-y
>
¥ cs

Pontus Bostrom | Marina Waldén

An extension of Event B for developing
grid systems

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 632, November 2004

=7
7
¥ rucs

An extension of Event B for developing
grid systems

Pontus Bostrom
Abo Akademi University, Department of Computer Science/TUCS
Lemminkaisenkatu 14 A, 20520 Turku, Finland
pontus.bostrom@abo.fi

Marina Waldén
Abo Akademi University, Department of Computer Science/TUCS
Lemminkaisenkatu 14 A, 20520 Turku, Finland
marina.walden@abo.fi

TUCS Technical Report
No 632, November 2004

Abstract

Computational grids have become widespread in organizations for handling their
need for computational resources and the vast amount of available information.
These grid systems as other distributgsktems are often complex and formal rea-
soning about them is needed, in order to ensure their correctness and to structure
their development. Event B is a formal method with tool support that is meant for
stepwise development of distributed systems. To facilitate the implementation of
grid systems we here propose extensions to Event B that take grid specific features
into account. We add new constructs to model the client-server architecture of grid
systems, as well as important features like communication and synchronisation.
We introduce the extensions in such a manner that the necessary proof obligations
are automatically generated and the systambe directly implemented.

Keywords: Grid Systems, Distributed Systems, Event B, Language Extensions,
Implementation

TUCS Laboratory
Distributed Systems Design Laboratory

1 Introduction

Organizations need the ability to efficiently utilise existing hardware and be able
to effectively share information with each other. Computational grids have be-
come a popular approach to enable organizations to handle the vast amount of
available information. These grids are also used for solving problems in, e.g., bi-
ology, nuclear physics and engineering. Grid computing [9, 14] is a distributed
computing paradigm that differ from traditional distributed computing in that it is
aimed toward large scale systems that even span organizational boundaries.

The development of correct grid systems is difficult with traditional software
development methods. Hence, formal methods are needed in order to ensure their
correctness and structure their developniierh specification to implementation.

The Action Systems formalism [5] is a forimaethod that is well suited for de-
veloping large distributed systems, since it supports stepwise development. How-
ever, it lacks good tool support. The B Method [1], on the other hand, is a formal
method provided with good tool support, but developed for construction of se-
quential programs. The B Method can be combined with Action Systems in order
to formally reason about distributed systems as in the related methods B Action
Systems [20] and Event B [3]. B ActidBystems models Action Systems in the B
Method, while Event B also extends original B with new constructs. We mainly
use Event B in this paper.

With generic formal languages like Event B specifications are often uninten-
tionally constructed in such a way that they cannot be implemented or are very
difficult to implement efficietly. The problem becomes especially apparent when
developing distributed systems with complicated synchronization and communi-
cation patterns. Therefore, we propose new extensions to Event B in order to be
able to construct models of grid systems that can be implemented and to verify
their correctness in a convenient way. The language obtained by the extensions
will be referred to as Distributed B in the rest of the paper.

The language Distributed B is targeted towards Grid systems using the Globus
Toolkit [11] middleware. Grid systems usually have a client-server architec-
ture. This means that there is a diethat initiates communication with the
server, which only responds to the clients’ requests. Distributed B supports client-
server architectures with multiple concurrent accesses by the same client to several
servers. The main communication mechanism of the grid middleware is remote
procedure calls. However, the grid middleware also supports asynchronous noti-
fications sent from a server to a client. Both these communication primitives are
used in Distributed B. The constructs are introduced in such a manner that they
ensure that the system will be implementable and all needed proof obligations can
be automatically generated.

In section 2 we describe formal development of systems in Event B. In section
3 we give an overview of the grid technology and discuss how the grid features
are incorporated into Event B. The new constructs, grid service machine and grid
refinement machine, are presented in &4 and 5, respectively. In section 6
we discuss implementation issues and in section 7 we conclude.

2 Formal development with Event B

In order to be able to develop correct grid systems and other distributed systems,
we need to reason about these systems in a formal manner. Furthermore, it is
important that the formal reasoning is facilitated by good tool support. Action
Systems is a well established formalism for reasoning about distributed systems
[5]. However, it lacks good tool support. Event B [3] is a formalism that is
based on Action Systems and is an extension of the B Method for developing
distributed systems. This formalism is also provided with tool support via the B
Method. Because of this we have chosen Event B as the formalism within which
we develop our framework for specifying and implementing grid systems.

2.1 Abstract specifications

An abstract model of a system within Event B is encapsulategygem-machine
and is identified by a uniqgue name. Let us study the abstract nddaiebw.

SYSTEM C
VARIABLES
x
INVARIANT
I(zx)
INITIALISATION
x =1
EVENTS
E, = Sy
E, Sa;

[

END

Each variablex in the variables-clause is associated with some domain of val-
ues. The set of possible assignments déiea to the state variables constitutes
the state space. The data invarid(t) in theinvariant-clause defines the state
space of the variables and their invariant properties. Innfelisation-clause
initial values are assigned these variables. Thevents-clause contains events
describing the behaviour of the system. Each event irethets-clause is a sub-
stitution statement, where the substitution, for example, carskip-aubstitution,

a simple substitution, a multiple substitution, a sequential substitution, a precon-
ditioned substitution, a conditional substitution, a guarded substitution or a non-
deterministic guarded substitutiofihe semantics of tlse substitution statements

is given by the weakest precondition calculus developed by Dijkstra [8].

2

wp(skip, Q) = Q
wp(z :=e,Q) = Qlz:=¢
wp(z:=e || y:=f,Q) = Q[z,y:=e, f],wherezNy =0
wp(z :=e; y = f,Q) = (Qy:= f)lz :=¢]
wp(PREGTHEN S END, Q) = GAwp(S,Q)
wp(IF G THEN S ELSE T END, Q) = (G =wp(S,Q)) A (-G = wp(T,Q))
wp(SELECT G THEN S END, Q) = G=wp(S,Q)
wp(ANY z WHERE G THEN SEND, Q) = Vz.G = wp(S,Q)

Here,Q andG are predicatex andy are variablesg andf are expressions, while
SandT are arbitrary substitution statements.

An eventis considered to consist of a guard and a body. For example, for event
E = SELECT G THEN S END the guard, g¢F), is(GAgd(S)). When the guard
of an event evaluates toue in a given state, the event is said to be enabled. Only
enabled events are considered for execution. If several events are enabled, they
are executed in random order. Events that do not share variables can be executed
in parallel. When there are no enabledesmts the system terminates. The events
are considered to be atomic and, hence, only their input-output behaviour is of
interest.

In grid systems remote procedugay an important role. Remote procedures
[18] are, however, not supported in Event B. The reason for this is that a model in
Event B is closed, i.e., the system is modeled as a whole without relying on outside
information. For reasoning about remote procedures we rely on the formalism B
Action Systems [20] , another formalisapplying Action Systems within the B
Method and related to Event B. Remote procedures are discussed in more detail
elsewhere [18, 7].

2.2 Decomposing event systems

Grid systems are often very complsystems. Therefore, it is beneficial to split
these systems into sevesmaller ones during the development [6]. Let us study
how an event systei can be decomposed into two componghtandC,. Sys-
temC contains the variables y andz, where the evenk; refers tox andz, and
eventE, toy andz. We assume thdaf; does not modifyz.

SYSTEM C
VARIABLES
T, Y,z
INVARIANT
Ica (.’L‘, Z) A IC'Z(yy Z)
INITIALISATION
z:=xz0 ||y:=yo |l z:= 20
EVENTS
E; = SELECT G1 THEN S1 END;
Ey; = SELECT G2 THEN S END
END

The parallel decomposition of syste&hinto the components; andCs is then
defined by splitting the variables and events as follows.

SYSTEM (C; SYSTEM (o
EXTENDS
Co
VARIABLES VARIABLES
T Y, 2
INVARIANT INVARIANT
Ici(z, 2) Ica(y, 2)
INITIALISATION INITIALISATION
T =0 y:=1yo || 2 :=20
EVENTS EVENTS
E, = SELECT G1 THEN S; END Ey = SELECT G2 THEN S2 END
END END

Here we say that systey extends system(C, indicating thatC; is composed
in parallel withC,. Note that theextends-clause is as defined in the original B
Method. After the decomposition the variahlds located inC; while y and z
are inC,. The invariant, the initialisation, asell as the events referring to the
variablez are included inC;, while the ones referring tg and z are given in
Cy. In C, the variablez is a global variable, since it is referenced also in system
C:. The decomposition rule can be applied ineese and is then called parallel
composition [6, 7].

When composing event systems visoeconsider prioritised composition [13].
The prioritised compositiond//B denotes the paralleomposition between the
event systemsA and B, where A has a higher priority thai. If an event is
enabled inA, it will always be executed before any eventin

2.3 Refinement

In Event B we can refine an abstract specification in a stepwise manner to a more

concrete and detailed specification. New variables can be introduced and the old

ones can be refined to more concretees. This is reflected in the substitutions

of the events, as well. Furthermore, new events that only assign the new variables
may be introduced. In a refinement step we can also merge several events into one
event, as well as refine one event by several new events.

Let us assume that we have two event systémaisdC; as below. The variable
xin C is refined toz’ in C;, while y is the new variable introduced 4. The
eventsE; are refined by the corresponding evehfsto also takey into account.
The eventsF; are introduced in this refinement step and refer only to the new
variabley.

MACHINE C REFINEMENT C;

REFINES C
VARIABLES VARIABLES
z z'y
INVARIANT INVARIANT
I(CC) J(w7wlay)
INITIALISATION INITIALISATION
T = T =z ||y :=yo
EVENTS EVENTS
E, = Sy Ey = Sy
En = Sn B, = Sy
END = Ty
Fom = Tny
END

When invariant/ (z, ', y) is a relation between the abstract variabteand the
concrete variableg’ andy, we write £ C ; E' to denote that the abstract evént
is data refined by the concrete evéntunder invariang [5]. In order to show that
system(; is a refinement of under invariantl, C C; C;, the following proof
obligations should hold [3]:

1. Init Ty Init
2. E; Cy Ell, fori € 1.n

skip Cy Fj, forj e 1.m

3.
4. JA-(gd(E})V...Vgd(E)Vgd(F1)V...Vgd(Fy)) = —(gd(E1)V...Vegd(E,))
5. J=VeN

6.

gd(Fj) = wp(n = V,wp(F;,V < n))

The initialisation in the refined system meains the behaviour of the abstract
system (1). Every evertf; in the abstract system is refined by an evBhin the
concrete system (2). New evenfs should only refer to the new variables (3).
They should not change the behaviour of the abstract system. The refined event
system must not terminate more often than the abstract one (4). The behaviour of
the abstract system should be preserved and, hence, the new events should termi-
nate when executed in isolation (5 and 6). Hérds a variant that is decreased
by every new event;. All these proof obligations can l@itomatically generated
by the tools for Event B.

For the remote procedures we rely on the proof obligations for B Action Sys-
tems [7]. Let us assume that we have proced?®rén C that is refined byP; in
C:. When considering procedures in event systems the following additional proof
obligations should hold.

7. P, Cjy P]é, fork e 1..h

8. JAgd(Py) = gd(P),fork e 1..h

The abstract remote procedufg should be refined by the corresponding proce-
dureP; in C, (7). Furthermore, the guards of the procedures may not be changed
(8). Proof obligation (7) can be automatically generated via Event B, while proof
obligation (8) requires some extra constructs corresponding to the ones in [20].

3 Grid systemsin Event B

Relying on Event B we can formally specify correct grid systems. However, it
is not straightforward to develop the specification in such a manner that it can be
directly implemented. We propose an extension of Event B, Distributed B, that
enable us to create implementable spedifce of grid systems in a convenient
way. Let us first study grid systems.

3.1 Grid systems

The purpose of grid systems is to share information and computing resources even
over organizational boundaries. This requires security, scalability and protocols
that are suited for Internet wide communication. The Open Grid Service Archi-
tecture (OGSA) [10] aims at providinga@mmon standard to develop grid based
applications. This standard defines what services a grid system should provide.
A technical infrastructure specificatioreithed by Open Grid Service Infrastruc-
ture (OGSI) [12] gives a precise technical definition of what a grid service is. The
Globus Toolkit 3.x [11], an implementation of the OGSI specification, has become
defacto standard toolkit for implementing grid systems. This is also the toolkit we
use as grid middleware for Distributed B in this paper.

Grid systems usually have a client-seraechitecture, where the client initi-
ates communication with the server that only responds to the client’s request. A
client may access several servers concurrently. A server is referred to as a grid
service in Globus Toolkit, since it provides services to other grid components.
Grid services as implemented in GlobUsolkit provide features such as remote
procedures, notifications, services that can&date, transient services and service
data. The main communication mechanism of grid services is remote procedure
calls from client to grid service. By usingptifications a grid service can asyn-
chronously notify clients about changes in its state. The state of grid services are
preserved between calls and grid service instances can be dynamically created.
Service data adds structured data to ang gervice interface. This way not only
remote procedures, but also variables are available to clients. Furthermore, Globus
Toolkit contains an index service for managing information and keeping track of
different types of services in the grid.

Refines Refines

& = C - Ca
Sys. i Ref. il Grid Ref.
fi
Bef efnces Refines
A - Ay
Grid Mch. |~ Grid Ref.

Re%rences

B
Grid Mch.

Figure 1: The structure of the Distributed B development

3.2 Extending Event B

The main purpose of the language Distributed B is to be able to specify, verify and
implement correct grid systems in a convamtiway. As for grid systems the most
common communication mechanism in Distributed B is remote procedure calls.
However, in order to support concurrent accesses by the same client to multiple
grid services, Distributed B also takes into account notifications.

In order to meet the requirements above, we propose to extend Event B with
two types of machines, grid service machine modelling abstract grid service
features and grid refinement machine for refining an ordinary Event B model by
introducing grid features or for refining a grid service machine. A grid service
machine is a template of which a dlie(a grid refinement machine) can obtain
instances. Using terminology from object oriented programming, the grid ser-
vice machine can be viewed as a classl the instances as objects of the class.
This new composition mechanism is expressed withréf@ences construct in
the grid refinement machine. Several argtes of the same grid service machine
can be controlled by the same client as a master can control several identical
worker nodes. A grid service machine contains specifications of remote proce-
dures, events and notifications. The grid refinement machine, on the other hand,
has clauses for refined remote procedures and events, as well as a clause for han-
dling notifications. The clients and the grid services use remote procedure calls
and notifications to communicate asgnchronize with each other. For example,

a client can make a requests to a grid service with a remote procedure call and
when the request has been carried out a notification is sent back to the client.

The development of the grid system shown in Figure 1 starts with an initial
specificationC, in Event B that is refined in a number of ste@s, The specifica-
tion is then split up into a client},, and a number of grid serviced, The grid
services can in turn be independently refined furthigt,and reference new grid
servicesD. For simplicity we assume that eaghd service machine can only be
referenced from one grid refinement machine.

Throughout the development of the system the grid constructs are translated
to ordinary B machines for verification purposes. Note that we translate the Dis-
tributed B specifications to the B Method and not to Event B. The reason for this is

7

that the current tool support also translate Event B specifications to the B Method
for verification. We translate the Event B constructs in Distributed B to the B
Method in the same manner as the current tools for Event B.

4 Grid service machines

In Distributed B an abstract model ofgaid service is given as the constrggtd
service machine. Grid service machines extend Event B with clauses for speci-
fying remote procedures and notifications.grid service can wait for a remote
procedure call from a client. Upon the call it performs the requested task. When
the task has been completed, i.e., whérhed events in the grid service machine
has become disabled, a notification is sent. By choosing to send the notification
only after the task has been completed, the notification mechanism can be imple-
mented using the Globus Toolkit in a straightforward manner.

4.1 Grammar for thegrid service machine

The grammar for the grid service machine is an extension of the grammar for an
abstract system in Event B. Here only the differences between the grammars are
shown.

gridservice ::= “GRID_SERVICE” Name
Clause gridservice+
Clause gridservice ::=
Clause system abstract |
Clause rpcs |
Clause notif

Clause_rpcs ::= “REMOTE_PROCEDURES” RpcC_oper+;
Rpc _oper ::= Header operation “="” NG Substitution
Clause notif ::= “NOTIFICATIONS” Notif+;

Notif::= Name “="” “GUARANTEES” Predicate “END”

As in an abstract system in Event B thedgservice machine contains con-
stants, sets, variables and predicaitaghem. The variables are first initialised
and then modified by the events. Additionally, the grid service has a number
of remote procedures that other services can access. A remote procedure is an
implementable operation in the B Method, i.e., it only contains non-guarded sub-
stitutions (here calledNG_Substitution) of the set of substitutions in Event B.
The natifications-clause containguarantees-statements with conditions indicat-
ing when the notifications can be sentth@ client. A notification is sent when
none of the events in thevents-clause are enabled and the predicate inuiar -
antees-statement holds.

4.2 Mapping the specification to B.

An abstract grid service machigentains clauses which do not existin an Event B
specification. In order to be able to use tool support for verifying the consistency
of the grid service machine , we needttanslate the grid service machine to an
abstract machine specification in the B Method.

4.2.1 Trandation of thegrid service machineto B

In a system developed within Distributed Bis assumed that all available in-
stances of all the grid services are created upon initialisation of the system. The
index service of Globus Toolkit then provides references to available grid service
instances of correct type. In the B Methoe #et of instances that can be obtained
from the index service first has to be defined. This dynamic management of in-
stances of machines are not directly supported in the B Method and, hence, it has
to be explicitly modeled [4, 17].

Let us assume that we have a grid service macHin€he set of instances of
that can be obtained from the index service is then given as tihe B¢STANCES.
The constan®_null models an empty instance of grid service machineéJpon
a request for a new instance from the index service, the Valuell is returned
when no non-empty instance is available.

SETS

A_INSTANCES
CONSTANTS

A_null
PROPERTIES

A nulle A INSTANCES

The variableA_Instances models the set of non-empty instancesfofurrently in
use by the client. They are obtained dynamically from the index service.

VARIABLES
A_Instances

INVARIANT
A_Instances CA_ INSTANCESA
A_null ¢ A_Instances

All the variables in a grid service machiaee translated to functions from the set
of current instances to the varialtyges. Assume that grid service machiéas
a variablex with type X. When A is translated to the B Method the typeofs
defined asz € A_Instances —+ X.

When we translate remote procedures to the B Method to take an ingtance
into account, we introduce the instance for which it is called as an additional pa-
rameter. For example, proceduPeoc(p) = P becomesroc(inst, p) = P(inst)
upon translation. The events are translated to non-deterministic guarded substitu-
tions (@ny-substitutions) to take instances into account. Hence, the évest S;
in the grid service machine becomes:

E; = ANY inst WHERE inst € A_Instances THEN S (inst) END

9

Since the notifications should be enabled when the events of the grid service ma-
chine have become disabled, we add the following predicate to the invariant of the
abstract machine upon translation:

Vinst.(inst € A_Instances A ~gd(A(inst)) = Q1(inst) V ... V Qp(inst))

where(); is the predicate of thguarantees-statement in notificationin A. The
predicate states that one of the notifioas is enabled when all events dfare
disabled.

In order for a client to be able to obtain new instances for a grid service ma-
chine via the index service, a proced@etNew is automatically geerated in the
translated abstract B machine. This procedwae be viewed as the constructor of
instances.

2+ A_GetNew =
CHOICE
ANY inst WHERE
A_Instances # A_INSTANCESA
inst € A_INSTANCES — A_Instances N inst # A_null

THEN
A_Instances := A_Instances U {inst} ||
z(inst) := xg || z := inst
END
OR z := A_null
END

The procedure ensures that the instance returned is not already in use and returns
A _null if no non-empty instance is available. If variabdés assigned:, in the
initialisation-clause of grid service machiog variablex for the returned instance
inst of A is assigned:, z(inst) := x,, in A_GetNew.

Grid services allocated by a client may need to be returned to the index ser-
vice. Hence, a proceduf®estroy is automatically generated for each grid service
machine upon translation to the B Method to return an instance no longer in use.

A_Destroy(inst) =
PRE inst € A INSTANCES
THEN
IF inst € A_Instances
THEN
z = {inst} K| z ||
A_Instances := A_Instances — {inst}
END
END

The operatiorA_Destroy in A deletes the instancast, from the set of instances
in use and marks the instance as available in the index service. This procedure can
be viewed as the destructor of instances.

10

4.2.2 Exampleof agrid service machine

As an example of translating grid se&e machines in Distributed B to the B
Method, let us study grid service machiABDER that computes the sum of all
values it receives. The machine has two remote procedbedewData andGe-
tResult. The new value to be added to the sum is given via procesiiNewData.

The result of the latest computation can be obtained via procé&skiResult. The
variablesum gives the current result of the sum computation, while the variable
param contains the latest value received @&NewData. The variablestate en-
sures that all the received values are added once and only ogwe.tdhe actual
computation of the sum is performed in ev&dmp. A notification is sent af-
ter the initialisation,InitNotif, as well as after a new sum has been computed,
DoneNotif.

The grid service machinADDER is translated to the abstract B machine
ADDER_VERIFICATION for verification as follows:

GRID SERVICE
ADDER

VARIABLES
sum, param, state
INVARIANT
sum € NA

param € NA

state € STATE

INITIALISATION
sum := 0 || param =0 ||
state 1= init

REMOTE_PROCEDURES
SetNewData(p) =

PREp¢cN
THEN
param :=p ||
state = start
END;
z < GetResult =
BEGIN z := sum
END

EVENTS
Comp =
SELECT state = start
THEN
sum := sum + param ||
state := done
END
NOTIFICATIONS
InitNotif =

GUARANTEES state = tnit END ;

DoneNotif =

GUARANTEES state = done END

END

MACHINE
ADDER VERIFICATION

VARIABLES
sum, param, state, ADDER_Instances
INVARIANT
ADDER_Instances C ADDER INSTANCESA
A_null ¢ ADDER_Instances/\
sum € ADDER_Instances — NA
param € ADDER_Instances — NA
state € ADDER_Instances — STATEA
Vinst.(inst € ADDER_InstancesA
—(state(inst) = start) =
state(inst) = idle V state(inst) = done)
INITIALISATION
sum := 0 || param = 0 || state := 0 ||
ADDER_Instances :=)
OPERATIONS
SetNewData(inst, p) =
PRE p € NAinst € ADDER_Instances
THEN
param(inst) == p ||
state(inst) = start
END;
z < GetResult(inst) =
PRE inst € ADDER _Instances
THEN z := sum(inst)
END;
y <« ADDER_GetNew = ... ;
ADDER_Destroy = ...;

Comp =
ANY inst WHERE inst € ADDER_Instances
THEN
SELECT state(inst) = start

THEN
sum(inst) := sum(inst) + param(inst) ||
state(inst) := done
END
END
END

11

The types of the variables in the grid seevimachine are translated to functions
from instances of the grid service machioedata values. For example, the vari-
able sum has typeN in ADDER, while it is a total function from the instances
ADDER Instances to N in ADDER_VERIFICATION. Instances are created and
deleted by the proceduréd®DER_GetNew and ADDER Destroy introduced in
ADDER_VERIFICATION. The remote proceduré&t New Data andGet Result

take the instances into account. An additional parameter is introduced to denote
for which instance the procedure is called. Ev€ptnp is translated to aany-
substitution for a non-deterministically chosen instamse of ADDER. There is

an eventComp for every instance oADDER in use. The notificationgitNotif
andDoneNotif are not translated as such into the B Method. Though, the invari-
ant should explicitly say that thgtiarantees-predicates in one of the notifications
holds when eventomp is not enabled.

5 Refinement in Distributed B

We introduce a new type of refinement machine in Distributed B to deal with
remote procedure calls and notification handlers in Event B.gfiterefinement
machines refine Event B systems, grid serviogachines, as well as other grid
refinement machines. In a refinement step istiilhuted B variables and events
can be refined in the same way as in Event B. The substitutions in the remote
procedures and the notification handlers are also refined as the events to reflect
the changes of the variables. Note thia variables of the abstract grid service
machines are global variables and may not be refined.

A grid refinement machine contains aw structuring mechanism in B that
enables the grid refinement to obtain imstas of the grid service machines via
the index service. When the grid refinerhemachine has obtained a grid service
instance, it can perform a remote procedure @athts instance and then wait for
a notification from it.

5.1 Grammar for Refinements of grid services

The grammar of a grid refinement machine is an extension of the grammar of
the refinement machine in Event B. For brevity we concentrate on the differences
from the refinement machine.

Ref gridservice ::= “GRID_ REFINEMENT” Name
“REFINES” Name
Clause_ref gridservice+
Clause ref gridservice ::=
Clause refinement |
Clause references |
Clause rpcs |
Clause notif handlers

12

Clause references ::= “REFERENCES” Name+,

Clause_rpcs ::= “REMOTE_PROCEDURES” RpcC_oper+;

Rpc _oper ::= Header operation “=" NG Substitution

Clause notif handlers ::= “NOTIFICA-

TION HANDLERS” Notif handler+;

Notif handler ::= Name “=” “NOTIFICATION” Name
“"SOURCE” Name "“:” Name

“THEN” NG Substitution “END”

In the references-clause we give the names of the grid service machines that
the grid refinement machine can accesd ahtain instances of. The refined re-
mote procedures are given in tihemote procedures-clause. Notifications are
handled by special eventtification-substitutions, in theotification_handlers-
clause. There is one notification handler event for each notification in the ref-
erenced grid service machines. The source of the notification is givemnas
stance>:<grid service machine>. The notification handlers should be imple-
mentable and notantain guarded substitutions. Thetifications-clause that we
introduced for grid service machines is not included in the refinensamte the
guarantees-predicate of a notification should not be refined.

5.2 Trandation of therefinement to B

In order to be able to show that the grid refinement machine is a correct refinement
of another machine, e.g., an Event B sfieation or a grid service machine, both
the grid refinement machine and its referenced grid service machines need to be
translated to the B Method. Note that when we refine a grid service machine, we
actually refine the instances of the gridghdee. In the translation from Distributed
B to the B Method the instances of gnidfinement machines are treated in the
same way as the grid service machines.

In figure 2 refinement machir@ is refined by the compositiafy, references
A. The grid refinement machir® is translated to the refinement machifeV’
and the grid service machiné is translated to the abstract machideV'. The
references-relation betwee, and.A is translated to amcludes-relation between
Cy_ VandA V.

Refines References

Cy o Cz A
Ref. Grid Ref. Grid Mch.
Tran*alion Trar14ia!ion
h 4
Refines CV J AV
Ref. Mch.
Includes

Figure 2: Translation to Event B

13

5.2.1 Managinginstances of grid service machines

In the grid refinement machines we giinstances of referenced grid service ma-
chines as ordinary variables. The instaaeeof grid service machined is de-
clared as variablea of typeA, aa € A. This type declaration is translated to the
predicatena € A_Instances U {A_null} in the B Method.

The grid refinement machines refer to the variables and remote procedures of
the instances of a grid service machine with the notatiostance>.<variable>
and<instance>.<procedure>, respectively. The variables of the grid service ma-
chine can be referred to only in the invariant of the grid refinement machine.

The remote procedure calls need to be translated to match the correspond-
ing procedure definitions of the translatgdd service machine. A call to a re-
mote procedur&’roc(p) in instanceaa, aa.Proc(p) is translated to procedure
call Proc(aa, p) inthe B Method, where the instanaais given as an additional
parameter.

5.2.2 Notifications

Notifications in a grid service machine inforttme client that all the events in the
grid service machine instance has haeocdisabled. A notification handler in the
client ensures that proper actions are taken for each notification. In the grid refine-
ment machine a notification handler is expressed withnthidication_handler -
substitution:

Handler =
NOTIFICATION Notif
SOURCE inst € A
THEN T '(inst)

END

Here Notif is the notification to be handled, the souiest € A stands for the
instanceinst of the grid serviced that sent the notification, arfi(inst) is a
non-guarded substitution that refers to instaimse Note that7” can only make
read-only remote procedure calls to instanceslofA notification handler in a
client is only enabled when all the events in the corresponding grid service have
become disabled and tlyeiarantees-predicate of the corresponding notification
holds. Since a notification handler should only be executed once for each notifi-
cation, it must disable itself.

Let us assume that we have a grid refinentigrihat refines an Event B specifi-
cationC; and thatC, has a reference to grid service machies shown in Figure
2. Furthermore, lef, be the composition of the event systef@g containing the
notification handlersnptification_handler-substitutions) and’s. containing the
rest of the events in grid refinement machiheC, = Cs, || Coc. If we denote the
composition of grid refinement}, and its referenced grid servicé with C} , we
have that event syste@j is defined as:

Cy = (A//Can)||Cac

14

where the events in the grid service machihbave a higher priority than the noti-
fication handlers i€, and, hence, the notification handlers are executed only after
the events ind have become disabled. In order to ensure the correct behaviour of
the notification handling, the following conditions should hold:

gd(Con) = —gd(A) 1)

9d(Capn) = Wp(Cop, ~gd(Cy4)) 2)

Condition (1) is derived from the prioritised compositiGh. It states that all
events in grid service maching are disabled when a notification handling event

is enabled. The notification handI€g,, in event systend,, can only be executed
once for each notification it receives and, hence, it must disable itself as stated in
condition (2).

The event systerl,. can further be considered to be the parallel composition
of an event systerdl,,,,. containing the events making remote procedure calls and
a systent,, containing the rest of the events®f., Cs. = Cope || C20- An event
Cs, in systemC,y, should not interfere with the notification handlersds, by
enabling or disabling them as stated by conditions (3) and (4).

9d(Cs0) A gd(Con) = WP(C'2, 9d(Can)) 3)
gd(Cs) A ~gd(Can) = Wp(Cap, ~gd(Cop)) (4)

The conditions (1) - (4) above are fulfilled by introducing extra features upon
translating the grid refineme@s to the B Method. Firstly, we introduce a boolean
variableA notification for each referenced grid service machite

A _notification € A_Instances —» BOOL

When the variabled_noti fication(inst) has the valuérue, the grid refinement
C, is prepared to receive a notification from instameg of .4. The notification
handlerHandler is translated to take variabke notification into consideration:

Handler =
ANY inst WHERE
inst € A_Instances/A
—gd(A(inst)) A Qnotig(inst)A
A_notification(inst) = TRUE
THEN T (inst) || A_noti fication(inst) := FALSE
END

The guard of the translated notification handandler states that the events of
the grid service maching for the instancenst should be disabled wheran-

dler is enabled;-gd(.A(inst)), ensuring that condition (1) is fulfilled. Predicate
Qnotis IS Obtained from thguarantees-statement of the corresponding notifica-
tion Notif in A and models the condition for this notification to be sent. The

15

condition A_noti fication(inst) = TRUE in the guard of the translated noti-
fication handler states that the grid refinement is prepared to receive a notifica-
tion. In order to ensure condition (2) statitigat a notification handler is exe-
cuted only once for each notification, the assignméntoti fication(inst) =
FALSFE is added tdHandler upon translation. In each event®fthe assignment
A_notification(inst) := TRUE is added after the remote procedure calls to
procedures in instandest of A to prepare the notification handlers to receive a
notification. Note that this assignmentilso added after a call td Get New for

a new instancenst of A.

The guards of the notification handlers,(@g},), refer to the variables ofl,
as well as the variabl& notification. Since, an event',, in the event systerfly,
does not modify these variables, conditions (3) and (4) hold trivially.

5.2.3 Exampleof agrid refinement machine

Let us give an example of a grid refinement machine and its translation to B. The
grid refinement machin€LIENT1 below sums up a number of sub-sums (here
100), O commter—1 >oia" <" 4)- The sub-sums from O teounter are computed in

the grid service machinBDDER presented in the example in Subsection 4.2.2.
The current instance of grid service machAl2DER used for the sum computa-
tion is given by variabledder. The variablecounter keeps track of the number

of calls made to instancadder, while variabletotal gives the current result of

the sum computation. The variablpc states whether there is a computation in
progress iradder or not. EvenEvt of CLIENTL1 initiates the computation by a call

to proceduré&etNewData in instanceadder. CLIENT1 then waits for a notification

to update variableotal with the sub-sum computed laglder.

The grid refinement machin@LIENTL1 in Distributed B is translated to the
refinement machin€LIENT1_VERIFICATION in the B Method as follows:

GRID_REFINEMENT REFINEMENT
CLIENT1 CLIENT1 VERIFICATION
REFINES REFINES
CLIENT CLIENT
REFERENCES INCLUDES
ADDER ADDER_VERIFICATION
PROMOTES
Comp
VARIABLES VARIABLES
counter, total, rpc, adder counter, total, rpc, adder
INVARIANT INVARIANT
counter € N A total € NA counter € N Atotal € NA
rpc € BOOLA rpc € BOOLA

adder € ADDER

16

adder € ADDER_InstancesU
{ADDER null}

cont.

INITIALISATION
counter := 0; total := 0;
rpc:= FALSE;
adder :€ ADDER

EVENTS

Evt =
SELECT rpc = FALSE A counter < 100
THEN
counter := counter + 1;rpc := TRUFE;
adder.SetNewV alue(counter)
END

NOTIFICATION_HANDLERS
Handler =
NOTIFICATION DoneNotif
SOURCE inst € ADDER
THEN
VAR val IN
val < inst.Get Result;
total := total + val;
rpc:= FALSE
END
END
END

cont.

INITIALISATION
counter := 0;total := 0;
rpc:= FALSE;
adder :€ ADDER_Instances;
ADDER_notification(adder) := TRUE

OPERATIONS

Evt =
SELECT rpc = FALSE A counter < 100
THEN
counter := counter + 1;rpc := TRUFE;
SetNewV alue(adder, counter);
ADDER_notification(adder) := TRUE
END ;
Handler =
ANY inst WHERE
inst € ADDER_InstancesA
—(state(inst) = start)A
state(inst) = doneA
ADDER_notification(inst) = TRUE
THEN
VAR val IN
val < GetResult(inst);
total := total + val;
rpc:= FALSE
END;
ADDER_notification(inst) := FALSE
END
END

Upon translation variabladder is transformed into an instance type of the grid
service machinBDDER, adder € ADDER_Instances U{ADDER_null}. In the
remote procedure caflet NewV alue the instancedder is introduced as a param-
eter,Set NewV alue(adder, counter). The notification handlgdandler is trans-

lated to a new notification handlingvent for every instancést of ADDER.

The variableADDER natification is taken into consideration in the notification
handler, as well as after remote procedure calls in the events, in order to ensure
that notification handler is executed once for each notification.

5.3 Proofs

In order to show that the grid refinement is a correct refinement of a more abstract
system the proof obligations given in Subsection 2.3 need to be generated and dis-
charged. The proof obligations concerning teBnement of the initialisation, the
procedures, as well as the events are genemitmmatically by the tools of the

B Method. Furthermore, the proof obligation for showing that the refined system
does not terminate more often than thistact system can also be directly gener-
ated by these tools (via Event B). In orde show that the new events terminate
when executed in isolation, a variant that is decreased upon execution of each new
event is needed in the grid refinement machine. Note that the notification handlers
are introduced as new events. For the notification handlers dealing with notifica-

17

tions from grid service machind the variant is the number of instances for which
the notification has not yet been sent:

card({inst|inst € A_Instances A A_notification(inst) = TRUE?Y)

This variant assumes that new events do not call procedurgs iThe proof
obligation ensuring that a refined remote procedure is enabled when the corre-
sponding abstract remote procedure is enableclesby construction, since the
remote procedures contain only non-guarded substitutions. Hence, all the proof
obligations for proving the correctness of a refinement step in Distributed B can
be automatically generated with the tool support for the B Method (via Event B).
These proof obligations can then be automatiaadlynteractively discharged with

the help of these tools.

6 Implementation

The grid system development in Distributed B continues until all the non-determi-
nism has been removed and all the used constructs can be implemented, i.e., they
belong to the implementable subset of the B language, BO. When all substitutions
of the system belong to the BO language, they can be translated to Java. The
remote procedures and notification handlers are constructed in such a way that
they can be directly translated [19]. Fuwtinore, all the variables except for
instances of grid service machines dandirectly translated [19]. The instances
are translated to objects encapsulating the grid specific features. The handling of
grid service instances is performed via the API’s for grid services and for service
data provided by Globus Toolkit. This grid specific code can be inserted into the
initialisation code for the grid services and in the proced@etdlew andDestroy.
In order to be able to implement an event system, all the events avehis-clause
need to be merged [2] into one single event. The composed event can be translated
to awhile-loop in Java as follows:

while (true) (

SELECT G1 THEN S1 if(G1) S1;
WHEN Gn THEN Sn cee
END else if (Gn) Sn;

else break;

}

Thebreak-statement terminasehe loop when the event is disabled. Note that the
event can only be implemented, if all the gua@snd the substitutiorn§ belong
to the BO language.

The sending of natifications should be taken into account when translating a
grid refinement of a grid service machine (grid service) to Java. The event system
is translated to an infinite loop wherenatification is sent when the event is not
enabled.

18

while (true) {
synchronized (this) {
if (Gl1) S1;

else if (Gn) Sn;
elsef
if (Qnotif)
sendNotif () ;

wait () ;

}

The break-statement in the translation of teegent system to Java is replaced by
statements for sending notifitans. Since at least one conditighin a guaran-
tees-clause holds when the event is disabled, there will always be a notification to
send. After the notification has been sdrg system waits until it is notified of a
remote procedure call, in order to be able to continue the execution. The sending
of a notification with conditior@Qnotif in the guarantees-clause is encapsulated

in the methodiend Noti f. The statementynchronized(this) ensures that events

of this event system are atomic.

In the Java translation of a grid refinement of an Event B specification (a client)
the handling of notifications is consideredhe notification handlers for the in-
stances created by the procedGetNew are registered in the Globus Toolkit mid-
dleware The notification handler is then autotitally executed for the appropri-
ate instance every time a notification is received.

In Distributed B the sending and hdmd) of notifications are performed as
one atomic event. In order to achieve the same behaviour in Java a sequence
number variablesegNum, for each instance in both the client and grid service is
included upon translation. The sequence number is needed, since in Java a remote
procedure can be called in a grid service after a notification has been sent from
the grid service to the client, but before it has been handled. This means that the
notification handler would be exe@d when the condition Q in thguarantees-
clause in the grid service does not hold. The following algorithm is used in order
to take notice of valid notifications only.

1. The sequence number of both the gradvice and the clig are initialised
to0

2. When the client calls a remote procedure, it increments the sequence num-
ber and send it to the grid service. The grid service updates its sequence
number to this value.

3. The grid service sends its sequence number with the notification. The client
checks if the received sequence number of the notification is the same as its

19

current sequence number for that grid service. If the numbers are the same,
the notification handler is executed. In case the received sequence number
is less than the current sequence number of the client, the grid service has
not completed all its tasks and the notification is discarded.

4. The sequence number is reset to 0 when the notification handler has been
executed.

A new sequence numb#atSegNum, denoting the sum of all variablesgNum, is
introduced for detecting termination in the presence of notifications. Itis increased
when remote procedures are called and decreased when a notification handler is
executed. The event system of a grid refirent modelling a client is not allowed

to terminate when there are pending notifications to be handled. Hence, the system
only terminates if the event is disabled and the sequence nuioitsegNum is

equal to zero.

while (true)
synchronized (this) {
if (Gl) S1;

else if (Gn) Sn;
else{
if (totSegNum>0)

else
break;

}

The translated event system containgfastatement that checks if notifications
are pendingtotSeqNum > 0. If there are no notifications pending the event
system terminates.

After we have translated the Distributed B code to Java and all the grid spe-
cific features have been handled, we have implemented the grid system in a formal
manner where the implemtation is proved correct with respect to its specifica-
tion.

7 Conclusions
In this paper we have proposed a language Distributed B that extends Event B
for designing and implementing correct gagstems. Grid systems are large dis-

tributed systems and standard development tools cannot guarantee their correct
implementation. We introduced two new types of machigesl, service machine

20

andgrid refinement machine, for handling grid specific issues in Event B. We pro-
posed a method where the developmenaajrid system starts with refinement
within Event B. After a number of refinement steps the system is split up into
a grid refinement machine and a number afl grervice machines in Distributed

B. These machines can then be further refined. Throughout the development in
Distributed B the grid constructs are tidated to machines in the B Method for
verification purposes. The machines are introduced in a manner that allows au-
tomatic generation of the necessary proof obligations. Furthermore, the concrete
specifications can be automatically transthto executable code, since the grid
constructs have been introduced in such & et they ensure that the system
will be implementable. Hence, we have introduced a method for implementing
grid systems where the implementation can be proved correct with respect to its
specification.

The B language has earlier been successfully used for modelling distributed
systems, e.g., in [20]. These examples do, however, not consider implementation
issues of the developed specification. lempkentation of distributed systems us-
ing the B Method has also been considdi@dhe combination of ordinary B and
CORBA in [16]. Though, the paper does not consider concurrent behaviour and
dynamic management of instances of distributed components. Other formal meth-
ods have also been extended previouslgrtable implementation of distributed
systems using different application domains. For example, the DisCo formalism
has been used for designing and impletmensystems that were translated to En-
terprise Java Beans (EJB) [15]. Grigexific features were not considered in that
extension.

The architecture of the systems deygdd with Distributed B forms a tree
of grid services. Even if this is a very common architecture for grid systems, it
might be too restrictive in some cases. Hence, we plan to investigate also other
architectures. In the modelling of grid systems in distributed B we have made the
assumption that no network failures occur. In future versions of Distributed B also
network failures and node failures will be taken into consideration. Moreover, we
consider development of tool support for grid systems in Distributed B.

The language Distributed B that we proposed in this paper can provide a con-
venient formal development process for grid systems. The systems will by con-
struction have an architecture that is implentable. Furérmore, specifications
of grid systems constructed in this language will be clear to understand, since the
systems are modeled in terms of grid primitives with a precise meaning. We be-
lieve that our approach to adapt Event B to the Globus Toolkit middleware can
also be useful for other types of middleware for distributed systems.

References

[1] J.R. Abrial.The B-Book: Assigning Programsto Meanings. Cambridge Uni-
versity Press, 1996.

21

[2] J. R. Abrial. Event Driven Sequential Program Construction, 2001.

http://www.atelierb.societe.com/ressources/
articles/seq.pdf. (accessed 28.10.2004)

[3] J. R. Abrial and L. Mussat. Event B Reference Manual, 2001.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

http://www.atelierb.societe.com/ressources/evt2b/
eventb reference manual.pdf. (accessed 28.10.2004)

N. Aguirre, J. Bicarregui, T. Dimitrakos and T. Maibaum. Towards Dynamic
Population Management of Abstract Machines in the B Method. In D. Bert,
editor, Proceedings of the Third international conference of B and Z users.
ZB2003. LNCS 2651. Turku, Finland, pp. 528-545. Springer-Verlag, 2003.

R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with
centralized control. IfProceedings of the 2nd ACM S GACT-S GOPS Sym+
posium of Principles of Distributed Computing, pp. 131-142, 1983.

R. J. R. Back and K. Sere. From modular systems to action systems. In
Software - Concepts and Tools, 17:26-39, 1996.

M. Butler and M. Waldén. Parallel programming with the B Method. Chapter
5in E. Sekerinski and K. Sere. (edBrogram Development by Refinement
- Case Sudies Using the B Method, pp. 183-195. Springer-Verlag, 1998.

E. W. Dijkstra. A Discipline of Programming. Prentice-Hall International,
1976.

I. Foster, C. Kesselman and S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organization$he International Journal of Supercomputer
Applications, 15(3), 2001.

|. Foster, C. Kesselman, J. Nick and S. Tuecke. The Physiology
of the Grid: An Open Grid Services Architecture for Distributed
Systems Integration. Technical report, Argonne National Laboratory,
2002.http://www.globus.org/research/papers/ogsa.pdf.
(accessed 28.10.2004)

Globus Toolkit. The Globus Alliance, 2004.
http://www.globus.org/. (accessed 28.10.2004)

K. Czajkowski, et. al. Open Grid Services Infrastructure, 2003.
http://www-unix.globus.org/toolkit/
draft-ggf-ogsi-gridservice-33 2003-06-27.pdf. (ac-
cessed 28.10.2004)

E. J. Hedman, J. N. Kok and K. Sere. Coordinating Action Systd&ims-
retical Computer Science, 240:91-115. Elsevier Science, 2000.

22

[14] G. Mair and A. \Villazon. Implementing a Distributed
Master/Slave Grid Service with Globus Toolkit 3 (GT3).
http://dps.uibk.ac.at/~gregor/mandel.pdf, 2003. (ac-
cessed 28.10.2004)

[15] R. Pitkénen. A Specification-Driven Approach to Development of Enterprise
Systems. IrProceedings of NWPER 2004 - 11th Nordic Workshop on Pro-
gramming and Software Development Tools and Techniques, TUCS General
Publication 34. Turku, Finland, 2004.

[16] O. Rolland and T. Muntean. Refining Open Distributed Systems to CORBA.
In Proceedings of RCS 02- International workshop on refinement of critical
systems. methods, tools and experience. Grenoble, France, 2002.

[17] C. Snook and M. Waldén. Use of U2B for specifying B action systems. In
Proceedings of RCS 02- International workshop on refinement of critical
systems. methods, tools and experience. Grenoble, France, 2002.

[18] K. Sere and M. Waldén. Data Refinement of Remote Procedtoesal
Aspects of Computing, 12(4):278-297, 2000.

[19] J. C. Voisinet, B. Tatibouet and A. Hammand. JBTools: An experimental
platform for the formal B method. IRroceedings of the inaugural confer-
ence on the Principles and Practice of programming and Proceedings of
the second wor kshop on Intermediate representation engineering for virtual
machines. National University of Ireland, 2002

[20] M. Waldén and K. Sere. Reasoning About Action Systems Using the B-
Method.Formal Methods in Systems Design, 13:5-35, 1998.

23

TURKU

CENTRE for

COMPUTER

SCIENCE

Lemminkéisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

A 4
O

Abo Akademi University
e Department of Computer Science
e |Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
e Institute of Information Systems Sciences

University of Turku
e Department of Information Technology
e Department of Mathematical Sciences

ISBN 952-12-1445-5
ISSN 1239-1891

