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Abstract

A word w is primitive if it is not a proper power of another word, and w is
unbordered if it has no prefix that is also a suffix of w. We study the number
of primitive and unbordered words w with a fixed weight, that is, words for
which the Parikh vector of w is a fixed vector. Moreover, we estimate the
number of words that have a unique border.
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1 Introduction

Let w denote a finite word over some alphabet A. We say that w is bordered
if there is a nonempty proper prefix x of w that is also a suffix of w. If
there is no such x then w is called unbordered. We say that w is primitive
if w = xk, for some k ∈ N, implies that k = 1 and x = w. We often assume
that the alphabet is ordered, A = {a1, a2, . . . , aq}. In this case, for a word
w ∈ A∗, let π(w) denote by (|w|a1 , |w|a2 , . . . , |w|aq) the Parikh vector of w,
where |w|a denotes the number of occurrences of the letter a in w. We also
say that w has weight π(w).

The number of primitive words and unbordered words of a fixed length
and an alphabet of a fixed size is well-known, see for example [4, 3, 1, 2, 5, 6]
and the sequences A027375, A003000, A019308, and A019309 in Sloane’s
database of integer sequences [7]. We will recall these results with short
arguments and extend them to the case where the words we consider have a
fixed weight. Moreover, we estimate the number of words that have exactly
one border.

Section 2 contains results on counting the number of primitive words.
Section 3 investigates the number of bordered words. Finally, we deal with
the number of words with exactly one border in section 4. In the rest of this
section we will fix our notation. For more general definitions see [2].

Let A be a finite, non-empty set called alphabet. The elements of A are
called letters. Let a finite sequence of letters be called (finite) word. Let
A∗ denote the monoid of all finite words over A where ε denotes the empty
word. Let |w| denote the length of w, and let |w|a denote the number of
occurrences of a in w where a ∈ A. If w = uv then u is called prefix of w,
denoted by u ≤p w, and v is called suffix of w, denoted by v ≤s w. A word
w is called bordered if there exist non-empty words x, y, and z such that
w = xy = zx, and x is called a border of w. Let X be a set, then |X| denotes
the cardinality of X.

The Möbius function µ : N → Z is defined as follows

µ(n) =




(−1)t if n = p1p2 . . . pt for distinct primes pi,

1 if n = 1,

0 if n is divisible by a square.

The Möbius inversion formula for two functions f and g is given by:

g(n) =
∑
d|n

f(d)

if and only if

f(n) =
∑
d|n

µ(d) g(n/d) .
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2 Primitive Words

Let Pq(n) denote the number of primitive words of length n over an alphabet
of size q. It is well-known, see for example [4, 2] and the sequence A027375
in [7], that

Pq(n) =
∑
d|n

µ(d) qn/d . (1)

Indeed, let A with |A| = q be a finite alphabet of letters. Every word w has
a unique primitive root v for which w = vd for some d|n, where n = |w|.
Since there are exactly qn words of length n,

qn =
∑
d|n

Pq(d) .

We are in the divisor poset, where the Möbius inversion gives (1).
In this paper we investigate the number of primitive words with a fixed

weight, that is a fixed number of occurrences of letters. Consider an ordered
alphabet A = {a1, a2, . . . , aq} of q ≥ 1 letters. For a word w ∈ A∗, let π(w)
denote (|w|a1 , |w|a2 , . . . , |w|aq) which is called the Parikh vector of w. For a
given vector k = (k1, k2, . . . , kq), let

P(k) = {w | w primitive and π(w) = k}

and let P (k) = |P(k)|. Clearly, if w ∈ P(k), then |w| =
∑q

i=1 ki. Also,
denote by gcd(k) the greatest common divisor of the components ki. If
d| gcd(k), then denote

k/d = (k1/d, k2/d, . . . , kq/d) .

The multinomial coefficients under consideration are(
n

k

)
=

(
n

k1, k2, . . . , kq

)
=

n!

k1! k2! . . . kq!
,

where n =
∑q

i=1 ki.

Theorem 1. Let k = (k1, k2, . . . , kq) be a vector with n =
∑q

i=1 ki. Then

P (k) =
∑

d| gcd(k)

µ(d)

(
n/d

k/d

)
.

Proof. We use the principle of inclusion and exclusion to prove our claim.
Let the distinct prime divisors of gcd(k) be p1, p2, . . . , pt.

For an integer d| gcd(k), define

Qd = {w | w = ud where π(u) = k/d} .
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If w ∈ Qd, then π(w) = k. Clearly, |Qd| equals the number of all words u,
primitive and imprimitive alike, of length n/d such that u has the Parikh
vector k/d. Therefore,

|Qd| =

(
n/d

k/d

)
. (2)

Notice also that if d|e, then Qe ⊆ Qd, and hence

I(k) =
t⋃

i=1

Qpi
(3)

is the set of all imprimitive words of length n with Parikh vector k. By the
principle of inclusion and exclusion, we have then that∣∣∣ t⋃

i=1

Qpi

∣∣∣ =
∑

∅�=Y ⊆[1,t]

(−1)|Y |−1
∣∣∣ ⋂

i∈Y

Qpi

∣∣∣, (4)

where
⋂

i∈Y Qpi
= Qp(Y ) for p(Y ) =

∏
i∈Y pi. Hence, by (2),

|I(k)| =
∑

∅�=Y ⊆[1,t]

(−1)|Y |−1
∣∣∣Qp(Y )

∣∣∣
= −

∑
∅�=Y ⊆[1,t]

(−1)|Y |
(

n/p(Y )

k/p(Y )

)

= −
∑

d| gcd(k)
d>1

µ(d)

(
n/d

k/d

)
,

by the definition of the Möbius function µ. This proves the claim, because
P (k) =

(
n
k

) − |I(k)|.

3 Unbordered Words

Let Uq(n) denote the number of all unbordered words of length n over an
alphabet of size q. The following formula for Uq(n) is well-known, see for
example [3, 1, 5, 6] and also the sequences A003000, A019308, A019309
in [7]. Surely, we have Uq(1) = q and if n > 1 then

Uq(2n + 1) = q Uq(2n) (5)

Uq(2n) = q Uq(2n − 1) − Uq(n) . (6)

Indeed, case (5) is clear since a word of odd length is unbordered if and only
if it is unbordered after its middle letter (at position n + 1) is deleted. For
case (6) consider that a word w of even length is unbordered if and only if it
is unbordered after one of its middle letters (say, at position n+1) is deleted
except if w = auau and au is unbordered, where a is an arbitrary letter.

Note, that there is an alternative way to obtain Uq(n) by considering the
following immediate result.
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Lemma 2. Let w be a bordered word, and let u be its shortest border. Then

1. 2|u| ≤ |w|,
2. u is unbordered, and

3. u is the only unbordered border of w.

Let Bq(n) denote the number of all bordered words of length n over an
alphabet of size q. Lemma 2 shows that it is enough for every unbordered
border u, with |u| ≤ �n/2�, to count the number of words of length n − 2|u|
which is qn−2|u|. So, we have

Bq(n) =
∑

1≤i≤�n/2�
Uq(i) qn−2i .

This gives the following formula for Uq(n) where

Uq(n) = qn − Bq(n) (7)

for every q > 1 and where Uq(1) = q.
In this paper we investigate the number of unbordered words with a fixed

weight. Let us fix a binary alphabet A = {a, b} for now. Let U(n, k) denote
the number of all binary unbordered words of length n that have a fixed
weight k in the sense that, for every such word w, we have |w|b = k and
|w|a = n − k.

It is easy to check that U(1, 0) = U(1, 1) = 1 and U(n, k) = 0, if n ≤ k
and k > 1, and U(n, 0) = 0, if n > 1.

Theorem 3. If 0 < k < n then

U(n, k) = U(n − 1, k) + U(n − 1, k − 1) − E(n, k) (8)

where

E(n, k) =

{
U(n/2, k/2) if n and k are even,

0 otherwise.

Proof. Suppose first that w has odd length 2n+1. Each word w = ucv, with
c ∈ A and |u| = |v| = n, contributing to U(2n + 1, k) is obtained by adding
a middle letter c to an unbordered word uv of even length. If c = a then uv
contributes to U(2n, k), and if c = b then uv contributes to U(2n, k − 1).

Assume then that w has even length 2n. If w = cudv, with c, d ∈ A
and |u| = |v| = n − 1, then it contributes to U(2n, k′) if and only if cuv is
unbordered (so it contributed to either U(2n−1, k′) or U(2n−1, k′−1)) and
cu �= dv (that is, borderedness is not obtained by adding a letter to cuv such
that w is a square). Consider the case where cuv is unbordered but cudv is
not, that is, cu = dv. Then w = cucu and cuu is unbordered. Note, that cuu
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is unbordered if and only if cu is unbordered. Let |cu|b = k. We have that
cuu contributes to U(2n − 1, 2k) (if c = a) or U(2n − 1, 2k − 1) (if c = b)
if and only if cu contributes to U(n, k) which is therefore subtracted in case
|w|b = 2k.

Equation (8) can be generalized to alphabets of arbitrary size q. For this,
consider an ordered alphabet {a1, a2, . . . , aq} of size q, and let U(k) denote
the number of all unbordered words w of length n =

∑q
i=1 ki that have a

fixed weight π(w) = k = (k1, k2, . . . , kq). Moreover, let k[ki − 1] denote
(k1, . . . , ki−1, ki − 1, ki+1, . . . , kq).

If kj = 1 and ki = 0 for all components i �= j of k, then only the letter
aj contributes to U(k). Hence U(k) = 1, if

∑q
i=1 ki = 1 and ki ≥ 0 for all

1 ≤ i ≤ q.

Theorem 4. If
∑q

i=1 ki > 0 then

U(k) =


 ∑

1≤i≤q
ki>0

U(k[ki − 1])


 − E(k)

where

E(k) =

{
U (k/2) if ki is even for all 1 ≤ i ≤ q,

0 otherwise.

Proof. Indeed, the arguments of adding a letter at the point 	|w|/2
 of a
word w are similar to those of Theorem 3. For the explanation of E(k) we
note that a bordered word (created by adding a middle letter) is a square
aiuaiu, for some 1 ≤ i ≤ q. Note that the length of w and the number of
occurrences of every letter is even in that case. Now, w is only counted if aiu
is unbordered, that is, if aiu contributes to U(k/2) which must be therefore
subtracted.

4 Words with a Unique Border

In this section we count the number of words that have one and only one
border. Let us start with an obvious result which belongs to folklore.

Lemma 5. Let w be a bordered word, and let u be its shortest border. If w
has a border v with |v| > |u| border, then |v| ≥ 2|u|.
Proof. Indeed, if, for the shortest border u, we have |v| < 2|u| then u overlaps
itself (since u ≤p v and u ≤s v), and hence, u is bordered contradicting
Lemma 2(2).

In order to estimate the number of words with exactly one border, we
make following two observations.
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Lemma 6. Let u be a fixed unbordered word of length s. Then the number
of words of length r of the form xuyux is the number of bordered words of
length r − 2s, that is, Bq(r − 2s).

Indeed, every word of the form xyx produces exactly one word of the form
xuyux, and the condition xuyux = x′uy′ux′ would imply that u is bordered;
a contradiction.

Lemma 7. Let u be a fixed unbordered word of length s. Then the number of
words of length r of the form zuz is the number of words of length (r− s)/2.

Indeed, each word z produces exactly one word of the form zuz, and the
condition zuz = z′uz′ implies that z = z′.

Let k ≤ n and Bq(n, k) denote the number of all words of length n over
an alphabet of size q that have exactly one border of length k. It is clear
that Bq(1, k) = Bq(n, 0) = 0, for all 1 ≤ n and 0 ≤ k, and Bq(n, k) = 0, if
n < 2k, see Lemma 2(1).

Theorem 8. If 1 ≤ 2k ≤ n then

Bq(n, k) = Uq(k) (qn−2k − Wq(n − 2k, k) − Eq(n − 2k, k))

where

Wq(r, s) =




Bq(r − 2s) if 2s < r,

1 if 2s = r,

0 otherwise.

and

Eq(r, s) =




q(r−s)/2 if s < r < 3s and r − s even,

1 if s = r,

0 otherwise.

Proof. Indeed, following the argument of Lemma 2(2) we count all unbor-
dered words of length k (that is Uq(k)) which are possible borders of a word
of length n. For every such border we have to count the number of different
combinations of letters for the rest of the n− 2k letters, that is qn−2k. How-
ever, we have to exclude those cases where new borders are created. Given
an unbordered border u of length k, we have the following cases for words
with more than one border: uxuyuxu and uzuzu, where x, y, z ∈ A∗. These
two cases are taken care of by Wq(r, s) and Eq(r, s) where both terms equal
1 if u4 and u3 are counted; see also Lemma 6 and 7. Note that the latter
case is included in the former one if and only if |u| ≤ |z| (where the “only
if” part comes from the fact that u is unbordered, and hence, it does not
overlap itself), therefore r < 3s is required in Eq(r, s).
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Clearly, the number Bq(n) of words of length n over an alphabet of size
q with exactly one border is the following.

Bq(n) =
∑

1≤i≤�n/2�
Bq(n, i) .
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Angew. Math., 271:139–154, 1974.

[2] M. Lothaire. Combinatorics on words, volume 17 of Encyclopedia of
Mathematics and its Applications. Addison-Wesley Publishing Co., Read-
ing, Mass., 1983.

[3] P. Tolstrup Nielsen. A note on bifix-free sequences. IEEE Trans. Infor-
mation Theory, IT-19:704–706, 1973.

[4] H. Petersen. On the language of primitive words. Theoret. Comput. Sci.,
161(1-2):141–156, 1996.
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