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Abstract

Counting the number of distinct factors in the words of a language gives a
measure of complexity for that language similar to the factor-complexity of
infinite words. Similarly as for infinite words, we prove that this complexity
function f(n) is either bounded or f(n) ≥ n+1. We call languages with bounded
complexity periodic and languages with complexity f(n) = n + 1 Sturmian.
We describe the structure of periodic languages and characterize the Sturmian
languages as the sets of factors of (one- or two-way) infinite Sturmian words.
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1 Introduction

A function can be associated in a natural way to an infinite word by counting
the number of factors of the same length. Fundamental results concerning this
function and the implications on the structure of the underlying infinite word
were proved already by Morse and Hedlund [14], Coven and Hedlund [4]. The
most interesting cases are those corresponding to very low complexity of the
above mentioned function, that is, bounded or marginally unbounded.

On the other hand, a similar function can be considered for languages of finite
words. Already Berstel [1] considered the notion of the population function of
a language L which associates, to every n, the number of words of length at
most n in L. The notion of the number of words of the same length is certainly
very basic one in language theory and it has been intensively studied already in
[8, 9, 10]. Many results were discovered (or rediscovered) later in [6, 7, 13, 15, 18],
to quote a few; [7] gives a good account of the history of the most important
results. The same problem was also investigated for L-systems; see [16].

The above mentioned results were concerned only with special classes of
languages, such as regular, context-free, D0L, etc. In turn, we consider here
unrestricted languages but, in connection with infinite words, we count the
number of factors of the same length. For this reason, we shall work with
factorial languages, that is, languages which contain all factors of their words.
Therefore, counting factors or words of the same length will make no difference.
As it turns out, counting the number of factors of a given language gives enough
information about the structure of the language, without the need of extra
information about the language, such as its position in the Chomsky hierarchy.

For a (finite, one-way, or two-way infinite) word α, denote fn(α) the number
of factors of α of length n. As proved in [4], if α is right-infinite, then either
fn(α) is bounded, or fn(α) ≥ n + 1, for all n. Right-infinite words α such
that fn(α) is bounded are called periodic (or often, ultimately periodic). Right-
infinite words α with fn(α) = n + 1 for all n ≥ 0, are called Sturmian, see [2].
Both these cases have been studied extensively in the literature, see, e.g. [11].
Two-way infinite words with the same property will be also called Sturmian for
uniformity. They have been characterized by Coven and Hedlund [4].

We prove first a gap theorem, showing that the function f we investigate
can be either bounded or at least linear. In the bounded case we obtain a class
of languages, which we call periodic, for which all words have a short period
except possibly for short prefixes and suffixes. We give a characterization of such
languages similar with the one of Coven and Hedlund [4] for periodic words.

We consider then the marginally unbounded case, that is, when the number
of words of the same length is always one greater than the length. We call
such languages Sturmian in analogy with the terminology used for words. We
characterize Sturmian languages as precisely the sets of factors of Sturmian
(one- or two-way) infinite words, a rather unexpected result which reenforces
the strength of the Sturmian property.

Several research directions are proposed. The connection between periodic
and Sturmian infinite words and the corresponding periodic and Sturmian lan-
guages, respectively, is shown to be very strong. It seems interesting to investi-
gate languages of higher complexity and see what is the relation with the infinite
words.
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2 Definitions

For basic notions and results on words we refer to [3], [11], [12] and for languages
we refer to [5, 17].

An alphabet A is a finite nonempty set; A∗ denotes the set of all finite words
over A; ε is the empty word. The number of letters in A is denoted |A|. For
a word w ∈ A∗, the length of w, which represents the number of letters of w,
is denoted |w|. The set of words of length n (at most n) over A is denoted
An (A≤n, resp.). A language is a subset of A∗. If w = xyz, for some words
w, x, y, z ∈ A∗, then x is a prefix of w, y is a factor of w, and z is a suffix of w.
For a language L, we shall denote by fact(L) the set of all factors of words in
L and factn(L) = fact(L) ∩ An; L is called factorial if L = fact(L). We make
the convention that all languages considered throughout the paper are factorial
unless otherwise specified. We also denote pref(L) the set of all prefixes of words
in L.

A right-infinite word α is a function α : N → A, where N is the set of positive
integers. We also write α = α1α2 . . ., with αi ∈ A, for all i ≥ 1. Any finite
word αi,j = αiαi+1 . . . αi+j , i ≥ 1, j ≥ 0 is a factor of α; if i = 1, then αi,j is
also called a prefix of α. We denote the set of all finite factors of α by fact(α).
The notations pref(L) and pref(α) are similarly defined for prefixes instead of
factors. A bi-infinite (two-way infinite) word β is a function β : Z → A, where
Z is the set of integers. We also write β = . . . β−1β0β1 . . ., for all i ∈ Z. Any
finite word βiβi+1 . . . βi+j , i ∈ Z, j ≥ 0 is a factor of β; we denote fact(β) the
set of all factors of β.

For a language L and a non-negative integer n, we denote by fn(L) the
number of words of length n in fact(L). Similarly, for a (right- or bi-) infinite
word α, fn(α) is the number of factors of length n in α.

An infinite word (one- or two-way) α is called Sturmian if, for any n ≥ 0,
fn(α) = n + 1.

The factor graph Gn(L) of order n associated with a language L has the set
of vertices factn(L) and the set of edges {(aw,wb) | a, b ∈ A, awb ∈ factn+1(L)}.

3 Periodic languages

Coven and Hedlund [4] proved the following characterizations for the ultimate
periodicity of a right-infinite word α using the function fn(α).

Theorem 1 (Coven and Hedlund [4]). Let α be a right-infinite word over
A. The following assertions are equivalent:

(i) α = uvω, for some u ∈ A∗, v ∈ A+;

(ii) fn(α) is bounded;

(iii) fn(α) < n + k − 1, for some n ≥ 1, where k is the number of letters in α;

(iv) fn(α) = fn+1(α), for some n ≥ 0.

We shall find similar results for languages; the function fn(α) is replaced by
fn(L). The function fn(L) seems more complicated than the one for infinite
words, see the examples below.

Example 1. (i) For any finite language L1, fn(L1) = 0, for all sufficiently
large n.

(ii) If L2 = ab∗, then fn(L2) = 2, for all n ≥ 1.
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(iii) If L3 = A≤k, for some k ≥ 1, then fn(L3) = |A|n, for all n ≤ k and
fn(L3) = 0, for all n > k. Thus, the function fn may not be uniform as
in the case of infinite words.

(iv) If L4 = a∗b∗, then fn(L4) = n + 1, for all n ≥ 0.

(v) If L5 = a∗b∗ ∪ c∗, then fn(L5) = n + 2, for all n ≥ 0.

(vi) If L6 = a∗b∗ ∪ a∗c∗, then fn(L6) = 2n + 1, for all n ≥ 0.

(vii) If L7 = a(bb)∗c, then f2n+2(L7) = 4 and f2n+1(L7) = 3, for all n ≥ 0.

We shall need the following technical lemma in the proof of the main result
of this section.

Lemma 2. Let z ∈ A∗ and n ≥ 1 such that the suffix of z of length n − 1
appears at least twice in z and fn(z) < n + 1. Then z = uvs for some u, v ∈ A∗

with |uv| ≤ 3n.

Proof. The claim follows trivially if z contains a single letter. Assume then z

contains at least two different letters. Any suffix of length n − 1 or less of z

appears at least twice in z. Therefore, any factor of length i ≤ n − 1 of z can
be extended to the right to a factor of length i + 1 of z. Also, different factors
of length i give different factors of length i + 1. Thus, fn(z) ≥ fn−1(z) ≥ · · · ≥
f1(z). If all these inequalities were strict, since f1(z) ≥ 2, we would obtain
fn(z) ≥ n + 1, a contradiction. Therefore, there is p, 1 ≤ p ≤ n − 1, such that
fp(z) = fp+1(z). Consequently, in the graph Gp(z), each vertex has exactly one
outgoing edge and so, the strongly connected components of Gp(L) are simple
circuits. Thus, z = uvs where |u| ≤ p + fp(z) ≤ 2n and |v| ≤ fp(z) ≤ n. ¤

We characterize now the languages with bounded complexity. For k ≥ 1, we
say that a language L is k-periodic if for any word w ∈ L, w has a factor of
length at least |w| − k with a period at most k. A language is periodic if it is
k-periodic for some k ≥ 1. In other words, a language is periodic if all its words
have a small period, except possibly for a short prefix and suffix.

Theorem 3. For a factorial language L over A the following assertions are
equivalent:

(i) L is periodic;

(i′) L ⊆
⋃n

i=1
xiy

∗
i zi, for n ≥ 1, xi, yi, zi ∈ A∗, |xizi| ≤ k, |yi| ≤ k, 1 ≤ i ≤ n;

(ii) fn(L) is bounded;

(iii) fn0
(L) < n0 + 1, for some n0 ≥ 1.

Proof. The equivalence between (i) and (i′) is straightforward.
(i′) ⇒ (ii). We have that fn(xy∗z) ≤ |x| + 2|y| + |z| is bounded and so is

fn(L).
(ii) ⇒ (i′). Assume fn(L) ≤ k, for all n. Assume L infinite and consider an

arbitrary word w ∈ L such that |w| ≥ k+1. Consider the factors of length |w|−k

of w. There are k + 1 such factors and so, using the bound on fn(L), there is a
factor of w, say t, occurring twice in w. We have therefore w = r1tr2 = s1ts2,
for some ri, si ∈ A∗ with |r1r2| = |s1s2| = k. We may assume |r1| < |s1|.
Then, there are r, s ∈ A∗ such that s1 = r1r and r2 = ss2, hence rt = ts. This
equation gives that there are x, y ∈ A∗ such that r = xy, s = yx, t ∈ (xy)∗x.
Consequently, w ∈ r1(xy)+xs2. Notice that |xy| ≤ k and |r1xs2| ≤ |r1r2| = k.
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As w has been arbitrarily chosen among the words of length at least k + 1 in L,
we have (i′).

(ii) ⇒ (iii). Obvious.
(iii) ⇒ (ii). Assume that fn(L) is unbounded and consider m such that

fm(L) > |A|4n0 . Consider an arbitrary word z ∈ factm(L). At most fn0
(L)

factors of length n0 of z can appear only once in z. Thus, there must be a
prefix t of z of length at least m − fn0

(L) whose suffix of length n0 appears at
least twice in t. Applying Lemma 2 to t gives that t = uvs with |uv| ≤ 3n0.
Thus, any word z in factm(L) can be written as z = uvsw with |uv| ≤ 3n0,
|w| ≤ fn0

(L) ≤ n0. Hence fm(L) ≤ |A|4n0 , a contradiction. ¤

Remark 1. (a) We can show that (ii) implies L can be written as in (i′) with
|xz| ≤ k − 1, |y| ≤ k. We have, using the notations in the proof of Theorem 3,
|r1xs2| ≤ k. If |r1xs2| = k, then |y| = 0, hence y is the empty word. Therefore
w ∈ r1x

∗s2 and |r1s2| < k since x cannot be empty. We obtained then the
improvement that L is included in finite union of sets of the form xy∗z, with
|xz| ≤ k − 1 and |y| ≤ k. Moreover, these upper bounds on the lengths of the
words xizi and yi are optimal as shown by the language L = (ak−1b)∗ak−1.

(b) The condition in (iii) is tight. Consider L = a∗b∗; fn(L) = n + 1
and therefore unbounded. Also, we cannot replace condition (iii) by fn(L) <

n+ |A|−1 (similar with the corresponding one for infinite words). For instance,
fn(a∗b∗ + c) = n + 1 < n + |{a, b, c}| − 1, for any n ≥ 2, but is still unbounded.

(c) We have no condition such as (iv) in Theorem 1. For the precise formula-
tion from words, we have the counterexample L = a(bb)∗c for which f2k(L) = 4,
f2k+1(L) = 3. On the other hand, fn(L) bounded obviously implies there are
n and c such that fn(L) = fn+c(L). We list as an open problem whether this
property is sufficient for L to be bounded.

4 Sturmian languages

The main result of this section is the characterization of Sturmian languages.
Clearly, for any infinite Sturmian word, its set of factors is a Sturmian language
and we naturally ask whether there are some other Sturmian languages except
for these – Theorem 4 gives a negative answer.

There is a huge literature about one-way infinite Sturmian words; [2] contains
a brief survey of some of the most important results. The situation is simpler for
two-way infinite Sturmian words. Coven and Hedlund [4] proved the two-way
Sturmian words are precisely all words of the form

(i) ω01ω or
(ii) ỹzx with y = (01p)ω, x = (10q)ω, where ỹ is the reversal of y, p, q are

palindromes and z 6∈ 0∗ ∪ 1∗ is a central word which has periods |p| and |q|; see
[2, problem 2.1.1].

They also proved that, as in the case of one-way infinite words, there is a
gap between constant and Sturmian complexity for two-way infinite words.

We can prove now the main result of this section.

Theorem 4. A factorial language is Sturmian if and only if it is the set of all
finite factors of an infinite Sturmian word.

Proof. We need to show only that the condition is necessary. Assume then L is
a Sturmian language and consider the set

Inf(L) = {α ∈ {a, b}ω | pref(α) ⊆ pref(L)}.
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(Clearly, the alphabet of L must contain exactly two letters.) As L is Sturmian,
it must be infinite and then König’s lemma says that Inf(L) is nonempty. Also,
for any α ∈ Inf(L), we have also fact(α) ⊆ fact(L) = L.

Since L is Sturmian, any α ∈ Inf(L) satisfies fn(α) ≤ n + 1, for all n ≥ 0. If
there is one such α with fn(α) = n + 1, for all n ≥ 0, then α is Sturmian and
L = fact(α), as claimed.

Assume this is not the case for any word of Inf(L). This means, for any
α ∈ Inf(L), there is n ≥ 1 such that fn(α) < n + 1. By Theorem 1, any
α ∈ Inf(L) is then periodic and fn(α) is bounded. Therefore, there must be
infinitely many different infinite words in Inf(L). Indeed, for any finitely many
such infinite words, L still contains infinitely many words which do not appear
as factors in any of those and so we can construct more infinite words in Inf(L)
by König’s lemma.

On the other hand, all words in Inf(L) are periodic and therefore Inf(L) is
countably infinite; put Inf(L) = {uiv

ω
i | i ≥ 1}, where, for any i ≥ 1, vi is

primitive and moreover, ui and vi have no nontrivial common suffix. Hence,
f|vi|(uiv

ω
i ) ≥ |vi| and there is at most one factor of length |vi| in any ujv

ω
j ,

j 6= i, which does not appear in uiv
ω
i .

We prove first that there cannot be infinitely many different words vi. As-
sume there are infinitely many. Therefore, we can find three of those, say
vi, vj , vk, such that 2 ≤ |vi| < |vj | and |vk| ≥ 2(|vi| + |vj |). As argued above,
there is a factor of vω

k of length |vk| which is also a factor of vω
i and similarly

for vω
j . These two factors overlap at least half their length in vω

k — this gives a
word of length at least |vi|+ |vj | which has periods |vi| and |vj |. Fine and Wilf’s
periodicity lemma (see [12]) implies that vj is not primitive, a contradiction.

Thus, there are only finitely many vi and so there is one, denoted v in the
following, such that the set V = {ui ∈ A∗ | uiv

ω ∈ Inf(L)} is infinite.
For any i such that ui ∈ V is nonempty, ui and v have no nonempty common

suffix, they end with different letters; say a for v and b for ui. As there are
infinitely many, we can construct a left-infinite word α (by König’s lemma)
such that any suffix of α is a suffix of some ui ∈ V .

Now, for any sufficiently large n, we have that fn(αbvω) ≥ n + 1. Indeed,
this follows from the result of Coven and Hedlund [4] stating that bi-infinite
words cannot have any complexity between bounded and Sturmian. Since for
any n ≥ |v| + 1, fn(αbvω) ≥ n − |v| + 1, it is unbounded and therefore the
complexity must be at least Sturmian.

On the other hand, since fact(αbvω) ⊆ fact(L) and L is Sturmian, it follows
that fn(αbvω) = n + 1. Therefore, αbvω is Sturmian and L = fact(αbvω),
concluding the proof of the theorem. ¤

5 Conclusions and open problems

We can easily construct factorial languages from infinite words by taking the
set of all finite factors. Having a factorial language, we can construct the right-
infinite words in Inf(L) or the corresponding sets for left- and bi-infinite. It is
interesting to notice that with these constructions, the notions of periodicity
and Sturmian for infinite words and languages are very closely related. Indeed,
from periodic and Sturmian infinite words we obtain periodic and Sturmian lan-
guages, resp. Conversely, from periodic languages we construct periodic words,
while from Sturmian languages we construct either right- or bi-infinite Sturmian
words.

We list here only a few open problems suggested by our results.
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Problem 1. Does fn(L) = fn+c(L) imply fn(L) bounded?

Problem 2. L = a(bb)∗c shows that, in the case fn(L) is bounded, it might
never become monotonic. Is this possible in the unbounded case?

Problem 3. Give other interesting characterizations for fn(L) to be bounded
in terms of properties of fn(L).

Problem 4. Characterize the function fn(L).

Problem 5. Characterize the languages with low unbounded complexity; e.g.,
fn(L) = n + c or linear in n. Some examples here are L1 = a∗b1b2 . . . bca

∗ with
fn(L1) = n + c, for all n ≥ 1, and L2 = a∗ba∗ + a∗bc∗ with fn(L2) = 2n + 1, for
all n ≥ 1.

Problem 6. It is interesting to see to what extent complexities higher than
Sturmian are preserved when moving from languages to infinite words and vicev-
ersa.
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