . , am),

(2) the identity map 1A(s) : A(s)→ A(s) is represented by ξs, and

(3) if α(ξs) ∈ Tr(A, s, s′) and β(ξs′) ∈ Tr(A, s′, s′′) are represented by the
ΩA-contexts p(ξs) ∈ CΩ(A, s, s′) and q(ξs′) ∈ CΩ(A, s′, s′′), respectively,
then β(α(ξs)) is represented by q(p(ξs)) ∈ CΩ(A, s, s′′).

That a translation α(ξs) is represented by a context p(ξs) means that α is
the polynomial function (cf. [2], for example) defined by p in A, when p is
interpreted as a polynomial symbol with ξs as the only variable.

3 Recognizable subsets

An equivalence θ on a set A saturates a subset L of A if L is the union
of some θ-classes, and that θ is said to be of finite index if it has a finite
number of equivalence classes. Mezei and Wright [13] call a subset L of an
algebra A recognizable if it is saturated by a congruence of finite index on A.
Clearly, L is recognizable iff there exist a finite algebra B, a homomorphism
ϕ : A → B and a subset H of B such that L = Hϕ−1. We use this condition,
where B may be viewed as a ’recognizer’ of L, for defining recognizability in
many-sorted algebras. There are two natural types of recognizable subsets of
a sorted algebra: the recognizable sorted subsets and the recognizable subsets
of a given sort.
In what follows, S is always a finite set of sorts and Ω is an S-sorted ranked
alphabet. An S-sorted set A = 〈As〉s∈S is said to be finite if every As (s ∈ S)
is finite, and an Ω-algebra A = (A,Ω) is finite if A = 〈As〉s∈S is finite.

Definition 3.1 A sorted subset L ⊆ A of an Ω-algebra A = (A,Ω) is rec-
ognizable if there exist a finite Ω-algebra B = (B,Ω), a homomorphism
ϕ : A → B and a sorted subset H of B such that L = Hϕ−1. Then we
say also that B recognizes L. Let Rec(A) denote the set of all recognizable
subsets of A.

For any s ∈ S, a subset T of As is said to be recognizable in A if if
there exist a finite Ω-algebra B = (B,Ω), a homomorphism ϕ : A → B and
a subset H of Bs such that T = Hϕ−1

s . Let Rec(A, s) denote the set of all
such subsets of As. We call such sets also pure recognizable sets.

The recognizable tree languages of sort s ∈ S considered by Maibaum
[11] are the pure recognizable subsets of the term algebra TΩ(∅) of sort s,
i.e., the elements of Rec(TΩ(∅), s). Courcelle [4, 5] extends this notion to
any S-sorted algebra A = (〈As〉s∈S,Ω), without assuming the finiteness of S
or Ω, by calling a subset T ⊆ As recognizable if there exist a locally finite
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Ω-algebra B = (B,Ω), a homomorphism ϕ : A → B and a subset H of Bs

such that T = Hϕ−1
s ; an algebra B = (〈Bs〉s∈S,Ω) is locally finite if every

Bs is finite (s ∈ S). Since we assume that S is finite, this ’locally finite’
means here just ’finite’, and hence our pure recognizable subsets are exactly
Courcelle’s recognizable subsets.

Although we are primarily concerned with sorted recognizable sets, we
will also note how the theory can be adapted to pure recognizable sets.

A sorted equivalence θ = 〈θs〉s∈S on an S-sorted set A = 〈As〉s∈S is said
to saturate a sorted subset L = 〈Ls〉s∈S of A if every Ls is the union of some
θs-classes (s ∈ S), and θ is of finite index if every θs (s ∈ S) is of finite index.
The following lemma is an obvious generalization of the fact noted above.

Lemma 3.2 A sorted subset of an Ω-algebra A is recognizable iff it is sat-
urated by a congruence on A of finite index. Similarly, a subset L ⊆ Au of
some sort u ∈ S is recognizable iff it is saturated by θu for some congruence
θ = 〈θs〉s∈S on A of finite index.

Next we present a few closure properties that are well-known for recog-
nizable subsets of one-sorted algebras.

Proposition 3.3 Let A = (A,Ω) and B = (B,Ω) be any Ω-algebras.

(1) ∅, A ∈ Rec(A).

(2) If K,L ∈ Rec(A), then K ∪ L,K ∩ L,K − L ∈ Rec(A).

(3) If L ∈ Rec(A) and α ∈ Tr(A, s, s′) for some s, s′ ∈ S, then α−1(L) ∈
Rec(A).

(4) If ϕ : A → B is a homomorphism and L ∈ Rec(B), then Lϕ−1 ∈
Rec(A).

Proof. Assertion (1) is trivial, and (2) can be proved as usual by defining the
direct product of any two finite algebras recognizing K and L, respectively.

For (3), we recall first that α−1(L)s = α−1(Ls′) and α−1(L)s′′ = ∅ for every
s′′ 6= s. Assume now that L = Hϕ−1, where ϕ : A → C is a homomorphism
to a finite algebra Ω-algebra C = (C,Ω), and H ⊆ C. By Lemma 2.3 there is
a translation αϕ ∈ Tr(C, s, s′) such that α(a)ϕs′ = αϕ(aϕs) for every a ∈ Ls.
Now it is easy to see that α−1(L) = Gϕ−1 for the sorted subset G of C
defined in such a way that Gs = α−1

ϕ (Hs′) and Gs′′ = ∅ for every s′′ 6= s.
To prove (4), assume that L = Hψ−1, where ψ : B → C is a homo-

morphism to a finite algebra Ω-algebra C = (C,Ω) and H ⊆ C. Then
Lϕ−1 = H(ϕψ)−1 ∈ Rec(A) as claimed. �

Let us clarify here the relationship between the two notions of recogniz-
able subsets, recognizable sorted subsets and pure recognizable subsets.

The following fact can be derived directly from Definition 3.1.
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Lemma 3.4 Let A = (A,Ω) be an S-sorted algebra. For any s ∈ S and
T ⊆ As, T ∈ Rec(A, s) iff 〈T 〉 ∈ Rec(A).

The forward direction of the following proposition is again a direct conse-
quence of Definition 3.1, and the converse part follows from Lemma 3.4 and
Proposition 3.3(2).

Proposition 3.5 A sorted subset L = 〈Ls〉s∈S of an S-sorted algebra A =
(A,Ω) is recognizable iff Ls ∈ Rec(A, s) for every s ∈ S.

4 Syntactic congruences and algebras

We shall now present a theory of syntactic congruences and syntactic algebras
for S-sorted algebras similar to those known for semigroups, monoids (cf.
[7, 14, 15]) or general one-sorted algebras (cf. [1, 17, 18]).

Definition 4.1 The syntactic congruence ≈L = 〈≈L
s 〉s∈S of a sorted subset

L of an Ω-algebra A = (A,Ω) is defined by

a ≈L
s b ⇔ (∀s′ ∈ S)(∀α ∈ Tr(A, s, s′))(α(a) ∈ Ls′ ↔ α(b) ∈ Ls′)

for every s ∈ S and a, b ∈ As.

The following basic property of syntactic congruences can be verified ex-
actly as in the one-sorted case.

Lemma 4.2 The syntactic congruence ≈L of any sorted subset L of an Ω-
algebra A = (A,Ω) is the greatest congruence on A that saturates L.

Of course, we have also the following Nerode-Myhill type theorem.

Proposition 4.3 For any sorted subset L of an Ω-algebra A = (A,Ω), the
following are equivalent:

(1) L ∈ Rec(A);

(2) L is saturated by a congruence on A of finite index;

(3) ≈L is of finite index.

Proof. If there exist a finite Ω-algebra B = (B,Ω), a homomorphism ϕ : A →
B and a sorted subset H of B such that L = Hϕ−1, then kerϕ is a congruence
on A of finite index saturating L. On the other hand, if L is saturated by
a congruence θ ∈ Con(A) of finite index, then L is recognized by the finite
Ω-algebra A/θ. Hence, (1) and (2) are equivalent. Conditions (2) and (3)
are equivalent by Lemma 4.2. �

Also the following facts can be proved similarly as their counterparts in
the one-sorted theory. In the proposition, K and L are always sorted subsets.
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Proposition 4.4 Let A = (A,Ω) and B = (B,Ω) be Ω-algebras.

(1) ≈A−L = ≈L, for every L ⊆ A.

(2) ≈K ∩ ≈L ⊆ ≈K∩L, for every K,L ⊆ A.

(3) ≈L ⊆ ≈α−1(L), for every L ⊆ A and any translation α(ξs) ∈ Tr(A, s, s′).
(4) If ϕ : A → B is a homomorphism, then ϕ◦ ≈L ◦ϕ−1 ⊆ ≈Lϕ−1

for every
L ⊆ B. If ϕ is an epimorphism, then ϕ◦ ≈L ◦ϕ−1 = ≈Lϕ−1

.

For any sorted subset L of an Ω-algebraA = (A,Ω), letA/L = 〈As/L〉s∈S,
where As/L = As/≈L

s for each sort s ∈ S. Moreover, for any s ∈ S and
any a ∈ As, let a/L be a shorthand for a/≈L

s .

Definition 4.5 The syntactic algebra A/L = (A/L,Ω) of a sorted subset L
of an Ω-algebra A = (A,Ω) is the quotient algebra A/ ≈L, and the corre-
sponding canonical homomorphism ϕL = 〈ϕL

s 〉s∈S, where for each s ∈ S,

ϕL
s : As → As/L, a 7→ a/L, (a ∈ As),

is called the syntactic homomorphism of L.

It is clear that any sorted subset L of an Ω-algebra A = (A,Ω) is rec-
ognized by its syntactic algebra. Indeed, L = LϕL(ϕL)−1 for the syntactic
homomorphism ϕL : A → A/L. It follows from Lemma 4.2 that A/L is in
the following sense the least algebra recognizing L.

Lemma 4.6 A sorted subset L of an Ω-algebra A is recognizable iff the syn-
tactic algebra A/L is finite. An Ω-algebra B recognizes L iff A/L � B.

Proposition 4.7 Let A = (A,Ω) and B = (B,Ω) be any Ω-algebras.

(1) A/(A− L) = A/L, for any L ⊆ A.

(2) A/K ∩ L � A/K ×A/L, for any K,L ⊆ A.

(3) A/α−1(L) � A/L, for any L ⊆ A, s, s′ ∈ S and α(ξs) ∈ Tr(A, s, s′).
(4) A/Lϕ−1 � B/L, for any homomorphism ϕ : A → B and any L ⊆ B.

Moreover, if ϕ is an epimorphism, then A/Lϕ−1 ∼= B/L.

Proof. Assertions (1) and (3) follow immediately by the corresponding parts
of Proposition 4.4 and Lemma 2.4. For (2) it suffices to note that

A/K ∩ L← A/(≈K ∩ ≈L) ⊆ A/K ×A/L

by Proposition 4.4(2) and Lemma 2.4.
To prove (4), let us first assume that ϕ is an epimorphism and show that

ψs : As/Lϕ
−1 → Bs/L, a/Lϕ

−1 7→ aϕs/L, (s ∈ S, a ∈ As)
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defines an isomorphism ψ = 〈ψs〉s∈S between A/Lϕ−1 and B/L. First we
verify that ψ is well-defined and injective: for each s ∈ S and any a, a′ ∈ As,

(a/L)ψs = (a′/L)ψs ⇔ aϕs ≈L
s a

′ϕs

⇔ (∀s′)(∀β)[β(aϕs) ∈ Ls′ ↔ β(a′ϕs) ∈ Ls′ ]
⇔ (∀s′)(∀α)[αϕ(aϕs) ∈ Ls′ ↔ αϕ(a′ϕs) ∈ Ls′ ]
⇔ (∀s′)(∀α)[α(a)ϕs′ ∈ Ls′ ↔ α(a′)ϕs′ ∈ Ls′ ]
⇔ (∀s′)(∀α)[α(a) ∈ Ls′ϕ

−1
s′ ↔ α(a′) ∈ Ls′ϕ

−1
s′ ]

⇔ a/Lϕ−1 = a′/Lϕ−1,

where s′ ranges over S, α over Tr(A, s, s′) and β over Tr(B, s, s′).
Consider now a homomorphism ϕ : A → B that is not necessarily onto, and
let C = (〈Asϕsϕ

L
s 〉s∈S,Ω) be the subalgebra of B/L obtained as the image of

B under the homomorphism ϕϕL : A → B/L. Then η : A → C, a 7→ aϕϕL, is
an epimorphism, and hence A/Lϕ−1ηη−1 ∼= C/Lϕ−1η. However, this implies
A/Lϕ−1 � B/L since Lϕ−1ηη−1 = Lϕ−1 and C is a subalgebra of B/L. �

Lemma 4.8 If ϕ : A → B is a homomorphism of Ω-algebras and L ⊆ B,
then for every s ∈ S,

ϕs◦ ≈L
s ◦ϕ−1

s ⊆
⋂
{≈β−1(L)ϕ−1

s | β ∈ Tr(B, s, s′), s′ ∈ S},

and if ϕ is an epimorphism, equality holds.

Proof. Let ρ denote the intersection appearing in the claimed equality. Parts
(3) and (4) of 4.4 yield for every β ∈ Tr(B, s, s′),

ϕs◦ ≈L
s ◦ϕ−1

s ⊆ ϕs◦ ≈β−1(L)
s ◦ϕ−1

s ⊆ ≈β−1(L)ϕ−1

s .

Hence ϕs◦ ≈L
s ◦ϕ−1

s ⊆ ρ. Assume now that ϕ is surjective. The converse
inclusion is then obtained by the following chain of implications, where a, a′ ∈
As, s

′ and s′′ range over S, β and γ are translations of B, and (∀β)s,s′ is a
shorthand for (∀β ∈ Tr(B, s, s′)) etc.:

a ρ a′ ⇒ (∀s′)(∀β)s,s′ [a ≈β−1(L)ϕ−1

s a′]

⇒ (∀s′)(∀β)s,s′ [aϕs ≈β−1(L)
s a′ϕs]

⇒ (∀s′, s′′)(∀β)s,s′(∀γ)s,s′′ [γ(aϕs) ∈ β−1(L)s′′ ↔ γ(a′ϕs) ∈ β−1(L)s′′ ]
⇒ (∀s′)(∀β)s,s′(∀γ)s,s[γ(aϕs) ∈ β−1(Ls′)↔ γ(a′ϕs) ∈ β−1(Ls′)]
⇒ (∀s′)(∀β)s,s′(∀γ)s,s[β(γ(aϕs)) ∈ Ls′ ↔ β(γ(a′ϕs)) ∈ Ls′ ]
⇒ (∀s′)(∀β)s,s′ [β(aϕs) ∈ Ls′ ↔ β(a′ϕs) ∈ Ls′ ]
⇒ aϕs ≈L

s a
′ϕs

⇒ a ϕs◦ ≈L
s ◦ϕ−1

s a′.

Here we used also the fact that β−1(L)s′′ = ∅ for every s′′ 6= s. �

Let us now present the natural generalizations of some basic facts known for
monoids [7, 14] and algebras in general in the one-sorted case [17, 18].
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Lemma 4.9 Let L = 〈Ls〉s∈S be a sorted subset of an Ω-algebra A = (A,Ω).
For any s ∈ S and a ∈ As,

a/L =
⋂
{α−1(Ls′) | α(as) ∈ Ls′} \

⋃
{α−1(Ls′) | α(as) /∈ Ls′},

where s′ ranges over S and α over Tr(A, s, s′).

Lemma 4.10 Any congruence θ on an algebra A = (A,Ω) is the intersection
of some syntactic congruences. In particular, θ =

⋂
{≈〈a/θ〉| s ∈ S, a ∈ As}.

Let us call an Ω-algebra A syntactic, if A ∼= B/L for some Ω-algebra B
and some sorted subset L of B. A sorted subset D of an Ω-algebra A is
disjunctive if ≈D = ∆A.

Proposition 4.11 An Ω-algebra A is syntactic iff it has a disjunctive subset.

Subdirect products of Ω-algebras are defined (cf. [12], Section 4.1, or [10],
p. 159) exactly as for one-sorted algebras, and by generalizing in an obvious
way a well-known theorem of Birkhoff (cf. [2], for example), we may say
that an Ω-algebra A = (A,Ω) is subdirectly irreducible if the intersection of
all non-trivial congruences on A is the diagonal relation ∆A. By applying
Lemma 4.10 to the diagonal relation we get the following result.

Corollary 4.12 Every subdirectly irreducible Ω-algebra is syntactic.

Since it is clear that also varieties of many-sorted algebras are generated
by their subdirectly irreducible members, Corollary 4.12 implies the following
important fact. However, let us note that the result follows also directly
from Lemma 4.10: A ⊆

∏
{A/ ≈{a}| a ∈ A} for any finite A = (A,Ω) since

∆A =
⋂
{≈{a}| a ∈ A}.

Lemma 4.13 Every Ω-VFA is generated by syntactic algebras. Hence, if K
is an Ω-VFA and A any finite Ω-algebra, then A ∈ K iff A � A1× · · · ×An

for some n ≥ 0 and some syntactic algebras A1, . . . ,An ∈ K.

5 Varieties of recognizable V-sets and vari-

eties of V-congruences

Let S and Ω be again a finite set of sorts and an S-sorted ranked alphabet,
respectively. We shall consider varieties of recognizable subsets of finitely
generated free algebras over a given variety V of Ω-algebras. If V is the
class of all Ω-algebras, we are actually dealing with varieties of many-sorted
tree languages. In what follows, we call finite S-sorted alphabets full for Ω
simply full alphabets, and X = 〈Xs〉s∈S and Y = 〈Ys〉s∈S are always such full
alphabets.
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The free algebra FV(X) = (FV(X),Ω) exists for every full alphabet X,
and we call the recognizable subsets of FV(X) recognizable V-sets. The
syntactic algebra FV(X)/L of a sorted subset L of FV(X) is denoted simply
SA(L). It is clear that SA(L) ∈ V.

We shall also need the following fact that can proved similarly as its
one-sorted counterpart [7, 17, 18].

Lemma 5.1 Let A is a finite algebra in V and let X be a full alphabet such
that for some generating set G = 〈Gs〉s∈S of A, |Gs| ≤ |Xs| for every s ∈ S.
Then A is syntactic iff A ∼= SA(L) for some L ∈ Rec(FV(X)).

A family of recognizable V-sets is a mapping R that assigns to each full
alphabetX a setR(X) ⊆ Rec(FV(X)) of recognizable V-sets. We write then
R = {R(X)}X with the understanding that X ranges over all full alphabets.
The inclusion relation and the basic set-operations are defined for families of
recognizable V-sets by the natural componentwise conditions. For example,
if R1 and R2 are any families of recognizable V-sets, then R1 ⊆ R2 iff
R1(X) ⊆ R2(X) for every X.

The for any X and L ⊆ FV(X), let L denote the complement FV(X)−L.

Definition 5.2 A family of recognizable V-sets R = {R(X)}X is a variety
of recognizable V-sets, a V-VRS for short, if for all full alphabets X and Y ,

(1) R(X) 6= ∅,
(2) K,L ∈ R(X) implies K ∩ L,L ∈ R(X),

(3) if L ∈ R(X), then α−1(L) ∈ R(X) for every α ∈ Tr(FV(X)), and

(4) if L ∈ R(Y ), then Lϕ−1 ∈ R(X) for every ϕ : FV(X)→ FV(Y ).

Let VRS(V) denote the class of all varieties of recognizable V-sets.

It is clear that the intersection of any family of varieties of recognizable
V-sets is again a V-VRS, and hence (VRS(V),⊆) is a complete (in fact,
algebraic) lattice.

If L = 〈Ls〉s∈S is a sorted subset of any algebra A = (A,Ω) and s ∈ S
is any sort, then 〈Ls〉 = 1−1

A(s)(L). Applied to the algebras FV(X), this
observation yields the following fact.

Lemma 5.3 Let R = {R(X)}X be a V-VRS. If L = 〈Ls〉s∈S ∈ R(X) for
some X, then 〈Ls〉 ∈ R(X) for every s ∈ S.

From Lemma 5.3 and Lemma 4.9 we get directly the following fact.

Lemma 5.4 If R = {R(X)}X is a V-VRS and L ∈ R(X) for some X,
then 〈a/L〉 ∈ R(X) for any s ∈ S and any a ∈ FV (X)s.

15



For any full alphabet X, let FCon(FV(X)) denote the set of all congru-
ences on FV(X) of finite index. Such congruences are called V-congruences.
A family of V-congruences is a map Γ that assigns to each X a set Γ(X) ⊆
FCon(FV(X)). We represent such a family in the form Γ = {Γ(X)}X .

Definition 5.5 A family of V-congruences Γ = {Γ(X)}X is a variety of
V-congruences, a V-VFC for short, if for all X and Y ,

(1) Γ(X) 6= ∅,
(2) if θ, θ′ ∈ Γ(X), then θ ∩ θ′ ∈ Γ(X),

(3) if θ ∈ Γ(X) and θ ⊆ θ′, then θ′ ∈ Γ(X), and

(4) if θ ∈ Γ(Y ), then ϕ ◦ θ ◦ ϕ−1 ∈ Γ(X) for any homomorphism ϕ :
FV(X)→ FV(Y ).

Let VFC(V) denote the class of all varieties of V-congruences.

In other words, a variety of V-congruences is a family of filters of the
lattices FCon(FV(X)) closed under inverse homomorphisms. It is again easy
to see that (VFC(V),⊆) is an algebraic lattice.

6 The Variety Theorem

Let S, Ω and V be as in the previous section. By a variety of finite V-
algebras, a V-VFA for short, we mean a variety of finite Ω-algebras contained
in V. Let VFA(V) be the class of all V-VFAs. We shall prove a Variety
Theorem that establishes a triple of bijective correspondences between all
varieties of recognizable V-sets, all varieties of finite V-algebras, and all
varieties of V-congruences. The proof is similar to those of various other
Variety Theorems, and in particular to the one of [18]. However, for the
convenience of the reader we present a rather detailed proof.

Let us now introduce the six mappings that will yield the Variety Theorem
in the form of three pairs of mutually inverse isomorphisms between the three
complete lattices (VFA(V),⊆), (VRS(V),⊆) and (VFC(V),⊆).

Definition 6.1 For any V-VFA K, any V-VRS R, and any V-VFC Γ, let

(1) Kr be the family of recognizable V-sets such that for each X,

Kr(X) = {L ⊆ FV(X) | SA(L) ∈ K},

(2) Kc be the family of V-congruences such that for each X,

Kc(X) = {θ ∈ FCon(FV(X)) | FV(X)/θ ∈ K},

(3) Ra be the V-VFA generated by the syntactic algebras SA(L) with
L ∈ R(X) for some X,

16



(4) Rc be the family of V-congruences such that for each X, Rc(X) is the
filter in FCon(FV(X)) generated by the syntactic congruences ≈L of
all sets L ∈ R(X),

(5) Γa be the V-VFA generated by all algebras FV(X)/θ such that θ ∈
R(X) for some X, and let

(6) Γr be the family of recognizable V-sets such that for each X,

Γr(X) = {L ⊆ FV(X) | ≈L∈ Γ(X)}.

Lemma 6.2 For any K ∈ VFA(V), R ∈ VRS(V) and Γ ∈ VFC(V),

(1) Ra,Γa ∈ VFA(V),

(2) Kr,Γr ∈ VRS(V), and

(3) Kc,Rc ∈ VFC(V).

Moreover, the mappings K 7→ Kr, K 7→ Kc, R 7→ Ra, R 7→ Ra, Γ 7→ Γa

and Γ 7→ Γr are all inclusion-preserving.

Proof. By definition, Ra and Γa are V-VFAs. That Kr and Γr are V-VRSs,
follows from Propositions 4.7 and 4.4. Finally, Lemmas 2.4 and 4.8, and
Proposition 4.4 imply that Kc and Rc are in VFC(V). �

We shall show that the six mappings introduced above form three pairs of
mutually inverse isomorphisms between the complete lattices (VFA(V),⊆),
(VRS(V),⊆) and (VFC(V),⊆). Since we already know that all of the maps
are isotone, it suffices to show that they are pairwise inverses of each other.

Proposition 6.3 The lattices (VFA(V),⊆) and (VRS(V),⊆) are isomor-
phic as

(1) Kra = K for every K ∈ VFA(V), and

(2) Rar = R for every R ∈ VRS(V).

Proof. It suffices to prove (1) and (2).
Since Kra is generated by syntactic algebras belonging to K, the inclusion

Kra ⊆ K is obvious. For the converse inclusion, let us consider any syntactic
algebra A ∈ K. By Lemma 5.1 there exists an X such that A ∼= SA(L) for
some L ∈ Rec(FV(X)). Then L ∈ Kr(X) and hence A ∈ Kra. This implies
K ⊆ Kra because, by Lemma 4.13, K is generated by syntactic algebras.

The inclusion R ⊆ Rar is obvious: if L ∈ R(X) for any X, then SA(L) ∈
Ra and hence L ∈ Rar(X). Assume then that L ∈ Rar(X) for some X.
Then SA(L) ∈ Ra implies that SA(L) � SA(L1) × · · · × SA(Lk) for some
k ≥ 1, some full alphabets Xi = 〈Xi(s)〉s∈S and sets Li ∈ R(Xi) (i =
1, . . . , k). For each i = 1, . . . , k, let ϕi denote the syntactic homomorphisms
ϕLi : FV(Xi)→ SA(Ti). Then there is a homomorphism

η : FV(X1)× · · · × FV(Xk) −→ SA(L1)× · · · × SA(Lk)
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such that for every i = 1, . . . , k, ηπi = ϕiτi, where

πi : SA(L1)× · · · × SA(Lk) −→ SA(Li),

and
τi : FV(X1)× · · · × FV(Xk) −→ FV(Xi)

are the respective projection functions. By Lemma 4.6 there exist a homo-
morphism ϕ : FV(X)→ SA(L1)× · · · × SA(Lk) and a subset H of SA(L1)×
· · · × SA(Lk) such that L = Hϕ−1. Since η is an epimorphism, there is a
homomorphism ψ : FV(X) → FV(X1) × · · · × FV(Xk) such that ψη = ϕ.
Because H is finite, L =

⋃
u∈H uϕ

−1 is the union of finitely many sets uϕ−1

with u = (u1, . . . , uk) ∈ SA(L1)× · · · × SA(Lk). For each such u ∈ H,

uϕ−1 =
⋂
{ui(ϕπi)

−1 | 1 ≤ i ≤ k} =
⋂
{uiϕ

−1
i (ψτi)

−1 | 1 ≤ i ≤ k}.

By Lemma 5.4, uiϕ
−1
i ∈ R(Xi) for each i = 1, . . . , k, and thus L ∈ R(X). �

Lemma 6.4 For any V-VFC Γ and any finite algebra A ∈ V, A ∈ Γa iff
there exist a finite set X and an epimorphism ϕ : FV(X) → A such that
kerϕ ∈ Γ(X).

Proof. If A ∈ Γa, then A � FV(X1)/θ1 × · · · × FV(Xk)/θk for some k ≥ 1,
some full alphabetsX1, · · · , Xk and congruences θ1 ∈ Γ(X1), · · · , θk ∈ Γ(Xk).
This means that for some algebra B there exist an epimorphism η : B → A
and a monomorphism ϕ : B → FV(X1)/θ1 × · · · × FV(Xk)/θk. The algebras
FV(Xi)/θi are finite members of V and hence there is for some X an epimor-
phism ψ : FV(X) → B. The condition (a1, · · · , ak)χ = (a1/θ1, · · · , ak/θk)
defines an epimorphism

χ : FV(X1)× · · · × FV(Xk) −→ FV(X1)/θ1 × · · · × FV(Xk)/θk.

For each i = 1, . . . , k, let πi : FV(X1)×· · ·×FV(Xk)→ FV(Xi) be the ith pro-
jection, and let ω : FV(X)→ FV(X1)×· · ·×FV(Xk) be the homomorphism
such that ωχ = ψϕ. Then ψη : FV(X)→ A is an epimorphism, and

kerψη ⊇ kerψϕ = kerωχ =
⋂
{ωπi ◦ θi ◦ (ωπi)

−1 | 1 ≤ i ≤ k}

shows that kerψη ∈ Γ(X).
The converse implication is immediately clear by the definition of Γa. �

Proposition 6.5 The lattices (VFA(V),⊆) and (VFC(V),⊆) are isomor-
phic as

(1) Kca = K for every V-VFA K, and
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(2) Γac = Γ for every V-VFCΓ.

Proof. By Lemma 6.4, A ∈ Kca iff for some X there exists an epimorphism
ϕ : FV(X)→ A such that kerϕ ∈ Kc. By Proposition 2.1 this is equivalent
to FV(X)/ kerϕ ∼= A, which is the case exactly when A ∈ K. Thus (1)
follows.

To prove (2), we consider any X and θ ∈ FCon(FV(X)). If θ ∈ Γac(X),
then by Lemma 6.4, there exist a Y and an epimorphism ψ : FV(Y ) →
FV(X)/θ such that kerψ ∈ Γ(Y ). Since ψ is surjective, there is for any
s ∈ S and every x ∈ Xs an element txs ∈ FV(Y )s such that txsψs = x/θs. If
ϕ : FV(X) → FV(Y ) is the homomorphism such that xϕ = txs for all s ∈ S
and x ∈ Xs, then ϕψ = θ\, where θ\ : FV(X) → FV(X)/θ is the canonical
epimorphism. Hence θ = kerϕψ = ϕ ◦ (kerψ) ◦ ϕ−1 ∈ Γ(X). The converse
inclusion is obvious: if θ ∈ Γ(X), then FV(X)/θ ∈ Γa implies θ ∈ Γac. �

Propositions 6.3 and 6.5 already show that the lattices (VRS(V),⊆) and
(VFC(V),⊆) are isomorphic, but the following composition laws imply also
that the mappings R 7→ Rc and Γ 7→ Γr form a pair of mutually inverse
isomorphisms between them.

Proposition 6.6 For any V-VFA K, V-VRS R, and V-VFC Γ,

(1) Kcr = Kr,

(2) Rac = Rc, and

(3) Γra = Γa.

Proof. For (1) it suffices to note that

L ∈ Kr(X) ⇔ SA(L) ∈ K ⇔ ≈L∈ Kc(X) ⇔ L ∈ Kcr(X),

for any X and L ⊆ FV(X).
To prove (2), let us consider any X and FCon(FV(X)). If θ ∈ Rc(X),

then ≈L1 ∩ · · · ∩ ≈Lk ⊆ θ for some k ≥ 1 and L1, · · · , Lk ∈ R(X). This
implies that FV(X)/θ ∈ Ra since FV(X)/θ � SA(L1) × · · · × SA(Lk), and
therefore θ ∈ Rac.

If θ ∈ Rac(X), then FV(X)/θ � SA(L1) × · · · × SA(Lk) for some full
alphabets X1, · · · , Xk and sorted sets L1 ∈ R(X1), · · · , Lk ∈ R(Xk) (k ≥ 1).
Hence, there is an Ω-algebra B such that there exist an epimorphism ψ : B →
FV(X) and a monomorphism η : B → SA(L1)× · · · × SA(Lk). We may also
assume that there is an epimorphism ϕ : FV(X) → B such that ϕψ = θ\ (if
not, we replace B with a suitable subalgebra). For each i = 1, . . . k, let πi be
the ith projection from FV(X1)× · · · × FV(Xk) onto FV(Xi), and let

π : FV(X1)× · · · × FV(Xk) −→ SA(L1)× · · · × SA(Lk)

be the homomorphism such that (t1, . . . , tk) 7→ (t1/L1, . . . , tk/Lk) for all s ∈
S and t1 ∈ FV(X1)s, . . . tk ∈ FV(Xk)s. Since π clearly is surjective, we may
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define a homomorphism γ : FV(X) → FV(X1) × · · · × FV(Xk) for which
γπ = ϕη. Then

θ = kerϕψ ⊇ kerϕη = ker γπ =
⋂
{γπi◦ ≈Li ◦(γπi)

−1 | 1 ≤ i ≤ k},

and hence θ ∈ Rc(X).
To prove (3), consider any finite algebra A = (A,Ω). Now, A belongs to

Γa iff A � FV(X1)/θ1×· · ·×FV(Xk)/θk, for some full alphabets X1, · · · , Xk

and and some θ1 ∈ Γ(X1), · · · , θk ∈ Γ(Xk) (k ≥ 1). Since any Γ(X) is
generated by syntactic congruences by Lemma 4.10, we can assume that each
θi is the syntactic congruence of some Li ⊆ FV(Xi), and then Li ∈ Γr(Xi),
and so A ∈ Γa iff A ∈ Γra. �

Proposition 6.7 The lattices (VRS(V),⊆) and (VFC(V),⊆) are isomor-
phic as

(1) Rcr = R for every R ∈ VRS(V), and
(2) Γrc = Γ for every Γ ∈ VFC(V).

Proof. By using the previous three propositions we can see that Rcr =
Racr = Rar = R for every R ∈ VRS(V). Similarly, Γrc = Γrac = Γac = Γ for
every Γ ∈ VFC(V). �

Let us note that Proposition 6.7 could be obtained also directly in a
similar way as the analogous facts are proved in [1]. For example, Rcr = R
can be seen as follows.

The inclusion R ⊆ Rcr follows directly from the definitions of the two
operators. On the other hand, if L ∈ Rcr(X), then ≈L1 ∩ . . .∩ ≈Lk ⊆ ≈L

for some L1, . . . , Lk ∈ R(X). This means that each ≈L-class, and hence also
L, is a Boolean combination of ≈Li-classes (1 ≤ i ≤ k), and since each such
class is in R(X) by Lemma 5.4, this implies L ∈ R(X).

We may sum up the results of this section as follows.

Theorem 6.8 (Variety Theorem) The mappings

VFA(V)→ VRS(V), K 7→ Kr, VRS(V)→ VFA(V), R 7→ Ra,
VFA(V)→ VFC(V), K 7→ Kc, VFC(V)→ VFA(V), Γ 7→ Γa, and
VRS(V)→ VFC(V), R 7→ Rc, VFC(V)→ VRS(V), Γ 7→ Γr,

form three pairs of isomorphisms that are inverses of each other between the
lattices (VFA(V),⊆), (VRS(V),⊆), and (VFC(V),⊆). Moreover, Kcr =
Kr, Krc = Kc, Rca = Ra, Rac = Rc, Γra = Γa, and Γar = Γr, for any
K ∈ VFA(V), R ∈ VRS(V), and Γ ∈ VFC(V).

Proof. That the given mappings form isomorphisms of the claimed kind fol-
lows from Propositions 6.3, 6.5, and 6.7. Moreover, Proposition 6.6 contains
half of the composition laws, and together with Propositions 6.3, 6.5 and 6.7
it implies also the rest of them. For example, by Propositions 6.6 and 6.3,
we get Krc = (Kr)ac = (Kra)c = Kc for any K ∈ VFA(V). �
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7 Varieties of pure recognizable sets

In this section we shall show how the above variety theory can be translated
into a theory of varieties of pure recognizable sets.

Let V be again a given variety of Ω-algebras. For any full alphabet X and
any sort s ∈ S, the members of Rec(FV(X), s) are called pure recognizable
VX-sets of sort s, or simply pure recognizable V-sets. A family of pure
recognizable V-sets is a mapping P that assigns to each X and each s a set
P(X, s) ⊆ Rec(FV(X), s) of pure recognizable VX-sets of sort s, and we
write it as P = {P(X, s)}X,s.

Definition 7.1 A variety of pure recognizable V-sets, a V-VRS for short, is
a family of pure recognizable V-sets P = {P(X, s)}X,s such that for all full
alphabets X and Y and all sorts s, s′ ∈ S,

(1) P(X, s) 6= ∅,
(2) T, U ∈ P(X, s) implies T ∩ U, T ∈ P(X, s),

(3) if T ∈ P(X, s′) and α ∈ Tr(FV(X), s, s′), then α−1(T ) ∈ P(X, s), and

(4) if T ∈ P(Y, s) and ϕ : FV(X) → FV(Y ) is any homomorphism, then
also Tϕ−1 ∈ P(X, s).

Let VPRS(V) denote the class of all varieties of pure recognizable V-sets.

Of course, (VPRS(V),⊆) is a complete lattice. We shall now show that
there is a natural correspondence between varieties of pure recognizable V-
sets and varieties of recognizable V-sets.

Definition 7.2 With any family P = {P(X, s)}X,s of pure recognizable V-
sets we associate the family of recognizable V-sets Pr = {Pr(X)}X such
that

Pr(X) = {L ⊆ FV(X) | (∀s ∈ S)Ls ∈ P(X, s)}

for each X. With any family R = {R(X)}X of recognizable V-sets we
associate the family Rp = {Rp(X)}X,s of pure recognizable V-sets such that

Rp(X, s) = {Ls | L ∈ R(X)}

for any X and s ∈ S.

Let us first note a few basic facts about these mappings. The notation
〈T 〉 was introduced before Lemma 3.4.

Lemma 7.3 Let P = {P(X, s)}X,s be a V-VPRS and R = {R(X)}X be a
V-VRS. For any X, s ∈ S and T ⊆ FV(X),

(1) T ∈ P(X, s) iff 〈T 〉 ∈ Pr(X), and

(2) T ∈ Rp(X, s) iff 〈T 〉 ∈ R(X).
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Proof. If T ∈ P(X, s), then 〈T 〉 ∈ Pr(X) since 〈T 〉s = T ∈ P(X, s) and
Tu = ∅ ∈ P(X, u) for every u ∈ S, u 6= s. On the other hand, if 〈T 〉 ∈ Pr(X),
then T = 〈T 〉s ∈ P(X, s), and hence (1) holds.

To prove (2), assume first that T ∈ Rp(X, s). Then T = Ls for some
L ∈ R(X). If 1s denotes the identity translation FV(X) → FV(X), then
〈T 〉 = 1−1

s (L) ∈ R(X). On the other hand, if 〈T 〉 ∈ R(X), then T = 〈T 〉s ∈
Rp(X, s) by the definition of Rp. �

Lemma 7.4 The mappings P 7→ Pr and R 7→ Rp are inclusion-preserving.
Moreover,

(1) if P ∈ VPRS(V), then Pr ∈ VRS(V), and

(2) if R ∈ VRS(V), then Rp ∈ VPRS(V).

Proof. The first claim is completely obvious. Now, let P ∈ VPRS(V). That
Pr satisfies the conditions of Definition 5.2 follows easily from the assumption
that P satisfies the corresponding conditions of Definition 7.1. For example,

K,L ∈ Pr(X) ⇒ (∀s ∈ S) Ks, Ls ∈ P(X, s)
⇒ (∀s ∈ S) Ks ∩ Ls ∈ P(X, s)
⇒ (∀s ∈ S) (K ∩ L)s ∈ P(X, s)
⇒ K ∩ L ∈ Pr(X),

for any X and K,L ⊆ FV(X). Similarly, if L ∈ Pr(X) and α is a translation
in Tr(FV(X), s, s′) for some X and s, s′ ∈ S, then Ls′ ∈ P(X, s′) implies that
α−1(L)s = α−1(Ls′) ∈ P(X, s), and hence α−1(L) ∈ Pr(X) as α−1(L)u = ∅ ∈
P(X, u) for every u ∈ S, u 6= s. Assertion (2) has a similar proof. �

Proposition 7.5 The lattices (VPRS(V),⊆) and (VRS(V),⊆) are isomor-
phic because

(1) Prp = P for every P ∈ VPRS(V), and

(2) Rpr = R for every R ∈ VRS(V).

Proof. In view of Lemma 7.4 it suffices to prove (1) and (2), and these
claims follow directly from Definition 7.2. For example, let P ∈ VPRS(V)
and consider any X and s ∈ S. If T ∈ P(X, s), then 〈T 〉 ∈ Pr(X) by Lemma
7.3, and hence T = 〈T 〉s ∈ Prp. Conversely: if T ∈ Prp, then there is an
L ∈ Pr(X) such that T = Ls. But L ∈ Pr(X) means that Lu ∈ P(X, u) for
every u ∈ S, and therefore, in particular, T = Ls ∈ P(X, s). Assertion (2)
can be verified similarly. �

Proposition 7.5 already implies that (VPRS(V),⊆) is isomorphic also to
the lattices (VFA(V),⊆) and (VFC(V),⊆) via (VRS(V),⊆), but we shall
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also exhibit direct isomorphisms. However, let us first consider generally
syntactic congruences and algebras of subsets of a given sort.

Courcelle [5] defines the syntactic congruence of a subset T ⊆ Au of sort
u ∈ S of an Ω-algebra A = (A,Ω) as the sorted equivalence ∼T = 〈∼T

s 〉s∈S

on A such that for each s ∈ S and any a, b ∈ A,

a ∼T
s b ⇔ (∀α ∈ Tr(A, s, u))(α(a) ∈ T ↔ α(b) ∈ T ).

It is easy to see that ∼T is the greatest congruence θ on A such that θu

saturates T . Let us call such congruences pure syntactic congruences.
The following lemma is quite obvious.

Lemma 7.6 Let A = (A,Ω) be an Ω-algebra. Then ∼T = ≈〈T 〉 for any
subset T ⊆ Au of any given sort u ∈ S. On the other hand,

≈L =
⋂
{∼Ls | s ∈ S},

for any sorted subset L = 〈Ls〉s∈S of A.

Hence, any pure syntactic congruence is a syntactic congruence in our
sense, while every syntactic congruence is the intersection of finitely many
pure syntactic congruences.

The syntactic algebra of a subset T ⊆ As of any sort s ∈ S of an Ω-algebra
A = (A,Ω), is defined in [5] as the quotient algebra A/∼T . Let us call an
algebra pure syntactic if it is isomorphic to such a syntactic algebra.

Proposition 7.7 Any pure syntactic Ω-algebra is syntactic, and any syn-
tactic Ω-algebra is a subdirect product of a finite family of pure syntactic
Ω-algebras. Furthermore, every subdirectly irreducible Ω-algebra is pure syn-
tactic.

Proof. The first two assertions are immediate consequences of Lemma 7.6.
If A = (A,Ω) is subdirectly irreducible, then

⋂
{∼{a} | a ∈ As, s ∈ S} = ∆A

implies that ∼{a} = ∆A for at least some s ∈ S and a ∈ As, and hence
A ∼= A/∼{a} is pure syntactic. �

Corollary 7.8 Every V-VFA is generated by pure syntactic algebras.

Let us return to pure recognizable V-sets. The syntactic algebra FV(X)/∼T

of a subset T ⊆ FV(X)s of sort some s ∈ S of FV(X) is denoted simply
PSA(T ). Note that PSA(T ) = SA(〈T 〉) by the first assertion of Lemma 7.6.

For any V-VPRS P , let Pa be the V-VFA generated by the pure syntactic
algebras PSA(T ), where T ∈ P(X, s) for some X and s ∈ S.

Lemma 7.9 (1) Pa = Pra for any V-VPRS P, and
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(2) Ra = Rpa for any V-VRS R.

Proof. To prove (1) it suffices to show that the syntactic algebras generating
Pa are in Pra, and conversely. For any X, s ∈ S and T ∈ P(X, s), we have
PSA(T ) = SA(〈T 〉) ∈ Pra since 〈T 〉 ∈ Pr. Conversely, if L ∈ Pr(X) for
some X, then SA(L) is by Proposition 7.7 a subdirect product of the pure
syntactic algebras PSA(Ls) (s ∈ S). Because Ls ∈ P(X, s), and therefore
PSA(Ls) ∈ Pa, for every s ∈ S, this means that SA(L) ∈ Pa. Assertion (2)
has an equally straightforward proof. �

Now it is clear that P 7→ Pa defines an isomorphism from (VPRS(V),⊆)
to (VFA(V),⊆). In fact, it is the composition of the two isomorphisms
P 7→ Pr and R 7→ Ra. This converse can be defined explicitly as follows: for
any V-VFA K, let Kp be the family of pure recognizable V-sets such that
for any X, s ∈ S and T ⊆ FV(X)s, T ∈ Kp(X, s) iff PSA(T ) ∈ K.

Corresponding to Lemma 7.9 the following facts hold.

Lemma 7.10 For any V-VFA K, (1) Kp = Krp, and (2) Kr = Kpr.

Proof. To prove (1) we note that for any X, s ∈ S and T ⊆ FV(X)s,

T ∈ Kp(X, s) ⇔ PSA(T ) ∈ K ⇔ SA(〈T 〉) ∈ K ⇔ 〈T 〉 ∈ Kr ⇔ T ∈ Krp.

Now (2) follows since Kpr = Krpr = Kr by Proposition 7.5. �

Let us now consider the connections between pure recognizable V-sets
and V-congruences. Proposition 7.5 and the Variety Theorem yield the iso-
morphisms VPRS(V)→ VFC(V),P 7→ Prc and VFC(V)→ VPRS(V),Γ 7→
Γcp, via VRS(V), but we can also define them directly as follows.

For any V-VPRS P , let Pc be the family of V-congruences such that for
each X, Pc(X) is the filter of FCon(FV(X)) generated by the pure syntactic
congruences ∼T , where T ∈ P(X, s) for some s ∈ S. Conversely, for any
V-VFC Γ, let Γp be the family of pure recognizable V-sets such that for any
X and s ∈ S,

Γp(X, s) = {T ⊆ FV(X)s | ∼T∈ Γ(X)}.

Lemma 7.11 (1) Pc = Prc for any V-VPRS P, and

(2) Rc = Rpc for any V-VRS R.

Proof. To prove (1), we show that for any X, the generators of Pc(X) are
in Prc(X), and the generators of Prc(X) are in Pc(X).

For any s ∈ S and T ∈ P(X, s), 〈T 〉 ∈ Pr(X) and ∼T = ≈〈T 〉∈ Prc. On
the other hand, if L ∈ Pr(X), then Ls ∈ P(X, s) for each s ∈ S, and hence
≈L∈ Pc(X) by Lemma 7.6. Assertion (2) can be verified similarly. �
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Lemma 7.12 For any V-VFC Γ, (1) Γp = Γrp, and (2) Γr = Γpr.

Proof. To prove (1), it suffices to note that for any X, s ∈ S and T ⊆
FV(X)s, T ∈ Γp(X, s) ⇔ ∼T∈ Γ(X) ⇔ ≈〈T 〉∈ Γ(X) ⇔ 〈T 〉 ∈ Γr(X) ⇔
T ∈ Γrp(X), where Lemma 7.3 is used in the last step.

Assertion (2) follows from (1) and Proposition 7.5: Γpr = Γrpr = Γr. �
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