
Pontus Boström
�
Marina Waldén

An extension of Event B for developing
grid systems

TUCS Technical Report
No 632, November 2004

An extension of Event B for developing
grid systems

Pontus Boström
Åbo Akademi University, Department of Computer Science/TUCS
Lemminkäisenkatu 14 A, 20520 Turku, Finland
pontus.bostrom@abo.fi

Marina Waldén
Åbo Akademi University, Department of Computer Science/TUCS
Lemminkäisenkatu 14 A, 20520 Turku, Finland
marina.walden@abo.fi

TUCS Technical Report

No 632, November 2004

Abstract

Computational grids have become widespread in organizations for handling their
need for computational resources and the vast amount of available information.
These grid systems as other distributed systems are often complex and formal rea-
soning about them is needed, in order to ensure their correctness and to structure
their development. Event B is a formal method with tool support that is meant for
stepwise development of distributed systems. To facilitate the implementation of
grid systems we here propose extensions to Event B that take grid specific features
into account. We add new constructs to model the client-server architecture of grid
systems, as well as important features like communication and synchronisation.
We introduce the extensions in such a manner that the necessary proof obligations
are automatically generated and the systemcan be directly implemented.

Keywords: Grid Systems, Distributed Systems, Event B, Language Extensions,
Implementation

TUCS Laboratory
Distributed Systems Design Laboratory

1 Introduction

Organizations need the ability to efficiently utilise existing hardware and be able
to effectively share information with each other. Computational grids have be-
come a popular approach to enable organizations to handle the vast amount of
available information. These grids are also used for solving problems in, e.g., bi-
ology, nuclear physics and engineering. Grid computing [9, 14] is a distributed
computing paradigm that differ from traditional distributed computing in that it is
aimed toward large scale systems that even span organizational boundaries.

The development of correct grid systems is difficult with traditional software
development methods. Hence, formal methods are needed in order to ensure their
correctness and structure their developmentfrom specification to implementation.
The Action Systems formalism [5] is a formal method that is well suited for de-
veloping large distributed systems, since it supports stepwise development. How-
ever, it lacks good tool support. The B Method [1], on the other hand, is a formal
method provided with good tool support, but developed for construction of se-
quential programs. The B Method can be combined with Action Systems in order
to formally reason about distributed systems as in the related methods B Action
Systems [20] and Event B [3]. B ActionSystems models Action Systems in the B
Method, while Event B also extends original B with new constructs. We mainly
use Event B in this paper.

With generic formal languages like Event B specifications are often uninten-
tionally constructed in such a way that they cannot be implemented or are very
difficult to implement efficiently. The problem becomes especially apparent when
developing distributed systems with complicated synchronization and communi-
cation patterns. Therefore, we propose new extensions to Event B in order to be
able to construct models of grid systems that can be implemented and to verify
their correctness in a convenient way. The language obtained by the extensions
will be referred to as Distributed B in the rest of the paper.

The language Distributed B is targeted towards Grid systems using the Globus
Toolkit [11] middleware. Grid systems usually have a client-server architec-
ture. This means that there is a client that initiates communication with the
server, which only responds to the clients’ requests. Distributed B supports client-
server architectures with multiple concurrent accesses by the same client to several
servers. The main communication mechanism of the grid middleware is remote
procedure calls. However, the grid middleware also supports asynchronous noti-
fications sent from a server to a client. Both these communication primitives are
used in Distributed B. The constructs are introduced in such a manner that they
ensure that the system will be implementable and all needed proof obligations can
be automatically generated.

1

In section 2 we describe formal development of systems in Event B. In section
3 we give an overview of the grid technology and discuss how the grid features
are incorporated into Event B. The new constructs, grid service machine and grid
refinement machine, are presented in sections 4 and 5, respectively. In section 6
we discuss implementation issues and in section 7 we conclude.

2 Formal development with Event B

In order to be able to develop correct grid systems and other distributed systems,
we need to reason about these systems in a formal manner. Furthermore, it is
important that the formal reasoning is facilitated by good tool support. Action
Systems is a well established formalism for reasoning about distributed systems
[5]. However, it lacks good tool support. Event B [3] is a formalism that is
based on Action Systems and is an extension of the B Method for developing
distributed systems. This formalism is also provided with tool support via the B
Method. Because of this we have chosen Event B as the formalism within which
we develop our framework for specifying and implementing grid systems.

2.1 Abstract specifications

An abstract model of a system within Event B is encapsulated in asystem-machine
and is identified by a unique name. Let us study the abstract model� below.

� � � � � � �
� 	
 � 	 �
 � �

�� � � 	
 � 	 � �
� � � �� � � � � 	
 � � 	 � � � �

� � � � �� � � � � �
� � �� � � �
� � �� � � �

� � �� � �

Each variablex in the variables-clause is associated with some domain of val-
ues. The set of possible assignments of values to the state variables constitutes
the state space. The data invariant� ! " in the invariant-clause defines the state
space of the variables and their invariant properties. In theinitialisation-clause
initial values are assigned to these variables. Theevents-clause contains events
describing the behaviour of the system. Each event in theevents-clause is a sub-
stitution statement, where the substitution, for example, can be askip-substitution,
a simple substitution, a multiple substitution, a sequential substitution, a precon-
ditioned substitution, a conditional substitution, a guarded substitution or a non-
deterministic guarded substitution.The semantics of these substitution statements
is given by the weakest precondition calculus developed by Dijkstra [8].

2

� � � � � � � � 	
 � 	
� � � �
 � � � 	
 � 	 � �
 � � �
� � � �
 � � � �
 � � � 	
 � 	 � � � �
 � � � � � , where� � � � �
� � � �
 � � � �
 � � � 	
 � � 	 � �
 � � �
 � �
 � � �
� � � PRE � THEN � END � 	
 � � � � � � � � 	

� � � IF � THEN � ELSE � END � 	
 � � � � � � � � � 	

 � � � � � � � � � � 	

� � � SELECT � THEN � END � 	
 � � � � � � � � 	

� � � ANY � WHERE � THEN � END � 	
 � � � � � � � � � � � 	

Here,Q andG are predicates,x andy are variables,e andf are expressions, while
S andT are arbitrary substitution statements.

An event is considered to consist of a guard and a body. For example, for event� � ! " # " $ % � % & " ' � " ' (the guard, gd�) � , is � * + gd� , � � . When the guard
of an event evaluates totrue in a given state, the event is said to be enabled. Only
enabled events are considered for execution. If several events are enabled, they
are executed in random order. Events that do not share variables can be executed
in parallel. When there are no enabled, events the system terminates. The events
are considered to be atomic and, hence, only their input-output behaviour is of
interest.

In grid systems remote proceduresplay an important role. Remote procedures
[18] are, however, not supported in Event B. The reason for this is that a model in
Event B is closed, i.e., the system is modeled as a whole without relying on outside
information. For reasoning about remote procedures we rely on the formalism B
Action Systems [20] , another formalismapplying Action Systems within the B
Method and related to Event B. Remote procedures are discussed in more detail
elsewhere [18, 7].

2.2 Decomposing event systems

Grid systems are often very complex systems. Therefore, it is beneficial to split
these systems into several smaller ones during the development [6]. Let us study
how an event system� can be decomposed into two components� - and � . . Sys-
tem � contains the variablesx, y andz, where the event) - refers tox andz, and
event) . to y andz. We assume that) - does not modifyz.

� � � � � � 	

 � �
 � � � � �

� / 0 / 1
 �
 � �
 � � �
� 2 � � � / 1 � 3 � 2 � � 0 / 1 �
 �
 �
 � �
 � � �
 � �

� � � � � 4 0 � � 0 � 4 1 � � 1 ��
 � � � �
� � �� SELECT 5 �

THEN � �
END

�
� � �� SELECT 5 �

THEN � �
END� � �

3

The parallel decomposition of system� into the components� � and � � is then
defined by splitting the variables and events as follows.

� � � � � � � �
� � � � 	
 �

� �
�
 � �
 � � � �

�� 	 �
 � �
 	 �
� � � � � � � �� 	 � � �
 � � �
 � � � 	
� � � � �� � � 	 � �
� � �� SELECT � �

THEN � �
END� 	

� � � � � � � �

�
 � �
 � � � �
� � �� 	 �
 � �
 	 �
� � � � � � � �� 	 � � �
 � � �
 � � � 	

� � � � � � � � � � �� � � 	 � �
� � �� SELECT � �

THEN � �
END� 	

Here we say that system� � extends system � � indicating that � � is composed
in parallel with � � . Note that theextends-clause is as defined in the original B
Method. After the decomposition the variable� is located in� � while � and �
are in � � . The invariant, the initialisation, aswell as the events referring to the
variable � are included in� � , while the ones referring to� and � are given in
� � . In � � the variable� is a global variable, since it is referenced also in system
� � . The decomposition rule can be applied in reverse and is then called parallel
composition [6, 7].

When composing event systems we also consider prioritised composition [13].
The prioritised composition� � � � denotes the parallel composition between the
event systems� and � , where � has a higher priority than� . If an event is
enabled in� , it will always be executed before any event in� .

2.3 Refinement

In Event B we can refine an abstract specification in a stepwise manner to a more
concrete and detailed specification. New variables can be introduced and the old
ones can be refined to more concreteones. This is reflected in the substitutions
of the events, as well. Furthermore, new events that only assign the new variables
may be introduced. In a refinement step we can also merge several events into one
event, as well as refine one event by several new events.

Let us assume that we have two event systems� and � � as below. The variable
x in � is refined to� � in � � , while y is the new variable introduced in� � . The
events	 � are refined by the corresponding events	 �� to also takey into account.
The events	
 are introduced in this refinement step and refer only to the new
variable� .

4

� � � � � � � �
� � � � � 	
 � �

�� � � � � � � �

� � � �� � �
 � �
 � � �
 � � �
� � � � �� � � �
 �
� � �� � � �

� � �� � �� � �
� � �

� � � � � � � � �
 � �
� � � � � � � �

� � � � � 	
 � �
� � � �� � � � � � � �

� � � � � � � � �� � �
 � �
 � � �
 � � �
� � � � � � � � � � � � �� � � �
 �
� �� �� � �� �

� � �� �� �� � �� �
� � �� � � �

� � �� 	 �� � 	
� � �

When invariant

 � � � � � � � � is a relation between the abstract variablesx and the

concrete variables� � andy, we write � � � � � to denote that the abstract eventE
is data refined by the concrete event� � under invariantJ [5]. In order to show that
system� � is a refinement of� under invariantJ, � � � � � , the following proof
obligations should hold [3]:

1.
 � � � � �
 � � � �

2. � � � � � �� , for � � � � � �

3. � � � � � � � � , for � � � � � �

4. � � � � ! � � �� " # � � � # ! � � �$ " # ! � � � " # � � � # ! � � % " " & � � ! � � � " # � � � # ! � � $ " "
5. � & ' � (

6. ! � � � " &) * � � + , ' -) * � � � - ' . � " "

The initialisation in the refined system maintains the behaviour of the abstract
system (1). Every event� � in the abstract system is refined by an event� �� in the
concrete system (2). New events� � should only refer to the new variables (3).
They should not change the behaviour of the abstract system. The refined event
system must not terminate more often than the abstract one (4). The behaviour of
the abstract system should be preserved and, hence, the new events should termi-
nate when executed in isolation (5 and 6). Here,/ is a variant that is decreased
by every new event� � . All these proof obligations can beautomatically generated
by the tools for Event B.

For the remote procedures we rely on the proof obligations for B Action Sys-
tems [7]. Let us assume that we have procedure0 1 in � that is refined by0 �1 in
� � . When considering procedures in event systems the following additional proof
obligations should hold.

7. 2 1 � � 2 �1 , for � � � � � 3

8. � � ! � 2 1 " & ! � 2 �1 " , for � � � � � 3

5

The abstract remote procedure� � should be refined by the corresponding proce-
dure � �� in � � (7). Furthermore, the guards of the procedures may not be changed
(8). Proof obligation (7) can be automatically generated via Event B, while proof
obligation (8) requires some extra constructs corresponding to the ones in [20].

3 Grid systems in Event B

Relying on Event B we can formally specify correct grid systems. However, it
is not straightforward to develop the specification in such a manner that it can be
directly implemented. We propose an extension of Event B, Distributed B, that
enable us to create implementable specifications of grid systems in a convenient
way. Let us first study grid systems.

3.1 Grid systems

The purpose of grid systems is to share information and computing resources even
over organizational boundaries. This requires security, scalability and protocols
that are suited for Internet wide communication. The Open Grid Service Archi-
tecture (OGSA) [10] aims at providing acommon standard to develop grid based
applications. This standard defines what services a grid system should provide.
A technical infrastructure specification defined by Open Grid Service Infrastruc-
ture (OGSI) [12] gives a precise technical definition of what a grid service is. The
Globus Toolkit 3.x [11], an implementation of the OGSI specification, has become
defacto standard toolkit for implementing grid systems. This is also the toolkit we
use as grid middleware for Distributed B in this paper.

Grid systems usually have a client-serverarchitecture, where the client initi-
ates communication with the server that only responds to the client’s request. A
client may access several servers concurrently. A server is referred to as a grid
service in Globus Toolkit, since it provides services to other grid components.
Grid services as implemented in GlobusToolkit provide features such as remote
procedures, notifications, services that contain state, transient services and service
data. The main communication mechanism of grid services is remote procedure
calls from client to grid service. By usingnotifications a grid service can asyn-
chronously notify clients about changes in its state. The state of grid services are
preserved between calls and grid service instances can be dynamically created.
Service data adds structured data to any grid service interface. This way not only
remote procedures, but also variables are available to clients. Furthermore, Globus
Toolkit contains an index service for managing information and keeping track of
different types of services in the grid.

6

Figure 1: The structure of the Distributed B development

3.2 Extending Event B

The main purpose of the language Distributed B is to be able to specify, verify and
implement correct grid systems in a convenient way. As for grid systems the most
common communication mechanism in Distributed B is remote procedure calls.
However, in order to support concurrent accesses by the same client to multiple
grid services, Distributed B also takes into account notifications.

In order to meet the requirements above, we propose to extend Event B with
two types of machines, agrid service machine modelling abstract grid service
features and agrid refinement machine for refining an ordinary Event B model by
introducing grid features or for refining a grid service machine. A grid service
machine is a template of which a client (a grid refinement machine) can obtain
instances. Using terminology from object oriented programming, the grid ser-
vice machine can be viewed as a classand the instances as objects of the class.
This new composition mechanism is expressed with thereferences construct in
the grid refinement machine. Several instances of the same grid service machine
can be controlled by the same client as a master can control several identical
worker nodes. A grid service machine contains specifications of remote proce-
dures, events and notifications. The grid refinement machine, on the other hand,
has clauses for refined remote procedures and events, as well as a clause for han-
dling notifications. The clients and the grid services use remote procedure calls
and notifications to communicate andsynchronize with each other. For example,
a client can make a requests to a grid service with a remote procedure call and
when the request has been carried out a notification is sent back to the client.

The development of the grid system shown in Figure 1 starts with an initial
specification, � , in Event B that is refined in a number of steps,� � . The specifica-
tion is then split up into a client,� � , and a number of grid services,� . The grid
services can in turn be independently refined further,� � , and reference new grid
services,� . For simplicity we assume that eachgrid service machine can only be
referenced from one grid refinement machine.

Throughout the development of the system the grid constructs are translated
to ordinary B machines for verification purposes. Note that we translate the Dis-
tributed B specifications to the B Method and not to Event B. The reason for this is

7

that the current tool support also translate Event B specifications to the B Method
for verification. We translate the Event B constructs in Distributed B to the B
Method in the same manner as the current tools for Event B.

4 Grid service machines

In Distributed B an abstract model of agrid service is given as the constructgrid
service machine. Grid service machines extend Event B with clauses for speci-
fying remote procedures and notifications.A grid service can wait for a remote
procedure call from a client. Upon the call it performs the requested task. When
the task has been completed, i.e., when all the events in the grid service machine
has become disabled, a notification is sent. By choosing to send the notification
only after the task has been completed, the notification mechanism can be imple-
mented using the Globus Toolkit in a straightforward manner.

4.1 Grammar for the grid service machine

The grammar for the grid service machine is an extension of the grammar for an
abstract system in Event B. Here only the differences between the grammars are
shown.

gridservice ::= “GRID_SERVICE” Name
Clause_gridservice+

Clause_gridservice ::=
Clause_system_abstract |
Clause_rpcs |
Clause_notif

Clause_rpcs ::= “REMOTE_PROCEDURES” Rpc_oper+;
Rpc_oper ::= Header_operation “=” NG_Substitution
Clause_notif ::= “NOTIFICATIONS” Notif+;
Notif::= Name “=” “GUARANTEES” Predicate “END”

As in an abstract system in Event B the grid service machine contains con-
stants, sets, variables and predicateson them. The variables are first initialised
and then modified by the events. Additionally, the grid service has a number
of remote procedures that other services can access. A remote procedure is an
implementable operation in the B Method, i.e., it only contains non-guarded sub-
stitutions (here calledNG_Substitution) of the set of substitutions in Event B.
The notifications-clause containsguarantees-statements with conditions indicat-
ing when the notifications can be sent tothe client. A notification is sent when
none of the events in theevents-clause are enabled and the predicate in itsguar-
antees-statement holds.

8

4.2 Mapping the specification to B.

An abstract grid service machinecontains clauses which do not exist in an Event B
specification. In order to be able to use tool support for verifying the consistency
of the grid service machine , we need totranslate the grid service machine to an
abstract machine specification in the B Method.

4.2.1 Translation of the grid service machine to B

In a system developed within Distributed B it is assumed that all available in-
stances of all the grid services are created upon initialisation of the system. The
index service of Globus Toolkit then provides references to available grid service
instances of correct type. In the B Method the set of instances that can be obtained
from the index service first has to be defined. This dynamic management of in-
stances of machines are not directly supported in the B Method and, hence, it has
to be explicitly modeled [4, 17].

Let us assume that we have a grid service machine� . The set of instances of�

that can be obtained from the index service is then given as the setA_INSTANCES.
The constantA_null models an empty instance of grid service machine� . Upon
a request for a new instance from the index service, the valueA_null is returned
when no non-empty instance is available.

� � � �
�

_
� � � � � � � � �

� � � � � 	 � � �
�

_� � � ��
 � � �
 � � � �
�

_� � � � � �
_

� � � � � � � � �

The variableA_Instances models the set of non-empty instances of� currently in
use by the client. They are obtained dynamically from the index service.

� 	
 � 	
 � � �
�

_
� � � 	
 � � � �

� � � 	
 � 	 � �
�

_
� � � 	
 � � � �
 �

_
� � � � � � � � � ��

_� � � � �� �
_

� � � 	
 � � � �

All the variables in a grid service machineare translated to functions from the set
of current instances to the variabletypes. Assume that grid service machine� has
a variablex with type X. When � is translated to the B Method the type ofx is
defined as� � � _� � � � � � � � � � � .

When we translate remote procedures to the B Method to take an instanceinst
into account, we introduce the instance for which it is called as an additional pa-
rameter. For example, procedure� � � � � � � �� � becomes� � � � � � � ! � � � �� � � � � ! �
upon translation. The events are translated to non-deterministic guarded substitu-
tions (any-substitutions) to take instances into account. Hence, the event� � �� � �
in the grid service machine becomes:

� " 	
 # � $ � � � � %
 � & � � � � � � � _� � � � � � � � � �
 � � � " � � � � � � � � �

9

Since the notifications should be enabled when the events of the grid service ma-
chine have become disabled, we add the following predicate to the invariant of the
abstract machine upon translation:

�
� � � � � � � � � � � � _� � � � � � � � � 	
 � � � � � � � � �

 � � � � � � � �
 � � � � � � � � � � � �

where � � is the predicate of theguarantees-statement in notificationi in � . The
predicate states that one of the notifications is enabled when all events of� are
disabled.

In order for a client to be able to obtain new instances for a grid service ma-
chine via the index service, a procedureGetNew is automatically generated in the
translated abstract B machine. This procedurecan be viewed as the constructor of
instances.

� 	 �
_� � � � �
 ��� � � � � �

� � � � � � � � � � 	 �
�

_

 � � � � � � � � �� �

_

 � � � � � � � � �

� � � � 	 �
_

 � � � � � � � �
 �
_

 � � � � � � � � � � � � � �� �
_�
 � �
 � � �

�
_

 � � � � � � � � � � �
_

 � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �� � �

� 	 � � � �
_�
 � �� � �

The procedure ensures that the instance returned is not already in use and returns
A_null if no non-empty instance is available. If variablex is assigned� � in the
initialisation-clause of grid service machine� , variablex for the returned instance
inst of � is assigned� � , � � �
 � � � � � � � , in A_GetNew.

Grid services allocated by a client may need to be returned to the index ser-
vice. Hence, a procedureDestroy is automatically generated for each grid service
machine upon translation to the B Method to return an instance no longer in use.

�
_� � � � � � � � � � � � � ��

� 	 � � � � � 	 �
_

 � � � � � � � �
 � � �
� � � � � � 	 �

_

 � � � � � � � �
 � � �

� � � � � � � � � � � � �
�

_

 � � � � � � � � � � �

_

 � � � � � � � �
 � � � � � �� � �

� � �

The operationA_Destroy in � deletes the instance,inst, from the set of instances
in use and marks the instance as available in the index service. This procedure can
be viewed as the destructor of instances.

10

4.2.2 Example of a grid service machine

As an example of translating grid service machines in Distributed B to the B
Method, let us study grid service machineADDER that computes the sum of all
values it receives. The machine has two remote procedures,SetNewData andGe-
tResult. The new value to be added to the sum is given via procedureSetNewData.
The result of the latest computation can be obtained via procedureGetResult. The
variablesum gives the current result of the sum computation, while the variable
param contains the latest value received viaSetNewData. The variablestate en-
sures that all the received values are added once and only once tosum. The actual
computation of the sum is performed in eventComp. A notification is sent af-
ter the initialisation,InitNotif, as well as after a new sum has been computed,
DoneNotif.

The grid service machineADDER is translated to the abstract B machine
ADDER_VERIFICATION for verification as follows:

� � � �
_

� � � � � � �
�

� �
� �

� � � � � 	
 � �
� � � � � � � � � � � � � � �

� � � � � � � � �
� � � � � �

� � � � � � � �
� � � � � �
 � � � �

� � � � � �
 � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � �

� � � � � �
_

� � � � � � � � � �

 � � 	 � � � � � � � � � ��

� � � � � �
� � � �

� � � � � � � � �
� � � � � � � � � � �

� � � �
� � � � � � � � �
 � ��

	 � � � � � � � � � �
� � �

� � � � � �
� � � � ��

� �
 � � � � � � � � � � � � � �
� � � �

� � � � � � � � � � � � � � �
� � � � � � � � � � �

� � �
� � � � � � � � � � � � �
� � � � 	 � � � � ��

� �

� � � � 	 � � � � ��
� �

� � �

� � � � � � �
�

� �
� �

_	 � � � � � � � � �
 	

� � �� � � � � 	
 � �
� � � � � � � � � � � � � � � � �

� �
� �

_
� � � � � � � � �

� � � � � � � � �
�

� �
� �

_
� � � � � � � � �
 �

� �
� �

_
� 	
 � � 	 � �
 �

�
_� �

 �� �

� �
� �

_
� � � � � � � � � �

� � � � �
� �

� �
_

� � � � � � � � � � � �
� � � � � � �

� �
� �

_
� � � � � � � � � � � �

� � � � � � �
� �

� �
_

� � � � � � � � � �
 � � � � �
�

� � � � � �
� � � � � �

� �
� �

_
� � � � � � � � � �

 � � � � � � �
� � � � � � � � � � � � �

� � � � � �
� � � � � � � �
 � � � � � � � �

� � � � � � � � � � �
� � � � � �
 � � � � � � �

� �
�

� �
� �

_
� � � � � � � � � � � �

� � � � � � � � � �

 � � 	 � � � � � � �

� � � � � � � ��
� � � � � � � � � � � � �

� �
� �

_
� � � � � � � � �

� � � �
� � � � � �

� � � � � � � � �
� � � � � �

� � � � � � � � � � �
� � � �

� � � � � � � � �
 � �
� � � � � ��

� � �
� � � � � �

� �
� �

_
� � � � � � � � �

� � � � � � � � � � �
� � � � �

� � � �
� � �

� �
� �

_� � � 	 � � �� � � � �
�

� �
� �

_� � � � � � � �� � � � �

� � � � ��
� � �

� � � � � � � � �
� � � � � �

� �
� �

_
� � � � � � � � �

� � � �
� �
 � � � � � � � � �

� � � � � � � � � � �
� � � �

� � � �
� � � � � � � � � � �

� � � � � � � � � � � �
� � � � � �

� � � � � �
� � � � � � � � � � �

� � �
� � �

� � �

11

The types of the variables in the grid service machine are translated to functions
from instances of the grid service machineto data values. For example, the vari-
able sum has type� in ADDER, while it is a total function from the instances
ADDER_Instances to � in ADDER_VERIFICATION. Instances are created and
deleted by the proceduresADDER_GetNew andADDER_Destroy introduced in
ADDER_VERIFICATION. The remote procedures� � � � � � � � � � and � � � � � � � 	 �

take the instances into account. An additional parameter is introduced to denote
for which instance the procedure is called. EventComp is translated to anany-
substitution for a non-deterministically chosen instanceinst of ADDER. There is
an eventComp for every instance ofADDER in use. The notificationsInitNotif
andDoneNotif are not translated as such into the B Method. Though, the invari-
ant should explicitly say that theguarantees-predicates in one of the notifications
holds when eventComp is not enabled.

5 Refinement in Distributed B

We introduce a new type of refinement machine in Distributed B to deal with
remote procedure calls and notification handlers in Event B. Thegrid refinement
machines refine Event B systems, grid servicemachines, as well as other grid
refinement machines. In a refinement step in Distributed B variables and events
can be refined in the same way as in Event B. The substitutions in the remote
procedures and the notification handlers are also refined as the events to reflect
the changes of the variables. Note thatthe variables of the abstract grid service
machines are global variables and may not be refined.

A grid refinement machine contains a new structuring mechanism in B that
enables the grid refinement to obtain instances of the grid service machines via
the index service. When the grid refinement machine has obtained a grid service
instance, it can perform a remote procedure call to this instance and then wait for
a notification from it.

5.1 Grammar for Refinements of grid services

The grammar of a grid refinement machine is an extension of the grammar of
the refinement machine in Event B. For brevity we concentrate on the differences
from the refinement machine.

Ref_gridservice ::= “GRID_REFINEMENT” Name
“REFINES” Name
Clause_ref_gridservice+

Clause_ref_gridservice ::=
Clause_refinement |
Clause_references |
Clause_rpcs |
Clause_notif_handlers

12

Clause_references ::= “REFERENCES” Name+,
Clause_rpcs ::= “REMOTE_PROCEDURES” Rpc_oper+;
Rpc_oper ::= Header_operation “=” NG_Substitution
Clause_notif_handlers ::= “NOTIFICA-
TION_HANDLERS” Notif_handler+;
Notif_handler ::= Name “=” “NOTIFICATION” Name

“SOURCE” Name “:” Name
“THEN” NG_Substitution “END”

In the references-clause we give the names of the grid service machines that
the grid refinement machine can access and obtain instances of. The refined re-
mote procedures are given in theremote_procedures-clause. Notifications are
handled by special events, notification-substitutions, in thenotification_handlers-
clause. There is one notification handler event for each notification in the ref-
erenced grid service machines. The source of the notification is given as<in-
stance>:<grid service machine>. The notification handlers should be imple-
mentable and not contain guarded substitutions. Thenotifications-clause that we
introduced for grid service machines is not included in the refinement, since the
guarantees-predicate of a notification should not be refined.

5.2 Translation of the refinement to B

In order to be able to show that the grid refinement machine is a correct refinement
of another machine, e.g., an Event B specification or a grid service machine, both
the grid refinement machine and its referenced grid service machines need to be
translated to the B Method. Note that when we refine a grid service machine, we
actually refine the instances of the grid service. In the translation from Distributed
B to the B Method the instances of gridrefinement machines are treated in the
same way as the grid service machines.

In figure 2 refinement machine� � is refined by the composition� � references
� . The grid refinement machine� � is translated to the refinement machine� � _�

and the grid service machine� is translated to the abstract machine� _� . The
references-relation between� � and � is translated to anincludes-relation between
� � _� and � _� .

Figure 2: Translation to Event B

13

5.2.1 Managing instances of grid service machines

In the grid refinement machines we give instances of referenced grid service ma-
chines as ordinary variables. The instanceaa of grid service machine� is de-
clared as variableaa of typeA, � �

� � . This type declaration is translated to the
predicate� � � � _� � � � � � � � � � � � _� � � � � in the B Method.

The grid refinement machines refer to the variables and remote procedures of
the instances of a grid service machine with the notation<instance>.<variable>
and<instance>.<procedure>, respectively. The variables of the grid service ma-
chine can be referred to only in the invariant of the grid refinement machine.

The remote procedure calls need to be translated to match the correspond-
ing procedure definitions of the translatedgrid service machine. A call to a re-
mote procedure� � � � � � � in instanceaa, � � � � � � � � � � is translated to procedure
call � � � � � � � � � � in the B Method, where the instanceaa is given as an additional
parameter.

5.2.2 Notifications

Notifications in a grid service machine informthe client that all the events in the
grid service machine instance has become disabled. A notification handler in the
client ensures that proper actions are taken for each notification. In the grid refine-
ment machine a notification handler is expressed with thenotification_handler-
substitution: 	

� � � � � � ��� � � � 	 �
 	 � � � � � � 	 � �
 � � �
 �
� �
 	 � �

� � � � �

� �
 	 �� � �

HereNotif is the notification to be handled, the source
 � � � � � stands for the
instanceinst of the grid service� that sent the notification, and
 �
 � � � � is a
non-guarded substitution that refers to instanceinst. Note that
 can only make
read-only remote procedure calls to instances of� . A notification handler in a
client is only enabled when all the events in the corresponding grid service have
become disabled and theguarantees-predicate of the corresponding notification
holds. Since a notification handler should only be executed once for each notifi-
cation, it must disable itself.

Let us assume that we have a grid refinement� � that refines an Event B specifi-
cation� � and that� � has a reference to grid service machine� , as shown in Figure
2. Furthermore, let� � be the composition of the event systems� � � containing the
notification handlers (notification_handler-substitutions) and� � � containing the
rest of the events in grid refinement machine� � , � �

� � � � � � � � . If we denote the
composition of grid refinement� � and its referenced grid service� with � �� , we
have that event system� �� is defined as:

� �� �� � � � � � � � � � � � �

14

where the events in the grid service machine� have a higher priority than the noti-
fication handlers in� � and, hence, the notification handlers are executed only after
the events in� have become disabled. In order to ensure the correct behaviour of
the notification handling, the following conditions should hold:

gd� � � � � � � gd� � � (1)

gd� � � � � � wp � � � � � � gd� � � � � � (2)

Condition (1) is derived from the prioritised composition� �� . It states that all
events in grid service machine� are disabled when a notification handling event
is enabled. The notification handler� � � in event system� � � can only be executed
once for each notification it receives and, hence, it must disable itself as stated in
condition (2).

The event system� � � can further be considered to be the parallel composition
of an event system� � � � � containing the events making remote procedure calls and
a system� � � containing the rest of the events of� � � , � � � � � � � � � � � � � . An event

� � � in system� � � should not interfere with the notification handlers in� � � by
enabling or disabling them as stated by conditions (3) and (4).

gd� � � � � � gd� � � � � � wp � � � � � gd� � � � � � (3)

gd� � � � � � � gd� � � � � � wp � � � � � � gd� � � � � � (4)

The conditions (1) - (4) above are fulfilled by introducing extra features upon
translating the grid refinement� � to the B Method. Firstly, we introduce a boolean
variableA_notification for each referenced grid service machine� :

� _� � � � � � � � � � � � � � _� � � � � � � � � � � � � 	

When the variable� _� � � �
 � � � � � � � � � � 	 � � has the valuetrue, the grid refinement
� � is prepared to receive a notification from instanceinst of � . The notification
handlerHandler is translated to take variableA_notification into consideration:

�
 � �
 � � ��
� �
 � � � � � 	
 �

� � � � � � _� � � �
 � � � � �
� � �
 �
 � � � � � � � � � � � � �
 � � � � � �

� _� � � � � � �
 � � � �
 � � � � � � � � � �
� 	
 � �
 � � � � � � � _� � � � � � �
 � � � �
 � � � � � � � � � � � �

 � �

The guard of the translated notification handlerHandler states that the events of
the grid service machine� for the instanceinst should be disabled whenHan-
dler is enabled,� � � � � � � � 	 � � � , ensuring that condition (1) is fulfilled. Predicate

� � � � � � is obtained from theguarantees-statement of the corresponding notifica-
tion Notif in � and models the condition for this notification to be sent. The

15

condition � _� �
�

� in the guard of the translated noti-
fication handler states that the grid refinement is prepared to receive a notifica-
tion. In order to ensure condition (2) statingthat a notification handler is exe-
cuted only once for each notification, the assignment� _� � � � � � � � � � � � � � � � � � � �

�
� � � � is added toHandler upon translation. In each event of� � the assignment

� _� �
�

� is added after the remote procedure calls to
procedures in instanceinst of � to prepare the notification handlers to receive a
notification. Note that this assignment isalso added after a call to� _� � � � � � for
a new instanceinst of � .

The guards of the notification handlers, gd� � � � � , refer to the variables of� ,
as well as the variableA_notification. Since, an event� � � in the event system� � �

does not modify these variables, conditions (3) and (4) hold trivially.

5.2.3 Example of a grid refinement machine

Let us give an example of a grid refinement machine and its translation to B. The
grid refinement machineCLIENT1 below sums up a number of sub-sums (here
100), (� � � �

� � 	 �
 � � � � �
� � 	 �
 � �

� � � �). The sub-sums from 0 tocounter are computed in
the grid service machineADDER presented in the example in Subsection 4.2.2.
The current instance of grid service machineADDER used for the sum computa-
tion is given by variableadder. The variablecounter keeps track of the number
of calls made to instanceadder, while variabletotal gives the current result of
the sum computation. The variablerpc states whether there is a computation in
progress inadder or not. EventEvt of CLIENT1 initiates the computation by a call
to procedureSetNewData in instanceadder. CLIENT1 then waits for a notification
to update variabletotal with the sub-sum computed byadder.

The grid refinement machineCLIENT1 in Distributed B is translated to the
refinement machineCLIENT1_VERIFICATION in the B Method as follows:

� � � �
_

� � � � 	 �
 � 	 �
� � �

 � �� � � � 	 � �
� � �

 �

� � � � � � 	 � � �
�

� �
 �

� � � � � � � � �
� � 	 �
 � � �
 �
 � � � � � � � � � � � �� 	 � � � � � 	 �

� � 	 �
 � � � � �
 �
 � � � � �
� � � � � � � � �
� � � � � � �

� �
 �

� � �

� � � � 	 �
 � 	 �
� � �

 � � _�
 � � � � � � � � �

� � � � 	 � �
� � �

 �

� 	 � � � � � �
�

� �
 �
_�
 � � � � � � � � �

� � �
 � � � �
� � � �

� � � � � � � � �
� � 	 �
 � � �
 �
 � � � � � � � � � � � �� 	 � � � � � 	 �

� � 	 �
 � � � � �
 �
 � � � � �
� � � � � � � � �
� � � � � � �

� �
 �
_

� � �
 � � � � � �
� �

� �
 �
_� 	 � � �

� � �

16

� � � � �
� � � � � � � � � � � � � �

� � � � � � � 	
 � � � � � � � 	
 � �
� � � 	
 � � � �
 �
� � � � � 	 � � � �
 �

� � � � � �
� � �
 � � �
� � � � � � � � �
 � � � �
 � � � � � � � � � � � �� � � �

� � � � � � � 	
 � � � � � � � � � � � � � 	
 � � �
 �
� � � � � � � � � 	 � � � � � � � � � � � � � � � �� � �

� � � � � � � � � � � �
_

� � � � � � � ��
� � � � � � �
� � � � � � � � � � � � � � � � 	 � � � �� � � � � �

� �
 � � � � �
 �
� � � �

� � � � � � � �
� � � � � �
 � � � � � � �
 � � � �
� � � � � 	
 � � � � � � � � � �
� � � 	
 � � � �

� � �
� � �

� � �

� � � � �
� � � � � � � � � � � � � �

� � � � � � � 	
 � � � � � � � 	
 � �
� � � 	
 � � � �
 �
� � � � � 	 � � � �
 �

_
� �
 � � � � �
 �

� � �
 �
_� � � � � � � � � � � � � � � � � � � 	
 � � �

� � � � � � � � � �
� � �
 � � �
� � � � � � � � �
 � � � �
 � � � � � � � � � � � �� � � �

� � � � � � � 	
 � � � � � � � � � � � � � 	
 � � �
 �
� � � 	 �
� � �
 �

_� � � � � � � � � � � � � � � � � � � 	
 � � �

� � � ��

� � � � � � �
� � �
� �
 � � � � � �

� �
 � � � � �
 �
_

� �
 � � � � �
 �
� �
 � � � � �

� �
 � �

 � � � � � �

 � � � � �

� �
 � �
 � � � � �
� � �
 �

_� � � � � � � � � � � � �
� �
 � �
 � � �

� � � �
� � � � � � � �

� � � � � � � � �
 � � � �
� �
 � � �

� � � � � 	
 � � � � � � � � � �
� � � 	
 � � � �

� � � �
� � �
 �

_� � � � � � � � � � � � �
� �
 � � 	
 � � � �

� � �
� � �

Upon translation variableadder is transformed into an instance type of the grid
service machineADDER, �

� �
	 � �
 � � � � _	
 � � �
 � 	 � � �
 � � � � _
 � � � � . In the

remote procedure call� � � � � �
 � � � � the instance� � � �
 is introduced as a param-
eter, � � � � � �
 � � � � � � � � �
 � � � � � � �
 � . The notification handlerHandler is trans-
lated to a new notification handlingevent for every instance� � � � of �

� � � � .
The variableADDER_notification is taken into consideration in the notification
handler, as well as after remote procedure calls in the events, in order to ensure
that notification handler is executed once for each notification.

5.3 Proofs

In order to show that the grid refinement is a correct refinement of a more abstract
system the proof obligations given in Subsection 2.3 need to be generated and dis-
charged. The proof obligations concerning therefinement of the initialisation, the
procedures, as well as the events are generatedautomatically by the tools of the
B Method. Furthermore, the proof obligation for showing that the refined system
does not terminate more often than the abstract system can also be directly gener-
ated by these tools (via Event B). In order to show that the new events terminate
when executed in isolation, a variant that is decreased upon execution of each new
event is needed in the grid refinement machine. Note that the notification handlers
are introduced as new events. For the notification handlers dealing with notifica-

17

tions from grid service machine� the variant is the number of instances for which
the notification has not yet been sent:

� � � � � � � � � � � � � � � � � _� � � � � � � � � � � _� � � � � � � � � � � � � � � � � � � 	 � �

 � �

This variant assumes that new events do not call procedures in� . The proof
obligation ensuring that a refined remote procedure is enabled when the corre-
sponding abstract remote procedure is enabled istrue by construction, since the
remote procedures contain only non-guarded substitutions. Hence, all the proof
obligations for proving the correctness of a refinement step in Distributed B can
be automatically generated with the tool support for the B Method (via Event B).
These proof obligations can then be automaticallyor interactively discharged with
the help of these tools.

6 Implementation

The grid system development in Distributed B continues until all the non-determi-
nism has been removed and all the used constructs can be implemented, i.e., they
belong to the implementable subset of the B language, B0. When all substitutions
of the system belong to the B0 language, they can be translated to Java. The
remote procedures and notification handlers are constructed in such a way that
they can be directly translated [19]. Furthermore, all the variables except for
instances of grid service machines canbe directly translated [19]. The instances
are translated to objects encapsulating the grid specific features. The handling of
grid service instances is performed via the API’s for grid services and for service
data provided by Globus Toolkit. This grid specific code can be inserted into the
initialisation code for the grid services and in the proceduresGetNew andDestroy.
In order to be able to implement an event system, all the events in theevents-clause
need to be merged [2] into one single event. The composed event can be translated
to awhile-loop in Java as follows:

� �
 � � � � � � � � � � �
� � �

� � � � � � � � � � � �
� � �

while (true) {
if(G1) S1;
...
else if(Gn) Sn;
else break;

}

Thebreak-statement terminates the loop when the event is disabled. Note that the
event can only be implemented, if all the guardsGi and the substitutionsSi belong
to the B0 language.

The sending of notifications should be taken into account when translating a
grid refinement of a grid service machine (grid service) to Java. The event system
is translated to an infinite loop where anotification is sent when the event is not
enabled.

18

while(true){
synchronized(this){

if(G1) S1;
...
else if(Gn) Sn;
else{

if(Qnotif)
sendNotif();

...;
wait();

}
}

}

Thebreak-statement in the translation of theevent system to Java is replaced by
statements for sending notifications. Since at least one condition� in a guaran-
tees-clause holds when the event is disabled, there will always be a notification to
send. After the notification has been sentthe system waits until it is notified of a
remote procedure call, in order to be able to continue the execution. The sending
of a notification with condition� � � � � � in theguarantees-clause is encapsulated
in the method� � � � � � � � � . The statement� � � � � � � � � � � � � � � � � � ensures that events
of this event system are atomic.

In the Java translation of a grid refinement of an Event B specification (a client)
the handling of notifications is considered.The notification handlers for the in-
stances created by the procedureGetNew are registered in the Globus Toolkit mid-
dleware. The notification handler is then automatically executed for the appropri-
ate instance every time a notification is received.

In Distributed B the sending and handling of notifications are performed as
one atomic event. In order to achieve the same behaviour in Java a sequence
number variable,seqNum, for each instance in both the client and grid service is
included upon translation. The sequence number is needed, since in Java a remote
procedure can be called in a grid service after a notification has been sent from
the grid service to the client, but before it has been handled. This means that the
notification handler would be executed when the condition Q in theguarantees-
clause in the grid service does not hold. The following algorithm is used in order
to take notice of valid notifications only.

1. The sequence number of both the gridservice and the client are initialised
to 0

2. When the client calls a remote procedure, it increments the sequence num-
ber and send it to the grid service. The grid service updates its sequence
number to this value.

3. The grid service sends its sequence number with the notification. The client
checks if the received sequence number of the notification is the same as its

19

current sequence number for that grid service. If the numbers are the same,
the notification handler is executed. In case the received sequence number
is less than the current sequence number of the client, the grid service has
not completed all its tasks and the notification is discarded.

4. The sequence number is reset to 0 when the notification handler has been
executed.

A new sequence numbertotSeqNum, denoting the sum of all variablesseqNum, is
introduced for detecting termination in the presence of notifications. It is increased
when remote procedures are called and decreased when a notification handler is
executed. The event system of a grid refinement modelling a client is not allowed
to terminate when there are pending notifications to be handled. Hence, the system
only terminates if the event is disabled and the sequence numbertotSeqNum is
equal to zero.

while(true){
synchronized(this){

if(G1) S1;
...
else if(Gn) Sn;
else{

if(totSeqNum>0)
...

else
break;

}
}

}

The translated event system contains anif -statement that checks if notifications
are pending,� � � � � � � � � � � . If there are no notifications pending the event
system terminates.

After we have translated the Distributed B code to Java and all the grid spe-
cific features have been handled, we have implemented the grid system in a formal
manner where the implementation is proved correct with respect to its specifica-
tion.

7 Conclusions

In this paper we have proposed a language Distributed B that extends Event B
for designing and implementing correct gridsystems. Grid systems are large dis-
tributed systems and standard development tools cannot guarantee their correct
implementation. We introduced two new types of machines,grid service machine

20

andgrid refinement machine, for handling grid specific issues in Event B. We pro-
posed a method where the development ofa grid system starts with refinement
within Event B. After a number of refinement steps the system is split up into
a grid refinement machine and a number of grid service machines in Distributed
B. These machines can then be further refined. Throughout the development in
Distributed B the grid constructs are translated to machines in the B Method for
verification purposes. The machines are introduced in a manner that allows au-
tomatic generation of the necessary proof obligations. Furthermore, the concrete
specifications can be automatically translated to executable code, since the grid
constructs have been introduced in such a way that they ensure that the system
will be implementable. Hence, we have introduced a method for implementing
grid systems where the implementation can be proved correct with respect to its
specification.

The B language has earlier been successfully used for modelling distributed
systems, e.g., in [20]. These examples do, however, not consider implementation
issues of the developed specification. Implementation of distributed systems us-
ing the B Method has also been consideredfor the combination of ordinary B and
CORBA in [16]. Though, the paper does not consider concurrent behaviour and
dynamic management of instances of distributed components. Other formal meth-
ods have also been extended previously toenable implementation of distributed
systems using different application domains. For example, the DisCo formalism
has been used for designing and implementing systems that were translated to En-
terprise Java Beans (EJB) [15]. Grid specific features were not considered in that
extension.

The architecture of the systems developed with Distributed B forms a tree
of grid services. Even if this is a very common architecture for grid systems, it
might be too restrictive in some cases. Hence, we plan to investigate also other
architectures. In the modelling of grid systems in distributed B we have made the
assumption that no network failures occur. In future versions of Distributed B also
network failures and node failures will be taken into consideration. Moreover, we
consider development of tool support for grid systems in Distributed B.

The language Distributed B that we proposed in this paper can provide a con-
venient formal development process for grid systems. The systems will by con-
struction have an architecture that is implementable. Furthermore, specifications
of grid systems constructed in this language will be clear to understand, since the
systems are modeled in terms of grid primitives with a precise meaning. We be-
lieve that our approach to adapt Event B to the Globus Toolkit middleware can
also be useful for other types of middleware for distributed systems.

References

[1] J. R. Abrial.The B-Book: Assigning Programs to Meanings. Cambridge Uni-
versity Press, 1996.

21

[2] J. R. Abrial. Event Driven Sequential Program Construction, 2001.
http://www.atelierb.societe.com/ressources/
articles/seq.pdf. (accessed 28.10.2004)

[3] J. R. Abrial and L. Mussat. Event B Reference Manual, 2001.
http://www.atelierb.societe.com/ressources/evt2b/
eventb_reference_manual.pdf. (accessed 28.10.2004)

[4] N. Aguirre, J. Bicarregui, T. Dimitrakos and T. Maibaum. Towards Dynamic
Population Management of Abstract Machines in the B Method. In D. Bert,
editor,Proceedings of the Third international conference of B and Z users:
ZB2003. LNCS 2651. Turku, Finland, pp. 528-545. Springer-Verlag, 2003.

[5] R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with
centralized control. InProceedings of the 2nd ACM SIGACT-SIGOPS Sym-
posium of Principles of Distributed Computing, pp. 131-142, 1983.

[6] R. J. R. Back and K. Sere. From modular systems to action systems. In
Software - Concepts and Tools, 17:26-39, 1996.

[7] M. Butler and M. Waldén. Parallel programming with the B Method. Chapter
5 in E. Sekerinski and K. Sere. (eds.)Program Development by Refinement
- Case Studies Using the B Method, pp. 183-195. Springer-Verlag, 1998.

[8] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall International,
1976.

[9] I. Foster, C. Kesselman and S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations.The International Journal of Supercomputer
Applications, 15(3), 2001.

[10] I. Foster, C. Kesselman, J. Nick and S. Tuecke. The Physiology
of the Grid: An Open Grid Services Architecture for Distributed
Systems Integration. Technical report, Argonne National Laboratory,
2002.http://www.globus.org/research/papers/ogsa.pdf.
(accessed 28.10.2004)

[11] Globus Toolkit. The Globus Alliance, 2004.
http://www.globus.org/. (accessed 28.10.2004)

[12] K. Czajkowski, et. al. Open Grid Services Infrastructure, 2003.
http://www-unix.globus.org/toolkit/
draft-ggf-ogsi-gridservice-33_2003-06-27.pdf. (ac-
cessed 28.10.2004)

[13] E. J. Hedman, J. N. Kok and K. Sere. Coordinating Action Systems.Theo-
retical Computer Science, 240:91-115. Elsevier Science, 2000.

22

[14] G. Mair and A. Villazón. Implementing a Distributed
Master/Slave Grid Service with Globus Toolkit 3 (GT3).
http://dps.uibk.ac.at/~gregor/mandel.pdf, 2003. (ac-
cessed 28.10.2004)

[15] R. Pitkänen. A Specification-Driven Approach to Development of Enterprise
Systems. InProceedings of NWPER’2004 - 11th Nordic Workshop on Pro-
gramming and Software Development Tools and Techniques, TUCS General
Publication 34. Turku, Finland, 2004.

[16] O. Rolland and T. Muntean. Refining Open Distributed Systems to CORBA.
In Proceedings of RCS’02- International workshop on refinement of critical
systems: methods, tools and experience. Grenoble, France, 2002.

[17] C. Snook and M. Waldén. Use of U2B for specifying B action systems. In
Proceedings of RCS’02- International workshop on refinement of critical
systems: methods, tools and experience. Grenoble, France, 2002.

[18] K. Sere and M. Waldén. Data Refinement of Remote Procedures.Formal
Aspects of Computing, 12(4):278-297, 2000.

[19] J. C. Voisinet, B. Tatibouet and A. Hammand. JBTools: An experimental
platform for the formal B method. InProceedings of the inaugural confer-
ence on the Principles and Practice of programming and Proceedings of
the second workshop on Intermediate representation engineering for virtual
machines. National University of Ireland, 2002

[20] M. Waldén and K. Sere. Reasoning About Action Systems Using the B-
Method.Formal Methods in Systems Design, 13:5-35, 1998.

23

Lemminkäisenkatu 14 A, 20520 Turku, Finland
�
www.tucs.fi

University of Turku
� Department of Information Technology
� Department of Mathematical Sciences

Åbo Akademi University
� Department of Computer Science
� Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
� Institute of Information Systems Sciences

ISBN 952-12-1445-5
ISSN 1239-1891

