Ralph-Johan Back | Luka Milovanov | Ivan Porres

Software Development and Experimenta-
tion In an Academic Environment: The
Gaudi Experience

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 641, November 2004

<7
7
¥ rucs

Software Development and Experimenta-

tion In_an Academic Environment: The
Gaudi Experience

Ralph-Johan Back
Abo Akademi University, Department of Computer Science,
Lemminkaisenkatu 14, N-20520 Turku, Finland
backrjeabo.fi

Luka Milovanov
Imilovan@abo. fi

Ivan Porres
iporres@abo.fi

TUCS Technical Report
No 641, November 2004

Abstract

In this article, we describe an approach to empirical software engineering based
on a combined software factory and sadire laboratory. The software factory
develops software required by an externatomer while the software laboratory
monitors and improves the processes and methods used in the factory. We have
used this approach during a period ofif years to define and evaluate the Gaudi
software process. This process combipeactices from Extreme Programming
with architectural design and documentation practices in order to find a balance
between agility, maintainability and reliability.

Keywords: Agile Methods, Software Engingag Experiments, Gaudi Factory

TUCS Laboratory
Software Construction Laboratory

1 Introduction

One of the main problems that hinders the research and improvement of various
software construction techniques is th#idulty to perform significant controlled
experiments. Many prosses and methods in software development have been
conceived in the context of large industrial projects. However, in most cases, it is
almost impossible to perform contrafleexperiments in an industrial setting. A
company can rarely afford to develop the same product twice by the same team
but using different methods, and then compare the resulting products and the per-
formance of the team.

On the other hand, universities emploighily qualified research personnel
that can dedicate a considerable amourtheir time to study better ways to build
software. Also, university researchers do not have the pressure of releasing new
software products to the market or evesirlyg economically mfitable to their
employer. In this sense, a university setting can be an ideal place to perform
practical experiments and testm@&leas in software engineering.

However, university researchers also meet with difficulties when experiment-
ing with new software developmentideas in practice. Performing an experimentin
collaboration with the industry using ngnintested software development meth-
ods can be risky for the industrial partner but also for the researcher, since the
project can fail due to some factors tle@nnot be controlled by the researcher.
The obvious alternative is to run a softwatevelopment project inside a research
center in a more controlled environment. Still, this approach has at least three
Important shortcomings.

First, it is possible that a synthetic\ddopment project arranged by a re-
searcher does not reflect the conditiond eonstraints found in an actual software
development project. This happens specially if there is no actual need for the soft-
ware to be developed. Also, universityperiments are quite often performed by
students. Students are not necessarilydagmble than employed software devel-
opers, but they must be trained and theomgramming experience and motivation
in a project may vary. Finally, although there is no market pressure, a researcher
often has very limited resources and therefore it is not always possible to plan
large experiments.

These shortcomings disappear if theta@ifre built in an experiment is an ac-
tual software product that is needed by one or more customers that will define the
product requirements and will carry thest of the development of the product.

In our case, we found such customer in oum environment: other researchers
that need software to be built to demonstrate and validate their research work.
This scientific software does not necedgareed to be related to our research in
software processes.

In this paper we describe our experiences of this approach: how we created our
own laboratory for experimental softneaengineering, and how we study software
development in practice while buildingfware for other research projects. Our
experience is based on experimentmducted during the last four years. The

1

objective of these experiments is to finddashocument software best practices in
a software process that focus on product quality and project agility.

As a framework process for these experiments we chose Extreme Program-
ming [10] (XP). Extreme Programmingas agile software methodology that was
introduced by Beck in 2000. It is characterized by a short iteration cycle, combin-
ing the design and implementation glea, continuous refactoring supported by
extensive unit testing, onsite customer, promoting team communication and pair
programming. XP is quite popular these days, but still it has been criticized for
lack of concrete evidences of success [2].

1.1 Related Work

There have been several efforts to stadiygl validate how agile methods are used

in the industry, such as the survey performed i.e. in [19, 32] An industrial survey
can help us to determine the performanta completely defined process such as

XP, but it cannot be used to study the effects of different development practices
guantitatively, since the researchersmat monitor the project in full details. In-

stead, the survey has to be based on the qualitative and subjective assessments
of project managers of the success of the different development practices used in
their projects.

Pekka Abrahamsson follows a research approach that is similar to ours, com-
bining software researchith software development iknergi[33]. The main
focus of his research is to evaluate agiethods proposed by other researchers in
the field. In contrast, our intention is perform empirical experiments not only
to evaluate existing practices but also to propose new practices that we think will
improve the overall software process.

This paper is structured as follows: in Section 2 we describe the Gaudi Soft-
ware Factory as a university unit for building software in the form of controlled
experiments. Section 3 @ent the typical settings of such experiments and por-
trays their technical aspects. Section 4 discusses the practices of the software
process, while Section 5 summarizes observations from agile experience in
Gaudi. Our conclusions aregsented in Section 6.

2 Gaudi and itsWorking Principles

Gaudiis a research project that aims at developing and testing new software devel-
opment methods in a realistic setting. We arerested in the time, cost, quality,

and quantitative aspects of developing software, and study these issues in a series
of controlled experiments. We focus oghitweight or agile software processes.
Gaudi is divided into a softwaraé€tory and a software laboratory.

2

2.1 Software Factory

The goal of theGaudi software factorys to produce software for the needs of
various research projects in our university. Software is built in the factory accord-
ing to the requirements given by the projstdkeholders. These stakeholders also
provided the required resources to carry out the project.

A characteristic of the factory is thahe developers are students. However,
programming in Gaudi is not a part of theiudies, and the students get no credits
for participating in Gaudi — they are employed and paid a normal salary according
to the university regulations.

We emphasize for the Gaudi software developers that the purpose of their work
is to produce working software using thpecified software process, methods and
tools. Our intention is to keep the programmers busy on building the software, not
on the experiments. This seems to work out well: in most cases the developers
reported that they did not feel they wereatved in an experimental project, or
then they said that the experimental nature of the project did not disturb them.

Gaudi factory was started as a pilofperiment in the summer of 2001 with
a group of six programmers workingh@a single product (an outlining editor).
The following summer we introduced two other products and six more program-
mers. The work continued with half-time employments during the following fall
and spring. In the fourth cycle, in the summer of 2003, there were five paral-
lel experiments with five different prodts; each with a different focus but with
approximately the same settings. Altogatiwe have carried out 18 software con-
struction experiments in Gaudi to thisydal ' he application areas of the software
built in Gaudi are quite varied: an editor for mathematical derivations, software
construction and modeling tools, 3D médaimation, a persnal financial plan-
ner, financial benchmarking of organimms, a mobile ad-hoc network router,
digital TV middleware, and so on.

2.2 SoftwareLaboratory

The goal of theGaudi software laboratoris to investigate, evaluate and improve
the software development process used in the factory. The factory is in charge of
the software product, while the laboratas in charge of the software process.
The laboratory supplies the factory witrska, resources and new methods, while
the factory provides the laboratory withe feedback in the form of software and
experience results. The laboratory siaftomposed of researchers and doctoral
students working in the area of software engineering.

High developer turnaround is a cogsence of the environments where the
software projects are carried out. Pragrmer turnaround is a risk that needs to
be minimized in any software developmeompany and the impacts of this have
to be mitigated. In a university environment, this is part of normal life. We employ
students as programmers thg their studies. Eventlig they will graduate and
leave the programming team. A few stitiemay continue as Ph.D. students or as

3

part of a more permanentggramming staff, but this is more the exception than
the norm.

Although application area, the technologyed and project stakeholders var-
ied from project to project, there were common challenges in all these projects
that comes from the characteristics ofamademic research environment: product
requirements were quite teh underspecified and highly volatile and the devel-
oper turnaround was big. Also, softwareoiten built in the context of a research
project to validate and demonstrate promising but immature research ideas. Once
it is functional, the software creates a feedback loop for the researchers. If the
researchers make good use of this feedback, they will improve and refine their
research work and therefore, they wided to update the software to include their
improved ideas. In this context, the better a piece of research software fulfills its
goal, more changes will be required in it.

Our approach to these challenges was to base our software process on agile
methods, in particular on Extreme Progmaing, and to split a large development
project into a number of successive smaller projects. A smaller projects will typi-
cally represent a total effort of one todvperson years. This is also the usual size
of project that a single researcher can find financing for in a university setting per
year. A project size of 1 person year is also a good base for a controlled experi-
ment. It is large enough to yield significant results while it can be carried out in
the relatively short period of three caldar months using a group of four students.

3 Experimentsin the Gaudi factory

The Gaudi laboratory uses the Gaudi tagtas a sandbox for software process
improvement and development. Softwamjects in the factory are run as a se-
ries of monitored and controlled experents. The settings of those experiments
are defined a priori by the laboratoryhese settings were applied as an subject
for experiments and produced positive esu Therefore they were taken into
the standards and became the basic staskettings for all of our projects. Nev-
ertheless, we always consider possibilities to improve and extend our standard
framework with new settings in future experimental projects.

In this section we describe the pegj settings and arrangements for Gaudi.
We also present the different roles andidsi involved in an experimental project,
as a background for the different procesaqtices discussed later in Section 4.

3.1 Schedule and Resources

A Gaudi experiment has a tight schedulspally three months. Most of the ex-
periments are performed during sunmm&hen students can work full-time (40
hours a week). In practice this means that the developers come to work first of
June and the final release of the software product is the last day of August. Dur-
ing the terms students work half time (25-30 hours a week). We tend to focus

4

on software maintenance issues duringtdrens, leaving the development of new
software products to the summer peridéwrger products are build in a sequence

of short projects, e.g., June-August, Glmer-December, February - April, and so

on. The interludes are used to evaluate the software that was produced in the
last experiment and plan for the next software experiment. All the participants in
an experiment are employed by the univigtsncluding the students working as
developers, using stangdeemployment contracts.

In all Gaudi projects all members of the same developmentteam sit in the same
room, arranged according to the advice given by Beck in [10]. The programmers
sit by a big table in the middle of the room. Four computers are placed so that
the work stations formed a clover-like square. Since the team normally consist of
only two pairs, there is no special machine for integration. There are no separators
which could impede communication. Tieeis a bookshelf, a white-board and a
noticeboard in the room. Outside this room is a recreation area with a coffee
maker etc. that is shared witither groups of programmers.

3.2 Training

Since only a few of the developers are familiar with the tools and techniques we
use in our experiments, we have to provide proper training for them. However, the
projects are short so we can not spend much time on the training. We choose to
give the developers short (1-4 hour) tusds on the essentials of the technologies
that they are going to use. The purpose of these tutorials is not to teach a full
programming language or a method, but teega general overview of the topic
and provide references to the necessary literature. We consider these tutorials
as an introduction to standaswftware best practicesyhich are then employed
throughout the Gaudi factory. Besides gexte¢utorials that all developers take,
we also provide tutorials on specific tapithat may be needed in only one project,
and which are taken only by the developers concerned.

Table 1 shows the complete set of tutorials for one of our projects (FiPla [5]).
For the Gaudi customers we also give one tutorial which is called "XP for Gaudi
Customers”. Developers also get some selected literature to study (manuals, tech-

Tutorial Numbers| Total hours
Eiffel and DBC 2 4
CVs 1 2
Extreme Programming 1 2
SFI 1 2
Unit testing 1 2
All tutorials together 6 12

Table 1: Tutorials

nical documentation, books) after the tuéds. During the project, they have the
possibility to ask the project coach for help with the practical application of the

5

techniques and tools used in the proj@dtose developers who did not participate
in our previous projects find these tutorials very helpful and their the number and
length is sufficient.

In our first experiment [6] the tutorials were given to the developers after the
official start of the project. In subsequenperiments we have given the tutorials
before the project started officially, those were given two weeks before the projects
started, after agreeing with the developers of the time schedule to avoid collisions
with their normal lectures and examinations.

The first week at the beginning of the ot is also reserved for training.
During this time, the programmers do not get the actual development tasks, but
they spend time getting acquainted with the tools to be used during the project,
writing their own small programs or completing simple assignments given by their
coach. During this phase the developers also need supervision and help from the
people in charge of training and tutorials.

3.3 Experiment Supervision, Metrics Collection and Evalua-
tion

We have established an experimental supervision and metric collection framework
in order to measure the impact of different development practices in a project.

The complete description of our measurement framework is an issue for a
separate paper, but in this section we outline its main principles. Our choice is the
Goal Question Metric (GQM) approach [8]. GQM is based upon the assumption
that for an organization to measure in a meaningful way it must first specify the
goals for itself and its projects, then it must trace those goals to the data that are
intended to define those deaperationally, and finally provide a framework for
interpreting the data with respect to the stated goals [8]. The current goals for the
Gaudi factory as we see them are:

Focus on writing code and tests.
. Improve productivity.

. Improve time estimations.

. Improve customer’s interaction apdocess transparency for customer.

1.
2
3
4. Improve software quality.
5
6. Improve developers’ competence.
7

. Show the impact of the experimentathniques on the Gaudi baseline av-
erage measures.

Besides stating the goals and defining the metrics to reach the goals and data
collection mechanisms, we will also describe the feedback mechanisms. These

6

0.1 |02 |03 |04 |05 Total
LOC 1694 | 3441 | 5517| 7100| 8572
Test LOC 571 | 983 | 2174 | 2347 | 2548
Total LOC 2265| 4424 | 7691 | 9447 | 11120
Classes 11 23 37 52 59
Test classes 9 10 20 23 25
Methods 71 122 | 171 | 256 | 331
Test methods 50 68 157 | 167 | 177
LOC/Class 154 | 150 | 149 | 137 | 145
LOC/test class 63 98 109 | 102 | 102
Methods/class 7 5 5 5 6
Test methods/class 6 7 8 7 7
Post-release defects 2 1 2 1 0 6
Post-release defects/KLOIC1.18 | 0.57 | 0.96 | 0.63 | O 0.70
Total work effort (h) 210 | 112 | 216 | 320 | 256 1114
Productivity (LOC/h) 8 16 10 5 6 8
Test productivity 3 4 6 1 1 2
Total productivity 11 20 16 6 7 10

Table 2: Collected data for all iterations

feedback mechanisms are basicallgatéing what one should do with the data

(i.e. table 2). We have chosen an incremental approach for defining our metrics
framework. The idea is to take the very basic and simple metrics, define them
and their collection mechanisms and use it as a standard guideline in Gaudi. This
framework is extended with more metrics as needed. It is important to identify
the person in charge of collecting thefided metrics. One of the requirements

for the success of a metric program is coitment. Responsibility for the metrics
program should be assigned to specific wndlials [16], furthermore the commit-

ment of this person should also be e$isdied. The best person for this work

is the coach. Some measurements such as unit test coverage and personal time
tracking should be assigned to developers. But a Gaudi developer should not be
responsible for the measurements because this data has to deal with the process
improvement and experimenting, while we want to keep our developers focused
on the software they build and not on the experiment they are part of.

Another type of data we collect in Gaudi is qualitative. During the project
developers are asked to keep a sharedolotipeir personal feelings, experience
and anything else which in their opini@oncerns the project. The log is a plain
text file divided into sections. The programmers add new sections to the log as
they find necessary. The records in such logs vary from compldins:too hot
in the room and no ventilation to practical advices’Warning, do this and you
will not loose your code. . .’and personal experienceS6me of our assignments
are really boring, while others are more interesting-inally, at the last day of
work, each programmer gets a list with many questions concerning the projects.

7

Customers are also asked to keep a-fazen diary where they should write down
all activities they performed in their project and time spent for it.

3.4 Rolesin Experimental Projects

Traditionally, the division of labor in dtware development has been performed
based on the different phases of a watdrdakequential process: developers are
specialized into analysts, architectssidmers and testers. In many agile methods,
personnel is split into only two main grougechnical developers and customers.

In Gaudi, we have found the need to also identify other categories that are impor-
tant for carrying out the overall software development process.

Coach and Tracker: XP gives the following definition in [10] for the role
of the coach: "A role of the team for someone who watches the process as a
whole and calls the team’s attention tapending problems or opportunities for
improvement”. In XP the traditional pject management is divided into two
roles: the coach and the tracker. Coaching is concerned with technical execu-
tion of the process, while tracking is about measurements and their validation
against project’s estiates. Main responsibilities of the coach are to be avail-
able as a development partner for new programmers, encourage refactoring, help
programmers with technical skills, g everybody else making good decisions
and explain the process to the upper-level management. The job of the tracker is
to collect the defined metrics, ensure that the team is aware of the measures and
remind the earlier made predictions.

In the Gaudi factory both roles of the coach and the tracker (measurements
are discussed in the section 3.3) araygld by the same person, a PhD student.
The coach is mostly needed by the team during the first weeks of a project. It is
often necessary for the coach to spend a few hours with the developers weekly,
performing the tasks of the developeespecially when a completely new team
takes over an old project or in case of very unexperienced developers. But af-
ter the first small release the prograing team becomes more autonomous and
needs their coach less and less. At this point the coach becomes less concerned
with various types of technical solutions and his or her main concern becomes the
overall process monitoring and execution, and the customer’s involvement.

Customer: The role of the customer in XP is to write and prioritize user
stories (see Section 4.1.2), explain them for the development team and to define
and run acceptance tests to verify thereot functionality of stories. One of the
most distinctive features of the XP customer is that he or she should work onsite,
as a member of the team, in the same room with the team and be 100% available
for the team’s questions.

It is very hard, if not even impossibl&g obtain commitment from a person to
play the role of the onsite customer during the vocation time in university. There-
fore there are roles of offsite customers and customer representatives in Gaudi.

Developer: A team of a Gaudi project usually consists of 6-7 people. A
professor or senior researcher acts as a top manager, a PhD student plays the role

8

of coach, a researcher (a professor, mlmsttoral student or a PhD student) plays
the role of a customer, and four undergra@ustudents perform the programmers’
tasks. The role of a project manager is played by the coach, or by an experienced
developer. The undergraduate studentglaird or fourth year students majoring

in Computer Science or nearby areas. @Qrmagerage about 45% of the students in

a project had participated earlier in Gapdojects. As of today, nearly 40 students
have worked in Gaudi as developers.

3.5 The Gaudi Process

As we have discussed in the introduction, ouention is to develop a lightweight
software process which is flexible aisteasy to learn and use. This process should
lead to reliable software which is also gas maintain, and it should be applicable
in academic and possibly, industrial settings.

Extreme Programming is the basic rfrawork process for Gaudi [7]. We
started with a basic set of XP practices: pair programming, unit testing, refac-
toring, short iteration cycles, andght documentation, to name a few. This XP
tool-set has been extended with Stepwksature Introduction (SFI), an experi-
mental programming methodology.

One of the features that we appreciate most in XP, and which was the main
reason for choosing it for our first experent, is its simplicity. First of all, XP
Is easy to learn. That is an importassue for us since there is only a short
time to train new students before a wdj starts. Another reason for choosing
XP approach was its short interaction ythat facilitates the creation of running
software in a short period of time.

4 Software Practicesin Gaudi

In this section we describe the 12 main practices in our process and our observa-
tions after applying them in several projects. We started our first pilot project [6]
with just a few basic XP practices, evaluating them and gradually including more
and more XP practices into the Gaudi process. After trying out a new practice in
Gaudi we evaluate it and then, dependinglmaresults of the evaluation, it either
becomes a standard part of the Gaudicess, is abandoned, or is left for later re-
implementation and re-evaluation. In this section we discuss our experience with
the agile practices which have been tried out in our projects. Some of the practices
are adopted into our process and became a standard part of it, while some are still
under evaluation. Table 3 lists all of these practices.

Table 4 shows percentage of activities performed by developers out of total
project effort. The first four rows show data for the projects of Summer 2003,
the remaining two for Summer 2004. All activities were performed in the listed
projects, but the amount of time for somejarcts and activities was insignificant,
therefore some values in the table are zeros.

9

Adopted Under Evaluation Abandoned

No overtime, pair, 100% unit test coverage,Daily stand up meet-
programming, code tests written before theings, System metaphor,
standards, unit testing,code, onsite customel,CRC cards or simi-
refactoring, collectiveg customer proxy, time es-lar, score of acceptance
code ownership, con-timations, release plar-tests published

tinuous integration| ning, project velocity
automated tests andmeasured

daily builds, coach as
project manager, user
stories, short iteration,
iteration planning, spike
solutions, lightweight
documentation

Table 3: Process Practices in Gaudi Software Factory

Activity Deve| FiPla| MED | U3D || SCS| CRL
Programming | 19 39 48 39 34 56
Refactoring 0 9 7 13 4 6
Debugging 7 14 15 19 19 | 14
Integration 0 0 1 1 1 0
Design 1 6 4 8 3 7
Meetings 5 1 1 1 4 2
Research 33 6 3 4 11 3
Planninggameg O 2 3 0 1 0
With Customer| 0 2 0 0 7 0
Miscellaneous| 31 21 18 15 9 9

Table 4: Developers’ activities %

We now proceed as following: first we give a general overview of a practice,
then we present our experience and results achieved with this practice. Finally
we discuss possible ways to improve thgsactices in Gaudi environment. For
the reader’s convenience we split the practices into four categories: requirement
management, planmg, engineering and asset management.

4.1 Requirement Management Practices

Requirement manageent in XP is performed by the person carrying out the cus-
tomer role. The requirements are prated in the form of user stories.

10

411 Customer Modd

The role of the customer in XP is to write and prioritize user stories (see Sec-
tion 4.1.2), explain them for the development team and define and run acceptance
tests to verify the correct functionality of the implemented stories. One of the
most distinctive features of XP is that the customer should work onsite, as a mem-
ber of the team, in the same room with the team and be 100% available for the
team’s questions.

As could have been guessed directly, it is hard to implement the onsite cus-
tomer model in practice [23, 24]. Ouxgerience confirms this. Among the 18
Gaudi projects, there was a real onsitstomer only in one project — FiPla [5].
Before this the customers involvement was minimal and it was in the Feature
Driven Development [30] style: the offe customer wrote requirements for the
application, then the coach transformééde requirements m{product require-
ments. Then the coach compiled the listeffures based on the product require-
ments, and the features were givenhe tevelopers as programming tasks.

Studying the advantages of an onsitstaumer was one of the main objectives
of the FiPla project. In this project thaistomer was available for questions or
discussions whenever the development team felt this was necessary. However,
the customer did not work in the same room with the development team. This
was originally recommended by XP practices [9], but it was considered to be
unnecessary because the customer’s office situated in the same building with the
development team’s premises — thiasxconsidered to be "sharing enough”.

Table 5 shows how the customer’s time was spent on project issues. Appar-
ently, being an onsite customer does not increase the customer’s work load very
much. One might even wonder whether an onsite presence is really necessary
based on these figures. However, the feedback from the development team shows
that an onsite customer is very helpful even though the customer’s input was rather
seldom needed. The developers’ suggestion about involving the customer more in
the team’s work could also be implemented by seating the customer in the same
room with the programmers. The feeling was that there could have been more
spontaneous questions and comments/beh the developers and the customer if
she had been in the same room.

Available | Writing stories| With team| Testing| Idle
FiPla 100 2.5 3 2.5 92
SCS 71 5 9 20 37

Table 5: Customer involvement (%)

The second row in the table 5, SCS, shows the data for the project of summer
2004 where we did not have an onsite customer, but used a customer representative
or so-calledcustomer proxyThe difference between these two customer models
were that in the SCS project the customer representative did not commit himself to
be always available to the team and in order to make decisions he had to consult

11

the actual customer who was basically offsite. In both cases all customer-team
communications were face-to-facey e-mails, no phone discussions.

It is essential to have an active customer or customer’s representative in an
experimental project when the custanmeodel itself is not a subject for the ex-
periment. This allows us to keep the developers focused on the product, not the
experiment and not be disturbed by thgerimental nature of project. An active
customer is also a great boost for the team morale, as the programmers noticed:
"It wouldbe more motivating to develop a software that somebody is actually go-
ing to use. The customer could have bemore active, and at least pretend to be
interested in the product”

4.1.2 User Stories

Customer requirements in XP projects aresented in the form of user stories.
User stories are written by the customer and they describe the required function-
ality from a user’s point of view, in about three sentences of text in the customers
terminology without techno-syntax [21]. Beck [10] provides additional recom-
mendation for stories: they should alsolume such information as the title, date,
status and a short description of what tleer should be able to do after the story
was finished. The time needed to implerh#re stories should be estimable and
they must make sense the programmers.

In the Gaudi factory we do not requirestomers to have complete customer
or product specification for the software to be build. We do expect our customer
to write stories, either themselves or via their representatives. The most compre-
hensive written instructions are formulated as customer stories which followed the
guidelines given by the XP practice. The division of the product’s features into the
stories is made by the customer based miméuitive idea about what meaningful
chunks the system could be divided into. A typical summer project normally has
15-25 user stories. The stories can also be the result of joint work between the
customer and the coach. While most of the stories are written before the project
or in the beginning of it, customers still bring new stories throughout the project’s
time and delete or change existing stories.

We have used both paper stories and stories written into a web-based task
management system. An advantage gbgyastories is their simplicity. On the
other hand, the task management system allows its users to modify the contents of
stories, add comments, track the effottaah files (i.e. tests or design documents)
etc. Itis also more suitable when we have a remote or offsite customer. Currently
we are only using the task management system and do not have any paper stories
at all.

In many projects, product or componenguegements are represented in the
form of tasks written by programmers. Tasks contain a lot of technical details, and
often also describe whalasses and methods are regdito implement a concrete
story. A story normally produces 3-4 task&/hen a story is split into tasks, the
tasks are linked agependenciesf the story, and the story becomaspendenon

12

tasks. When we used paper stories, we just attached the tasks to their stories. This
is done in order to ensure the bidirectibtraceability of requirements. Moreover,

it is possible to trace each story or task to the source code implementing it. This
Is discussed in the Section 4.4.1. It is essential that each story makes sense for the
developers (see Section 4.2.1) and it is estimable (we talk about the estimations in
the Section 4.2.2)

4.2 Planning Practices

The most fundamental issues in XP projplanning are to decide what function-
ality should be implemented and whenliioalld be implemented. In order to deal
with these issues we need the planning game and a good mechanism for time
estimations.

4.2.1 Planning Gameand Small Iterations

Theplanning games the XP planning process [10]: business gets to specify what
the system needs to do, while development specifies how much each feature costs
and what budget is available per dayek or month. XP talks about two types of
planning: by scope and by time. Planning by time is to choose the stories to be
implemented, rather than taking all them and negotiating about a release date
and resources to be used (planning by scope).

The time and people resources are fixed in a Gaudi project: the schedule is usu-
ally three months and there are only f@uogrammers available. Therefore we do
release planning by time. Because the developers (and often also the customer)
lack experience, the coach usually sedeitte stories for the first short iteration.

The selection is based on two factorsilested stories should be implemented

in two weeks maximum and those stories should have the highest priority. The
process also teaches the customer howréate good stories — after estimating

the stories the coach often asks the customer to rewrite them in order to produce
smaller and better estimable stories. The coach also asks the customer to write
tests or testing scenarios based on the stories. After the coach and the customer
decide on the functionality for the first two weeks, the team and the coach will
together split the stories into technical tasks and then the developers will imple-
ment the tasks. No time estimations are done at this point. By the time the first
iteration functionality is implemented, the team is better acquainted with the pro-
gramming language and thmoduct, so they are in a better position to provide
time estimations.

The team estimates all the stories for the project and writes their estimations
directly for the stories (we will discuss the estimation process in more details in
the Section 4.2.2). These estimations aot very precise, the error is 20% on
average, but can be smaller. E.g., in ti@la [5] project the estimation error
for the whole effort was 10% (approxiredy 30 hours). The estimations create
an overall project plan ahimmediately tell us whenever some stories should be

13

postponed to the next project or whether there is time to add more stories.

The task managements and bug traglsgstem allows us to submit tasks and
bugs, and to keep track of them. Currently, we use the JIRAtask management to
keep track of task estimations. This kind of systems are easy to use and provide
an overall view of which tasks and bug®awurrently under correction, which are
fixed and which are open. This is especially important when the customer cannot
act as an onsite customer (see Section 4.1.1).

Each new iteration starts with the customer selecting the stories from the
project plan that should be implementedthe next release. The development
team and the customer meet in the beginning of each iteration to discuss the fea-
tures to be implemented. Since the customer stories usually do not provide very
detailed guidelines for the desired fegds, the development team and the cus-
tomer need to discuss in order to clarify open issues and provide more precise
requirements. These maags usually take about an hourufing these meetings,
some of the time is used to make sure the team understands the application logic
correctly, the rest of the discussions often concern aspects of the user interface.
There are typically five iterationa a usual summer Gaudi project.

The team estimates whether there is a need for reconsidering the time cost of
the iteration in the presence of the customer, after which the developers proceeded
to break down the iteration into tasks ang themselves in order to make more
precise estimations. The outcome of the iteration planning is that the set of stories
is split into tasks and the release is calendarized. The customer and the team need
to find the balance between the functionality to be implemented and the effort re-
quired for this. The length of an iteratios usually around two weeks, maximum
Is three weeks for projects with well dedid requirements, and minimum is one to
one and half week for projects with highgq@rements uncertainties. Nowadays,
all planning activities in Gaudi factoryr@ done with JIRA task management and
bug tracking system (section 4.4.1). The tool is convenient to use and it supports
most of the required release and iteration planning activities.

After all the stories for the iteration have been implemented, the customer
gets access to the release and planning for the next iteration . After it is finished
the customer starts doing acceptanceingsand the found defects are reported
in the form of stories, after which they are treated as regular stories: prioritized,
estimated, assigned to a small release and fixed. The overall project effort can be
re-estimated based o findings of an iteration.

In our experience, the planning game, #meall releases and time estimations
are very hard to implement without welkfined customer sties and technical
tasks, and hence, without an activetouser or customer representative.

4.2.2 TimeEstimations

The essence of the XP release planning meeting is for the development team to
estimate each user story in terms of ideal programming weeks [10]. An ideal week
Is how long a programmenmniagines it would take to implement a story if he or

14

she had absolutely nothing else to do. d&pendencies, no extra work, but the
time does include tests.

We have two estimation phases in 8audi process. The first phase is when
the team estimated all of the stories in ideal programming days and weeks. These
estimations are not very precise andytlaee improved in the second estimation
phase when the team splits stories into tasks. When programmers split stories into
technical tasks they make use of theinpoeis programming experience and try to
think of the stories in terms of the programs they have already written. This makes
sense for the programmers and makes the estimating process easier for them.

The estimated time for a tadk,k IS the number of hours it will take one
programmer to write the code and the tutasts for it. These estimations are
done by the same programmers that agned up for the tasks, i.e., the person
who estimates the task will later implement it. This improves the precision of the
estimations. Estimated timis;ory for a storystory split into number of tasks
task j is twice the sum of all its task estimations:

Estory = 22 Etask‘,-
j

The sum is doubled to reserved the time for refactoring and debugging. This is
the estimation of a story for solo pragnming. In case of pair programming we
need to take the Nosek’s [28] principle into consideratiwvo programmers will
implement two tasks in pair 60 percent slower then two programmers implement-
ing the same task separately with solo programmiRigis means that a pair will
implement a single task 20% faster tharsingle programme hence the story
estimation for pair psggramming case will be:

5 5
Estory = ZZ(éEtaSk,j) = §ZEtaSk,j
j J

Similarly, to get the estimation for an iteration we have to sum the estimations of
all stories the iteration consists of. Project estimation will be the sum of all its
iteration estimations.

Figures 1 and 2 show estimation errors for stories and iterations in one of the
Gaudi projects. Estimating tasks turns out to be rather easy even for unexperi-
enced programmers. The accuracy of the estimations depends, of course, on the
experience of the developer. Experiemeéehe particular ppgramming language
turns out to be more important than experience in estimation.

XP-style project estimation is useful to plan the next one or two iterations
in the project, but they can seldom be used to estimate the calendar length or
resources needed in a project.

4.3 Engineering Practices

Engineering practices include the dayeay practices employed by the program-
mers in order to implement the user stories into the final working system.

15

90
80
70
60
50
40
30
20
10

-10
-20
-30

30

25

20

15

10

vl

-10

-15

-20

-25

Figure 1: Story estimation error (%)
28
2
/\

Figure 2: Iteration estimation error (%)

16

4.3.1 Choiceof Programming Language

We use the Python programming language in most of our projects except for the
four project of the summer 2003, where two projects used C++, one used Java and
one used Eiffel.

Our students learn the Java languagehiair regular programming courses.
However, Java is not always suitable for the purposes of our experiments. Nev-
ertheless, knowledge of a programmilagguage which is used in a particular
project is not required when developers are employed for the project.

Python has a reputation of being easy to learn, use and to have a clear and
elegant syntax. These aspects wdre teasons for choosing Python as a pro-
gramming language of our §it Gaudi project and they were confirmed in this and
later projects. The students who participated in Gaudi were usually familiar with
Java but only a few had some previous experience with Python. Nevertheless, all
students agreed that Python was extremely easy to learn and it was easy to start
programming Python from the very beginning of the projects.

In the FiPla project [5] we used Eiffe2p] as the programming language of the
project, because we wanted to try out Design by Contract (see Section 4.3.2) and
Eiffel has very good built-in support for thischnique. Eiffel is an object-oriented
language that also includes a comprehengpproach to software construction:

a method, and an environment (EiffelStop[20]. It is a simple, yet powerful
language that strictly follows the priipdes of object-orientation. The language
supports multiple inheritance, has no glbkriables and pointer arithmetics. Eif-
fel has a choice of graphical litias, including the portablEiffelVisionlibrary,
used in our project. Eiffel compilatioethnique uses C as an intermediate lan-
guage. The run-time efficiency of Edffs executables is similar to C.

Unfortunately, ISE Eiffel has no originainit testingframework. Unit testing
Is an essential part of the Extreme Pamming (see section 4.3.5) and Gaudi
Process, and could not be left outside ptoject, in particular as we had a lot of
positive experience with unit testing. Our choice was to usé3bleo Eiffel Test
tool [11]. Gobo Eiffel Test is distributefreely under the terms and conditions of
the Eiffel Forum License [34].

We got a lot of positive experience using Eiffel. First of all, the defect rate
(table 6) of the software built with Eiffel was much lower then in the software built
with Python. In the developers’ opinion ghow defect rate of Eiffel software was
due to the use of design by contract, static typing and, surprisingly, because of the
poor Eiffel’s documentation — this forced the team to do more spikes and testing.
Another aspect we appreciated in Eiffel was hight code readability. According to
the developers who were working in previous projects with Python, Eiffel code
was even more readable than Python code.

4.3.2 Design by Contract

Design by Contract [26] (DBC) is a systatic method for making software re-
liable (correct and robust). A system isiwgttured as a collection of cooperating

17

software elements. The cooperatiof the elements is restricted lopntracts,
explicit definitions of obligationand guarantees. The contracts e andpost-
conditionsof methods andlass invariants These conditions are written in the
programming language itself and can be checked at runtime, when the method is
called. If a method call does not satisfy the contract, an error is raised. Some
reports [14, 17] show that XP and desigy contract fit well together, and unit
tests and contracts compliment each other.

We tried to start using design by contract already in our first experiment [6].
However, this attempt failed due toetHack of design by contract support in
Python. Our first experiment with Eiffel and design by contract showed very
good results. First of all, the use of dgsiby contract was one of the reasons for
the low defect rate in the project [5]. As the development team commented out:
"All the tests written (to a complete code) always pass and the tests that don't
pass have a bug in the test itself¥ost of the bugs were caught with the help of
preconditions, when a routine with a bugsvealled during unit testing. Table 6
shows the post-release defect rate & software developed with design by con-
tract. Most of the unit tests were written before the actual code, but the contracts

Release 0.1] 0.2 0.3| 0.4 05| Total
Post-release defects 2 1 2 1 0 6
Post-release defects/KLOC1.18| 0.57| 0.96| 0.63| 0O | 0.70

Table 6: Defect rate

were specified after it because the programmers did not get any instructions from
their coach on when the contracts should be written.

4.3.3 Stepwise Feature Introduction

Stepwise Feature Introductiqi®Fl) is a software development methodology in-
troduced by Back [4] based on the incrawmtad extension of the object-oriented
software system one feature at a#imrhis methodology has much in common
with the originalstepwise refinementethod. The main difference to stepwise re-
finement is the bottom-up software constiion approach and object orientation.
Stepwise Feature Introduction is an expeental methodology and is currently
under development.

We are using this approach in our projects in order to get practical experience
with the method and suggestions for flethmprovements. Extreme Program-
ming does not say anything about the safterarchitecture of the system. Step-
wise Feature Introduction provides a simprchitecture that goes well with the
XP approach of constructing software imost iteration cycles. So far we have had
positive feedback from using SFI with a dynecally typed object-oriented lan-
guage like Python. An experiment with SFIchRiffel, a statically typed object-
oriented language showed us some aspects of the methodology which need im-
provement. The explanation of thefsedings require a more thorough explana-

18

tion of SFI than what is motivated in this paper, so we decided to discuss this in
a separate paper. Developers found SFI methods relatively easy to learn and use.
The main complain was the lack of tool support. When building a software sys-
tem using SFI, programmers need tkdaare of a number of routines which are
time consuming but which could be automated. The most positive feedback about
SFI concerned the layered structure: itriflas the system architecture and it also
helps in debugging, since it is relativedasy to determine the layer in which the

bug is introduced.

4.3.4 Pair Programming

Pair programming is a pgramming technique in wth two programmers work
together at one computer on the saragkt[35]. The programmer who types is
called a driver, the other programmeralled a navigator. While the driver works
tactically, the navigator works strategily: looking for misspells and errors and
thinking about the overall structure dfe code. All code in XP is written in pairs,
and the productivity follows the Nosek’sipciple [28]: two programmers will im-
plement two tasks in pair 60 percent slower then two programmers implementing
the same task separately with solo programming.

Pair programming has many significant benefits: better detailed design (in
XP the design is performed on the flyhater program code and better com-
munication between team members. Also, many common programming mis-
takes are caught as they are being typed, etc [12]. As it has been frequently re-
ported [12, 13, 22, 27, 36], pair programmgialso has a great educational aspect.
Programmers learn from each other while working in pairs. This is specially in-
teresting in our context since in the same project we can have students with very
different programming experience.

In our first experiments we were enfangi developers to always work in pairs,
later on when we had some experienced developers in the projects, we gave the
developers the right to choose when to work in pair and when to work solo. Table 7
shows the percentage of the solo-paark in the three projects of summer 2003
and two of summer 2004, the first number indicates the percentage of pair work.

FiPla| MED | U3D || SCS | CRL
Programming 79/21| 88/12| 84/16 | 62/38| 60/40
Refactoring | 77/23| 85/15| 76/24 || 49/51| 62/38
Debugging | 27/73| 84/16| 86/14 || 74/26| 51/49

Table 7: Solo vs. pair %

In the 2003 projects pair programming was not enforced, but recommended,
while in summer 2004 two months wereipprogramming and one month solo.
We leave it up to the programmer whethto work in pairs while debugging or
refactoring.

19

All of the developers agree that the code written in pairs is easier to read and
contains less bugs. They also commeritest refactoring is much easier to do
in pairs. However there are diffexeopinions and experiences on debugging.
In some projects developers said that it was almost impossible to debug in pair
because "everyone has his own theory about where the bug is” and "while you
want to scroll up, your pair want to scroll @, this disturbs concentration during
debugging”. In other projects programra@referred pair debugging because they
found it easier to catch bugs together.e\Wink that working in pairs should
be enforced for writing all productiveode, including tests, while it should be
up to the developers, whenever debug or refactor in pairs or solo. It would be
interesting to know which part of thevde is actually pair mgrammed and which
solo. A possible solution to distinguish between pair and solo code is to use
specific annotations in the code [18], a=ed in Energi [33] projects, where the
origin (pair or solo) of the code is described by comments.

4.3.5 Unit Testing

Unit testing is defined as testing of indilial hardware or software units or groups

of related units [29]. In XP, unit testing refers to tests written by the same devel-
oper as the production code. According to XP, all code must have unit tests and
the tests should be written before theumttcode. The tests must use a unit test
framework to be able to create automated unit test suites.

Learning to write tests was relativedasy for most developers. The most dif-
ficult practice to adopt was the "write tdatst” approach. Our experience shows
that if the coach spends time together with the programmers, writing tests himself
and writing the tests before the code, the programming team continues this testing
practice also without the coach. Some swon is, however, required, espe-
cially during the first weeks of work. The tutorial about unit testing focused at the
test driven development before the @dijis also essential. The implementation
of the testing practice also dependstba nature of the programming task. Our
experience showed that the "write test first” approach worked only in the situation
where the first programming tasks had no GUI involved because GUI code is hard
to test automatically.

In many projects the goal is to achieve 100% unit test coverage for non-GUI
components. A program that calculated t@sverage automatically provides an
invaluable help to achieve this goal to both programmers and coaches.

4.3.6 Continuous Refactoring and Collective Code Owner ship

The most popular definitions for refactoring is given by Fowler [15]: "Refactoring
is the process of changing a software sysie such a way that it does not alter the
external behavior of the code, yet impreviés internal structure”. XP promotes
refactoring throughout the entire projdéiée cycle to save time and increase qual-
ity [31] by removing redundancy, elimitiag unused functionality, rejuvenating

20

obsolete designs. This practice togathvith pair programming also promotes
collective code ownership, where no one person owns the code and may become a
bottleneck for changes . Instead, every team member is encouraged to contribute
to all parts of the project.
We introduce refactoring right after thedirshort iteration (see Section 4.2.1)
and promote it throughout the whole project. Refactoring is introduced early in a
project for educational reasons: developers get used to change each others’ code
and improve on the original design. Aftine second iteration refactoring becomes
a part of the daily routine. After the codmatisfies the unit tests it is refactored.
During the refactoring the programmaesisange the structure of the code merci-
lessly. We are less concerned about new bugs being introduced by refactoring or
functionality changes, siecthe automated test suits should discover these prob-
lems. In Python projects the programmilagaguage itself promotes refactoring:
Python programmers have the tenderxgtiange their working code, constantly
making it more precise and efficient. There should be enough time reserved for
the refactoring in each iteration. We discussed the time issues in the Section 4.2.1.
Pair programming, continuous refactagi collective code ownership, and the
layered architecture make the code proetiin the Gaudi factory simpler and eas-
ler to read, and hence more maintairabAs mentioned before, larger products
are developed in a series of three-morihgects and not necessarily by the same
developers. To ensure that a new team that takes over the project gets to under-
stand the code quickly, we usually compose the team with one or two developers
who have experience with the product from a previous project, the rest of the team
being new to the product. In this way new developers can take over the old code
and start contributing to the different parts of the product faster. When the team is
completely new, the coach will help the developers to take over the old code.

44 Asset Management

Any nontrivial software project will creatmany artifacts which will evolve during

the project. In XP those artifacts are added in the central repository and updated
as soon as possible. Each team member is not only allowed, but encouraged to
change any artifact in the repository.

4.4.1 Configuration Management and Continuous I ntegration

All code produced in the Gaudi Software Factory, as well as all tests (see Sec-
tion 4.3.5), are developed under a version control system. We started in 2001
using CVS but now most projects have migrated to Subversion, which is now the
standard version control system in@@ The source code repository is also an
important source of data for analyzingetbrogress of the project, since all revi-
sions are stored there together with a record of the responsible person and date
and time for check-in. The metrics issugsre discussed in the Section 3.3.
According to XP, developers should integrate code into the code repository

21

every few hours, whenever possible, and in any case changes should never be kept
for more than a day. In this way XP projects detect early compatibility problems,

or even avoid them altogether, and ensure that everyone works with the latest
version. Only one pair should integrate at a time.

Due to the small size (four to six programmers) of the development teams in
Gaudi, we do not use a special computerifdegration, neither do we make use of
integration tokens. When a pair needsrttegrate its codehe programmers from
this pair simply inform their colleagues and ask them to wait with their integration
until the first pair checks in the integrated code. The number of daily check-ins
varies, but there is at least one check-in every day. In many cases integration is
just a matter of few seconds.

It is important to be able to trace every check-in to concrete tasks and user
stories [3]. For this purp@sprogrammers add the identification of the relevant
task or story to the CVS or Subversion log. The identification is the unique ID
of the story or task in the task management system (SourceForge or JIRA). The
exception is when the programmers refaciodebug existing code, it is then very
hard (or impossible) to trace this activity to a concrete task or story. Therefore
check-ins after refactoring or debuggingdinked to the "General Refactoring
and Debugging” task (see Section 4.1.2).

4.4.2 Agile Documentation

When a story is implemented, the pair or single programmer who implemented it
should also write the user documentationthe story. The documentation is writ-

ten directly on the story or in a text file located in the project’s repository. This file
Is divided into sections, where each segtamrresponds to an implemented story.

If the stories are on a web-base tasknagement system, the documentation is
written directly in the stories — this spiifies the bidirectional traceability for
stories and their documentation. Latn the complete user documentation will

be compiled from the stories’ documetits. Documenting a user story is basi-
cally rephrasing it, and it takes an average of 30 minutes to do it. Table 8 shows
examples from one of the Gaudi projects. This approach allows us to embed the
user documentation into the developmemgess. Bidirectional traceability of the
stories and user documentation make=asy to update the corresponding docu-
mentation whenever the functionality changes.

5 Experiencesand Observationsfrom Gaudi

The previous practices have been used in 18 projects during a period of four years.
We have discussed each issue in detail in the previous section. However, we
would like to discuss some of the overall experiences obtained from the frame-
work project.

Agile Methods Work in Practice: As overall conclusions of our experiences

22

User Story Documentation

Story 15: Create The user can add parts to the diagram by pressing the
parts: User should button containing a UML class pixmap or via the shortcut
be able to creat¢ CTRL+P. The new part is assigned an automatic name,
new parts in the di; but can be renamed later in the property editor. The new
agram. part is added to the first free column to the right in the
diagram.

Story 16: Define ust The user can add usage relationships between parts by
age relationships | first pressing the "Add Usgge"- button or the shortcut
CTRL+U, and then dragging the mouse from the source
part to the target part. This will add a usage relationship
such that "source part uses target part". After this, the
editor will stay in "Add Usage"-mode until the button is
toggled off. Usage relatiohgps can also be added from
one part to the part itself. The user can see which parts
a certain part uses by selecting it. The parts it uses are
colored blue.

Table 8: Documenting user stories

Is that agile methods provide good results when used in small projects with unde-
fined and volatile requirements.

Agile methods have many known limitations such as difficulties to scale up
to large teams, reliance on oral communiga and a focus on functional require-
ments that dismisses the importance of reliability and safety aspects. However,
when projects are of relatively small siand are not safety critical, agile methods
will enable us to reliably obtain results in a short time.

The fact that agile methods worked for us does not mean that is not possible
to improve existing agile practices. Our first recommendation is that architectural
design should be an established practice. We have never observed a good archi-
tecture to "emerge"” from a project. The architecture has been either designed a
priory at the beginning of a project or a ppesori, when the design was so difficult
to understand that a complete rethinking was needed.

Also, we established project and protidocumentation as an important task.

XP reliance on oral communication shouldt be used in environments with high
developer turnaround. Artifacts descrigithe software architecture, design and
product manual are as important as the source code and should be created and
maintained during the whole life of the project.

Project Management and Flying Hats: Another observation is that in many
cases the actual roles and tasks per@nby the different people involved in
a project did not correspond to the roles and tasks assigned to them before the
project started. This was due to the fact that the motivation and interest in a
given project varied greatly from person to person. In some cases, the official
customer for a project lost interest in the project before it was completed, e.g. in

23

less than three months. In these casasefleger person took the role of a customer
just because that person was still interested in the product or because a strong
commitment to the project made this persomiake different roles simultaneously
even if that was not his or her duty.

Our conclusion is that stalard management tasks byroject staffing, project
supervision and ensuring a high motigan and commitment from the project staff
and different stakeholders are as relevant in agile process in an university setting
as in any other kind of project.

Tension between Product and Experiment: Finally, we want to note that
during these four years we have observed a certain tension between the develop-
ment of software and the experimentation with methods. We have had projects
that produced good products to customerséaction but were considered bad
experiments since it was not possible tilect all the desired data in a reliable
way. Also, there have been successiperiments that produced software that
has never been used by its customer.

To detect and avoid these situations a well-defined measurement framework
should be in place during the developmehase of a project but also after the
project has been completed to monitor how the products are being used by their
customers.

6 Conclusions

In this paper we have presented Gaumliy approach to empirical research in
software engineering based on the development of small software products in a
controlled environments. This approagguires a large amount of resources and
effort but provides an unique opportunity to monitor and study software develop-
ment in practice.

The Gaudi framework project started2001 and have completed 18 projects
during a period for 4 years representingeffort of 30 person years in total. This
work has been measured and the results of these measurements are being used to
create the so called Gaudi process. Once this process its completely defined it will
be tested again in empirical experimeritss possible to argue that this approach
will result in a software process that is optimized for building software only in
a university setting. Although this critiais is valid, it is also true that most of
the challenges found in our environmenth as scarce resources, undefined and
volatile requirements and dih programmer turn arourate also present in many
industrial projects.

The Gaudi process is based on agile moels, specially on Extreme Program-
ming. In this, paper we have discussed the adoption and performance of 12 dif-
ferent agile practices. As we discudse the introduction, agile methods have
been studied by other researchers also. However, we believe that our collected
data represents a significant sample of actual software development due to its size
and diversity, and lends support for many of the claims made by the advocates of

24

Extreme Programming.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Extreme Programming: A gentlentroduction website. Online at:
http://www.extremeprogramming.org/.

Pekka Abrahamsson. Extremeogramming: First Results from a Con-
trolled Study. InProceedings of the 29th EUROMICRO Conference "New
Waves in System ArchitecturdEEE, 2003.

Ulf Asklund, Lars Bendix, and Torlbrn Ekman. Software Configuration
Management Practices for @€tme Programming Teams. Rroceedings

of the 11th Nordic Workshop on Programming and Software Development
Tools and Techniques NWPER'20@digust 2004.

Ralph-Johan Back. Software Consttioa by Stepwise Feature Introduction.
In Proceedings of the ZB2001 - Second International Z and B Conference
Springer Verlag LNCS Series, 2002.

Ralph-Johan Back, Piia Hirkman, and Luka Milovanov. Evaluating the
XP Customer Model and Design by Contract. Rroceedings of the 30th
EUROMICRO ConferencéEEE Computer Society.

Ralph-Johan Back, Luka Milovanolan Porres, and Viorel Preoteasa. An
Experiment on Extreme ProgrammingdaStepwise Feature Introduction.
Technical Report 451, TUCS, 2002.

Ralph-Johan Back, Luka Milovanolan Porres, and Viorel Preoteasa. XP
as a Framework for Practical Sefire Engineering Experiments. Rro-
ceedings of the Third Internationalddference on eXtreme Programming
and Agile Processes in Software Engineering - XP200&y 2002.

Victor Basili, Gianluigi Caldiera, and Dieter Rombachhe Goal Question
Metric Approach. Encyclopedia of Software Engineeridgphn Wiley and
Sons, 1994.

Kent Beck. Embracing Change with Extreme Programmir€omputey
32(10):70-73, October 1999.

Kent Beck. Extreme Programming Explained: Embrace Changddison-
Wesley, 1999.

Eric Bezault. Gobo Eiffel Test. Online at
http://www.gobosoft.com/eiffel/gobo/getest/.

25

[12] Alistair Cockburn and Laurie Williams. The Costs and Benefits of Pair Pro-
gramming. InProceedings of eXtreme Programming and Flexible Processes
in Software Engineering XP200R2000.

[13] L. L. Constantine.Constantine on Peoplewar&nglewood Cliffs: Prentice
Hall, 1995.

[14] Yishai A. Feldman. Extreme Design by Contract.Aroceedings of the 4th
International Conference on Extreme Programming and Agile Processes in
Software EngineeringSpringer, 2003.

[15] Martin Fowler.Refactoring: Improving the Design of Existing Cod&bject
Technology Series. Addison-Wesley, 1999.

[16] Tracy Hall and Norman Fenton. Implementing effective software metrics
programs.|EEE Softw, 14(2):55-65, 1997.

[17] Hasko Heinecke and Christian Noackategrating Extreme Programming
and Contracts Addison-Wesley Professional, 2002.

[18] Hanna Hulkko. Pair programming and its impact on software quality. Mas-
ter’s thesis, Electrical and InformaticEngineering department, University
of Oulu, 2004.

[19] Sylvia llieva, Penko Ivanov, and Eliza Stefanova. Analyses of an Agile
Methodology Implementation. IRroceedings of the 30th EUROMICRO
ConferencelEEE Computer Society, 2004.

[20] Eiffel Software Inc. Eiffel in a Nutshel. Online at:
http://archive.eiffel.con@iffel/nutshell.html, 2003.

[21] Ron Jeffries, Ann Anderson, and Chet HendricksBrtreme Programming
Installed Addison-Wesley, 2001.

[22] David H. Johnson and James Cari€Extreme Programming and the Soft-
ware Design Course. IRroceedings of XP Univers2001.

[23] Mikko Korkala. Extreme Programing: Introducing a Requirements Man-
agement Process for an Offsite Customer. Department of Information Pro-
cessing Science research papergeseéA, University of Oulu, 2004.

[24] Mikko Korkala and Pekka Abralmasson. Extreme Progmming: Reassess-
ing the Requirements Management Process for an Offsite Custoni&n-in
ceedings of the European Software Process Improvement Conference EU-
ROSPI 2004Springer Verlag LNCS Series, 2004.

[25] Bertrand MeyerEiffel: The LanguagePrentice Hall, second edition edition,
1992.

26

[26] Bertrand Meyer. Object-Oriented Software ConstructiorPrentice Hall,
second edition edition, 1997.

[27] Mathias M. Muller and Walter F.ichy. Case study: Extreme programming
in a university environment. IRroceedings of the 23rd Conference on Soft-
ware EngineeringlEEE Computer Society, 2001.

[28] J.T. Nosek. The Case foralaborative ProgrammingCommunications of
the ACM 41(3):105-108, 1998.

[29] Institute of Electricabind Electronics Engineer$EEE Standard Computer
Dictionary: A Compilation of IEEE Standard Computer Glossariégew
York, 1990.

[30] Stephen R. Palmer and John M. Felsing. Practicel Guide to Feature-
Driven DevelopmentThe Coad Series. Prentice Hall PTR, 2002.

[31] D. B. RobertsPractical Analysis of Refactoring®hD thesis, University of
lllinois at Urbana-Champaign, 1999.

[32] Bernhard Rumpe and Astrid Schroder. Quantitative survey on extreme pro-

gramming projects. lithird International Conference on Extreme Program-

ming and Flexible Processes in Software Engineering, XP2002, May 26-30

pages 95-100, Alghero, Italy, 2002.

[33] Outi Salo and Pekka Abrahamsson. Evaluation of Agile Software Develop-

ment: The Controlled Case Study approach.Piceedings of the 5th In-

ternational Conference on Product Focused Software Process Improvement

PROFES 2004Springer Verlag LNCS Series, 2004.

[34] Open Source Initiative. Eiffel Forum Licence. Version 2. Online at:
http://opensource.orgdenses/ver2_eiffel.php.

[35] Laurie Williams and Robert Kessler. Pair Programming llluminated
Addison-Wesley Longman Publishing Co., Inc., 2002.

[36] Laurie A. Williams and Robert R. Kesler. Experimenting with Industry’s
Pair-Programming Model in th€omputer Science Classroordournal on
Software Engineering EducatipPecember 2000.

27

TURKU

CENTRE for

COMPUTER

SCIENCE

Lemminkaisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
® Department of Information Technology
® Department of Mathematical Sciences

Abo Akademi University
® Department of Computer Science
e |Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
e |Institute of Information Systems Sciences

ISBN 952-12-1463-5
ISSN 1239-1891

