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Abstract

The paper introduces both lattice-theoretical and topological approaches on
studying connections between Fuzzy Set Theory and Rough Set Theory or,
more precisely, L-sets and modal-like operators. Various results for certain
type of L-sets are presented, and it is shown that modal-like operators can
be determined by means of L-sets. Moreover, it is shown that a certain sub-
category of a category of variable-basis L-sets is isomorphic to the category
of Alexandroff topological spaces as well as the category of quasi-ordered
sets.
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1 Introduction

In this paper, we study some relationships between Rough Set Theory and
Fuzzy Set Theory, and the paper in its current form is written in a self-
contained manner, if possible.

Jarvinen has studied Rough Set Theory, especially from lattice-
theoretical point of view in [14, 15|, and Kortelainen has earlier studied
Fuzzy Set Theory, particularly L-sets, from a topological viewpoint (see e.g.
[20]). Notice that the term Fuzzy Sets is generic including the L-sets, for
example. The authors have also studied a concept of definability in Rough
Set Theory from a topological point of view [16]. There are well-known
connections between quasi-orders and Alexandroff topologies, and naturally
modal-like operators may be determined by means of quasi-orders. These
notions play a key role in this paper.

The paper is organized as follows: In Section 2, we recall and develop
some notions and notation considering lattices, topological spaces, L-sets,
and certain modal-like operators. Especially, Alexandroff topological spaces
are introduced. Section 3 presents connections between L-sets, quasi-ordered
sets, and Alexandroff topological spaces. We show, for example, that L-sets
may be used to determine modal-like operators, and that each quasi-order
R on U induces a certain type of L-set, called an Lg-set on U. Especially,
the Lp-sets are determined in such a way that they carry the same ordering
information as L-sets. In Section 4, some notions and notation concerning
category theory are presented, and we complete the paper by interpreting
the study using categorical concepts. For example, we determine a category
with Lg-sets as its objects, and show that this category is isomorphic to the
category of Alexandroff topological spaces.

2 Preliminaries

This subsection is reserved for some basic notions and notation. For a set
U, let p(U) denote the powerset of U, that is, the family of all subsets of
U. Given a family H C p(U) of sets, the union of H, |JH, is defined by
a € |JH if and only if a € X for some X € H. The intersection (\H of H
is defined by a € (A if and only if a € X for all X € H. For any X C U,
we denote by X¢ the complement U — X of the set X.

2.1 Lattices

The most notions presented in this subsection can be found, for example, in
the books by Birkhoff [7], and Davey and Priestley [8]. A binary relation <
on a set P is called an order, if it is reflexive, antisymmetric, and transitive.
An ordered set is a pair (P,<), with P being a set and < an order on P.
Usually we denote an ordered set (P, <) simply by P. The greatest element
of P, if it exists, is called the top element of P and denoted by T. Similarly,
the least element of P, if such an element exists, is called the bottom element
and it is denoted by L. If P has top and bottom elements, it is bounded.



Let P be an ordered set and S C P. We denote by \/ S and A S the
supremum and the infimum of S respectively. Furthermore, we write a V b
in place of \/{a, b} and a A b in place of A{a,b}.

An ordered set L is a lattice, if for any two elements x and y in L, zV y
and x Ay always exist. The operations V and A are also called as join and
meet, respectively. A lattice L is a complete lattice if \/ S and A S exist for
all S C L. Note that in a complete lattice L, the existence of \/ L and A L
guarantee the top element T and the bottom element 1, respectively. It is
known (see e.g. [8]) that P is a complete lattice if A S exists for all S C P.
Clearly, / S=A{z € P|z>aforall a € S}.

For two complete lattices L and M, a mapping f: L — M is join-
preserving if for all a,b € L, f(aVb) = f(a)V f(b). Similarly, f is
completely join-preserving if for all S C L, f(\VS) = V f(S), where
f(S)={f(a) | a € S}. The notions of meet-preserving and completely meet-
preserving mappings are defined analogously. It is easy to see that if a map-
ping f: L — M is join- or meet-preserving, then f is order-preserving, that
is, a < b implies f(a) < f(b) for all a,b € L.

2.2 Topological Spaces

Here we briefly introduce topological spaces. A detailed discussion on topo-
logical spaces can be found, for example, in [18].

A topological space (U, T) consists of a set U and a family 7 C p(U)
such that

(T1) e T and U € T,
(T2) a finite intersection of members of 7 isin T,
(T3) an arbitrary union of members of 7 is in 7.

The family 7 is called a topology on U and the members of T are called
open sets. The complement of an open set is called a closed set. The family
of closed sets is denoted by

Lr={X°|XeT}.

The Kuratowski closure axioms allow us to define a topology on U by
means of an operator C: p(U) — p(U):

(K1) X C C(X) for all X C U,
(K2) C(C(X))=C(X)forall X C U,

(K3) C(XUY)=C(X)UC(Y) forall X,Y C U,
) C(0) =0.

The closure C7(X) of a set X C U in the topology 7 is defined to be the
smallest closed set containing X. Obviously,

(K4

Cr(X)=({YeLr|Xcv}.



It is well-known that the operator Cr: p(U) — p(U), X — C1(X), satisfies
the Kuratowski closure axioms. In addition, if an operator C': p(U) — p(U)
satisfies (K1)—(K4), then the family {C(X)“ | X C U} is a topology on U.

IfXCY andY € T, then Y is called a neighbourhood of X. Further,
any neighbourhood of the singleton set {z} is called a neighbourhood of the
point x.

A topology T on U is called an Alexandroff topology if the intersection
of every family of open sets is also open. It is obvious that each X C U
has the smallest neighbourhood in an Alexandroff topology [4]. Note that
Alexandroff topologies and principal topologies (see e.g. [9, 26]) are the
same concepts. It is now clear that Alexandroff topologies can be defined in
different ways, for example, a topology 7T is called an Alexandroff topology if
every point has the smallest neighbourhood (see e.g. [5, 26]), or a topology T
is called an Alexandroff topology if it forms a complete ring of sets (see [6]).
Interesting enough, Birkhoff called Alexandroff topologies also as completely
distributive topologies in [6]. Indeed, it is well known that any topology can
be considered as a complete lattice (see e.g. [7]), and clearly any Alexandroff
topology T forms a complete lattice (7,C) such that \VH = [JH and
AH = H for all X C 7. This means that any Alexandroff topology
forms a completely distributive lattice (see e.g. [8]).

A family of sets B C 7T is called a base for a topology T if each member
of 7 is the union of some members of B. Moreover, it is known that a
family of sets S is a base for some topology on U = |J§ if and only if for all
X,Y € § and for each point x € X NY, there is a Z € § such that x € Z
and Z C X NY [18].

Let (U,T) be an Alexandroff topological space. We denote for any
X CUbyn(X)=N{Y € T|X CY} the smallest neighbourhood of X.
Similarly, let n(x) denote the smallest neighbourhood of the point z. Now,
consider any X € 7. Then z € n(z) implies X C [J{n(z) |z € X}. For
all z € X, n(z) C n(X) = X, which gives [J{n(z) |z € X} C X. Thus,
{n(z) | z € U} is a base for 7. Next we show that {n(z) | z € U} is the
smallest base.

Let B be a base for T, and suppose that n(z) ¢ B for some z. Because B
is a base, | JS = n(z) for some S C B. Since z € n(z), there existsan X € §
such that z € X. Now X C n(z), but because n(z) is the smallest open set
containing x, we have that X = n(z), that is, n(z) € B, a contradiction!

2.3 L[-Sets

The fuzzy sets were defined originally by Zadeh in [29] as mappings from a
non-empty set U into the unit interval [0, 1]. Goguen generalized fuzzy sets
to L-sets in [11] such that an L-set ¢ on U is a mapping ¢ : U — L. Usually
L is at least a complete lattice.

It is well-known that the family of all L-sets on U may be ordered with
the pointwise order:

<Y = (VzelU) p(x) <yP(z).



Because L is a complete lattice, also the family of all L-sets on U is a
complete lattice in which arbitrary joins and arbitrary meets are defined
pointwise. Note that if ¢(z) € {L, T} for all z € U, then ¢ is the charac-
teristic function for some conventional subset of U. Further, the pointwise
ordered set of all {_L, T}-sets on U can be identified with (p(U), C).

The a-level set of p: U — L is defined for all a € L,

po={zeU|p(r) >a}.

It is clear that oo > B implies ¢ C g for all o, B € L.

Note that any collection of subsets of U may be considered as a knowl-
edge about U (see e.g. [25]). Thus, the collection of a-level sets of ¢ is
knowledge about U, and for each a € L, ¢, can be viewed as a certain
piece of knowledge. It is now clear that L-sets can be employed to repre-
sent knowledge and this interpretation for L-sets is studied more detailed in
Sections 3 and 4.

In the following, we present an example demonstrating a connection
between L-sets and Alexandroff topologies.

Example 2.1. Let U be a non-empty set, L a complete lattice, and ¢: U —
L. Then, the subfamily of a-level sets {go¢(x) | z € U} is a base for some
topology. Indeed, now U = |J {(p(p(z) | z € U}, because T € @, ;) for all
reU. Ifz € pyuy) Ny, then o(x) > ¢(y) and p(z) > ¢(2), which
BIVeS Pu(n) € Po(y) AN Pp(@) C Py(z)> that i, Pp(m) € Pp(y) N Pp(z)- Hence,
{g0¢(w) | z € U} is a base for some topology on U, say 7.

Now every point z € U has the smallest neighbourhood ¢, ), because
T € Py(z) € Ty, and T € X € T, implies X = U{<p(p(y) |y € S} for some
S C U. Thus, z € ¢,y for some y € S, which gives p(z) > ¢(y) and
Do) S Po(y) © X. Therefore, (U,7T,) is an Alexandroff topological space
and, in fact, {gow(z) | x € U} is the smallest base for 7.

Let us consider the family of a-level sets {¢o | @ € L}. Now for
each @ € L, ¢, is an open set, because * € ¢, implies p(z) > a and
Po(z) € Pa- Hence, |J {g%(m) | € 9a} C pa. On the other hand, z € Po(z)
implies 9o C U {@p(z) | € ¥a}. Thus, 9o = {@p@) | = € @a}. Because
{(p(p(m) |z €U} C{pa|aecL}CT,, also {pa | € L} is a base for T,. It
is also easy to observe that for all S C L,

ﬂ Pa = P8,

a€esS
where 8 = \/ S (see [13, 23]). This means that {¢o CU | a € L} is a base
for 7, which is actually a complete lattice with respect to C, while the join-
operation may not be the union of sets (see Section 2.1). Thus, the base
{¢a CU | a € L} can be considered as a completion of the smallest base
{g0¢(w) |z € U} which is not necessarily a lattice.

2.4 Modal-Like Operators

By modal-like operators we mean operators which are syntactically similar
to modal operators. In this subsection, we consider modal-like operators



with two different interpretations: rough approximation operators and com-
positional modifiers. Both these interpretations for modal operators are
binary relation based set-operations [17].

The Rough Set Theory introduced by Pawlak [24] deals with situations
in which knowledge about objects of a certain universe of discourse U is
limited by a binary relation, originally an equivalence relation. The idea is
to define two operators 4: p(U) — p(U) and Y: p(U) — p(U) that map
any set X C U to sets consisting of elements that possible and certainly
belong in X, respectively.

Let R be an arbitrary binary relation on U, and let us denote for all
z e U,

R(z)={y e U |z Ry}.
The upper approxzimation of X is

XAt ={zeU|R(@)NX #0} (2.1)
and the lower approzimation of X C U is

XY={zeU|R(z)C X} (2.2)

The operators 4: p(U) — p(U) and Y: p(U) — p(U) are called rough
approximation operators. Also other type of definitions for rough approxi-
mation operators, similar to (2.1) and (2.2), can be found in the literature
(see e.g. [9] for a recent survey). It is well-known that the operators # and
¥ are dual, that is, for all X C U,

X4 = XY and XV = X*°

Let us denote for any H C p(U), HA = {X4 | X € H} and H' =
{XY| X €H}. The operator *: p(U) — p(U) is completely union-
preserving and the operator Y: p(U) — p(U) is completely intersection-
preserving in the sense of Section 2.1, that is, JH* = (UH)* and
NHY = (NH)Y for all H C p(U); further, }4 = @ and UY = U (see
[17]). Obviously, (p(U)", C) and (p(U)4, C) are complete lattices such that
(p(U)Y,C) = (p(U)4, D); the order-isomorphism is X4 — X°Y. Note that
if R is symmetric, then (p(U)Y,C) & (p(U)4, C) (see e.g. [15]).

A relation R is said to be serial if for all x € U there exists y € U such
that z Ry. Obviously, reflexivity implies seriality. The following correspon-
dences can be easily found by applying the Ackermann Lemma [1].

XY C X* < Ris serial. (2.3)
XYCX < X CX* < Ris reflexive. (2.4)
X4 C X < X CX* < R is symmetric. (2.5)
XY C X" «— X' CX* «— Ris transitive. (2.6)



It is also known that if R is an equivalence (reflexive, symmetric, and tran-
sitive relation), then XA4Y = X4 and XY4 = XV for any X C U; this gives
p(U)Y = p(U)*.

Modifier operators, modifiers for short, interpreted as modal-like oper-
ators are studied by Mattila in [22]. Keeping this interpretation in mind,
Kortelainen has defined compositional modifiers (see e.g. [19, 20]), and cor-
responding modified sets may be written as

Xt={zeU|R (z)nX #£0}, (2.7)
where R~ = {(z,y) | y Rz} is the inverse of R, and
XV={z€eU|R'(z) CX}. (2.8)

If R is reflexive, then X2 is called the R-weakened set of X C U and XV
is called the R-substantiated set of X C U. The operators “: p(U) — p(U)
and V: p(U) — p(U) may be interpreted as linguistic hedges “more or
less” and “very”, respectively. Note that if R is reflexive, symmetric, or
transitive, then R~! is also reflexive, symmetric, or transitive, respectively.
This implies that the operators # and v have the same properties as 4 and
¥ presented above. However, condition (2.3) is now of the form

XV C X% «— R7!is serial.

To complete this subsection, we present some interesting syntactical con-
nections between the rough approximation operators and the compositional
modifiers.

For two ordered sets P and @, a pair (*,9) of mappings *: P — @ and
4. Q — P is a Galois connection between P and @ if for all p € P and

q€Q,

¥ <q <= p<q*.
It is well-known that the pairs (#,%) and (*,”) form Galois connections
on p(U). This implies, for example, that the mappings X — X2V and
X +— XAV are closure operators, and X — XV4 and X ~ X% are interior
operators (cf. [9]). Furthermore,

XA — XAVA and XV — XVAV

for all X CU.

Because the pair (#,%) is a Galois connection on p(U), the map X* —
X2V is an order-isomorphism between (p(U)%,C) and (p(U)Y,C). This
implies

(P07, C) = (p(U)*, 2) = (p(U)*,C) = (p(V), 2),

and, if R is symmetric, then



Note also that if R is an equivalence, then

p(U)T = p(U)" = p(U)* = p(U)".

For any z € U, {z}* = R™'(z) and {z}* = R(z). Hence, for all X C U
and for any arbitrary binary relation R on U,

X4 = U R(z) and X* = U R ().
zeX zeX

Let P be a lattice with a smallest element . Mappings ®: P — P and
». P — P are conjugate (cf. [17]), and (*,”) forms a conjugate pair, if for
any p,q € P,

pPANg=1 <= pAq” = L.

It was proved in [17] that (#,4) is a conjugate pair of operators on p(U).

3 L-Sets and Quasi-Orders

In [19] it was proved that the compositional modifier *: p(U) — p(U),
determined by a quasi-order R (reflexive and transitive relation) satisfies
the Kuratowski closure axioms.! Hence, the family {X%¢|X CU} =
{XV| X CU}={X"V| X CU} is a topology on U. Let us denote

TR:{XV|X§U}.

Similarly, the operator 4: (U) — p(U) satisfies the Kuratowski closure
axioms, and the family {XY | X C U} is also a topology on U. Further, the
operators V: p(U) — p(U) and Y: p(U) — p(U) are interior operators.

It is known that

XA =X4 and XV =XY4 (3.1)

as discussed in [16, 20]. This gives that {XV | X CU} ={X4| X C U} and
{XY| X CU}={X"|X CU}. Hence, for instance, any X C U has the
upper approximation X4 as its smallest neighbourhood in 7z. This means
that 7g is an Alexandroff topology, because each point x has the smallest
neighbourhood {z}*. Note that now

(p(0)Y,C) = (p(U)*,C) = (p(U)*,2) = (p(U)", D).

We have shown that each quasi-order induces an Alexandroff topology.
Analogously, every Alexandroff topology 7 determines a quasi-order R de-
fined by x Ry if and only if y belongs to every T-open set including z. In
fact, it is known that there exists an anti-isomorphism between the ordered
sets of all quasi-orders and Alexandroff topologies on U [6, 26].

!Essentially, this result is already in [6] and [17].



Let ¢: U — L be an L-set. A binary relation < on U is defined by
setting for all z,y € U,

z Sy ()2 90y), (3-2)
(see e.g. [20]). It is easy to see that < is a quasi-order. Thus, the family
T<={X"|XCU}={X*|XCU} (3.3)

is an Alexandroff topology on U, where 4 and V are determined by <. This
topology has obviously the family {{z}* |z € U} as its base (cf. [20]),
since for all X € T<, we have X = X* = {{z}* | # € X}. We point out
that we write sometimes <., instead of <, defined in formula (3.2), to avoid
confusion.

Because ¢,0) = {y €U | p(y) > p(2)} = {y €U |y S} = {a}*, we
have that the Alexandroff topology 7, created in Example 2.1 and the
Alexandroff topology 7< in formula (3.3), coincide. We may now write,

T,={X" | X CU}.

We have now noted that in 7, both {z}* and $e(c) are the smallest neigh-
bourhoods of the point x. Hence, the equal families {(pg,(z) |z eU } and
{{:c}‘ | z € U} are the smallest bases for 7.

Seselja and Tepavéevi¢ have presented representations and completions
of ordered structures using Fuzzy Sets in [27, 28]. The following proposition
is worth of presenting by means of quasi-orders also in the current paper,
although the proposition is obvious by the preceding discussion and the work
in [27].

Proposition 3.1. For any quasi-order R on U, there exists a completely
distributive lattice Lr and an Lg-set p: U — Ly such that R is equal to <.
Moreover, for all x € U, p(z) = py(z)-

Proof. Let us denote (Tg,2) by (Lg,<). Obviously, Lgr is a completely
distributive lattice. Let us determine an Lg-set p: U — L by setting

p(z) ={z}* (€ Tr)

Next we show that R is equal to <. If z Ry, then z € {y}* and {z}* C
{y}*, that is, p(y) < p(z) in Lg, and so z < y. On the other hand, z < y
implies p(y) < p(z) in Lg, and z € {z}* C {y}*, that is, z Ry.

Further, p,,) = {z}* = p(z) for all z € U. O

As we have mentioned, for any set U, the correspondence between
Alexandroff topologies on U and quasi-orders on U is bijective. We also
know that for any complete lattice L, each L-set ¢: U — L induces a quasi-
order S, and an Alexandroff topology 7,. On the other hand, Propo-
sition 3.1 shows that each quasi-order R (and hence every Alexandroff
topology) determines a completely distributive lattice Lr and an Lpg-set
p: U — Lg,z — {z}*, such that Sp is equal to R.



Note that since each L-set ¢ determines a completely distributive lattice
(7%, 2), we have a machinery for each complete lattice to attach a completely
distributive lattice. Further, for any L-set ¢: U — L, only the images ¢(z)
are important in the following sense: They determine the quasi-order <
and the family {gog,(m) |z eU } which is the smallest base for the topology
T,. Therefore, the mapping = — ¢,(;) can be identified as a canonical
representation of ¢ suggested in [27].

Example 3.2. Let U = {1,2,3} and let L be a complete (non-distributive)
lattice depicted in Figure 1.

Figure 1: The lattice L.

Let us define an L-set ¢: U — L by ¢(1) = a, ¢(2) = b, and
p(38)=c Forallz e U, {z}* = {y|y Sz} = {y|¢(x) < ¢(y)}. Hence,
{1}* = {1,2}, {2}* = {2}, and {3}* = {3}. The Alexandroff topology 7T,
is illustrated in Figure 2; its smallest base {aplp(z) |z € U} is marked with
filled circles.

U

(1,2} o/ ‘ (2,3}
@

0

Figure 2: The topology 7.

For equivalence relations, we may write the following proposition as a
special case of Proposition 3.1.

Proposition 3.3. For any equivalence E on U, there exists a complete
atomic Boolean lattice Ly and an Lg-set €: U — Lg such that E is equal
to 5. Moreover, for allx € U, () = €,(4)-

Proof. 1t is obvious that (7g, C) & (Tg, 2) = (Lg, <) is a complete Boolean
lattice, since X € Tg means that X = X4 and so X¢ = X4¢ = XV =
XCVA I 7.E

The set of atoms of (7, C) is {{z}* |z € U}, since for all X € Tg,
0 C X C {z}* implies that for any y € X, y € {z}*. Thus, z € {y}* for all



ye X and z € Uyex {y}* = X* = X and {z}* C X* = X. Thus, Lg is
also atomic, because (7, C) is atomic. O

It is now clear that if R and S are quasi-orders on U such that R C S,
then 7g C Tgp and Lg C Lg. Let p and o be the corresponding Lg- and
Lg-sets on U in the sense of Proposition 3.1, and R C S. Obviously, it
is possible to identify o with some Lpg-set on U, because images of o are
members of Lg. Interpreting o as an Lg-set on U and comparing Lg-sets by
the pointwise order induced by Lpg, the following lemma can be presented.

Lemma 3.4. Let R and S be quasi-orders on U. Then, R C S if and only
if 0 < p with respect to the pointwise order induced by Lg.

Proof. R C S implies p(z) C o(z) for all z € U, because p(z) and o(x) are
the smallest neighbourhoods of the point x in the Alexandroff topologies Tr
and Tg, respectively, and Tg C Tg. This means o(z) < p(z) for allz € U in
Lpg.

On the other hand, if ¢ < p with respect to the pointwise order induced
by Lg, then R71(z) = p(z) C o(z) = S~ !(x) for all z € U, that is, R C
S. O

We can also compare L-sets on U by applying the notion of “fineness”
studied earlier in [20]. We may define a quasi-order < on the set of all L-sets
on U by setting

3 = 3

~Y

o is included in Sy (3.4)
The following corollary is now obvious by Lemma 3.4.

Corollary 3.5. Let ¢ and 1 be L-sets on U, R be equal to S, and S be
equal to Sy. Then, ¢ < 9 if and only if o < p with respect to the pointwise
order induced by Lpg.

We end this section by presenting a result from [20] that shows how
modal-like operators can be determined by means of an L-set ¢ on U directly
without applying the corresponding quasi-order <.

Lemma 3.6. Let ¢: U — L be an L-set on U, and assume that ¥V and 4
are determined by <. Then, for all X C U,

X" = U {ep@) | 0o) € X}

x4 :U{‘Pw(w) |z e X}
Note that now (7,,C) is a completely distributive lattice and
{cp‘p(m) |z € U} is the smallest join-dense set of (7, C). This hints that

we may generalize modal-like operators by considering completely distribu-
tive lattices and the smallest join-dense sets (cf. [15]).
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4 Some Categorical Considerations

This section is reserved for categorical considerations. In Section 4.1 we
present some categorical notions and notation. If the reader is familiar with
Category Theory, then Section 4.1 may be omitted. In Section 4.2, we
interpret the study, presented especially in Section 3, by means of Category
Theory. In fact, we enhance some results, given in [20], on connections
between topological spaces, quasi-ordered sets and L-sets.

4.1 Basic Notions and Notation

The authors think that it is useful to recall the most notions used in Section
4.2. The notions and results presented in this subsection can be found in
or deduced from [2]. Moreover, much of the written language and many
notations are borrowed from [2].

At first, classes are collections of objects. Large classes, called also as
proper classes, are distinguished from small classes, called sets. We refer [2]
for more detailed discussion on the underlying set theory.

A category is a quadruple A = (Ob,hom, id, o) such that

e Ob is the class of A-objects, and we also write Ob(A) when emphasizing
the category A.

e For any pair of A-objects (A, B) we can form a set hom(A, B), and a
member f of hom(A, B) is called an A-morphism from A to B. When
emphasizing the category A, we write also hom, (A, B). Morphisms are
usually denoted by

AL, B

For each A-object A, a morphism A 4y A s the A-identity on A.
When emphasizing the object A, we write also id 4.

e The composite of the A-morphisms A i) B and B %5 C is also an
A-morphism denoted by

A% o

The composition of morphisms is associative, and for A-morphisms
ALy Bwehaveidgo f=fand foids = f.

e The sets homy (A, B) are pairwise disjoint.

Some familiar categories are needed in this paper: The category Set, all
sets as its objects and all mappings between sets as its morphisms. The cate-
gory Prost, all quasi-ordered (preordered)? sets as its objects and all order-
preserving mappings as its morphisms. The category CLat, all complete

2Some authors call quasi-orders as preorders (see e.g. [2]).
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lattices as its objects and all join-preserving and meet-preserving mappings
as its morphisms.

A category A is a subcategory of a category B if Ob(A) C Ob(B) and
for all A, A’ € Ob(A), hom,(A, A’) C homg(A, A’). Moreover, A inherits
identity morphisms from B, and the composities in A are restrictions from
the composities in B. A subcategory A of a category B is full if for all
A, A" € Ob(A), hom, (A, A") = homg(A4, A).

An A-morphism A i) B is called an isomorphism if there exists an A-
morphism B %5 A with go f = id4 and fog = idp. In this case A is said to
be isomorphic to B. Notice that g is also called an inverse of f, denoted by
g = L. Clearly, f~! is an isomorphism if f is an isomorphism. Moreover,
the composite of isomorphisms is also an isomorphism. A full subcategory
A of a category B is called isomorphism-dense if each B-object is isomorphic
to some A-object, and in this special case A and B are equivalent categories.

Consider A is a subcategory of B and B is a B-object. An A-reflection for
B is a morphism B -2+ A from B to an A-object A if the following holds:

for any morphism B i) A’ from B to an A-object A’, there exists a unique
A-morphism A L) A’ such that the triangle in Figure 3 commutes, that is,

f = f'og. If each B-object has an A-reflection then A is called a reflective
subcategory of B.

Figure 3: A reflective subcategory.

A (covariant) functor F' from A to B, denoted by F': A — B, is a mapping
that assigns to each A € Ob(A) a B-object F'(A), and to each A-morphism

AL aa B-morphism
F(a) 29 p(an.

Functors should preserve composities and identity morphisms, that is, F'(fo
g) = F(f) o F(g) when f o g is defined, and for all A € Ob(R), F(ida) =
idp(a). For any category A there exists the identity functor idy such that

ida(A RNy )=A RNy} Moreover, the composition of functors is defined
canonically.

A functor F': A — B is faithful if for any two A-objects A and A’, the
restriction F': hom, (A, A’) — homg(F(A), F(A’)) is injective. A functor
F: A — B is an isomorphism if there exists a functor G: B — A such that
G o F =1idy and F o G = idg. In this case G is denoted by F1

A concrete category over B is a pair (A, F'), where A and B are categories
and F' : A — B is a faithful functor. Concrete categories over Set are called
constructs, and it should not be confusing to write simply A meaning the
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construct (A, F'), when F' is known. Indeed, if A is an A-object and (A, F) is
a construct, then we usually demand that F(A) = U is the underlying set
for A and F(f) is the underlying mapping for morphisms, which should be
clear from the context. In the sequel, we give notions only for constructs
while originally in [2] they may be defined in a more general setting.

Let (A, F) and (B,G) be constructs. A functor C: (A, F) — (B,G) is a
concrete isomorphism if C is an isomorphism and F = G o C. Notice that if
C is a concrete isomorphism then C'~! is a concrete isomorphism. Moreover,
the composite of concrete isomorphisms is a concrete isomorphism.

Let (A, F') be a construct, A and A’ be A-objects such that F(A) = U.

An A-morphism A L A s called identity carried if F(f) = idy. Notice
that F' is injective on homy (A, A"), so it should not be confusing to say that
idy: F(A) — F(A') is an A-morphism, when we mean actually the identity
carried A-morphism A RINyT

Let (B, G) be a construct and (A, F') a subconstruct of (B, G). This means
that A is a subcategory of B, and E : A — B is the naturally associated
incluston functor, thus, F is injective on morphisms in a natural way, such
that F' = G o E. The subconstruct (A, G o E) is a reflective modification of
(B, G) if each B-object B has an identity carried A-reflection.

Let (A, F') be a construct. The A-fibre of U is a quasi-ordered class of all
A-objects A with F(A) = U, and the quasi-order < on the A-fibre of U is
defined by

A< A < idy: F(A) — F(A') is an A-morphism.

A construct (4, F) is fibre-small if all of its fibres are small classes, that is,
sets. Moreover, a construct (4, F) is fibre-complete if all of its fibres are
complete lattices.

4.2 Categorical Notes

In this subsection we study connections between L-sets, Alexandroff topo-
logical spaces, quasi-ordered sets, and Lg-sets, where (Lg, <) is a completely
distributive lattice introduced in Section 3.

On categorical point of view, we may consider a category for L-sets,
denoted by L-Set, such that its objects are all pairs (U, ), where ¢ is
an L-set on U and L is a fixed completely distributive lattice. Morphisms
(U, ) N (V,1) are all mappings f: U — V for which ¢ < 9 o f, and
composition of morphisms is the composition of mappings (see [10, 12]).

It may be useful to consider also a category of variable basis L-sets. Using
our notations, we loosely follow Eklund in [10] such that the category SetCdl
has triples (L, U, ¢) as its objects with L a completely distributive lattice and

¢ an L-set on U. Morphisms of SetCdl are (L, U, ¢) M (M,V,1)), where
g: L «+ M is a completely meet- and completely join-preserving mapping,
and f: U — V is such that foralla € M, x € U,

9(a) < p(z) = a< (o f)(z) (4.1)
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The composition of morphisms is defined canonically. For more detailed
discussion on categories for variable basis L-sets we refer [10], also.
Now, if in formula (4.1) we demand

go(’l,bof):go, (4'2)
then we have for all z,y € U,
e(y) <p(x) = (Wof)(y) <@of) () (4.3)

The insight of the work [10] will give us a suitable generalization for
the notion “fineness” discussed in Section 3 and, for example, in [20]. The
following definition is then given.

Definition 4.1. Let U, V be non-empty sets, L and M complete lattices,
@ an L-set on U, and ¥ an M-set on V. A mapping f: U — V is called
membership order-preserving, if for all z,y € U,

o(y) <p(x) = (Yo f)(y) <@ef) (@) (4.4)

Moreover, if f = idy then ¢ is called finer than v, or equivalently v is called
coarser than ¢, and we denote this by ¢ < 1. If we need to emphasize
the basis lattices and the underlying sets, we may also write (L,U, p) <
(M, U, ).

Notice that if L = M in Definition 4.1 and LV denotes the family of all
L-sets on U, then we can determine (LU, =), which is a quasi-ordered set.
Thus, Definition 4.1 gives formula (3.4) as a special case.

Clearly, the mapping f in formula (4.3) is membership order-preserving.
We also point out that there may be such membership order-preserving
mappings, which do not satisfy equation (4.2) for any g. Indeed, the next
example demonstrates this situation.

Example 4.2. Let U = V = {1,2,3}. Further, let the complete lattices L
and M, and the L-set ¢ on U and the M-set ¢ on V be depicted in Figure 4.

¢ ]
3 O o T 30/OT
2 O O a 2 O
1 O L 1 O o 1
U L 14 M

Figure 4: The L-set ¢ on U and the M-set 1 on V.

Let us define for all z € U, f(z) = z. It is clear that for all z,y € U,
e(y) < p(z) = (Wof)(y) < (Wof) (),
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thus, f is membership order-preserving. Moreover, because f = idy we have
¢ = 1, but there do not exist any g: L <+ M such that equation (4.2) would
be satisfied.

Example 4.2 motivates us to define another category for variable basis
L-sets.

Definition 4.3. The category CLSet has triples (L,U,¢) as its objects,

where L is a complete lattice and ¢ is an L-set on U. The morphisms

(L, U, p) 7, (M,V,1) are all membership order-preserving mappings

f: U — V. The composition of morphisms is the composition of mappings.

In the sequel, it is reasonable to consider (CLSet, F') as a construct such
that for all (L,U,¢) € Ob(CLSet), F ((L,U,¢)) = U and for each CLSet-
morphism we have naturally F(f) as the underlying mapping. Indeed, we
have earlier pointed out that L-sets may be used to represent knowledge,
also. In this sense U is understood to be endowed by an L-set ¢. An
illustrative example is presented for instance in [21].

Recall that if R is a quasi-order on U, then the corresponding Lg-set
p on U may be now denoted by the triple (Lg,U, p), where for all =z €
U, p(z) = {z}*. Notice that Lr and p are unique in the sense of the
discussion in Section 3. We can now consider the category RSet, which is
a full subcategory of CLSet with objects of the form (Lg, U, p). It is worth
noticing again that for any Lp there exists only one RSet-object, namely
(LR’ U, P)

At first, we show that the fineness relation has a special categorical
interpretation. The following is given:

Proposition 4.4. All CLSet-fibres are endowed by the fineness relation <.

Proof. Let (L,U, ¢) and (M, U, 1) be objects of CLSet, and let us define the
CLSet-fibre of U by assigning

(L,U,p) < (M,U,%) <= idy: F((L,U,¢)) = F((M,U,)),
idy is membership order-preserving.

By Definition 4.1 we can replace < by <. ]

Notice that each CLSet-fibre is a proper class. Indeed, let U = {1}, and
for any L € Ob(CLat) let us determine a special L-set, say 77, on U, such
that 77,(1) = T. Clearly, the class of objects (L, {1}, 77) form a proper class,
because Ob(CLat) is a proper class. It is also obvious that the CLSet-fibres
are usually (only) quasi-ordered classes. Thus, the category CLSet is not
fibre-complete.

In the following, we present some relationships between the categories
CLSet and RSet.

Proposition 4.5. The categories RSet and CLSet are equivalent categories.
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Proof. At first, we point out that RSet is a full subcategory of CLSet. It
is clear, also by the study in [27], that each CLSet-object (L, U, ) is iso-
morphic to an RSet-object (Lg, U, p) by choosing R being equal to <, and
choosing the identity carried morphism (L, U, ) AN (Lg,U, p). Clearly g is
an isomorphism by Definition 4.1. Hence, RSet is isomorphism-dense, which
means that RSet and CLSet are equivalent categories. O

Now, the following proposition is immediate by the proof of Proposition
4.5, while we still give here a detailed proof.

Proposition 4.6. The category RSet is a reflective subcategory of CLSet.

Proof. Notice that RSet is a full subcategory of CLSet. Let (L, U, ¢) be an
arbitrary CLSet-object, and let us choose an RSet-object (Lg, U, p), where R

is equal to $,. We also choose the identity carried morphism (L, U, ¢) BN
(Lgr,U, p). Now, for any morphism (L, U, ¢) 7, (Lg,V,0), where (Lg,V, o)

is an RSet-object, we have a unique morphism (Lg, U, p) AN (Lg,V,0) such
that the triangle in Figure 5 commutes. In fact, f and f' must be equal
underlying mappings. Therefore, g is an RSet-reflection for (L, U, ¢). O

(L7 U7 (10) —g> (LR7 U7 p)

g

(LS7 V7 0)

Figure 5: The category RSet is a reflective subcategory of CLSet.
Because the morphism
(L7 U, 90) i) (LR7 U, P)7 (45)

in the proof of Proposition 4.6 is identity carried, the category RSet is a
reflective modification of CLSet.

Recall that the category CLSet is not fibre-small nor fibre-complete.
Moreover, it is known that the category of all Alexandroff topological spaces
with all continuous mappings (see also [3, 5]), denoted in the current paper
by Alex, and Prost are isomorphic categories (see e.g. [3]). It is interesting
to find out that RSet is a fibre-small and fibre-complete construct, which is
isomorphic to Alex, for example. Indeed, we have the following;:

Proposition 4.7. The categories Alex and RSet are isomorphic categories.
Furthermore, RSet is fibre-small and fibre-complete.

Proof. Since Alex and Prost are isomorphic, there exists an isomorphism,
say F', between Alex and Prost. At first, we show that there is a concrete
isomorphism between Prost and RSet.
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Let us define a functor C': Prost — RSet such that
¢ (. R) L (v,8)) = (Lr,U,p) % (Ls,V;0),

where f and g are equal underlying mappings. Clearly, C is bijective on
objects, because R is equal to <, and S is equal to S,. Moreover, f is
order-preserving if and only if f is membership order-preserving. Indeed,
for all z,y € U,

tRy = f(z)S f(y)

if and only if for all z,y € U,

p(y) < p(z) = (o0 f)y) < (oo f)(=),

by Definition 4.1 and the discussion in Section 3. Obviously, the functor C
is a concrete isomorphism, and the triangle in Figure 6 commutes. Hence,

Alex —F> Prost

N

RSet

Figure 6: Isomorphisms between categories.

G = C o F is an isomorphism. Moreover, it is known that Prost is fibre-
small and fibre-complete. Actually, we can now completely substitute each
Prost-object by an RSet-object keeping the same underlying mappings (cf.
[2]). Hence, the order for the Prost-fibres can be substituted by the relation
=< for the RSet-fibres. Each RSet-fibre must now be a set and a complete
lattice. O

We end this discussion by the following: the category RSet might be a
natural choice for modelling (only) order based fuzziness, because RSet and
CLSet are equivalent categories, but RSet is also fibre-complete (see Remark
5.34 in [2], also).
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