
Lu Yan

Turku Centre Computer Sciencefor

TUCS Technical Report
No 637, November 2004

Formal Verification of a

Ubiquitous Hardware

Component

Formal Verification of a Ubiquitous

Hardware Component

Lu Yan
Turku Centre for Computer Science

Lemminkäisenkatu 14, FI-20520 Turku, Finland
lyan@abo.fi

TUCS Technical Report

No 637, November 2004

Abstract

The paper begins by discussing various approaches to hardware specification and
verification. The main emphasis is on using mechanical verification tools to assist
the verification process. The case study is the verification of a seven-segment LED
display decoder circuit design, in which two popular verification tools, HOL and
PVS, are compared and evaluated.

Keywords: Hardware verification, formal methods, ubiquitous systems

TUCS Laboratory
Distributed Systems Design Laboratory

1 Introduction

The development of microelectronics has allowed hardware designers to build
remarkably complex devices. However, it becomes increasingly difficult to ensure
these devices free of design errors. Inmost cases, exhaustive simulation of a
medium size design is impossible and the correctness of the design cannot be
assured. This is a serious problem in safety-critical applications, where a small
design error may cause loss of life and extensive damage. Even in the case where
safety is not the primary concern, a design error means costly and time-consuming
rechecking in massive production lines.

A solution to the problem is to apply formal methods for verification of cor-
rectness of hardware designs - hardware verification. With this approach, the be-
havior of hardware is described mathematically, and formal proof is used to verify
the intended behavior. The proofs can be very large and complex, so mechanical
verification tools are often used to assist the verification.

We illustrate our experiences with formal verification in ubiquitous hardware
design via a comparative case study of the verification of a circuit design of seven-
segment LED display decoder: A seven-segment LED display is comprised of
seven light emitting diodes (LED). Input signals are applied to the input port of
the seven-segment decoder, and the decoder translates them into ON/OFF status
of the seven LEDs. Then, selected combinations of the LEDs are illuminated to
display numeric digits and other symbols.

2 What is formal hardware verification

We consider a formal hardware verification problem to consist offormally estab-
lishing that an implementation satisfies a specification. The termimplementation
(Imp) refers to the hardware design that is to be verified. This entity can corre-
spond to a design description at any level of the hardware abstraction hierarchy,
not just the final physical layout (as is traditionally regarded in some areas). The
termspecification (Spec) refers to the property with respect to which correctness
is to be determined. It can be expressed in a variety of ways - as a behavioral
description, as an abstractedstructural description, as a timing requirement etc.

In particular, we do not address directlythe problem of specification valida-
tion, i.e. whether the specification means what it is intended to mean, whether it
really expresses the property one desires to verify, whether it completely charac-
terizes correct operation etc. A specification for a particular verification problem
can itself be made the object of scrutiny, by serving as an implementation for
another verification problem at a conceptually higher level. Similarly, at the low-
est end too, we do not specifically address the problem of model validation, i.e.
whether the model used to represent the implementation is consistent, valid, cor-
rect etc. It is obvious that the quality of verification can only be as good as the
quality of the models used.

1

Bottom Level Implementation

Top Level Specification

Level i Implementation
 Level i+1 Specification

 Level i+1 Implementation
Level i+2 Specification

Figure 1: Hierarchical verification[1]

An important feature of the above formulation is that it admits hierarchical
verification corresponding to successive levels of the hardware abstraction hierar-
chy. Typically, the design of a hardware system is organized at different levels of
abstraction, the topmost level representing the most abstract view of the system
and the bottommost being the least abstract, usually consisting of actual layouts.
Verification tasks can also be organized naturally at these same levels. An im-
plementation description for a task at any given level, serves also as a statement
of the specification for a task at the next lower level, as shown in Figure 1. In
this manner, top-level specifications can be successively implemented and veri-
fied at each level, thus leading to implementation of an overall verified system.
Hierarchical organization not only makes this verification process natural, it also
makes the task tractable. By breaking this large problem into smaller pieces that
can be handled individually, the verification problem is made more manageable.
It effectively increases the range of circuit sizes that can be handled in practice.

2.1 Hardware verification method

Two things are needed for any method of hardware verification based on rigorous
specification and formal proof. The first is a formal language for describing the
behaviors of hardware and expressing proposition about it. The ideal language is
expressive enough to describe hardware in a natural concise notation yet still has
a well-understood and reasonably simple semantic. The second requirement is a
deductive calculus for proving propositions expressed in this language. It must be
logically sound and it should be powerful enough to allow one to prove all the true
propositions about hardware behavior that arise in practice.

Various formal languages and associated proof techniques have been proposed
as a basis for hardware verification. These range from special-purpose hardware
description languages withad hoc proof rules to systems of formal logic and
subsets of ordinary mathematics. Formal methods for reasoning about hardware
behavior have been based, for example, on algebraic techniques, various kinds
of temporal logic, functional programming techniques, predicate calculus, and
higher order logic.

The details of the verification methods based on these different formalisms
vary, but many of them share a common general approach. This typically involves
the following four steps:

2

1. Write a formal specificationS to describe the behavior that the device to be
verified must exhibit for it to be considered correct.

2. Write a specification for each kind of primitive hardware component used in
the device. These specifications are intended to describe the actual behavior
of real hardware components.

3. Define an expressionD which describes the behavior of the device to be
proved correct. The definition ofD has the general form

D = P1 + · · · + Pn

whereP1, · · · , Pn specify the behavior of the constituent parts of the device
and+ is a composition operator which models the effect of wiring compo-
nents together. The expressionsP1, · · · , Pn used here are instances of the
specifications for primitive devices defined in step 2.

4. Prove that the device described by the expressionD is correct with respect
to the specificationS. This is done by proving a theorem of the form

� D satisfies S

where ’satisfies’ is some satisfaction relation on specifications of hardware
behavior. This correctness theorem asserts that the behavior described byD
satisfies the specification of intended behaviorS.

When the device to be proved correctis large, this method is usually applied
hierarchically. The design is structured into a hierarchy of components and sub-
components, and specifications that describe primitive components at one level
of the hierarchy then become specifications of intended behavior at the next level
down. The structure of the proof mirrors this hierarchy: the top-level specification
is shown to be satisfied by an appropriate connection of components; at the next
level down, each of these components is shown to be correctly implemented by
a connection of sub-components, and so on down to the lowest level, where the
components used correspond to devices available as hardware primitives.[31]

2.2 Hardware verification using higher order logic

The version of higher order logic described here was developed by Mike Gordon
at the University of Cambridge. The main difference between first order logic and
higher order logic is that higher order logic allows quantification over predicates.
The ability to quantify over predicate symbols leads to a greater power of expres-
siveness in higher order logic. Another significant difference is that higher order
logic admits higher order predicates and functions, i.e. arguments and results of

3

predicates and functions can themselves be predicates or functions. This allows
functions to be manipulated just like ordinary values, which leads to a more math-
ematically elegant formalism.

The following short description of higher order logic is not complete, although
it covers important notations of the logic, which provides some background infor-
mation for the later example. A full description of higher order logic can be found
at [17].

Types Higher order logic is a typed logic. The syntax of types in higher order
logic is given by

σ ::= c|v|(σ1, . . . , σn)op

whereσ, σ1, . . . , σn range over types,c ranges over type constants,v ranges
over type variables, andop ranges overn-ary type operators.

Terms The notation of terms in higher order logic can be viewed informally as
an extension of the conventional syntax of predicate calculus in which vari-
ables can range over functions and functions can take functions as argu-
ments or yield functions as results. The syntax of terms in higher order
logic is given by

M ::= c|v|(MN)|λv.M

wherec ranges over constants,v ranges over variables, andM andN range
over terms.

Sequents, theorems and inference rules A sequent is writtenΓ � P , whereΓ
is a set of boolean terms called assumptions andP is a boolean term called
the conclusion. When the setΓ is empty, the notation� P is used. In this
case,P is a formal theorem of the logic. The same notation is used for the
axioms of the logic. All inference rules of the logic can be found at Table 1.

The approach to specifying hardware behavior in higher order logic is to spec-
ify the behavior of a device by describing the combinations of values that can be
observed on its external wires. A specification is expressed formally in logic by a
boolean-valued term whose free variables correspond to these external wires. This
term imposes a constraint on the values of these variables. To reflect the behavior
of the device it specifies, the term is chosen so that the combinations of values that
satisfy this constraint are precisely those which can be observed simultaneously
on the corresponding external wires of the device itself.

As an example, consider the deviceDev shown below.

Deva

b

c

d

4

Table 1: Inference rules of higher order logic
1. ASSUME:

{P}�P

2. REFL:
�N=N

3. BETA CONV:
�(λv.N)M=N [M/v]

4. ABS: Γ�M=N
Γ�(λv.M)=(λv.N)

(v not free inΓ)
5. INST TYPE: Γ�P

Γ�P [σ1,...,σn/α1,...,αn]

6. DISCH: Γ�P
Γ−{Q}�Q⊃P

7. MP: Γ1�P⊃Q Γ2�P
Γ1∪Γ2�Q

8. SUBST: Γ1�N ′

1
... Γn�Nn=N ′

n
Γ�P

Γ1∪...∪Γn∪Γ�P [N ′

1
,...,N ′

n
/N1,...,Nn]

This device has four external wires:a, b, c, andd. A specification of its behav-
ior in logic is therefore a boolean-valued term of the formS[a, b, c, d], constructed
so that for all values of the free variablesa, b, c andd:

S[a, b, c, d] =




T if the valuesa, b, c, andd could occur
simultaneously on the corresponding
external wires of the deviceDev

F otherwise

This approach to specifying hardware describes its behavior only in terms of
the values that can be observed externally. No information about internal state is
used in a specification. Furthermore, there is no distinction between the inputs
and the outputs of a device; the constraint imposed by a specification on its free
variables need not be a functional one. Of course, the free variables in a specifica-
tion need not stand for the values on the physical wires of an actual circuit; they
may represent more abstract externally observable quantities. Both specifications
of hardware primitives and specifications of the intended behavior of designs can
therefore be expressed by this method.

Once a design has been constructed, its correctness can be expressed by a
proposition which asserts that this design in some sense satisfies an appropriate
specification of required or intended behavior. The most direct way of formulating
this satisfaction of a design is asserted by a theorem of the form

� D[v1, . . . , vn] = S[v1, . . . , vn],

Where the termD[v1, . . . , vn] is the design of the device asserted to be correct
and the termS[v1, . . . , vn] is the specification of required behavior. This theorem
states that the truth-values denoted by these two terms are the same for any as-
signment of values to the free variablesv1, . . . , vn. This is usually appropriate for
small and relatively simple hardware designs; for more complex designs, it is of-
ten impractical to express correctness this way, because in most real products, any

5

xi1

i2
o

Figure 2: Implementation of two input AND gate

complete logically equivalent specification is likely to be too large and complex
to reflect the designer’s intent. Hence it is wise to build a partial specification for
the design. In this case, the satisfaction relation used to express correctness must
therefore express a relationship between a strong constraint (design) and weaker
one (specification) rather than strict equivalence. Suppose thatD[v1, . . . , vn] and
S[v1, . . . , vn] are the design of the device and the partial specification of required
behavior respectively. We can formulate this satisfaction relationship as

� D[v1, . . . , vn] ⇒ S[v1, . . . , vn].

2.3 A small example

The basic idea of this approach is to embed both implementation and the specifi-
cation in higher order logic. The correctness statements, like that every behavior
of the implementation satisfies the specification, are then cast in terms of prov-
ing some relation in higher order logic. To illustrate this process, we use a trivial
example to show many of the underlying ideas.

The task is to show that assuming the NAND gate and the NOT gate behave
as specified, then combining them as in Figure 2 yields a two input AND gate. In
order to achieve this, we need to carry out four steps:

1. Specify the implementation of the AND gate.

2. Specify the behavioral models for the NAND and NOT gates.

3. Specify the intended behavior of the AND gate.

4. Prove that the implementation satisfies its intended behavior.

There are several ways to specify the implementation of the AND gate in
higher order logic. The most common way of doing this is using existential quan-
tification to ’hide’ the internal connections, and we would get:

� AND IMP (i1, i2, o) = ∃x.NAND(i1, i2, x) ∧ NOT (x, o).

The behavioral model of the NAND and NOT gates can also be done in many
ways in higher order logic. Furthermore, different behavioral models can be used
depending on the amounts of details needed or desired. Here, we will use a simple
zero-delay model of their behavior. Hence,

6

Table 2: Proof in higher order logic
Step Proof Explanation

0 AND IMP (i1, i2, o) assumption
1 ∃x.NAND(i1, i2, x) ∧ NOT (x, o) by def. ofAND IMP
2 NAND(i1, i2, x) ∧ NOT (x, o) strip off ∃x.
3 NAND(i1, i2, x) left conjunct of 2
4 x = ¬(i1 ∧ i2) by def. ofNAND
5 NOT (x, o) right conjunct of 2
6 o = ¬x by def. ofNOT
7 o = ¬(¬(i1 ∧ i2)) substitution 4 into 6
8 o = (i1 ∧ i2) simplify using¬(¬(t)) = t
9 AND SPEC(i1, i2, o) by def. ofAND SPEC

� NAND(i1, i2, o) = o = ¬(i1 ∧ i2),
� NOT (i, o) = o = ¬i.

In a similar way, the desired behavior of the AND gate can be written as

� AND SPEC(i1, i2, o) = o = i1 ∧ i2.

We are now faced with the task of formally proving that the implementation
satisfies the specification. Before we do this, however, we need to define what
it means for an implementation to satisfy some specification. Again, there are
several ways of expressing this. In this case, we choose to verify that the behavior
of the implementation implies the behavior of the specification; thus we want to
verify

AND IMP (i1, i2, o) ⇒ AND SPEC(i1, i2, o)

is a valid theorem. A ’hand proof’ of this result might look like Table 2.
Although the above manual proof may appear tedious, it is still much shorter

than the complete formal proof. The above example is also very simple. However,
since we have the full expressive power of higher order logic at our disposal, it is
quite simple to generalize the behavioral model for the individual components. In
this way, delays and delay models, for example, can be introduced. Of course, the
more complex the behavior model is, the more complex the correctness proof will
be.[3]

3 The ubiquitous hardware

We illustrate our approach by a case study of the verification of a circuit design of
seven-segment LED display decoder [20] [30] as shown below.

7

abcdefg

W X Y Z

a

b

c

d

e

f
g

7 Seg LED

Seven-segment Decoder

R

A seven-segment LED display is comprised of seven light emitting diodes
(LED). Input signals are applied to the input port of the seven-segment decoder,
and the decoder translates them into ON/OFF status of the seven LEDs. Then,
selected combinations of the LEDs are illuminated to display numeric digits and
other symbols.

3.1 From description to specification

The primary function of the decoder is to turn on/off corresponding LEDs based
on inputs. LetW, X, Y, Z represent the input port of the decoder, then we get
sixteen possible combinations of the four input signals, which means any digit (0
- 9) and some letters (A - F) can be displayed on the seven-segment LED display.
Let a, b, c, d, e, f, g represent the output port of the decoder, and let on be 1 and
off be 0, then we can create a truth table like Table 3 for describing the intended
behavior of the decoder.

3.2 From specification to implementation

Intuitively, the abstraction of seven-segment decoder is a four-input seven-output
switching function. One possible approach is to build up the circuit directly from
the specification, but here we consider another approach based on partition-and-
merge algorithm.[28][5]

First we divide the four-input seven-output switching function into seven four-
input one-output normal functions, then implement each function separately. When
all functions are ready, we put together all parts and get the final implementation.
In this way, the complexity of the design task is greatly reduced. The drawback is
probably some redundancy, but this can be refined in the final merging stage.

We shall go into more details of the implementation of one part as an example.
The representation function is the abstraction of the intended behavior of LED
a, which takes four input signalsW, X, Y, Z and generate one output signala
correspondingly.

8

Table 3: Truth table for the switching function
Display Input (W X Y Z) Output (a b c d e f g)

0 0000 1111110
1 0001 0110000
2 0010 1101101
3 0011 1111001
4 0100 0110011
5 0101 1011011
6 0110 1011111
7 0111 1110000
8 1000 1111111
9 1001 1111011
A 1010 1110111
B 1011 0011111
C 1100 1001110
D 1101 0111101
E 1110 1001111
F 1111 1000111

W

X

Y

Z

a4-Input
Function

WX
YZ

1

1

1

1

1

11

1

1

1

11

Figure 3: Karnaugh map for 4-input function

1. The first step is to build up the truth table like Table 4 for this four-input
one-output function. This is actually a reduced version of Table 3.

2. With the truth table, we can get a logic expression directly.

a = W X Y Z+W X Y Z+W X Y Z+W X Y Z+W X Y Z+W X Y Z+
W X Y Z + W X Y Z + W X Y Z + W X Y Z + W X Y Z + W X Y Z

3. With the initial implementation, wecan refine it with emphasis on reducing
the sum of minimal terms[13] in order to minimize hardware resource us-
age. The most common approach is to use a Karnaugh map to achieve this
kind of refinement.[2][14] The process is illustrated in Figure 3.

4. After refinement, we get a more concise logic expression:

a = Y Z + X Z + W Y + X Y + W Z + W X Z + W X Y

9

Table 4: Truth table of 4-input function
Input (WXY Z) Output (a)

0000 1
0001 0
0010 1
0011 1
0100 0
0101 1
0110 1
0111 1
1000 1
1001 1
1010 1
1011 0
1100 1
1101 0
1110 1
1111 1

5. Although this refinement result is good enough, we should also consider
more practical issues like technology, cost, etc.. Here we choose to make
the design mainly with NAND gates.

a = Y Z · X Z · W Y · X Y · W Z · W X Z · W X Y

6. Now it is time to translate the refinement result into schematic design. The
diagram is straight forward, as shown in Figure 4.

7. The final step is to design the real circuit based on the schematic design.
Here we choose the NAND gate model and the tool discussed in [27][33]

X

Z

W

Y

a

Figure 4: Schematic design for 4-input function

10

W

X

Y

Z

Y

Y

X

Y

W

X

Z

W

a

Figure 5: Circuit design for 4-input function

as the atomic element to build up the whole design. The result is shown in
Figure 5.

Now the design task of the first part is completed. With the same method, we
can design the other six parts:

b = W X · X Z · W Y Z · W Y Z · W Y Z

c = W X · Y Z · W X · W Y · W Z

d = W Y · W X Z · X Y Z · X Y Z · X Y Z

e = W X · Y Z · W Y · X Z

f = Y Z · W X · W Y · X Z · W X Y

g = W X · Y Z · W Z · X Y · W X Y

We notice that remaining parts are very similar to the first part in logic expres-
sions, which will also lead to very similar system infrastructures. In order to keep
the text concise, we don’t list down the designs of the other six parts due to the
similarity in these design results.

11

4 Verification in HOL

HOL is a general theorem proving system developed at the University of Cam-
bridge that is based on higher order logic. HOL is not a fully automated theorem
prover but is more than simply a proof checker, falling somewhere between these
two extremes. HOL has several nice features as a verification environment:

• Several built-in theories, including booleans, individuals, numbers, prod-
ucts, sums, lists, and trees. These theories build on the five axioms that
form the basis of higher order logic to derive a large number of theorems
that follow from them.

• Rules of inference for higher order logic. These rules contain not only
the eight basic rules of inference from higher order logic, but also a large
body of derived inference rules that allow proofs to proceed using larger
steps. The HOL system has rules that implement the standard introduction
and elimination rules for Predicate Calculus as well as specialized rules for
rewriting terms.

• A large collection of tactics. Examples of tactics includeREWRITE TAC
which rewrites a goal according to some previously proven theorem or def-
inition, GEN TAC which removes unnecessary universally quantified vari-
ables from the front of terms, andEQ TAC which says that to show two
things are equivalent, we should show that they imply each other.

• A proof management system that keeps track of the state of an interactive
proof session.

• A metalanguage, ML, for programming and extending the theorem prover.
Using the metalanguage, tactics can be put together to form more powerful
tactics, new tactics can be written, and theorems can be aggregated to form
new theories for later use. The metalanguage makes the verification system
extremely flexible.

4.1 HOL Overview

The logic of the HOL system is built on higher order logic. The core of the system
is rather small. It is built on 5 axioms (Table 5) and 8 rules of inference (Table 6).

The HOL theorem prover uses an ASCII approximation (Table 7) to standard
logic notation. One of the types that have been declared is the type of terms in the
HOL logic. To enter the term which is a conjunction of two boolean variables A
and B, just type the following:

- Term ‘A /\ B‘;
> val it = ‘‘A /\ B‘‘ : term

12

Table 5: HOL axioms
1. BOOL CASESAX

� ∃b : bool.(b = T) ∨ (b = F)
2. IMP ANTISYM AX

� ∃b1b2.(b1 ⇒ b2) ⇒ (b2 ⇒ b1) ⇒ (b1 = b2)
3. ETA AX

� ∃f : α → β.(λx.fx) = f
4. SELECTAX

� ∃P : α → bool.Px ⇒ P (εP)
5. INFINITY AX

� ∃f : ind → ind.OneOnef ∧ ¬(Ontof)

Table 6: HOL core inference rules
1. Assumption Introduction

ASSUME:
{P}�P

2. Reflexivity
REFL:

�N=N

3. Beta Conversion
BETA CONV:

�(λv.N)M=N [M/v]

4. Abstraction
ABS: Γ�M=N

Γ�(λv.M)=(λv.N)
(v not free inΓ)

5. Type Instantiation
INST TYPE: Γ�P

Γ�P [σ1,...,σn/α1,...,αn]

6. Discharging Assumption:
DISCH: Γ�P

Γ−{Q}�Q⊃P

7. Modus Ponens
MP: Γ1�P⊃Q Γ2�P

Γ1∪Γ2�Q

8. Substitution

SUBST: Γ1�N ′

1
... Γn�Nn=N ′

n
Γ�P

Γ1∪...∪Γn∪Γ�P [N ′

1
,...,N ′

n
/N1,...,Nn]

13

Table 7: HOL notation
HOL Notation Standard Notation Meaning
T �, true true
F ⊥, false false
t ¬t not t
t1 \ /t2 t1 ∨ t2 t1 or t2
t1/ \ t2 t1 ∧ t2 t1 andt2
t1 ==> t2 t1 ⇒ t2, t1 ⊃ t2 t1 impliest2
t1 = t2 t1 = t2 t1 equalst2
t1 = t2 t1 ≡ t2 t1 equivalent tot2
\x.t λx.t lambda function notation
!x.t ∀x.t t holds for allx
?x.t ∃x.t t holds for somex
?!x.t ∃!x.t t holds for precisely onex
@x.t εx.t anx for which t holds
if t1 thent2 elset3 t1 → t2|t3 if t1 thent2 elset3
t1 > t2 t1 > t2 t1 is greater thant2
t1 >= t2 t1 ≥ t2 t1 is greater or equal thant2
t1 < t2 t1 < t2 t1 is less thant2
t1 <= t2 t1 ≤ t2 t1 is less or equal thant2

Another way to do the same thing is to type the string we want to parse be-
tween the special quotation marks(--‘ and‘--). We can enter the term as
follows:

- (--‘A /\ B‘--);
> val it = ‘‘A /\ B‘‘ : term

Terms in the HOL logic are represented by the ML datatypeterm. The HOL
logic is also typed. The term we just entered was a boolean. The types of the HOL
logic are represented by another ML datatype calledhol type. The function
type of: term -> hol type will tell you the HOL type of a term.

The HOL logic can be conservatively extended with new types and new con-
stants. The simplest way to add a new constantc is to give a definition of the form
c = t wheret is a closed term (a term without free variables). An extension by
constant definition is always a conservative extension, i.e., it is guaranteed not to
introduce inconsistencies.

The ML function used to define a new function isnew definition:(string
* term) -> thm. For example, a tripling operation can be introduced on the
natural numbers by evaluating:

new_definition("triple_DEF",(--‘tpl = \x. x + x + x‘--));

14

The constant definition facility also allows arguments to be given on the left
hand side; we could have written:

new_definition("triple_DEF",(--‘tpl x = x + x + x‘--));

This adds the constanttpl:num->num to the logic and stores the definition
in the current theory file under the nametriple DEF. Note that this does not
bind the definition to a name in the current environment (actually, it is bound to
the nameit). If we want to bind the definition to the nametriple DEF, then
we should evaluate:

val triple_DEF =
new_definition("triple_DEF",(--‘tpl x = x + x + x‘--));

Now suppose we have already decided what goal we would like to prove in
HOL and started a proving process by typingset goal command. What would
be the best strategy to attack the goal? A very general scheme would be the
following:[15]

1. Check whether it is possible to prove (or at least simplify) your goal using
existing HOL theorems;

2. If not, expand definitions of all (or some) constants in the goal conclusion;

3. Simplify the goal conclusion (by using beta conversion, removing quan-
tifiers, splitting the goal into simpler subgoals, moving a part of the goal
conclusion into the goal assumptions, doing boolean case analysis, ...);

4. Check whether it is possible to prove (or at least simplify) the goal con-
clusion by rewriting it with trivial rewrites (REWRITE TAC []) and/or the
goal assumptions (ASM REWRITE TAC []);

5. If a goal is still not proved, repeat the procedure starting from the step 1.

4.2 Hardware verification using HOL

The hardware verification process in HOL usually has three steps:[11]

1. Describe the specification

2. Describe the implementation

3. Prove that the implementation meets the specification

15

?
x

y

z

Mystery Device Observations

x y z

on on off

on on off

off off on

Figure 6: Hardware model in HOL

x y

Figure 7: NOT gate

The first step in the verification of hardware is to write a formal specification
of the required behavior for the design in HOL. How do we describe a device?
The general approach is to model it as a black box in Figure 6. We neglect de-
tailed infrastructure inside the box and only concentrate on its response to the
environment outside the box.

Observations of this mystery device can help us to describe hardware in HOL
logic:

• Wires can have the value on or off. We model them with boolean variables.

• Devices constrain the values that can be observed on the attached wires. We
model these with predicates on wires.

Following this approach, it is possible to express any combinatorial circuit
with NOT (Figure 7), AND (Figure 8) and OR (Figure 9) gates, as well as with
some means for a line to be tied HI or LO (Figure 10).

val NOT_DEF =
new_definition("NOT_DEF",(--‘NOT x x’ =
(x’ = ˜x)‘--));

val AND_DEF =
new_definition("AND_DEF",(--‘AND (x,y) x’ =
(x’ = (x /\ y))‘--));

val OR_DEF =
new_definition("OR_DEF",(--‘OR (x,y) x’ =
(x’ = (x \/ y))‘--));

x

y
z

Figure 8: AND gate

16

x

y
z

Figure 9: OR gate

−

+

Figure 10: Power and ground

val HI_DEF =
new_definition("HI_DEF",(--‘HI x = (x = T)‘--));

val LO_DEF =
new_definition("LO_DEF",(--‘LO x = (x = F)‘--));

In practice, it is possible to construct any combinatorial circuit purely from
NAND (Figure 11) gates or purely from NOR (Figure 12) gates. And, since it is
easier to fabricate circuits that only use one kind of gates, this is what is actually
done in industrial practice.

val NAND_DEF =
new_definition("NAND_DEF",(--‘NAND (x,y) x’ =
(x’ = ˜(x /\ y))‘--));

val NOR_DEF =
new_definition("NOR_DEF",(--‘NOR (x,y) x’ =
(x’ = ˜(x \/ y))‘--));

For example, the implementation of a OR gate by using only NAND gates
(Figure 13) can be defined in HOL as below:

val OR_IMP = new_definition("OR_IMP",
(--‘OR_IMP (x, y) x’ = (? a b c d.

(HI a) /\ (HI b) /\ (NAND (x, a) c) /\
(NAND (y, b) d) /\ (NAND (c, d) x’))‘--));

x

y
z

Figure 11: NAND gate

17

x

y
z

Figure 12: NOR gate

x

y

a

b

c

d

x’

Figure 13: Implementation of OR gate by using only NAND gates

Hereby we can do the verification of the circuit. We would like to know that
our design for an OR gate in terms of NAND gates actually functions as an OR
gate is supposed to. To establish this fact, we must do the following:

1. Begin the proof by rewriting with definitions.

- set_goal([], (--‘!x y x’. OR_IMP (x, y) x’ ==>
OR (x, y) x’‘--));

> val it =
Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
!x y x’. OR_IMP (x,y) x’ ==> OR (x,y) x’

: proofs
- e(REWRITE_TAC[OR_IMP, OR_DEF]);
OK..
1 subgoal:
> val it =

!x y x’.
(?a b c d.
HI a /\ HI b /\ NAND (x,a) c /\
NAND (y,b) d /\ NAND (c,d) x’) ==>
(x’ = x \/ y)

: goalstack
- e(REWRITE_TAC[HI_DEF, NAND_DEF]);
OK..

18

1 subgoal:
> val it =

!x y x’.
(?a b c d.

a /\ b /\ (c = ˜(x /\ a)) /\ (d = ˜(y /\ b)) /\
(x’ = ˜(c /\ d))) ==> (x’ = x \/ y)

: goalstack

2. The next step is to strip the goal down to its simplest form.

- e(REPEAT STRIP_TAC);
OK..
1 subgoal:
> val it =

x’ = x \/ y

0. a
1. b
2. c = ˜(x /\ a)
3. d = ˜(y /\ b)
4. x’ = ˜(c /\ d)
: goalstack

3. To prove the goal, we may need to use De Morgans Law.1

- e(ASM_REWRITE_TAC[DE_MORGAN_THM]);
OK..

Goal proved.
[.....] |- x’ = x \/ y

Goal proved.
|- !x y x’.

(?a b c d.
a /\ b /\ (c = ˜(x /\ a)) /\ (d = ˜(y /\
b)) /\ (x’ = ˜(c /\ d))) ==> (x’ = x \/ y)

Goal proved.
|- !x y x’.

(?a b c d.

1Another approach is to use boolean cases analysis. This is the theorem proving equivalent of
using truth tables. The tactic is calledBOOL CASES TAC.

19

HI a /\ HI b /\ NAND (x,a) c /\
NAND (y,b) d /\ NAND (c,d) x’) ==>
(x’ = x \/ y)

> val it =
Initial goal proved.
|- !x y x’. OR_IMP (x,y) x’ ==>
OR (x,y) x’ : goalstack

4.3 LED case study

In order to make the verification process simpler, we use a step-wise approach to
the whole case. First we prove that the schematic design (Figure 4) satisfies our
original description (Table 4). Then we prove that the circuit design (Figure 5)
meets the requirements of the schematic design.

The specification of each component and thus the whole schematic design is
shown below:

val NOT_DEF =
new_definition("NOT_DEF",

(--‘NOT a x = (x = ˜a)‘--));
val NAND_DEF =
new_definition("NAND_DEF",

(--‘NAND a b x = (x = ˜(a /\ b))‘--));
val NAND3_DEF =
new_definition("NAND3_DEF",

(--‘NAND3 a b c x = (x = ˜(a /\ b /\ c))‘--));
val NAND7_DEF =
new_definition("NAND7_DEF",

(--‘NAND7 a b c d e f g x =
(x = ˜(a /\ b /\ c /\ d /\ e /\ f /\ g))‘--));

val LED_A_DEF =
new_definition("LED_A_DEF",

(--‘LED_A_DEF w x y z a =
(a = if ((w = F) /\ (x = F) /\ (y = F) /\
(z = T)) \/
((w = F) /\ (x = T) /\ (y = F) /\ (z = F)) \/
((w = T) /\ (x = F) /\ (y = T) /\ (z = T)) \/
((w = T) /\ (x = T) /\ (y = F) /\ (z = T))
then F else T)‘--));

val LED_A_IMP =
new_definition("LED_A_IMP",

(--‘LED_A_IMP w x y z a =

20

?tw tx ty tz t1 t2 t3 t4 t5 t6 t7.
(NOT w tw) /\ (NOT x tx) /\ (NOT y ty) /\
(NOT z tz) /\ (NAND y tz t1) /\ (NAND tx tz t2) /\
(NAND tw y t3) /\ (NAND x y t4) /\ (NAND w tz t5)
/\ (NAND3 tw x z t6) /\ (NAND3 w tx ty t7) /\
(NAND7 t1 t2 t3 t4 t5 t6 t7 a)‘--));

To facilitate proving process, we try to use several high-level automation tools
in the HOL system which allow us to automatically prove or substantially sim-
plify some logical formulas. The most popular automation tools are Simpli-
fier (simpLib), Decision Procedures (decisionLib), and First-order Prover
(mesonLib). These three libraries together with some other helpful functions
are incorporated into one big library -bossLib. With the help of high-level
automation tools, the proof length is greatly reduced.

- load "bossLib";
- load "simpLib";
- load "mesonLib";
- open bossLib;
- open simpLib;
- open mesonLib;

Hereby we can carry out the verification process:

1. Begin the proof by rewriting with definitions.

- set_goal([],(--‘!w x y z a.
LED_A_IMP w x y z a ==> LED_A_DEF w x y z a‘--));

> val it =
Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
!w x y z a. LED_A_IMP w x y z a ==>
LED_A_DEF w x y z a

: proofs
- e(REWRITE_TAC[LED_A_IMP, LED_A_DEF]);
OK..
1 subgoal:
> val it =

!w x y z a.
(?tw tx ty tz t1 t2 t3 t4 t5 t6 t7.

NOT w tw /\ NOT x tx /\ NOT y ty /\
NOT z tz /\ NAND y tz t1 /\
NAND tx tz t2 /\ NAND tw y t3 /\

21

NAND x y t4 /\ NAND w tz t5 /\
NAND3 tw x z t6 /\ NAND3 w tx ty t7 /\
NAND7 t1 t2 t3 t4 t5 t6 t7 a) ==>

(a =
(if

˜w /\ ˜x /\ ˜y /\ z \/ ˜w /\ x /\ ˜y
/\ ˜z \/ w /\ ˜x /\ y /\ z \/ w /\ x
/\ ˜y /\ z

then
F

else
T))

: goalstack
- e(REWRITE_TAC[NOT_DEF, NAND_DEF,

NAND3_DEF, NAND7_DEF]);
OK..
1 subgoal:
> val it =

!w x y z a.
(?tw tx ty tz t1 t2 t3 t4 t5 t6 t7.

(tw = ˜w) /\ (tx = ˜x) /\ (ty = ˜y) /\
(tz = ˜z) /\ (t1 = ˜(y /\ tz)) /\
(t2 = ˜(tx /\ tz)) /\ (t3 = ˜(tw /\ y)) /\
(t4 = ˜(x /\ y)) /\ (t5 = ˜(w /\ tz)) /\
(t6 = ˜(tw /\ x /\ z)) /\ (t7 = ˜(w /\ tx
/\ ty)) /\ (a = ˜(t1 /\ t2 /\ t3 /\ t4 /\
t5 /\ t6 /\ t7))) ==>

(a =
(if

˜w /\ ˜x /\ ˜y /\ z \/ ˜w /\ x /\ ˜y /\ ˜z
\/ w /\ ˜x /\ y /\ z \/ w /\ x /\ ˜y /\ z

then
F

else
T))

: goalstack

2. Use Simplifier to simplify the expression.

- e(SIMP_TAC std_ss []);
OK..
1 subgoal:

22

> val it =
!w x y z.
y /\ ˜z \/ ˜x /\ ˜z \/ ˜w /\ y \/ x /\ y \/
w /\ ˜z \/ ˜w /\ x /\ z \/ w /\ ˜x /\ ˜y =
(w \/ x \/ y \/ ˜z) /\ (w \/ ˜x \/ y \/ z) /\
(˜w \/ x \/ ˜y \/ ˜z) /\ (˜w \/ ˜x \/ y \/ ˜z)

: goalstack

3. Remove universally quantified variables from the front of the subgoal.

- e(REPEAT GEN_TAC);
OK..
1 subgoal:
> val it =

y /\ ˜z \/ ˜x /\ ˜z \/ ˜w /\ y \/ x /\ y \/
w /\ ˜z \/ ˜w /\ x /\ z \/ w /\ ˜x /\ ˜y =
(w \/ x \/ y \/ ˜z) /\ (w \/ ˜x \/ y \/ z) /\
(˜w \/ x \/ ˜y \/ ˜z) /\ (˜w \/ ˜x \/ y \/ ˜z)

: goalstack

4. Use boolean cases analysis and rewrite the results.

- e(BOOL_CASES_TAC(--‘w:bool‘--) THEN REWRITE_TAC[]);
OK..
2 subgoals:
> val it =

y /\ ˜z \/ ˜x /\ ˜z \/ y \/ x
/\ y \/ x /\ z =
(x \/ y \/ ˜z) /\ (˜x \/ y \/ z)

y /\ ˜z \/ ˜x /\ ˜z \/ x /\ y
\/ ˜z \/ ˜x /\ ˜y =
(x \/ ˜y \/ ˜z) /\ (˜x \/ y \/ ˜z)

: goalstack

5. Use First-order Prover to prove the goal. (Since we get two subgoals now,
we should apply this tactic to both of them.)

23

- e(MESON_TAC[]);
OK..
Meson search level:

Goal proved.
|- y /\ ˜z \/ ˜x /\ ˜z \/ x /\ y \/

˜z \/ ˜x /\ ˜y = (x \/ ˜y \/ ˜z)
/\ (˜x \/ y \/ ˜z)

Remaining subgoals:
> val it =

y /\ ˜z \/ ˜x /\ ˜z \/ y \/ x /\
y \/ x /\ z = (x \/ y \/ ˜z) /\
(˜x \/ y \/ z)

: goalstack
- e(MESON_TAC[]);
OK..
Meson search level:

Goal proved.
|- y /\ ˜z \/ ˜x /\ ˜z \/ y \/ x /\

y \/ x /\ z = (x \/ y \/ ˜z) /\
(˜x \/ y \/ z)

Goal proved.
|- y /\ ˜z \/ ˜x /\ ˜z \/ ˜w /\ y

\/ x /\ y \/ w /\ ˜z \/ ˜w /\ x
/\ z \/ w /\ ˜x /\ ˜y =
(w \/ x \/ y \/ ˜z) /\ (w \/ ˜x
\/ y \/ z) /\ (˜w \/ x \/ ˜y \/
˜z) /\ (˜w \/ ˜x \/ y \/ ˜z)

Goal proved.
|- !w x y z.

y /\ ˜z \/ ˜x /\ ˜z \/ ˜w /\ y \/
x /\ y \/ w /\ ˜z \/ ˜w /\ x /\ z
\/ w /\ ˜x /\ ˜y =
(w \/ x \/ y \/ ˜z) /\ (w \/ ˜x \/
y \/ z) /\ (˜w \/ x \/ ˜y \/ ˜z)
/\ (˜w \/ ˜x \/ y \/ ˜z)

Goal proved.
|- !w x y z a.

24

(?tw tx ty tz t1 t2 t3 t4 t5 t6 t7.
(tw = ˜w) /\ (tx = ˜x) /\ (ty = ˜y)
/\ (tz = ˜z) /\ (t1 = ˜(y /\ tz)) /\
(t2 = ˜(tx /\ tz)) /\ (t3 = ˜(tw /\ y))
/\ (t4 = ˜(x /\ y)) /\ (t5 = ˜(w /\ tz))
/\ (t6 = ˜(tw /\ x /\ z)) /\ (t7 = ˜(w
/\ tx /\ ty)) /\ (a = ˜(t1 /\ t2 /\ t3 /\
t4 /\ t5 /\ t6 /\ t7))) ==>

(a =
(if

˜w /\ ˜x /\ ˜y /\ z \/ ˜w /\ x /\ ˜y
/\ ˜z \/ w /\ ˜x /\ y /\ z \/ w /\ x
/\ ˜y /\ z

then
F

else
T))

Goal proved.
|- !w x y z a.

(?tw tx ty tz t1 t2 t3 t4 t5 t6 t7.
NOT w tw /\ NOT x tx /\ NOT y ty /\
NOT z tz /\ NAND y tz t1 /\
NAND tx tz t2 /\ NAND tw y t3 /\
NAND x y t4 /\ NAND w tz t5 /\
NAND3 tw x z t6 /\ NAND3 w tx ty t7 /\
NAND7 t1 t2 t3 t4 t5 t6 t7 a) ==>

(a =
(if

˜w /\ ˜x /\ ˜y /\ z \/ ˜w /\ x /\ ˜y
/\ ˜z \/ w /\ ˜x /\ y /\ z \/ w /\ x
/\ ˜y /\ z

then
F

else
T))

> val it =
Initial goal proved.
|- !w x y z a. LED_A_IMP w x y z a ==>
LED_A_DEF w x y z a : goalstack

The next step is to prove that our circuit design meets all the requirements of
our schematic design, where the whole proof is very similar to the above proof.
In order to keep the text concise, we don’t list down those proofs.

25

When the verification task of the first part is completed, we verify the other
six parts with the same method. For the same reason, here we don’t list down the
proofs of the other six parts due to the similarity in these verification processes.

5 Verification in PVS

PVS stands for Prototype Verification System, and as the name suggests, it is a
prototype environment for specification and verification. The primary purpose
of PVS is to provide formal support for conceptualization and debugging in the
early stages of the lifecycle of the design of a hardware or software system. The
primary emphasis in the PVS proof checker is on supporting the construction of
readable proofs[24]. There are some nice features of PVS which make it a popular
verification tool:[25]

• An expressive specification language that augments classical higher order
logic with a sophisticated type system containing predicate subtypes, and
with parameterized theories and a mechanism for defining abstract datatypes
such as lists and trees.

• A powerful interactive theorem prover. The basic deductive steps in PVS are
large compared with many other systems: there are atomic commands for
induction, quantifier reasoning, automatic conditional rewriting, simplifica-
tion using arithmetic and equality decision procedures and type information,
and propositional simplification using binary decision diagrams. Model
checking capabilities used for automatically verifying temporal properties
of finite state systems are also integrated into PVS.

• A friendly (but not advanced) user interface which is strongly integrated
with Emacs.

5.1 PVS overview

The PVS specification language is built on classical typed higher-order logic with
the usual base typesbool, nat, rational, real among others and the
function type constructor[A -> B]. A distinctive feature of the PVS specifi-
cation language is predicate subtyping. A subtype{x: A | P(x)} consists
of exactly those elementsa of typeA satisfying predicateP(a). Predicate sub-
types are used to explicitly constrain the domain and ranges of operations in a
specification and to define partial functions.

A PVS specification consists of a number of theories. A theory is a collection
of declarations: types, constants (including functions), axioms that express prop-
erties about the constants, and theorems and lemmas to be proved. Theories may
import other theories and may be parametric in types and constants.

26

A proof goal in PVS is represented by a sequent. PVS differs from most proof
checkers in providing primitive inference rules that are quite powerful, which
also perform steps such as quantifier instantiation, rewriting, beta-reduction, and
boolean simplification. Proofs and partial proofs can be saved, edited, and rerun.

To illustrate the above ideas, we consider a simple example to introduce the
PVS system. Suppose the filesum.pvs2 contains:

sum: THEORY
BEGIN

n: VAR nat

sum(n): RECURSIVE nat =
(IF n = 0 THEN 0 ELSE n + sum(n - 1) ENDIF)
MEASURE id

closed_form: THEOREM sum(n) = (n * (n + 1))/2

END sum

This specifies a theory calledsum in which:[18]

1. The variablen is declared to have the (predefined) typenat;

2. a functionsum is defined recursively (the well-foundness of the recursion
is explicitly justified by the supplied measure -n in this example);

3. a theorem calledclosed form is conjectured.

If we run PVS on the filesum.pvs, an Emacs window containing its contents
will pop up. To prove it3, we typeMETA-x prove. This initiates the parsing and
typechecking of the theory containing the conjecture. This takes a few seconds
and one is then prompted withRule? for a proof command. Responding to it
with (induct "n") results in the output:4

Rule? (induct "n")
Inducting on n on formula 1,
this yields 2 subgoals:
closed_form.1 :

|-------
{1} sum(0) = 0 * (0 + 1) / 2

2This file can be found in./pvs/Examples directory.
3Alternatively, the official proof given by the PVS team can be found in

./pvs/Examples/sum.prf file.
4Alternatively, the proof can be done fully automatically by responding to it with

(induct-and-simplify "n").

27

As in HOL, the subgoals are stacked and the first one is presented to the user,
followed by another prompt for a proof command. This goal is solved using PVS
proof command(grind). The subgoal is popped and the remaining goal is
presented:

Rule? (grind)
sum rewrites sum(0)
to 0

Trying repeated skolemization, instantiation,
and if-lifting,

This completes the proof of closed_form.1.

closed_form.2 :

|-------
{1} FORALL j:

sum(j) = j * (j + 1) / 2 IMPLIES
sum(j + 1) = (j + 1) * (j + 1 + 1) / 2

This is also solved automatically by PVS proof command(grind).

Rule? (grind)
sum rewrites sum(1 + j)
to 1 + j + sum(j)

Trying repeated skolemization, instantiation,
and if-lifting,

This completes the proof of closed_form.2.

Q.E.D.

The theory has now been proved, and typingMETA-x spt shows the proof
status of the theory:

Proof summary for theory sum
sum_TCC1......proved - complete [U](n/a s)
sum_TCC2......proved - complete [U](n/a s)
closed_form......proved - complete [O](0.31 s)
Theory totals: 3 formulas, 3 attempted,

3 succeeded (0.31 s)

28

AND

AND

AND

OR

OR

a

b

c

z

d

e

f

g

Figure 14: Majority voting circuit[7]

5.2 Hardware verification using PVS

Because the popularity of Gordon’s style[19][12] of specifying hardware compo-
nents in higher order logic, PVS takes the same approach as HOL. The behavior
of hardware components is specified by defining predicates that state which com-
binations of values can appear on their external ports. The behavior of device
built by wiring together smaller devices is represented by conjoining the predi-
cates that specify the behaviors of their components with logical conjunction and
using existential quantification to hide internal signals.

We illustrate PVS approach by showing a small example of the verification
of majority voting circuit[6][7] in PVS. The circuit in Figure 14 is a simplified
version of a majority voting circuit as found in nuclear reactors or avionics where
three computers each do the same task. If at least two computers signal to do the
same thing (i.e. at least two ofa, b andc are high) thenz is high and the task is
performed; otherwisez is low and the task is not performed.[26][23]

We first write thespecification that asserts the right relationships between in-
puts (a, b andc) and output (z). The specification is written in a way that is free
of implementation detail, and we will not describe any AND/OR gates, just the
relationship that ought to hold between the inputs and the outputs. We then write
the implementation in terms of the AND/OR gates. Finally, we must prove that:
implementation ⇒ specification.

Thespecification andimplementation written in the PVS description language
are shown below:

1 major_vote: THEORY
2
3 BEGIN
4
5 % input and output variables
6 a, b, c, z: VAR bool
7
8 % conversion function
9 cnf(x: bool): int =

29

10 (IF x THEN 1 ELSE 0 ENDIF)
11
12 % specify the required behavior
13 spec(a, b, c, z): bool =
14 z = (cnf(a) + cnf(b) + cnf(c) >= 2)
15
16 % define and_gate
17 and_gate(v, w, x: bool): bool =
18 x IFF (v AND w)
19
20 % define or_gate
21 or_gate(v, w, x: bool): bool =
22 x IFF (v OR w)
23
24 % describe the implementation
25 implementation(a, b, c, z): bool =
26 (EXISTS (d, e, f, g: bool):
27 and_gate(a, b, d)
28 AND and_gate(b, c, e)
29 AND and_gate(c, a, f)
30 AND or_gate(d, e, g)
31 AND or_gate(g, f, z))
32
33 % the result of cnf is either 0 or 1
34 sanity_check_1: THEOREM
35 (FORALL (d: bool): cnf(d) = 0 OR cnf(d) = 1)
36
37 implementation_correctness: THEOREM
38 implementation(a, b, c, z) IMPLIES

spec(a, b, c, z)
39
40 END major_vote

At line 6 we define the boolean variablesa, b, c andz. Thus, wherever these
variables occur free in the sequel, they will have typebool.

In order to write a succinct specification for majority voting, we first define
the conversion functioncnf at line 9 by:

cnf: bool → int

The function takes an argument of typebool and returns a value of typeint.
At line 9, thecnf function is defined as follows:

cnf(x) = (if x then 1 else 0)

30

The if/then/else operator takes as its first argument a boolean expression, and
as its second and third operator, arguments of typeINT . It returns a value of type
int. With the help of the conversion function, lines 13 and 14 definespecification
as being a boolean expression in the input and output variables as shown.

We now want to see if we can implement the specification with hardware gates
which are defined at line 17 and 21. The boolean expression(v OR w) at line 22
is a well-formed formula of the PVS logic, wherev andw are boolean variables.
”OR” is the PVS notation for standard logicalv ∨ w; the same ”OR” symbol is
also used in the theorem at line 35.

The implementation in terms of AND/OR gates is described at line 25. Im-
plementation correctness, i.e.implementation ⇒ specification is stated as a the-
orem to be proved at line 37. The two theorems at lines 34 and 37 are proved
automatically in this case:

sanity_check_1 :

|-------
{1} (FORALL (d: bool): cnf(d) = 0 OR cnf(d) = 1)

Rule? (grind)
cnf rewrites cnf(d)
to (IF d THEN 1 ELSE 0 ENDIF)

Trying repeated skolemization, instantiation,
and if-lifting,
Q.E.D.

implementation_correctness :

|-------
{1} FORALL (a, b, c, z: bool):

implementation(a, b, c, z) IMPLIES
spec(a, b, c, z)

Rule? (grind)
and_gate rewrites and_gate(a, b, d)
to d IFF (a AND b)

and_gate rewrites and_gate(b, c, e)
to e IFF (b AND c)

and_gate rewrites and_gate(c, a, f)
to f IFF (c AND a)

or_gate rewrites or_gate(d, e, g)
to g IFF (d OR e)

or_gate rewrites or_gate(g, f, z)

31

to z IFF (g OR f)
implementation rewrites
implementation(a, b, c, z)
to EXISTS (d, e, f, g: bool):

d IFF (a AND b) AND e IFF (b AND c)
AND f IFF (c AND a) AND g IFF (d OR e)
AND z IFF (g OR f)

cnf rewrites cnf(a)
to (IF a THEN 1 ELSE 0 ENDIF)

cnf rewrites cnf(b)
to (IF b THEN 1 ELSE 0 ENDIF)

cnf rewrites cnf(c)
to (IF c THEN 1 ELSE 0 ENDIF)

spec rewrites spec(a, b, c, z)
to z =

((IF a THEN 1 ELSE 0 ENDIF) +
(IF b THEN 1 ELSE 0 ENDIF) +
(IF c THEN 1 ELSE 0 ENDIF)
>= 2)

Trying repeated skolemization, instantiation,
and if-lifting,
Q.E.D.

5.3 LED case study

Follow the same approach as 4.3, first we prove that the schematic design (Figure
4) satisfies our original description (Table 4). Then we prove that the circuit design
(Figure 5) meets the requirements of the schematic design. Like 4.3, here we only
show the first part of the whole verification.

The schematic components and connections are modeled in PVS[10] as below:

logic_gates: THEORY

BEGIN

% input and output
W, X, Y, Z, a: VAR bool

% define not_gate
not_gate(i, j: bool): bool =

j = NOT i

% define 2 input nand_gate
nand_gate2(i, j, k: bool): bool =

32

k = NOT (i AND j)

% define 3 input nand_gate
nand_gate3(i0, i1, i2, j: bool): bool =

j = NOT (i0 AND i1 AND i2)

% define 7 input nand_gate
nand_gate7(i0, i1, i2, i3, i4, i5, i6, j: bool)

: bool = j = NOT (i0 AND i1 AND i2 AND i3 AND
i4 AND i5 AND i6)

% specification
spec(W, X, Y, Z, a): bool =

NOT a = (W = FALSE AND X = FALSE AND Y = FALSE
AND Z = TRUE) OR (W = FALSE AND X = TRUE
AND Y = FALSE AND Z = FALSE) OR

(W = TRUE AND X = FALSE AND Y = TRUE AND
Z = TRUE) OR (W = TRUE AND X = TRUE AND
Y = FALSE AND Z = TRUE)

% implementation
imp(W, X, Y, Z, a): bool =

(EXISTS (tw, tx, ty, tz, t1, t2, t3, t4, t5,
t6, t7: bool):
not_gate(W, tw) AND not_gate(X, tx) AND
not_gate(Y, ty) AND not_gate(Z, tz) AND
nand_gate2(Y, tz, t1) AND nand_gate2(tx,
tz, t2) AND nand_gate2(tw, Y, t3) AND
nand_gate2(X, Y, t4) AND nand_gate2(W,
tz, t5) AND nand_gate3(tw, X, Z, t6) AND
nand_gate3(W, tx, ty, t7) AND nand_gate7
(t1, t2, t3, t4, t5, t6, t7, a))

implementation_correctness: THEOREM
imp(W, X, Y, Z, a) IMPLIES spec(W, X, Y, Z, a)

END logic_gates

The proof is automatically done with PVS proof command(grind):

implementation_correctness :

|-------
{1} FORALL (W, X, Y, Z, a: bool):

33

imp(W, X, Y, Z, a) IMPLIES
spec(W, X, Y, Z, a)

Rule? (grind)
not_gate rewrites not_gate(W, tw)
to tw = NOT W

not_gate rewrites not_gate(X, tx)
to tx = NOT X

not_gate rewrites not_gate(Y, ty)
to ty = NOT Y

not_gate rewrites not_gate(Z, tz)
to tz = NOT Z

nand_gate2 rewrites nand_gate2(Y, tz, t1)
to t1 = NOT (Y AND tz)

nand_gate2 rewrites nand_gate2(tx, tz, t2)
to t2 = NOT (tx AND tz)

nand_gate2 rewrites nand_gate2(tw, Y, t3)
to t3 = NOT (tw AND Y)

nand_gate2 rewrites nand_gate2(X, Y, t4)
to t4 = NOT (X AND Y)

nand_gate2 rewrites nand_gate2(W, tz, t5)
to t5 = NOT (W AND tz)

nand_gate3 rewrites nand_gate3(tw, X, Z, t6)
to t6 = NOT (tw AND X AND Z)

nand_gate3 rewrites nand_gate3(W, tx, ty, t7)
to t7 = NOT (W AND tx AND ty)

nand_gate7 rewrites nand_gate7(t1, t2, t3, t4,
t5, t6, t7, a) to a = NOT (t1 AND t2 AND t3
AND t4 AND t5 AND t6 AND t7)

imp rewrites imp(W, X, Y, Z, a)
to a = NOT (NOT (Y AND NOT Z) AND NOT

(NOT X AND NOT Z) AND NOT (NOT W AND Y)
AND NOT (X AND Y) AND NOT (W AND NOT Z)
AND NOT (NOT W AND X AND Z) AND NOT

(W AND NOT X AND NOT Y))
spec rewrites spec(W, X, Y, Z, a)
to NOT a = (NOT W AND NOT X AND NOT Y AND Z)

OR (NOT W AND X AND NOT Y AND NOT Z)
OR (W AND NOT X AND Y AND Z) OR
(W AND X AND NOT Y AND Z)

Trying repeated skolemization, instantiation,
and if-lifting,
Q.E.D.

34

When the verification task of the first part is completed, we can verify the
other six parts with the same method. In order to keep the text concise, we don’t
list down the proofs of the other six parts due to the similarity in these verification
processes.

6 A Comparison of HOL and PVS

There is an overwhelming number of different proof tools available(e.g. in [4]
one can find references to over 60 proof tools). All have particular applications
that they are especially suited for. Since we have used HOL and PVS as the
mechanical verification tools in the previouschapters, hereby it is desirable to do
a comparative study of the two proof tools, because both are known as powerful
proof tools for higher order logic, which have shown their capabilities in non-
trivial applications.

Generally, although HOL and PVS are similar to each other and shares a lot
of common features, partly because they areall based on higher order logic and
for supporting formal methods applications with proof, there are still some differ-
ences. In this section we wish to discuss in some detail our own, more personal,
experiences with regards to the case study:

• The meta-language of HOL is ML; hence HOL type system is similar to the
type system of ML, which form the basis of the higher order logic theory.
(see 4.1).

PVS is written in Lisp and implements classical typed higher order logic
with an extension of predicate subtypes (see 5.1). PVS has many built-in
types and uses type constructors to build complex types.

• The specification language of HOL is a ML-style one, which uses the ML
datatypeterm to represent the HOL logic; theories are created in ML func-
tions bynew definition (see 4.1).

val NOT_DEF =
new_definition("NOT_DEF",

(--‘NOT a x = (x = ˜a)‘--));

Take a look into the case study in 4.3, we can see that the specification con-
sists of the hardware components specification, the target hardware device
specification composed with above components’ specification, (and the cor-
rectness relationship to be proved byset goal, which looks like a part of
the proof).

set_goal([],(--‘!w x y z a.
LED_A_IMP w x y z a ==> LED_A_DEF w x y z a‘--));

35

The specification language of PVS is rich, containing many different type
constructors and predicate subtypes (see 5.1). Unlike HOL, the syntax is
more fixed; many language constructs, such asIF andCASES are built-in
to the language. A specification is usually divided in several theories and
theories can import other theories. Although from the case study in 5.3, we
can find out that the specification is organized similarly to 4.3, there are two
obvious differences:

– Variables have to be declared before using (there is no default datatype
mechanism for undefined variables).

% input and output
W, X, Y, Z, a: VAR bool

– The correctness relationship to be proved is withinTHEORY.

logic_gates: THEORY

...

implementation_correctness: THEOREM
imp(W, X, Y, Z, a) IMPLIES spec(W, X, Y, Z, a)

END logic_gates

• HOL supports both forward and backward proving, but it emphasizes on
backward proving by supplying many useful tactics for it. A tactic trans-
forms the proof goal into several subgoals (see 4.2). HOL has a large col-
lection of tactics as well as many proving tools. In the process of proving
4.3, we need to load such tools from libraries byload before proving be-
cause they don’t automatically “stand forward” when applicable.

load "bossLib";
load "simpLib";
load "mesonLib";

A thorough look of HOL libraries beforehand will help us to get familiar
with some of powerful proving tools.

PVS has many tools in the core system which can be automatically invoked
(see 5.2). We are quite impressed in the process of proving 5.3; such tools
are built-in to the system and are ready to use by invokinggrind etc.

implementation_correctness :

|-------

36

{1}FORALL (W, X, Y, Z, a: bool):
imp(W, X, Y, Z, a) IMPLIES spec(W, X, Y, Z, a)

Rule? (grind)

Another difference is that after supplying a tactic, the system repeatedly
apply it to the current goal until no changes in the current state. A PVS
tactic is like aREPEAT HOL tactic in this way.

e(REPEAT GEN_TAC);

• The most famous difference between HOL and PVS is that the former is a
LCF-style prover, which has better security, user extensibility and also ways
to import and export proofs to other provers.

When comparing HOL and PVS we realizedthat both tools had their advan-
tages and disadvantages. If we want to built our own ideal proof tool, it should
combine the best of both worlds: [8][29][32]

The logic Predicate subtyping gives so much extra expressiveness and protection
against semantical errors, that this should be supported.

The specification language The specification language should be readable, ex-
pressive and easily extendible. For function application, we have a slight
preference for the bracketless syntax of HOL.

The prover The ideal prover has powerful proof commands for classical reason-
ing and rewriting, including ordered rewriting. A tactic should return a list
of possible next states, as this is useful to try all possible instantiations.
Also, decision procedures should be available. Preferably, these decision
procedures are not built in to the kernel, but written in the tactical language,
so that they can not cause soundness problems. The style of the interactive
proof commands of PVS is preferred over that of HOL, because this is more
intuitive.

System organization To ensure soundness of the proof tool, the system should
have a small kernel. The code of the tool should be freely available, so that
users can easily extend it for their own purpose and implement bug fixes.

The proof manager and user interface The tool should keep track of the proof
trace. Proofs are best represented as trees, because this is more natural,
compared to a linear structure. The tree representation also allows easy
navigation through the proof, supported by a visual representation of the
tree.

37

7 Concluding remarks and future work

The paper began with an overview on hardware verification methods, with the
emphasis on approaches using higher order logic. We selected two popular ver-
ification tools, HOL and PVS, and started with some well-understood, but non-
trivial examples, then smoothly moved to a practical verification case study of a
seven-segment LED display decoder circuit design.

When applying these two tools to our case, we found PVS was easier to use
probably because of some “engineering philosophy” in it. However, we also found
that PVS was not an open system, which makes it unsuitable for certain kinds of
work requiring more flexibilities. Besides, we also found that there were many
opportunities for future work in this case study:

• When writing this paper, I found that today the formal verification commu-
nity suffers from a lack of meaningful and widely distributed examples for
evaluating the performance of verification tools. Existing examples in the
area of theorem proving are either toyish or trivial. More realistic hardware
examples have little documentation and few property specifications. The
benefits of a set of examples are many. It will motivate the development of
new algorithms. It will also facilitate comparisons across tools and provide
case studies of verification methodologies for users.

• In my opinion, it should be possible to simultaneously ensure the secure
extensibility of HOL and the usability and power of PVS. One possible
hypopaper is to implement a PVS-style proof environment in HOL.

• Both tools lack a user-friendly interface. PVS is strongly integrated with
Emacs. Thede facto interface for HOL ishol-mode (also based on
Emacs). There are some more advanced user interfaces based on Tcl/Tk,
but they only work for particular versions of HOL.

Over the last two decades hardware verification has moved from academic
research to a rapidly growing commercial technology.[16] In the past, verification
methods have divided into two well-established approaches: theorem proving and
model checking.[9] We focus on theorem proving approach in the whole paper.
Model checking is a technique that relies on building a finite model of a system
and checking that a desired property holds in that model.

In contrast to theorem proving, model checking is completely automatic and
fast, sometimes producing an answer in a matter of minutes. The main disadvan-
tage of model checking is the state explosion problem.

Theorem proving can deal directly with infinite state space. It relies on tech-
niques like structural induction to prove over infinite domains, but theorem provers
usually require interaction with a human so that the theorem proving process is
slow and often error-prone.

One of the most promising directions in hardware verification is combining
model checking and theorem proving, ideally to benefit from the advantages of

38

both approaches. One way is to employ model checking as a decision procedure
within a deductive framework, as is partly done in tools such as HOL and PVS;
another way is to use deduction to obtain a finite state abstraction of an implemen-
tation that can be verified using model checking.

Another promising direction in hardware verification is to make specification
methods and tools more user-friendly. Although industry is adopting techniques
like model checking and theorem proving to complement the more traditional
one of simulation, there are still a lot of problems for industry applications. (i.e.
The notations are too obscure, and the tool is too hard to use.) Ideally, people
from industry expect to use the formal hardware specification language as simply
a means of communicating ideas to others or of documenting their own designs.
They would use tools like model and proof checkers with as much ease as they use
compilers. Therefore, we should strive to make our notations and tools accessible
to non-experts.

References

[1] A.Gupta.Formal Hardware Verification Methods: A Survey. Journal of For-
mal Methods in System Design, vol. 1, pp. 151 - 238, 1992

[2] C.Max.Bebop to the Boolean Boogie. LLH Technology Publishing, 1997

[3] C.-J.H.Seger.An Introduction to Formal Hardware Verification. Technical
Report, University of British Columbia,Computer ScienceDepartment,
Number TR-92-13, 1992

[4] Database of Existing Mechanized Reasoning Systems: available at
http://www-formal.stanford.edu/clt/ARS/systems.html

[5] D.D.Gajski, F.Vahid, S.Narayan, and J.Gong.Specification and Design of
Embedded System. Prentice Hall, 1994

[6] D.Gries, F.B.Schneider.A Logical Approach to Discrete Math. Springer-
Verlag, 1993

[7] D.Gries, F.B.Schneider.Equational Propositional Logic. available at
http://www.ariel.cs.yorku.ca/ logicE/

[8] D.Griffioen, M.Huisman.A Comparison of PVS and Isabelle/HOL. Theorem
Proving in Higher Order Logics: 11th International Conference, vol. 1479,
pp. 123 - 142, Springer, 1998

[9] E.Clarke, J.Wing.Formal Methods: State of the Art and Future Directions.
CMU Computer Science Technical Report, CMU-CS-96-178, 1996

39

[10] G.C.Gopalakrishnan.An Overview of Formal Mathematical Reason-
ing with Applications to Digital System Verification. available at
http://www.cs.utah.edu/formalverification

[11] J.Grundy. COMP8033: Mechanical Verification Web Site:
http://cs.anu.edu.au/student/comp8033/

[12] J.J.Joyce.More Reasons Why Higher-Order Logic is a Good Formalism
for Specifying and Verifying Hardware. International Workshop on Formal
Methods in VLSI Design, 1991.

[13] J.M.Rabaey.Digital Integrated Circuits: A Design Perspective. Prentice
Hall, 2002

[14] KarnaughMap v1.2: available at http://www.puz.com/sw/karnaugh/karnaugh12.htm

[15] L.Laibinis. Mechanical Verification Course Web Site:
http://www.abo.fi/ linas.laibinis/MechVer/MechVer.html

[16] M.Gordon. 21 Years of Hardware Verification. Talk given at the Royal
Society, 1998. available at http://www.cl.cam.ac.uk/ mjcg/BDD/facs21-
talk.ps.gz

[17] M.Gordon.HOL: A Machine Oriented Formulation of Higher Order Logic.
Technical Report 68, Computer Laboratory, University of Cambridge, 1985

[18] M.Gordon. Notes on PVS from a HOL perspective. available at
http://www.cl.cam.ac.uk/users/mjcg/pvs.ps.gz

[19] M.Gordon.Why higher-order logic is a good formalism for specifying and
verifying hardware. Formal Aspects of VLSI Design, pp. 153 - 177, North-
Holland, 1986

[20] MichiganTech Web Site: http://www.ee.mtu.edu/faculty/schulz/
lab courses/EE2301fall00/pages/week4 bcd to sevensegment.html

[21] M.John, S.Smith.Application-Specific Integrated Circuits. Addison-Wesley,
1997

[22] M.Srivas, H.Rue, D.Cyrluk.Hardware Verification Using PVS. Formal
Hardware Verification - Methods and Systems in Comparison, Lecture Notes
in Computer Science, vol. 1287, pp. 156 - 205, Springer, 1997

[23] N.Leveson.Safeware: System Safety and Computers. Addison-Wesley,
1996.

[24] N.Shankar, S.Owre, J.M.Rushby, D.W.J.Stringer-Calvert.PVS System
Guide. available at http://pvs.csl.sri.com/doc/pvs-system-guide.pdf

40

[25] N.Shankar, S.Owre, J.M.Rushby, D.W.J.Stringer-Calvert.PVS Prover
Guide. available at http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

[26] N.Storey.Safety Critical Computer Systems. Addison-Wesley, 1996.

[27] R.J.Baker, H.W.Li, D.Boyce.CMOS: Circuit Design, Layout, and Simula-
tion. John Wiley and Sons publishers, 1998

[28] S.S.SkienaThe Algorithm Design Manual. Springer-Verlag, 1997

[29] S.Tahar, P.Curzon, and J.Lu.Three Approaches to Hardware Verification:
HOL, MDG and VIS Compared. Formal Methods in Computer-Aided De-
sign, Lecture Notes in Computer Science, vol. 1522, pp. 433 - 450, Springer,
1998

[30] Tokyo Denki University Web Site: http://www.d.dendai.ac.jp/vhdl/decoder.html

[31] T.Melham.Higher Order Logic And Hardware Verification. Cambridge Uni-
versity Press, 1993

[32] V.Zammit.A Comparative Study of Coq and HOL. Proceedings of the 10th
International Workshop on Theorem Proving in Higher Order Logic. vol.
1275, pp. 323 - 337, Springer, 1997

[33] Windows LASI: layout system for Windows. available at
http://members.aol.com/lasicad/index.htm

41

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

Turku

Centre

Computer

Science

for

University of Turku

Department of Information Technology

Department of Mathematics

Åbo Akademi University

Turku School of Economics and Business Administration

Department of Computer Science

Institute for Advanced Management Systems Research

Institute of Information Systems Sciences

�

�

�

�

�

ISBN 952-12-1458-9

ISSN 1239-1891

