
Ralph-Johan Back | Luka Milovanov | Ivan Porres

Software Development and Experimenta-
tion in an Academic Environment: The
Gaudi Experience

TUCS Technical Report
No 641, November 2004

Software Development and Experimenta-
tion in an Academic Environment: The
Gaudi Experience

Ralph-Johan Back
Åbo Akademi University, Department of Computer Science,
Lemminkäisenkatu 14, FIN-20520 Turku, Finland
backrj@abo.fi

Luka Milovanov
lmilovan@abo.fi

Ivan Porres
iporres@abo.fi

TUCS Technical Report

No 641, November 2004

Abstract

In this article, we describe an approach to empirical software engineering based
on a combined software factory and software laboratory. The software factory
develops software required by an external customer while the software laboratory
monitors and improves the processes and methods used in the factory. We have
used this approach during a period of four years to define and evaluate the Gaudi
software process. This process combines practices from Extreme Programming
with architectural design and documentation practices in order to find a balance
between agility, maintainability and reliability.

Keywords: Agile Methods, Software Engineering Experiments, Gaudi Factory

TUCS Laboratory
Software Construction Laboratory

1 Introduction

One of the main problems that hinders the research and improvement of various
software construction techniques is the difficulty to perform significant controlled
experiments. Many processes and methods in software development have been
conceived in the context of large industrial projects. However, in most cases, it is
almost impossible to perform controlled experiments in an industrial setting. A
company can rarely afford to develop the same product twice by the same team
but using different methods, and then compare the resulting products and the per-
formance of the team.

On the other hand, universities employ highly qualified research personnel
that can dedicate a considerable amount oftheir time to study better ways to build
software. Also, university researchers do not have the pressure of releasing new
software products to the market or even being economically profitable to their
employer. In this sense, a university setting can be an ideal place to perform
practical experiments and test new ideas in software engineering.

However, university researchers also meet with difficulties when experiment-
ing with new software development ideas in practice. Performing an experiment in
collaboration with the industry using newly untested software development meth-
ods can be risky for the industrial partner but also for the researcher, since the
project can fail due to some factors thatcannot be controlled by the researcher.
The obvious alternative is to run a software development project inside a research
center in a more controlled environment. Still, this approach has at least three
important shortcomings.

First, it is possible that a synthetic development project arranged by a re-
searcher does not reflect the conditions and constraints found in an actual software
development project. This happens specially if there is no actual need for the soft-
ware to be developed. Also, university experiments are quite often performed by
students. Students are not necessarily lesscapable than employed software devel-
opers, but they must be trained and their programming experience and motivation
in a project may vary. Finally, although there is no market pressure, a researcher
often has very limited resources and therefore it is not always possible to plan
large experiments.

These shortcomings disappear if the software built in an experiment is an ac-
tual software product that is needed by one or more customers that will define the
product requirements and will carry the cost of the development of the product.
In our case, we found such customer in ourown environment: other researchers
that need software to be built to demonstrate and validate their research work.
This scientific software does not necessarily need to be related to our research in
software processes.

In this paper we describe our experiences of this approach: how we created our
own laboratory for experimental software engineering, and how we study software
development in practice while building software for other research projects. Our
experience is based on experiments conducted during the last four years. The

1

objective of these experiments is to find and document software best practices in
a software process that focus on product quality and project agility.

As a framework process for these experiments we chose Extreme Program-
ming [10] (XP). Extreme Programming isan agile software methodology that was
introduced by Beck in 2000. It is characterized by a short iteration cycle, combin-
ing the design and implementation phases, continuous refactoring supported by
extensive unit testing, onsite customer, promoting team communication and pair
programming. XP is quite popular these days, but still it has been criticized for
lack of concrete evidences of success [2].

1.1 Related Work

There have been several efforts to studyand validate how agile methods are used
in the industry, such as the survey performed i.e. in [19, 32] An industrial survey
can help us to determine the performanceof a completely defined process such as
XP, but it cannot be used to study the effects of different development practices
quantitatively, since the researchers cannot monitor the project in full details. In-
stead, the survey has to be based on the qualitative and subjective assessments
of project managers of the success of the different development practices used in
their projects.

Pekka Abrahamsson follows a research approach that is similar to ours, com-
bining software research with software development inEnergi [33]. The main
focus of his research is to evaluate agilemethods proposed by other researchers in
the field. In contrast, our intention is to perform empirical experiments not only
to evaluate existing practices but also to propose new practices that we think will
improve the overall software process.

This paper is structured as follows: in Section 2 we describe the Gaudi Soft-
ware Factory as a university unit for building software in the form of controlled
experiments. Section 3 present the typical settings of such experiments and por-
trays their technical aspects. Section 4 discusses the practices of the software
process, while Section 5 summarizes ourobservations from agile experience in
Gaudi. Our conclusions are presented in Section 6.

2 Gaudi and its Working Principles

Gaudiis a research project that aims at developing and testing new software devel-
opment methods in a realistic setting. We are interested in the time, cost, quality,
and quantitative aspects of developing software, and study these issues in a series
of controlled experiments. We focus on lightweight or agile software processes.
Gaudi is divided into a software factory and a software laboratory.

2

2.1 Software Factory

The goal of theGaudi software factoryis to produce software for the needs of
various research projects in our university. Software is built in the factory accord-
ing to the requirements given by the projectstakeholders. These stakeholders also
provided the required resources to carry out the project.

A characteristic of the factory is that the developers are students. However,
programming in Gaudi is not a part of theirstudies, and the students get no credits
for participating in Gaudi – they are employed and paid a normal salary according
to the university regulations.

We emphasize for the Gaudi software developers that the purpose of their work
is to produce working software using thespecified software process, methods and
tools. Our intention is to keep the programmers busy on building the software, not
on the experiments. This seems to work out well: in most cases the developers
reported that they did not feel they were involved in an experimental project, or
then they said that the experimental nature of the project did not disturb them.

Gaudi factory was started as a pilot experiment in the summer of 2001 with
a group of six programmers working on a single product (an outlining editor).
The following summer we introduced two other products and six more program-
mers. The work continued with half-time employments during the following fall
and spring. In the fourth cycle, in the summer of 2003, there were five paral-
lel experiments with five different products, each with a different focus but with
approximately the same settings. Altogether, we have carried out 18 software con-
struction experiments in Gaudi to this day. The application areas of the software
built in Gaudi are quite varied: an editor for mathematical derivations, software
construction and modeling tools, 3D model animation, a personal financial plan-
ner, financial benchmarking of organizations, a mobile ad-hoc network router,
digital TV middleware, and so on.

2.2 Software Laboratory

The goal of theGaudi software laboratoryis to investigate, evaluate and improve
the software development process used in the factory. The factory is in charge of
the software product, while the laboratory is in charge of the software process.
The laboratory supplies the factory with tasks, resources and new methods, while
the factory provides the laboratory withthe feedback in the form of software and
experience results. The laboratory staffis composed of researchers and doctoral
students working in the area of software engineering.

High developer turnaround is a consequence of the environments where the
software projects are carried out. Programmer turnaround is a risk that needs to
be minimized in any software development company and the impacts of this have
to be mitigated. In a university environment, this is part of normal life. We employ
students as programmers during their studies. Eventually they will graduate and
leave the programming team. A few students may continue as Ph.D. students or as

3

part of a more permanent programming staff, but this is more the exception than
the norm.

Although application area, the technologyused and project stakeholders var-
ied from project to project, there were common challenges in all these projects
that comes from the characteristics of anacademic research environment: product
requirements were quite often underspecified and highly volatile and the devel-
oper turnaround was big. Also, software isoften built in the context of a research
project to validate and demonstrate promising but immature research ideas. Once
it is functional, the software creates a feedback loop for the researchers. If the
researchers make good use of this feedback, they will improve and refine their
research work and therefore, they will need to update the software to include their
improved ideas. In this context, the better a piece of research software fulfills its
goal, more changes will be required in it.

Our approach to these challenges was to base our software process on agile
methods, in particular on Extreme Programming, and to split a large development
project into a number of successive smaller projects. A smaller projects will typi-
cally represent a total effort of one to two person years. This is also the usual size
of project that a single researcher can find financing for in a university setting per
year. A project size of 1 person year is also a good base for a controlled experi-
ment. It is large enough to yield significant results while it can be carried out in
the relatively short period of three calendar months using a group of four students.

3 Experiments in the Gaudi factory

The Gaudi laboratory uses the Gaudi factory as a sandbox for software process
improvement and development. Softwareprojects in the factory are run as a se-
ries of monitored and controlled experiments. The settings of those experiments
are defined a priori by the laboratory.These settings were applied as an subject
for experiments and produced positive results. Therefore they were taken into
the standards and became the basic standard settings for all of our projects. Nev-
ertheless, we always consider possibilities to improve and extend our standard
framework with new settings in future experimental projects.

In this section we describe the project settings and arrangements for Gaudi.
We also present the different roles and duties involved in an experimental project,
as a background for the different process practices discussed later in Section 4.

3.1 Schedule and Resources

A Gaudi experiment has a tight schedule,usually three months. Most of the ex-
periments are performed during summer, when students can work full-time (40
hours a week). In practice this means that the developers come to work first of
June and the final release of the software product is the last day of August. Dur-
ing the terms students work half time (25-30 hours a week). We tend to focus

4

on software maintenance issues during theterms, leaving the development of new
software products to the summer period.Larger products are build in a sequence
of short projects, e.g., June-August, October-December, February - April, and so
on. The interludes are used to evaluate the software that was produced in the
last experiment and plan for the next software experiment. All the participants in
an experiment are employed by the university, including the students working as
developers, using standard employment contracts.

In all Gaudi projects all members of the same development team sit in the same
room, arranged according to the advice given by Beck in [10]. The programmers
sit by a big table in the middle of the room. Four computers are placed so that
the work stations formed a clover-like square. Since the team normally consist of
only two pairs, there is no special machine for integration. There are no separators
which could impede communication. There is a bookshelf, a white-board and a
noticeboard in the room. Outside this room is a recreation area with a coffee
maker etc. that is shared withother groups of programmers.

3.2 Training

Since only a few of the developers are familiar with the tools and techniques we
use in our experiments, we have to provide proper training for them. However, the
projects are short so we can not spend much time on the training. We choose to
give the developers short (1-4 hour) tutorials on the essentials of the technologies
that they are going to use. The purpose of these tutorials is not to teach a full
programming language or a method, but to give a general overview of the topic
and provide references to the necessary literature. We consider these tutorials
as an introduction to standardsoftware best practices,which are then employed
throughout the Gaudi factory. Besides general tutorials that all developers take,
we also provide tutorials on specific topics that may be needed in only one project,
and which are taken only by the developers concerned.

Table 1 shows the complete set of tutorials for one of our projects (FiPla [5]).
For the Gaudi customers we also give one tutorial which is called ”XP for Gaudi
Customers”. Developers also get some selected literature to study (manuals, tech-

Tutorial Numbers Total hours
Eiffel and DBC 2 4
CVS 1 2
Extreme Programming 1 2
SFI 1 2
Unit testing 1 2
All tutorials together 6 12

Table 1: Tutorials

nical documentation, books) after the tutorials. During the project, they have the
possibility to ask the project coach for help with the practical application of the

5

techniques and tools used in the project.Those developers who did not participate
in our previous projects find these tutorials very helpful and their the number and
length is sufficient.

In our first experiment [6] the tutorials were given to the developers after the
official start of the project. In subsequentexperiments we have given the tutorials
before the project started officially, those were given two weeks before the projects
started, after agreeing with the developers of the time schedule to avoid collisions
with their normal lectures and examinations.

The first week at the beginning of the project is also reserved for training.
During this time, the programmers do not get the actual development tasks, but
they spend time getting acquainted with the tools to be used during the project,
writing their own small programs or completing simple assignments given by their
coach. During this phase the developers also need supervision and help from the
people in charge of training and tutorials.

3.3 Experiment Supervision, Metrics Collection and Evalua-
tion

We have established an experimental supervision and metric collection framework
in order to measure the impact of different development practices in a project.

The complete description of our measurement framework is an issue for a
separate paper, but in this section we outline its main principles. Our choice is the
Goal Question Metric (GQM) approach [8]. GQM is based upon the assumption
that for an organization to measure in a meaningful way it must first specify the
goals for itself and its projects, then it must trace those goals to the data that are
intended to define those goals operationally, and finally provide a framework for
interpreting the data with respect to the stated goals [8]. The current goals for the
Gaudi factory as we see them are:

1. Focus on writing code and tests.

2. Improve productivity.

3. Improve time estimations.

4. Improve software quality.

5. Improve customer’s interaction andprocess transparency for customer.

6. Improve developers’ competence.

7. Show the impact of the experimentaltechniques on the Gaudi baseline av-
erage measures.

Besides stating the goals and defining the metrics to reach the goals and data
collection mechanisms, we will also describe the feedback mechanisms. These

6

0.1 0.2 0.3 0.4 0.5 Total
LOC 1694 3441 5517 7100 8572
Test LOC 571 983 2174 2347 2548
Total LOC 2265 4424 7691 9447 11120
Classes 11 23 37 52 59
Test classes 9 10 20 23 25
Methods 71 122 171 256 331
Test methods 50 68 157 167 177
LOC/Class 154 150 149 137 145
LOC/test class 63 98 109 102 102
Methods/class 7 5 5 5 6
Test methods/class 6 7 8 7 7
Post-release defects 2 1 2 1 0 6
Post-release defects/KLOC1.18 0.57 0.96 0.63 0 0.70
Total work effort (h) 210 112 216 320 256 1114
Productivity (LOC/h) 8 16 10 5 6 8
Test productivity 3 4 6 1 1 2
Total productivity 11 20 16 6 7 10

Table 2: Collected data for all iterations

feedback mechanisms are basically describing what one should do with the data
(i.e. table 2). We have chosen an incremental approach for defining our metrics
framework. The idea is to take the very basic and simple metrics, define them
and their collection mechanisms and use it as a standard guideline in Gaudi. This
framework is extended with more metrics as needed. It is important to identify
the person in charge of collecting the defined metrics. One of the requirements
for the success of a metric program is commitment. Responsibility for the metrics
program should be assigned to specific individuals [16], furthermore the commit-
ment of this person should also be established. The best person for this work
is the coach. Some measurements such as unit test coverage and personal time
tracking should be assigned to developers. But a Gaudi developer should not be
responsible for the measurements because this data has to deal with the process
improvement and experimenting, while we want to keep our developers focused
on the software they build and not on the experiment they are part of.

Another type of data we collect in Gaudi is qualitative. During the project
developers are asked to keep a shared logof their personal feelings, experience
and anything else which in their opinionconcerns the project. The log is a plain
text file divided into sections. The programmers add new sections to the log as
they find necessary. The records in such logs vary from complains:”It is too hot
in the room and no ventilation.”to practical advices:”Warning, do this and you
will not loose your code. . . ”and personal experience: ”Some of our assignments
are really boring, while others are more interesting”. Finally, at the last day of
work, each programmer gets a list with many questions concerning the projects.

7

Customers are also asked to keep a free-form diary where they should write down
all activities they performed in their project and time spent for it.

3.4 Roles in Experimental Projects

Traditionally, the division of labor in software development has been performed
based on the different phases of a water fall or sequential process: developers are
specialized into analysts, architects, designers and testers. In many agile methods,
personnel is split into only two main groups: technical developers and customers.
In Gaudi, we have found the need to also identify other categories that are impor-
tant for carrying out the overall software development process.

Coach and Tracker: XP gives the following definition in [10] for the role
of the coach: ”A role of the team for someone who watches the process as a
whole and calls the team’s attention to impending problems or opportunities for
improvement”. In XP the traditional project management is divided into two
roles: the coach and the tracker. Coaching is concerned with technical execu-
tion of the process, while tracking is about measurements and their validation
against project’s estimates. Main responsibilities of the coach are to be avail-
able as a development partner for new programmers, encourage refactoring, help
programmers with technical skills, getting everybody else making good decisions
and explain the process to the upper-level management. The job of the tracker is
to collect the defined metrics, ensure that the team is aware of the measures and
remind the earlier made predictions.

In the Gaudi factory both roles of the coach and the tracker (measurements
are discussed in the section 3.3) are played by the same person, a PhD student.
The coach is mostly needed by the team during the first weeks of a project. It is
often necessary for the coach to spend a few hours with the developers weekly,
performing the tasks of the developers, especially when a completely new team
takes over an old project or in case of very unexperienced developers. But af-
ter the first small release the programming team becomes more autonomous and
needs their coach less and less. At this point the coach becomes less concerned
with various types of technical solutions and his or her main concern becomes the
overall process monitoring and execution, and the customer’s involvement.

Customer: The role of the customer in XP is to write and prioritize user
stories (see Section 4.1.2), explain them for the development team and to define
and run acceptance tests to verify the correct functionality of stories. One of the
most distinctive features of the XP customer is that he or she should work onsite,
as a member of the team, in the same room with the team and be 100% available
for the team’s questions.

It is very hard, if not even impossible,to obtain commitment from a person to
play the role of the onsite customer during the vocation time in university. There-
fore there are roles of offsite customers and customer representatives in Gaudi.

Developer: A team of a Gaudi project usually consists of 6-7 people. A
professor or senior researcher acts as a top manager, a PhD student plays the role

8

of coach, a researcher (a professor, postdoctoral student or a PhD student) plays
the role of a customer, and four undergraduate students perform the programmers’
tasks. The role of a project manager is played by the coach, or by an experienced
developer. The undergraduate students arethird or fourth year students majoring
in Computer Science or nearby areas. On an average about 45% of the students in
a project had participated earlier in Gaudiprojects. As of today, nearly 40 students
have worked in Gaudi as developers.

3.5 The Gaudi Process

As we have discussed in the introduction, ourintention is to develop a lightweight
software process which is flexible andis easy to learn and use. This process should
lead to reliable software which is also easy to maintain, and it should be applicable
in academic and possibly, industrial settings.

Extreme Programming is the basic framework process for Gaudi [7]. We
started with a basic set of XP practices: pair programming, unit testing, refac-
toring, short iteration cycles, and light documentation, to name a few. This XP
tool-set has been extended with StepwiseFeature Introduction (SFI), an experi-
mental programming methodology.

One of the features that we appreciate most in XP, and which was the main
reason for choosing it for our first experiment, is its simplicity. First of all, XP
is easy to learn. That is an important issue for us since there is only a short
time to train new students before a project starts. Another reason for choosing
XP approach was its short interaction cycle that facilitates the creation of running
software in a short period of time.

4 Software Practices in Gaudi

In this section we describe the 12 main practices in our process and our observa-
tions after applying them in several projects. We started our first pilot project [6]
with just a few basic XP practices, evaluating them and gradually including more
and more XP practices into the Gaudi process. After trying out a new practice in
Gaudi we evaluate it and then, depending onthe results of the evaluation, it either
becomes a standard part of the Gaudi process, is abandoned, or is left for later re-
implementation and re-evaluation. In this section we discuss our experience with
the agile practices which have been tried out in our projects. Some of the practices
are adopted into our process and became a standard part of it, while some are still
under evaluation. Table 3 lists all of these practices.

Table 4 shows percentage of activities performed by developers out of total
project effort. The first four rows show data for the projects of Summer 2003,
the remaining two for Summer 2004. All activities were performed in the listed
projects, but the amount of time for some projects and activities was insignificant,
therefore some values in the table are zeros.

9

Adopted Under Evaluation Abandoned
No overtime, pair
programming, code
standards, unit testing,
refactoring, collective
code ownership, con-
tinuous integration,
automated tests and
daily builds, coach as
project manager, user
stories, short iteration,
iteration planning, spike
solutions, lightweight
documentation

100% unit test coverage,
tests written before the
code, onsite customer,
customer proxy, time es-
timations, release plan-
ning, project velocity
measured

Daily stand up meet-
ings, System metaphor,
CRC cards or simi-
lar, score of acceptance
tests published

Table 3: Process Practices in Gaudi Software Factory

Activity Deve FiPla MED U3D SCS CRL
Programming 19 39 48 39 34 56
Refactoring 0 9 7 13 4 6
Debugging 7 14 15 19 19 14
Integration 0 0 1 1 1 0
Design 1 6 4 8 3 7
Meetings 5 1 1 1 4 2
Research 33 6 3 4 11 3
Planning game 0 2 3 0 1 0
With Customer 0 2 0 0 7 0
Miscellaneous 31 21 18 15 9 9

Table 4: Developers’ activities %

We now proceed as following: first we give a general overview of a practice,
then we present our experience and results achieved with this practice. Finally
we discuss possible ways to improve these practices in Gaudi environment. For
the reader’s convenience we split the practices into four categories: requirement
management, planning, engineering and asset management.

4.1 Requirement Management Practices

Requirement management in XP is performed by the person carrying out the cus-
tomer role. The requirements are presented in the form of user stories.

10

4.1.1 Customer Model

The role of the customer in XP is to write and prioritize user stories (see Sec-
tion 4.1.2), explain them for the development team and define and run acceptance
tests to verify the correct functionality of the implemented stories. One of the
most distinctive features of XP is that the customer should work onsite, as a mem-
ber of the team, in the same room with the team and be 100% available for the
team’s questions.

As could have been guessed directly, it is hard to implement the onsite cus-
tomer model in practice [23, 24]. Our experience confirms this. Among the 18
Gaudi projects, there was a real onsite customer only in one project – FiPla [5].
Before this the customers involvement was minimal and it was in the Feature
Driven Development [30] style: the offsite customer wrote requirements for the
application, then the coach transformed these requirements into product require-
ments. Then the coach compiled the list of features based on the product require-
ments, and the features were given to the developers as programming tasks.

Studying the advantages of an onsite customer was one of the main objectives
of the FiPla project. In this project the customer was available for questions or
discussions whenever the development team felt this was necessary. However,
the customer did not work in the same room with the development team. This
was originally recommended by XP practices [9], but it was considered to be
unnecessary because the customer’s office situated in the same building with the
development team’s premises – this was considered to be ”sharing enough”.

Table 5 shows how the customer’s time was spent on project issues. Appar-
ently, being an onsite customer does not increase the customer’s work load very
much. One might even wonder whether an onsite presence is really necessary
based on these figures. However, the feedback from the development team shows
that an onsite customer is very helpful even though the customer’s input was rather
seldom needed. The developers’ suggestion about involving the customer more in
the team’s work could also be implemented by seating the customer in the same
room with the programmers. The feeling was that there could have been more
spontaneous questions and comments between the developers and the customer if
she had been in the same room.

Available Writing stories With team Testing Idle
FiPla 100 2.5 3 2.5 92
SCS 71 5 9 20 37

Table 5: Customer involvement (%)

The second row in the table 5, SCS, shows the data for the project of summer
2004 where we did not have an onsite customer, but used a customer representative
or so-calledcustomer proxy. The difference between these two customer models
were that in the SCS project the customer representative did not commit himself to
be always available to the team and in order to make decisions he had to consult

11

the actual customer who was basically offsite. In both cases all customer-team
communications were face-to-face,no e-mails, no phone discussions.

It is essential to have an active customer or customer’s representative in an
experimental project when the customer model itself is not a subject for the ex-
periment. This allows us to keep the developers focused on the product, not the
experiment and not be disturbed by the experimental nature of project. An active
customer is also a great boost for the team morale, as the programmers noticed:
”It wouldbe more motivating to develop a software that somebody is actually go-
ing to use. The customer could have beenmore active, and at least pretend to be
interested in the product”.

4.1.2 User Stories

Customer requirements in XP projects arepresented in the form of user stories.
User stories are written by the customer and they describe the required function-
ality from a user’s point of view, in about three sentences of text in the customers
terminology without techno-syntax [1,21]. Beck [10] provides additional recom-
mendation for stories: they should also include such information as the title, date,
status and a short description of what theuser should be able to do after the story
was finished. The time needed to implement the stories should be estimable and
they must make sense to the programmers.

In the Gaudi factory we do not require customers to have complete customer
or product specification for the software to be build. We do expect our customer
to write stories, either themselves or via their representatives. The most compre-
hensive written instructions are formulated as customer stories which followed the
guidelines given by the XP practice. The division of the product’s features into the
stories is made by the customer based on an intuitive idea about what meaningful
chunks the system could be divided into. A typical summer project normally has
15-25 user stories. The stories can also be the result of joint work between the
customer and the coach. While most of the stories are written before the project
or in the beginning of it, customers still bring new stories throughout the project’s
time and delete or change existing stories.

We have used both paper stories and stories written into a web-based task
management system. An advantage of paper stories is their simplicity. On the
other hand, the task management system allows its users to modify the contents of
stories, add comments, track the effort, attach files (i.e. tests or design documents)
etc. It is also more suitable when we have a remote or offsite customer. Currently
we are only using the task management system and do not have any paper stories
at all.

In many projects, product or component requirements are represented in the
form of tasks written by programmers. Tasks contain a lot of technical details, and
often also describe what classes and methods are required to implement a concrete
story. A story normally produces 3-4 tasks. When a story is split into tasks, the
tasks are linked asdependenciesof the story, and the story becomesdependenton

12

tasks. When we used paper stories, we just attached the tasks to their stories. This
is done in order to ensure the bidirectional traceability of requirements. Moreover,
it is possible to trace each story or task to the source code implementing it. This
is discussed in the Section 4.4.1. It is essential that each story makes sense for the
developers (see Section 4.2.1) and it is estimable (we talk about the estimations in
the Section 4.2.2)

4.2 Planning Practices

The most fundamental issues in XP projectplanning are to decide what function-
ality should be implemented and when it should be implemented. In order to deal
with these issues we need the planning game and a good mechanism for time
estimations.

4.2.1 Planning Game and Small Iterations

Theplanning gameis the XP planning process [10]: business gets to specify what
the system needs to do, while development specifies how much each feature costs
and what budget is available per day, week or month. XP talks about two types of
planning: by scope and by time. Planning by time is to choose the stories to be
implemented, rather than taking all of them and negotiating about a release date
and resources to be used (planning by scope).

The time and people resources are fixed in a Gaudi project: the schedule is usu-
ally three months and there are only fourprogrammers available. Therefore we do
release planning by time. Because the developers (and often also the customer)
lack experience, the coach usually selects the stories for the first short iteration.
The selection is based on two factors: selected stories should be implemented
in two weeks maximum and those stories should have the highest priority. The
process also teaches the customer how tocreate good stories – after estimating
the stories the coach often asks the customer to rewrite them in order to produce
smaller and better estimable stories. The coach also asks the customer to write
tests or testing scenarios based on the stories. After the coach and the customer
decide on the functionality for the first two weeks, the team and the coach will
together split the stories into technical tasks and then the developers will imple-
ment the tasks. No time estimations are done at this point. By the time the first
iteration functionality is implemented, the team is better acquainted with the pro-
gramming language and theproduct, so they are in a better position to provide
time estimations.

The team estimates all the stories for the project and writes their estimations
directly for the stories (we will discuss the estimation process in more details in
the Section 4.2.2). These estimations are not very precise, the error is 20% on
average, but can be smaller. E.g., in theFiPla [5] project the estimation error
for the whole effort was 10% (approximately 30 hours). The estimations create
an overall project plan and immediately tell us whenever some stories should be

13

postponed to the next project or whether there is time to add more stories.
The task managements and bug tracking system allows us to submit tasks and

bugs, and to keep track of them. Currently, we use the JIRAtask management to
keep track of task estimations. This kind of systems are easy to use and provide
an overall view of which tasks and bugs are currently under correction, which are
fixed and which are open. This is especially important when the customer cannot
act as an onsite customer (see Section 4.1.1).

Each new iteration starts with the customer selecting the stories from the
project plan that should be implementedin the next release. The development
team and the customer meet in the beginning of each iteration to discuss the fea-
tures to be implemented. Since the customer stories usually do not provide very
detailed guidelines for the desired features, the development team and the cus-
tomer need to discuss in order to clarify open issues and provide more precise
requirements. These meetings usually take about an hour. During these meetings,
some of the time is used to make sure the team understands the application logic
correctly, the rest of the discussions often concern aspects of the user interface.
There are typically five iterationsin a usual summer Gaudi project.

The team estimates whether there is a need for reconsidering the time cost of
the iteration in the presence of the customer, after which the developers proceeded
to break down the iteration into tasks among themselves in order to make more
precise estimations. The outcome of the iteration planning is that the set of stories
is split into tasks and the release is calendarized. The customer and the team need
to find the balance between the functionality to be implemented and the effort re-
quired for this. The length of an iteration is usually around two weeks, maximum
is three weeks for projects with well defined requirements, and minimum is one to
one and half week for projects with high requirements uncertainties. Nowadays,
all planning activities in Gaudi factory are done with JIRA task management and
bug tracking system (section 4.4.1). The tool is convenient to use and it supports
most of the required release and iteration planning activities.

After all the stories for the iteration have been implemented, the customer
gets access to the release and planning for the next iteration . After it is finished
the customer starts doing acceptance testing and the found defects are reported
in the form of stories, after which they are treated as regular stories: prioritized,
estimated, assigned to a small release and fixed. The overall project effort can be
re-estimated based on the findings of an iteration.

In our experience, the planning game, thesmall releases and time estimations
are very hard to implement without well-defined customer stories and technical
tasks, and hence, without an active customer or customer representative.

4.2.2 Time Estimations

The essence of the XP release planning meeting is for the development team to
estimate each user story in terms of ideal programming weeks [10]. An ideal week
is how long a programmer imagines it would take to implement a story if he or

14

she had absolutely nothing else to do. Nodependencies, no extra work, but the
time does include tests.

We have two estimation phases in theGaudi process. The first phase is when
the team estimated all of the stories in ideal programming days and weeks. These
estimations are not very precise and they are improved in the second estimation
phase when the team splits stories into tasks. When programmers split stories into
technical tasks they make use of their previous programming experience and try to
think of the stories in terms of the programs they have already written. This makes
sense for the programmers and makes the estimating process easier for them.

The estimated time for a taskEtask is the number of hours it will take one
programmer to write the code and the unit tests for it. These estimations are
done by the same programmers that are signed up for the tasks, i.e., the person
who estimates the task will later implement it. This improves the precision of the
estimations. Estimated timeEstoryi for a storystoryi split into number of tasks
taski, j is twice the sum of all its task estimations:

Estoryi = 2∑
j

Etaski, j

The sum is doubled to reserved the time for refactoring and debugging. This is
the estimation of a story for solo programming. In case of pair programming we
need to take the Nosek’s [28] principle into consideration:two programmers will
implement two tasks in pair 60 percent slower then two programmers implement-
ing the same task separately with solo programming.This means that a pair will
implement a single task 20% faster thena single programmer, hence the story
estimation for pair programming case will be:

Estoryi = 2∑
j
(
5
6

Etaski, j) =
5
3∑

j
Etaski, j

Similarly, to get the estimation for an iteration we have to sum the estimations of
all stories the iteration consists of. Project estimation will be the sum of all its
iteration estimations.

Figures 1 and 2 show estimation errors for stories and iterations in one of the
Gaudi projects. Estimating tasks turns out to be rather easy even for unexperi-
enced programmers. The accuracy of the estimations depends, of course, on the
experience of the developer. Experiencein the particular programming language
turns out to be more important than experience in estimation.

XP-style project estimation is useful to plan the next one or two iterations
in the project, but they can seldom be used to estimate the calendar length or
resources needed in a project.

4.3 Engineering Practices

Engineering practices include the day-to-day practices employed by the program-
mers in order to implement the user stories into the final working system.

15

Figure 1: Story estimation error (%)

Figure 2: Iteration estimation error (%)

16

4.3.1 Choice of Programming Language

We use the Python programming language in most of our projects except for the
four project of the summer 2003, where two projects used C++, one used Java and
one used Eiffel.

Our students learn the Java language intheir regular programming courses.
However, Java is not always suitable for the purposes of our experiments. Nev-
ertheless, knowledge of a programminglanguage which is used in a particular
project is not required when developers are employed for the project.

Python has a reputation of being easy to learn, use and to have a clear and
elegant syntax. These aspects were the reasons for choosing Python as a pro-
gramming language of our first Gaudi project and they were confirmed in this and
later projects. The students who participated in Gaudi were usually familiar with
Java but only a few had some previous experience with Python. Nevertheless, all
students agreed that Python was extremely easy to learn and it was easy to start
programming Python from the very beginning of the projects.

In the FiPla project [5] we used Eiffel [25] as the programming language of the
project, because we wanted to try out Design by Contract (see Section 4.3.2) and
Eiffel has very good built-in support for thistechnique. Eiffel is an object-oriented
language that also includes a comprehensive approach to software construction:
a method, and an environment (EiffelStudio) [20]. It is a simple, yet powerful
language that strictly follows the principles of object-orientation. The language
supports multiple inheritance, has no global variables and pointer arithmetics. Eif-
fel has a choice of graphical libraries, including the portableEiffelVisionlibrary,
used in our project. Eiffel compilation technique uses C as an intermediate lan-
guage. The run-time efficiency of Eiffel’s executables is similar to C.

Unfortunately, ISE Eiffel has no originalunit testingframework. Unit testing
is an essential part of the Extreme Programming (see section 4.3.5) and Gaudi
Process, and could not be left outside ourproject, in particular as we had a lot of
positive experience with unit testing. Our choice was to use theGobo Eiffel Test
tool [11]. Gobo Eiffel Test is distributed freely under the terms and conditions of
the Eiffel Forum License [34].

We got a lot of positive experience using Eiffel. First of all, the defect rate
(table 6) of the software built with Eiffel was much lower then in the software built
with Python. In the developers’ opinion, the low defect rate of Eiffel software was
due to the use of design by contract, static typing and, surprisingly, because of the
poor Eiffel’s documentation – this forced the team to do more spikes and testing.
Another aspect we appreciated in Eiffel was hight code readability. According to
the developers who were working in previous projects with Python, Eiffel code
was even more readable than Python code.

4.3.2 Design by Contract

Design by Contract [26] (DBC) is a systematic method for making software re-
liable (correct and robust). A system is structured as a collection of cooperating

17

software elements. The cooperation of the elements is restricted bycontracts,
explicit definitions of obligationsand guarantees. The contracts arepre- andpost-
conditionsof methods andclass invariants. These conditions are written in the
programming language itself and can be checked at runtime, when the method is
called. If a method call does not satisfy the contract, an error is raised. Some
reports [14, 17] show that XP and designby contract fit well together, and unit
tests and contracts compliment each other.

We tried to start using design by contract already in our first experiment [6].
However, this attempt failed due to the lack of design by contract support in
Python. Our first experiment with Eiffel and design by contract showed very
good results. First of all, the use of design by contract was one of the reasons for
the low defect rate in the project [5]. As the development team commented out:
”All the tests written (to a complete code) always pass and the tests that don’t
pass have a bug in the test itself”. Most of the bugs were caught with the help of
preconditions, when a routine with a bug was called during unit testing. Table 6
shows the post-release defect rate of the software developed with design by con-
tract. Most of the unit tests were written before the actual code, but the contracts

Release 0.1 0.2 0.3 0.4 0.5 Total
Post-release defects 2 1 2 1 0 6
Post-release defects/KLOC1.18 0.57 0.96 0.63 0 0.70

Table 6: Defect rate

were specified after it because the programmers did not get any instructions from
their coach on when the contracts should be written.

4.3.3 Stepwise Feature Introduction

Stepwise Feature Introduction(SFI) is a software development methodology in-
troduced by Back [4] based on the incremental extension of the object-oriented
software system one feature at a time. This methodology has much in common
with the originalstepwise refinementmethod. The main difference to stepwise re-
finement is the bottom-up software construction approach and object orientation.
Stepwise Feature Introduction is an experimental methodology and is currently
under development.

We are using this approach in our projects in order to get practical experience
with the method and suggestions for further improvements. Extreme Program-
ming does not say anything about the software architecture of the system. Step-
wise Feature Introduction provides a simple architecture that goes well with the
XP approach of constructing software in short iteration cycles. So far we have had
positive feedback from using SFI with a dynamically typed object-oriented lan-
guage like Python. An experiment with SFI and Eiffel, a statically typed object-
oriented language showed us some aspects of the methodology which need im-
provement. The explanation of thesefindings require a more thorough explana-

18

tion of SFI than what is motivated in this paper, so we decided to discuss this in
a separate paper. Developers found SFI methods relatively easy to learn and use.
The main complain was the lack of tool support. When building a software sys-
tem using SFI, programmers need to take care of a number of routines which are
time consuming but which could be automated. The most positive feedback about
SFI concerned the layered structure: it clarifies the system architecture and it also
helps in debugging, since it is relativelyeasy to determine the layer in which the
bug is introduced.

4.3.4 Pair Programming

Pair programming is a programming technique in which two programmers work
together at one computer on the same task [35]. The programmer who types is
called a driver, the other programmer iscalled a navigator. While the driver works
tactically, the navigator works strategically: looking for misspells and errors and
thinking about the overall structure of the code. All code in XP is written in pairs,
and the productivity follows the Nosek’s principle [28]: two programmers will im-
plement two tasks in pair 60 percent slower then two programmers implementing
the same task separately with solo programming.

Pair programming has many significant benefits: better detailed design (in
XP the design is performed on the fly), shorter program code and better com-
munication between team members. Also, many common programming mis-
takes are caught as they are being typed, etc [12]. As it has been frequently re-
ported [12, 13, 22, 27, 36], pair programming also has a great educational aspect.
Programmers learn from each other while working in pairs. This is specially in-
teresting in our context since in the same project we can have students with very
different programming experience.

In our first experiments we were enforcing developers to always work in pairs,
later on when we had some experienced developers in the projects, we gave the
developers the right to choose when to work in pair and when to work solo. Table 7
shows the percentage of the solo-pairwork in the three projects of summer 2003
and two of summer 2004, the first number indicates the percentage of pair work.

FiPla MED U3D SCS CRL
Programming 79/21 88/12 84/16 62/38 60/40
Refactoring 77/23 85/15 76/24 49/51 62/38
Debugging 27/73 84/16 86/14 74/26 51/49

Table 7: Solo vs. pair %

In the 2003 projects pair programming was not enforced, but recommended,
while in summer 2004 two months were pair programming and one month solo.
We leave it up to the programmer whether to work in pairs while debugging or
refactoring.

19

All of the developers agree that the code written in pairs is easier to read and
contains less bugs. They also commentedthat refactoring is much easier to do
in pairs. However there are different opinions and experiences on debugging.
In some projects developers said that it was almost impossible to debug in pair
because ”everyone has his own theory about where the bug is” and ”while you
want to scroll up, your pair want to scroll down, this disturbs concentration during
debugging”. In other projects programmers preferred pair debugging because they
found it easier to catch bugs together. We think that working in pairs should
be enforced for writing all productive code, including tests, while it should be
up to the developers, whenever debug or refactor in pairs or solo. It would be
interesting to know which part of the code is actually pair programmed and which
solo. A possible solution to distinguish between pair and solo code is to use
specific annotations in the code [18], as used in Energi [33] projects, where the
origin (pair or solo) of the code is described by comments.

4.3.5 Unit Testing

Unit testing is defined as testing of individual hardware or software units or groups
of related units [29]. In XP, unit testing refers to tests written by the same devel-
oper as the production code. According to XP, all code must have unit tests and
the tests should be written before the actual code. The tests must use a unit test
framework to be able to create automated unit test suites.

Learning to write tests was relativelyeasy for most developers. The most dif-
ficult practice to adopt was the ”write testfirst” approach. Our experience shows
that if the coach spends time together with the programmers, writing tests himself
and writing the tests before the code, the programming team continues this testing
practice also without the coach. Some supervision is, however, required, espe-
cially during the first weeks of work. The tutorial about unit testing focused at the
test driven development before the project is also essential. The implementation
of the testing practice also depends onthe nature of the programming task. Our
experience showed that the ”write test first” approach worked only in the situation
where the first programming tasks had no GUI involved because GUI code is hard
to test automatically.

In many projects the goal is to achieve 100% unit test coverage for non-GUI
components. A program that calculates test coverage automatically provides an
invaluable help to achieve this goal to both programmers and coaches.

4.3.6 Continuous Refactoring and Collective Code Ownership

The most popular definitions for refactoring is given by Fowler [15]: ”Refactoring
is the process of changing a software system in such a way that it does not alter the
external behavior of the code, yet improves its internal structure”. XP promotes
refactoring throughout the entire projectlife cycle to save time and increase qual-
ity [31] by removing redundancy, eliminating unused functionality, rejuvenating

20

obsolete designs. This practice together with pair programming also promotes
collective code ownership, where no one person owns the code and may become a
bottleneck for changes . Instead, every team member is encouraged to contribute
to all parts of the project.

We introduce refactoring right after the first short iteration (see Section 4.2.1)
and promote it throughout the whole project. Refactoring is introduced early in a
project for educational reasons: developers get used to change each others’ code
and improve on the original design. After the second iteration refactoring becomes
a part of the daily routine. After the codesatisfies the unit tests it is refactored.
During the refactoring the programmerschange the structure of the code merci-
lessly. We are less concerned about new bugs being introduced by refactoring or
functionality changes, since the automated test suits should discover these prob-
lems. In Python projects the programminglanguage itself promotes refactoring:
Python programmers have the tendency to change their working code, constantly
making it more precise and efficient. There should be enough time reserved for
the refactoring in each iteration. We discussed the time issues in the Section 4.2.1.

Pair programming, continuous refactoring, collective code ownership, and the
layered architecture make the code produced in the Gaudi factory simpler and eas-
ier to read, and hence more maintainable. As mentioned before, larger products
are developed in a series of three-monthsprojects and not necessarily by the same
developers. To ensure that a new team that takes over the project gets to under-
stand the code quickly, we usually compose the team with one or two developers
who have experience with the product from a previous project, the rest of the team
being new to the product. In this way new developers can take over the old code
and start contributing to the different parts of the product faster. When the team is
completely new, the coach will help the developers to take over the old code.

4.4 Asset Management

Any nontrivial software project will create many artifacts which will evolve during
the project. In XP those artifacts are added in the central repository and updated
as soon as possible. Each team member is not only allowed, but encouraged to
change any artifact in the repository.

4.4.1 Configuration Management and Continuous Integration

All code produced in the Gaudi Software Factory, as well as all tests (see Sec-
tion 4.3.5), are developed under a version control system. We started in 2001
using CVS but now most projects have migrated to Subversion, which is now the
standard version control system in Gaudi. The source code repository is also an
important source of data for analyzing the progress of the project, since all revi-
sions are stored there together with a record of the responsible person and date
and time for check-in. The metrics issueswere discussed in the Section 3.3.

According to XP, developers should integrate code into the code repository

21

every few hours, whenever possible, and in any case changes should never be kept
for more than a day. In this way XP projects detect early compatibility problems,
or even avoid them altogether, and ensure that everyone works with the latest
version. Only one pair should integrate at a time.

Due to the small size (four to six programmers) of the development teams in
Gaudi, we do not use a special computer for integration, neither do we make use of
integration tokens. When a pair needs to integrate its code, the programmers from
this pair simply inform their colleagues and ask them to wait with their integration
until the first pair checks in the integrated code. The number of daily check-ins
varies, but there is at least one check-in every day. In many cases integration is
just a matter of few seconds.

It is important to be able to trace every check-in to concrete tasks and user
stories [3]. For this purpose programmers add the identification of the relevant
task or story to the CVS or Subversion log. The identification is the unique ID
of the story or task in the task management system (SourceForge or JIRA). The
exception is when the programmers refactoror debug existing code, it is then very
hard (or impossible) to trace this activity to a concrete task or story. Therefore
check-ins after refactoring or debugging are linked to the ”General Refactoring
and Debugging” task (see Section 4.1.2).

4.4.2 Agile Documentation

When a story is implemented, the pair or single programmer who implemented it
should also write the user documentation for the story. The documentation is writ-
ten directly on the story or in a text file located in the project’s repository. This file
is divided into sections, where each section corresponds to an implemented story.
If the stories are on a web-base task management system, the documentation is
written directly in the stories – this simplifies the bidirectional traceability for
stories and their documentation. Later on the complete user documentation will
be compiled from the stories’ documentation. Documenting a user story is basi-
cally rephrasing it, and it takes an average of 30 minutes to do it. Table 8 shows
examples from one of the Gaudi projects. This approach allows us to embed the
user documentation into the development process. Bidirectional traceability of the
stories and user documentation makesit easy to update the corresponding docu-
mentation whenever the functionality changes.

5 Experiences and Observations from Gaudi

The previous practices have been used in 18 projects during a period of four years.
We have discussed each issue in detail in the previous section. However, we
would like to discuss some of the overall experiences obtained from the frame-
work project.

Agile Methods Work in Practice: As overall conclusions of our experiences

22

User Story Documentation
Story 15: Create
parts: User should
be able to create
new parts in the di-
agram.

The user can add parts to the diagram by pressing the
button containing a UML class pixmap or via the shortcut
CTRL+P. The new part is assigned an automatic name,
but can be renamed later in the property editor. The new
part is added to the first free column to the right in the
diagram.

Story 16: Define us-
age relationships

The user can add usage relationships between parts by
first pressing the "Add Usage"- button or the shortcut
CTRL+U, and then dragging the mouse from the source
part to the target part. This will add a usage relationship
such that "source part uses target part". After this, the
editor will stay in "Add Usage"-mode until the button is
toggled off. Usage relationships can also be added from
one part to the part itself. The user can see which parts
a certain part uses by selecting it. The parts it uses are
colored blue.

Table 8: Documenting user stories

is that agile methods provide good results when used in small projects with unde-
fined and volatile requirements.

Agile methods have many known limitations such as difficulties to scale up
to large teams, reliance on oral communication and a focus on functional require-
ments that dismisses the importance of reliability and safety aspects. However,
when projects are of relatively small size and are not safety critical, agile methods
will enable us to reliably obtain results in a short time.

The fact that agile methods worked for us does not mean that is not possible
to improve existing agile practices. Our first recommendation is that architectural
design should be an established practice. We have never observed a good archi-
tecture to "emerge" from a project. The architecture has been either designed a
priory at the beginning of a project or a posteriori, when the design was so difficult
to understand that a complete rethinking was needed.

Also, we established project and product documentation as an important task.
XP reliance on oral communication shouldnot be used in environments with high
developer turnaround. Artifacts describing the software architecture, design and
product manual are as important as the source code and should be created and
maintained during the whole life of the project.

Project Management and Flying Hats: Another observation is that in many
cases the actual roles and tasks performed by the different people involved in
a project did not correspond to the roles and tasks assigned to them before the
project started. This was due to the fact that the motivation and interest in a
given project varied greatly from person to person. In some cases, the official
customer for a project lost interest in the project before it was completed, e.g. in

23

less than three months. In these cases, another person took the role of a customer
just because that person was still interested in the product or because a strong
commitment to the project made this personto take different roles simultaneously
even if that was not his or her duty.

Our conclusion is that standard management tasks such project staffing, project
supervision and ensuring a high motivation and commitment from the project staff
and different stakeholders are as relevant in agile process in an university setting
as in any other kind of project.

Tension between Product and Experiment: Finally, we want to note that
during these four years we have observed a certain tension between the develop-
ment of software and the experimentation with methods. We have had projects
that produced good products to customer satisfaction but were considered bad
experiments since it was not possible to collect all the desired data in a reliable
way. Also, there have been successful experiments that produced software that
has never been used by its customer.

To detect and avoid these situations a well-defined measurement framework
should be in place during the development phase of a project but also after the
project has been completed to monitor how the products are being used by their
customers.

6 Conclusions

In this paper we have presented Gaudi,our approach to empirical research in
software engineering based on the development of small software products in a
controlled environments. This approachrequires a large amount of resources and
effort but provides an unique opportunity to monitor and study software develop-
ment in practice.

The Gaudi framework project started in2001 and have completed 18 projects
during a period for 4 years representing an effort of 30 person years in total. This
work has been measured and the results of these measurements are being used to
create the so called Gaudi process. Once this process its completely defined it will
be tested again in empirical experiments.It is possible to argue that this approach
will result in a software process that is optimized for building software only in
a university setting. Although this criticism is valid, it is also true that most of
the challenges found in our environment such as scarce resources, undefined and
volatile requirements and high programmer turn aroundare also present in many
industrial projects.

The Gaudi process is based on agile methods, specially on Extreme Program-
ming. In this, paper we have discussed the adoption and performance of 12 dif-
ferent agile practices. As we discussed in the introduction, agile methods have
been studied by other researchers also. However, we believe that our collected
data represents a significant sample of actual software development due to its size
and diversity, and lends support for many of the claims made by the advocates of

24

Extreme Programming.

References

[1] Extreme Programming: A gentleintroduction website. Online at:
http://www.extremeprogramming.org/.

[2] Pekka Abrahamsson. Extreme Programming: First Results from a Con-
trolled Study. InProceedings of the 29th EUROMICRO Conference ”New
Waves in System Architecture”. IEEE, 2003.

[3] Ulf Asklund, Lars Bendix, and Torbjörn Ekman. Software Configuration
Management Practices for eXtreme Programming Teams. InProceedings
of the 11th Nordic Workshop on Programming and Software Development
Tools and Techniques NWPER’2004, August 2004.

[4] Ralph-Johan Back. Software Construction by Stepwise Feature Introduction.
In Proceedings of the ZB2001 - Second International Z and B Conference.
Springer Verlag LNCS Series, 2002.

[5] Ralph-Johan Back, Piia Hirkman, and Luka Milovanov. Evaluating the
XP Customer Model and Design by Contract. InProceedings of the 30th
EUROMICRO Conference. IEEE Computer Society.

[6] Ralph-Johan Back, Luka Milovanov,Ivan Porres, and Viorel Preoteasa. An
Experiment on Extreme Programming and Stepwise Feature Introduction.
Technical Report 451, TUCS, 2002.

[7] Ralph-Johan Back, Luka Milovanov,Ivan Porres, and Viorel Preoteasa. XP
as a Framework for Practical Software Engineering Experiments. InPro-
ceedings of the Third International Conference on eXtreme Programming
and Agile Processes in Software Engineering - XP2002, May 2002.

[8] Victor Basili, Gianluigi Caldiera, and Dieter Rombach.The Goal Question
Metric Approach. Encyclopedia of Software Engineering. John Wiley and
Sons, 1994.

[9] Kent Beck. Embracing Change with Extreme Programming.Computer,
32(10):70–73, October 1999.

[10] Kent Beck.Extreme Programming Explained: Embrace Change. Addison-
Wesley, 1999.

[11] Eric Bezault. Gobo Eiffel Test. Online at
http://www.gobosoft.com/eiffel/gobo/getest/.

25

[12] Alistair Cockburn and Laurie Williams. The Costs and Benefits of Pair Pro-
gramming. InProceedings of eXtreme Programming and Flexible Processes
in Software Engineering XP2000, 2000.

[13] L. L. Constantine.Constantine on Peopleware. Englewood Cliffs: Prentice
Hall, 1995.

[14] Yishai A. Feldman. Extreme Design by Contract. InProceedings of the 4th
International Conference on Extreme Programming and Agile Processes in
Software Engineering. Springer, 2003.

[15] Martin Fowler.Refactoring: Improving the Design of Existing Code. Object
Technology Series. Addison-Wesley, 1999.

[16] Tracy Hall and Norman Fenton. Implementing effective software metrics
programs.IEEE Softw., 14(2):55–65, 1997.

[17] Hasko Heinecke and Christian Noack.Integrating Extreme Programming
and Contracts. Addison-Wesley Professional, 2002.

[18] Hanna Hulkko. Pair programming and its impact on software quality. Mas-
ter’s thesis, Electrical and Information Engineering department, University
of Oulu, 2004.

[19] Sylvia Ilieva, Penko Ivanov, and Eliza Stefanova. Analyses of an Agile
Methodology Implementation. InProceedings of the 30th EUROMICRO
Conference. IEEE Computer Society, 2004.

[20] Eiffel Software Inc. Eiffel in a Nutshel. Online at:
http://archive.eiffel.com/eiffel/nutshell.html, 2003.

[21] Ron Jeffries, Ann Anderson, and Chet Hendrickson.Extreme Programming
Installed. Addison-Wesley, 2001.

[22] David H. Johnson and James Caristi. Extreme Programming and the Soft-
ware Design Course. InProceedings of XP Universe, 2001.

[23] Mikko Korkala. Extreme Programming: Introducing a Requirements Man-
agement Process for an Offsite Customer. Department of Information Pro-
cessing Science research papers series A, University of Oulu, 2004.

[24] Mikko Korkala and Pekka Abrahamsson. Extreme Programming: Reassess-
ing the Requirements Management Process for an Offsite Customer. InPro-
ceedings of the European Software Process Improvement Conference EU-
ROSPI 2004. Springer Verlag LNCS Series, 2004.

[25] Bertrand Meyer.Eiffel: The Language. Prentice Hall, second edition edition,
1992.

26

[26] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
second edition edition, 1997.

[27] Mathias M. Müller and Walter F. Tichy. Case study: Extreme programming
in a university environment. InProceedings of the 23rd Conference on Soft-
ware Engineering. IEEE Computer Society, 2001.

[28] J.T. Nosek. The Case for Collaborative Programming.Communications of
the ACM, 41(3):105–108, 1998.

[29] Institute of Electricaland Electronics Engineers.IEEE Standard Computer
Dictionary: A Compilation of IEEE Standard Computer Glossaries. New
York, 1990.

[30] Stephen R. Palmer and John M. Felsing.A Practicel Guide to Feature-
Driven Development. The Coad Series. Prentice Hall PTR, 2002.

[31] D. B. Roberts.Practical Analysis of Refactorings. PhD thesis, University of
Illinois at Urbana-Champaign, 1999.

[32] Bernhard Rumpe and Astrid Schröder. Quantitative survey on extreme pro-
gramming projects. InThird International Conference on Extreme Program-
ming and Flexible Processes in Software Engineering, XP2002, May 26-30,
pages 95–100, Alghero, Italy, 2002.

[33] Outi Salo and Pekka Abrahamsson. Evaluation of Agile Software Develop-
ment: The Controlled Case Study approach. InProceedings of the 5th In-
ternational Conference on Product Focused Software Process Improvement
PROFES 2004. Springer Verlag LNCS Series, 2004.

[34] Open Source Initiative. Eiffel Forum Licence. Version 2. Online at:
http://opensource.org/licenses/ver2_eiffel.php.

[35] Laurie Williams and Robert Kessler. Pair Programming Illuminated.
Addison-Wesley Longman Publishing Co., Inc., 2002.

[36] Laurie A. Williams and Robert R. Kessler. Experimenting with Industry’s
Pair-Programming Model in theComputer Science Classroom.Journal on
Software Engineering Education, December 2000.

27

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematical Sciences

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 952-12-1463-5
ISSN 1239-1891

