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Abstract

We consider an algorithmic problem of computing the first, i.e., the most
meaningful digits of 2n (at base 3) and of the nth Fibonacci number. While
the decidability is trivial, efficient algorithms for those problems are not im-
mediate. We show, based on Baker’s inapproximability results of transcen-
dental numbers that both of the above problems can be solved in polynomial
time with respect to the length of n. We point out that our approach works
also for much more general expressions of algebraic numbers.

Keywords: Efficient computability, Linear forms of logarithms, Baker the-
ory
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1 Introduction

Algorithmic mathematics is a relatively new but rapidly growing research
topic. Algorithmic properties of simple arithmetic questions can be very
challenging. An example is the question whether the factorization of a num-
ber can be computed in polynomial time.

We consider here a related, but much simpler, algorithmic problems. In
the simplest setting we want to compute the first, i.e. the most meaningful,
digit of 2n at base 3. From the classical point of view the problem is trivial:
given n, compute the value 2n and output the first digit. When doing this
we are computing the value of the function which is among the simplest in
classical mathematics, an exponent function.

However, if we want to answer our problem in practice, we are in troubles.
The number of digits needed to print 2n exhausts very soon the amount of
paper available. Indeed, the length of 2n (at base 3) is exponential in terms
of the length of the input, i.e., of the representation of number n.

An interesting question arises. Does the above problem allow a polyno-
mial time solution? This can be interpreted as a question whether we can
compute some partial information, that is the first digit, in polynomial time,
while the whole information, the value 2n, surely requires exponential time.

We give a detailed solution to this problem. Actually our algorithm is
quite expected and straigthforward to find. The problematic thing is to
prove that it works correctly. We reduce this to some known, deep results
on inapproximability of transcendental numbers by rationals. Consequently,
our method is not specific to the function 2n, but works for powers of all
real algebraic numbers. A small modification makes it to work also for
Fibonacci numbers, which extends our previous work [7]. Neither it is im-
portant whether we ask the the first digit or, let us say, k first digits of the
nth power. On the other hand, our method would fail if the value of the
middle digit is asked.

Both 2n and Fibonacci numbers can be defined as linear recurrence series
with integer coefficients. It is worth emphasizing that computing the least

meaningful digits of any linear recurrence L(n) with integer coefficients is
an easy task: Any fixed number k of the least digits form an ultimately
periodic sequence, and the period can be found algorithmically. It follows
that there is a linear time algorithm for computing the (fixed) k least digits
of L(n).

From our result it follows that there is a polynomial time algorithm AL

for computing the (fixed) k most significant digits of L(n), if the charac-
teristic polynomial of L(n) has a dominant real root. We also show how
to design AL when L(n) is given, but notice carefully that we do not claim
that AL can be found in polynomial time from the description of L(n), only
that AL itself is a polynomial time algorithm.

This paper is organized as follows: In Section 2 we give the necessary def-
initions and preliminaries associated to this paper. In Section 3 we present
one of the basic building blocks of the main result, an algorithm for approx-
imating the logarithm of a natural numbers. Obviously the algorithm in
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Section 3 is well known, but for the sake of completeness, we present it here,
with a complexity analysis.

In Section 4 we concentrate on finding rational approximations of the
logarithms of real algebraic numbers. It is pointed out that, given a descrip-
tion of an algebraic number, an exponentially precise rational approximation
of the logarithm can be found in polynomial time. In the end of this section,
we also give some upper bounds on the description size of a real algebraic
number. These upper bounds are not needed for continuation, but we ex-
pect that some readers may be interested on them, so we included those
bounds in this representation.

In Section 5 we discuss the relationships between the previous issues
and linear recurrences. In Section 6 we give a simple example: 2n in ternary
basis. In that section, we also point out which are the difficulties of an
obvious algorithm for finding the length of 2n (presented in ternary). Section
7 is the most important for our main results. In that section we show, using
the results of Alan Baker, that the algorithms we present work correctly.

Finally, in Section 8 we show how to apply our method for Fibonacci
numbers. To conclude, in Section 9, we show how our algorithm for com-
puting the length of a given expression generalizes to computing a fixed
number of the most significant digits of that expression and discuss about
some extensions.

The polynomial time algorithms presented here are practically useless
due to the large constants. On the other hand, it is possible to modify them
into a useful form, but the complexity analysis is much simpler in the form
we present here.

2 Preliminaries and notations

By a linear recurrence L(n) we mean a sequence of integers defined by giving
fixed integers L(0), L(1), . . ., L(k− 1), and for n ≥ 0, L(n+k) is defined by
equation L(n+k)+c1L(n+k−1)+c2L(n+k−2)+ . . .+ckL(n) = 0, where
c1, . . ., ck are fixed integers. The characteristic polynomial of recurrence
L(n) is xk + c1x

k−1 + c2x
k−2 . . . + ck.

For any real number x, notation bxc stands for the largest integer M for
which inequality M ≤ x holds, and logd x stands for the d-ary logarithm of
x. We also use standard notation lnx for the natural logarithm of x.

Let d > 1 be an integer and M a natural number. Each natural number
M admits the unique representation as

M = a`−1d
`−1 + a`−2d

`−2 + . . . + a1d
1 + a0, (1)

where ai ∈ {0, 1, . . . , d− 1} and a`−1 6= 0. The word a`−1a`−2 . . . a0 is called
the d-ary representation of M , and denoted by Md. In the case d = 3 we
say that M3 is the ternary representation of M .

The length of d-ary representation of M is defined to be the lenght of word
Md and denoted by |Md|. Notice carefully that we use boldface subscripts
to separate between the numbers and their representations. Especially, |M |
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stands for the absolute value of M whereas |Md| stands for the length of the
word representing M .

Equation (1) gives easily inequalities M ≥ d`−1 and

M ≤ (d − 1)(d`−1 + d`−2 + . . . + d + 1) = d` − 1 < d`.

Combining these two estimates we see that d`−1 ≤ M < d`, or, equvalently,
` − 1 ≤ logd M < `, which is to say that |Md| = ` = blogd Mc + 1.

If x is a positive real number, we can write x uniquely as x = M + y,
where M is an integer and y ∈ [0, 1). We say that M is the integer part of
x. Also, each real number can be represented as

x = a`−1d
`−1+a`−2d

`−2+. . .+a1d+a0+a−1d
−1+a−2d

−2+a−3d
−3+. . . , (2)

where ai ∈ {0, 1, . . . , d − 1} and a`−1 6= 0. On the other hand, the represen-
tation (2) is not necessarily unique. For instance,

1 =
9

10
+

9

102
+

9

103
+ . . .

and

1 = 1 +
0

10
+

0

102
+

0

103
+ . . . .

Yet we can get an analogous result concerning the length of the integer part:
If x is given as in (2), and there exists an i > 0 such that a−i 6= d − 1, then

a−1d
−1 + a−2d

−2 + a−3d
−3 + . . .

< (d − 1)(
1

d
+

1

d2
+

1

d3
+ . . .) = 1,

and it follows that M = a`−1d
`−1 + a`−2d

`−2 + . . . + a1d + a0 is the integer
part of x (having length `). Then we can estimate x as

d`−1 ≤ x < (d − 1)(d`−1 + d`−2 + . . . + d + 1) + 1 = d`,

hence ` = blogd xc + 1 is the length of the integer part of x. On the other
hand, if a−i = d − 1 for each i ∈ {1, 2, 3, . . .}, then

a−1d
−1 + a−2d

−2 + a−3d
−3 + . . . = (d − 1)(

1

d
+

1

d2
+

1

d3
+ . . .) = 1

and, consequently, x = M is an integer and we can apply the aforementioned
formula for the integer part of x.

A polynomial q(x) = xn + an−1x
n−1 + . . . + a1x + a0 with rational coef-

ficients is a minimal polynomial of an algebraic number λ if (1) λ is a root
of q(x) and (2) if λ is a root of a (non-trivial) polynomial p(x) with rational
coefficients, then the degree of p(x) is at least n. Any algebraic number
λ (over Q) has the unique minimal polynomial q(x) belonging to Q[x]. If
c > 0 is the least common multiple of the nominators of the coefficients of
q(x), we say that cq(x) is the the defining polynomial of λ. Clearly the defin-
ing polynomial has integer coefficients and the same degree as the minimum
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polynomial. That degree is also called the degree of λ and denoted as deg(λ).
If p(x) = anxn + an−1x

n−1 + . . . + a1x + a0 is the defining polynomial of λ,
then the height of λ is defined to be H(λ) = max{|a0| , . . . , |an|}. The size

of λ is defined as S(λ) = |(an)d| + |(an−1)d| + . . . + |(a0)d| + S(I), where d
is some fixed base in which the coefficients are represented, and S(I) stands
for the size of the additional information which specifies uniquely one of the
roots of p(x). In the later sections, we specify a real root of a polynomial
by giving an interval which contains only one root of the polynomial.

For instance, if r = a
b

is a nonzero rational number such that gcd(a, b) =
1, the defining polynomial of r is bx − a, H(r) = max{|a| , |b|}, and S(r) =
|ad| + |bd|. In this case, an additional information to specify the root is of
course unnecessary.

As defined above, the size of an algebraic number depends on the number
system on which the coefficients are represented. On the other hand, since
logd M < |Md| ≤ logd M +1 holds for any integer M , and because logd M =
(ln d)−1 lnM , we see that the length of M is always Θ(lnM). Here and
hereafter, we exclude the unary representations.

3 Approximating the Logarithm of a Natural

Number

The issues treated in this section are very straightforward, but an interesting
consequence can be found: Recall that there is an efficient (polynomial time)
algorithm for modular exponentiation, whereas it is widely believed that
there is no polynomial-time algorithm for computing modular logarithms

(usually referred as to discrete logarithms). On the other hand, exponenti-

ation on natural numbers is certainly not computable in polynomial time,
since the result requires exponential space. In this section we point out that
the logarithm of a natural number can be computed efficiently in the sense
that it is possible to have exponentially precise approximations in polyno-
mial time. Therefore, it can be thought that, with respect to exponentiation
and logarithm extraction, easy–difficult setup is turned upside down when
moving from natural number computations to modular computations.

A polynomial time algorithm for computing exponentially precise ap-
proximations of the logarithm of a natural number is based on power series
of the logarithm function. It is a well-known fact that the series

ln(1 + x) = x − 1

2
x2 +

1

3
x3 − 1

4
x4 + . . .

converges if |x| < 1. By substituting x = −y we see that

ln
1

1 − y
= − ln(1 − y) = y +

1

2
y2 +

1

3
y3 +

1

4
y4 + . . . ,

and, a further substitution y = α−1
α

shows us that

lnα =
∞
∑

i=1

1

i

(

α − 1

α

)i

(3)
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converges for any fixed α > 1. Hereafter we assume that α > 1 is a fixed
integer.

The remainder of (3) can be easily estimated as
∣

∣

∣

∣

∣

∞
∑

i=M+1

1

i

(

α − 1

α

)i
∣

∣

∣

∣

∣

<

(

α − 1

α

)M+1 ∞
∑

i=0

(

α − 1

α

)i

= α

(

α − 1

α

)M+1

.

Thus, by choosing

M > 1 +
ln α

ε

ln α
α−1

(4)

the remainder is less than ε.
In the case ε = 1

nT we see that in order to approximate lnα within

precision 1
nT , it is sufficient to take

M = 1 +
T lnn + lnα

ln α
α−1

= Θ(T lnn)

first summands of the series (3). Notice that all the summands in the series
are positive, which implies that an approximation obtained by taking M
first terms is always smaller than the actual value of the logarithm.

Let us choose M = Θ(T lnn). Then, by writing

M
∑

i=1

1

i

(

α − 1

α

)i

=
1

M !αM

M
∑

i=1

M !

i
αM−i(α − 1)i (5)

we see that the nominator of (5) is at most M !αM , and its length is of order

ln(M !αM ) = M lnM + O(M) + M lnα = O(M lnM)

= O(T lnn ln(T lnn)) = O(ln n ln lnn),

assuming T fixed. An estimate for the numerator can be found in the similar
way: First, a trivial estimate shows that the numerator is at most M ·
M !αM (α − 1)M , the length of which is of order

lnM + M lnM + O(M) + M lnα + M ln(α − 1) = O(M lnM)

= O(lnn ln lnn)

similarly as in the case of the nominator.
Number M !, or, to be precise, its representation, can be computed in

time O(M(ln M !)2) = O(M3 ln2 M) = O(ln3 n(ln lnn)2). On the other
hand, number αM can be found in time O(M · (M lnα)2) = O(M3) =
O(ln3 n), and the product M !αM in time O(ln2 M !) = O((ln n ln lnn)2). It
follows that the nominator of (5) can be computed in time O(ln3 n(ln lnn)2).
A similar estimate can be found also for the numerator.

In the above estimations we used only the most well-known algorithms
for the arithmetical operations (e.g. the quadratic algorithm for multiplica-
tion). Consequently, the estimates could be improved by using more efficient
methods.

As a conclusion, we get the following theorem:
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Theorem 1. Let α > 1 and T be fixed natural numbers. For every natural n
it is possible to compute a rational number q < lnα such that lnα− q < 1

nT

in time O(ln3 n(ln lnn)2). Moreover, the size of q is O(lnn ln lnn).

Now, a rational approximation for logd α = ln α
ln d

can be found by finding
rational approximations r and s for both lnα and ln d, respectively.

Assume that lnα = r + ε1 and ln d = s + ε2, where 0 < ε1, ε2 ≤ ε. If we
further assume that s and r are so good approximations that s ≥ 1

2 (recall
that d ≥ 2 since we do not consider unary cases) and r > 0 holds, we can
estimate their ratio as

∣

∣

∣

∣

lnα

ln d
− r

s

∣

∣

∣

∣

=
|s lnα − r ln d|

s ln d
≤ 2 |ε1s − ε2r|

ln d
.

If ε1s−ε2r ≥ 0, then |ε1s − ε2r| = ε1s−ε2r ≤ ε1s < ε ln d, whereas ε1s−ε2r <
0 implies |ε1s − ε2r| = ε2r − ε1s ≤ ε2r < ε lnα. In both cases,

∣

∣

∣

∣

lnα

ln d
− r

s

∣

∣

∣

∣

≤ 2 |ε1s − ε2r|
ln d

≤ 2εmax{ln d, ln α}
lnd

= Kε,

where K = 2 max{ln d,lnα}
ln d

does not depend on s or r. Hence we get the
following corollary.

Corollary 1. Let α > 1, d > 1 and T be fixed natural numbers. For every

natural n it is possible to compute in time O(ln3 n(ln lnn)2) a rational num-

ber q such that |logd α − q| < 1
nT . Moreover, the size of q is O(lnn ln lnn).

4 Approximating the Logarithms of

Algebraic Numbers

Approximations of the logarithms of algebraic numbers are based on comput-
ing logarithms of their rational approximations. Because of the continuity of
the logarithm and the triangle inequality, we can find good approximations
of logarithms of algebraic numbers, too. Good approximations of algebraic
numbers are needed when outlining an algorithm for computing the length
of Fibonacci numbers, for instance.

First we have to agree on how to describe a real algebraic number. Al-
gebraic numbers of degree 1, i.e., rational numbers are of course described
by simply giving the numerator and nominator, so we can assume that the
degree is at least 2.

Definition 1. A description of a real, irrational algebraic number λ (of
degree at least 2) consists of a polynomial P (x) ∈ Z[x] having λ as a root,
together with two rational numbers µ0 < ν0 such that λ ∈ [µ0, ν0] and λ is
the only zero of P (x) in the interval [µ0, ν0].

Remark 1. The theorem of Sturm [3], [8] provides an algorithm for deter-
mining the number of roots of a given polynomial in the interval [µ0, ν0].
Therefore we can actually decide, whether a given polynomial and an inter-
val is indeed an acceptable representation of a real algebraic number.
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It is quite straightforward to find rational approximations for λ: As a first
approximation, we set λ0 = µ0, and can assume, without loss of generality,
that P (µ0) < 0, P (ν0) > 0. Further approximations are obtained by binary

search: If P ( 1
2(µi + νi)) > 0, we define µi+1 = µi, νi+1 = 1

2 (µi + νi),
and λi+1 = µi+1. On the other hand, if P ( 1

2(µi + νi)) < 0, we define
µi+1 = 1

2(µi +νi), νi+1 = νi, and λi+1 = µi+1. It is clear that for each i ≥ 0,
λ ∈ [µi, νi], and P (µi) < 0, P (νi) > 0, and that λ is the only zero of P (x)
in the interval [µi, νi]. Denoting di = νi −µi it is clear that di = d0

2i for each

i ≥ 0, which implies that |λi − λ| ≤ d0

2i .
It is worth mentioning a few words about the complexity of computing

the approximations of λ. First, since each polynomial has only finitely many
zeros, numbers µ0 and ν0 exist. Moreover, the coefficients and the degree
d of the polynomial having λ as zero together with numbers µ0 and ν0 (no
matter how they are chosen) are regarded as constants. Therefore, if q is
a rational number having size L, P (q) can be computed in time O(L2).
Assume then that rational numbers p and q have sizes at most L. A simple
calculation shows that the average 1

2 (p + q) has size at most L + 2, which
means that after i iterations, the size of the approximating λi has size at
most L + 2i.

Lemma 1. Assume that a description of a real algebraic number λ and a

natural number T is given. Given n as an input, there exists a polynomial

time algorithm computing a rational number r such that

|r − λ| ≤ 1

nT
.

Moreover, the size of r is polynomial in lnn.

Proof. We only need to estimate how many iterations are needed to achieve
the required precision. As seen previously, |λi − λ| ≤ d0

2i , and d0

2i = 1
nT , when

i = T log2 n + log2 d0 = O(lnn).

Remark 2. Notice that the above algorithm is polynomial also in the de-
scription size of the given algebraic number, not only on lnn.

Lemma 2. Given an algebraic number λ > 1, natural number T , and in-

put n, there exists a polynomial-time algorithm which computes a rational

number s such that

|s − lnλ| ≤ 1

nT
.

Moreover, number s has polynomial size in log n.

Proof. By the previous lemma, we can compute in polynomial time an ap-
proximation r of λ such that |r − λ| ≤ 1

2nT . Without loss of generality, we

can assume 1 ≤ r < λ. By the mean-value theorem, lnλ − ln r = 1
ξ
(λ − r),

where ξ ∈ (r, λ). Then |lnλ − ln r| ≤ |λ − r|, so it suffices to find a rational
approximation s of ln r so precise that |s − ln r| ≤ 1

2nT . It follows that

|s − lnλ| = |s − ln r + ln r − lnλ| ≤ |s − ln r| + |ln r − lnλ|

≤ 1

2nT
+

1

2nT
=

1

nT
.
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It remains to demostrate that a rational approximation s of ln r is possible
to compute in polynomial time and has the claimed size.

Let r = α
β
, where α and β are integers. The obvious strategy for com-

puting a rational approximation of ln r = ln α
β

= lnα − lnβ works: Since r

has size S = O(lnk n) for some fixed k, it follows that α and β both have
lengths proportional to lnk n. As discussed in Section 3, it is possible to find
a rational approximations sα and sβ for α and β respectively (with precision

1
4nT ) in time polynomial with respect to lnk n. Therefore it is also possible
to compute s = sα − sβ in polynomial time, and

|s − ln r| = |sα − sβ − lnα + lnβ| ≤ |sα − lnα| + |sβ − lnβ|

≤ 1

4nT
+

1

4nT
=

1

2nT
.

It is straightforward to see that the size of s is polynomial in lnn.

Remark 3. In the previous lemma we required λ > 1. Values 0 < λ < 1
can be treated by noticing that ln 1

λ
= − lnλ.

To conclude this section, we find some upper bounds for numbers µ0 and
ν0. In Definition 1 we can of course choose

P (x) = pdx
d + pd−1x

d−1 . . . + p1x + p0 (6)

to be the defining polynomial of λ. If λi any root of (6) with |λi| ≥ 1, then

|λi|d ≤ pd |λi|d =
∣

∣

∣
pd−1x

d−1 + . . . + p1x + p0

∣

∣

∣

≤ H(λ) |λi|d−1 + . . . + H(λ) |λi| + H(λi)

≤ deg(λ)H(λ) |λi|d−1

It follows that |λi| ≤ deg(λ)H(λ), and consequently numbers µ0 and ν0 can
be chosen such that their absolute values are at most deg(λ)H(λ).

It is also possible to estimate the sizes of numbers µ0 and ν0. We will
introduce the following lemmata for this estimation.

Lemma 3. Let d = deg(λ) and H = H(λ) be the degree and the height of

λ. Then the distance between two distinct roots of a defining polynomial of

λ is at least
1

(2d)
d2

2 H
d(d+1)

2

.

Proof. Let

P (x) = pd(x − λ1) · . . . (x − λd).

All the roots λi are distinct, since P (x) is a scalar multiple of the minimal
polynomial of λ. Also, the discriminant

d(P ) = p2d−2
d

∏

i<j

(λi − λj)
2
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is an integer [9]. If m = |λr − λs| is the minimal distance between two
different roots of P (x) and M the corresponding maximal distance, we have

|d(P )| = p2d−2
d · m2 ·

∏

i<j

(i,j)6=(r,s)

|λi − λj|2

≤ p2d−2
d · m2 · (M2)

d(d−1)
2

−1

≤ H2d−2 · m2 · (2dH)d2−d−2

< m2(2d)d2
Hd2+d.

Now that d(P ) is a nonzero integer, so we have that |d(P )| ≥ 1, and conse-
quently

m2 >
1

(2d)d2Hd2+d
,

which implies

m >
1

(2d)
d2

2 H
d(d+1)

2

.

Lemma 4. An interval [a, b] of length ε = b − a > 0 contains a rational

number of size O(log a
ε
)

Proof. If ε ≥ 1, then [a, b] contains an integer bac+1, which has size O(log a).
Assume then that ε < 1, and choose n ≥ logd

1
ε

least possible. Then the
interval [dna, dnb] contains an integer bdnac + 1, which has size at most
n + logd(a + 1) = O(log a

ε
). Consequently, [a, b] contains a rational number

bdnac+1
dn , which has size O(log a

ε
).

We can now estimate the sizes of numbers µ0 and ν0 needed in the
description of an algebraic number: They can be chosen in such a way that
their absolute values are at most dH, and they are found in an interval of
length at least 1

(2d)
d2
2 H

d(d+1)
2

. Therefore, they can be chosen such that their

size is

O(log(dH(2d)
d2

2 H
d(d+1)

2 )) = O(d2 log(Hd)).

On the other hand, the description size of the defining polynomial is

O(d log H),

so we can conclude that a real algebraic number λ has a description size
O(d2 log(Hd)).

Remark 4. The lower bound on the minimum distance between the roots
can be improved [10]. In [10], also an upper bound for the distance between
two distinct roots of a polynomial is given: polynomial p(x) = xd−2(ax−1)2

has distinct roots such that their distance is less than 2

a
d−1
2

.
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5 Approximating the Logarithm of a Linear

Combination of Powers of Algebraic Numbers

The issues handled in this section are needed when computing the length of
Fibonacci numbers.

The combinations we study in this section are of form

G(n) = c1α
n
1 + . . . + ckα

n
k , (7)

where c1, . . ., ck, and α1, . . ., αk are fixed algebraic numbers, given as in
Definition 1. We also assume that |α1| > max{|α2| , . . . , |αk|}. Notice that
all the mentioned inequalities are decidable. In fact, the above inequalities
can be decided in polynomial time (in the description of the algebraic num-
bers), but we will not need that knowledge in the continuation. Our aim is
to show how to design a polynomial time algorithm for computing the length
of the real part of G(n), and the most meaningful digit of G(n) (in d-ary
basis with d ≥ 3). We do not claim that the polynomial time algorithms for
the aforementioned purposes can be found in polynomial time (with respect
to the description of G(n)) or that the sizes of those algorithms are poly-
nomial in the description size of G(n), we only claim that these polynomial
time algorithms exists and can be found algorithmically. Without loss of
generality, we can assume that α1 > 0 and c1 > 0.

Remark 5. Expressions like (7) arise, for example, when studying linear
recurrences. If the polynomial of the recurrence L(n) has only simple roots
and a unique root with maximal absolute value, then the solution to the
recurrence looks exactly like (7). For example, the n-th Fibbonacci number
is equal to

Fn =
1√
5

(1 +
√

5

2

)n

− 1√
5

(1 −
√

5

2

)n

.

Remark 6. Given a linear recurrence L(n), it is decidable whether its char-
acteristic polynomial has simple roots and whether the root with maximal
absolute value is real. It is also possible to recover expression (7) when L(n)
is given, but we do not claim that it can be done in polynomial time.

As discussed in Section 2, we can obtain the length of the integer part of
G(n) (in d-ary representation) by computing the quantity blogd G(n)c + 1.
For that purpose, we first write G(n) as

G(n) = c1α
n
1

(

1 +
c2

c1

(α2

α1

)n
+ . . . +

ck

c1

(αk

α1

)n
)

.

Denoting c = max
{ ∣

∣

∣

c2
c1

∣

∣

∣
, . . . ,

∣

∣

∣

ck

c1

∣

∣

∣

}

and β = max
{ ∣

∣

∣

α2
α1

∣

∣

∣
, . . . ,

∣

∣

∣

αk

α1

∣

∣

∣

}

we have

an estimation

∣

∣

∣

∣

c2

c1

(α2

α1

)n
+ . . . +

ck

c1

(αk

α1

)n

∣

∣

∣

∣

≤ c(k − 1)βn.
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Now that 0 < β < 1, the quantity c(k − 1)βn is less than 1 if n is large
enough. For such values of n,

lnG(n) = ln c1 + n lnα1 + R1(n),

where

|R1(n)| =

∣

∣

∣

∣

ln
(

1 +
c2

c1

(α2

α1

)n
+ . . . +

ck

c1

(αk

α1

)n
)

∣

∣

∣

∣

≤ c(k − 1)βn.

Therefore,
logd G(n) = logd c1 + n logd α1 + R(n), (8)

where

|R(n)| ≤ c(k − 1)

ln d
βn ≤ 1

nC+1
(9)

for each positive constant C if n is large enough.
For determining how large n should be chosen to satisfy the rightmost

inequality of (9), notice first that

c(k − 1)

lnd
βn < 2c(k − 1)βn,

and that inequality

2c(k − 1)βn ≤ 1

nC+1

is implied by

n ln
1

β
− (C + 1) ln n − ln 2c(k − 1) > 0,

because ln 1
β

> 0. It is easy to see that there exists M > 0 such that

f(x) = x ln
1

β
− (C + 1) ln x − ln 2c(k − 1) > 0

when x > M . In fact, since

f ′(x) = ln
1

β
− C + 1

x
,

function f(x) is increasing when

x ≥ C + 1

ln 1
β

.

Now since we assume that all the involved algebraic numbers are given as
in Definition 1, it is possible to algorithmically find an integer M ′ such that
f(x) is increasing when x > M ′. Moreover, since we know that f(x) tends
to infinity as x grows, we can also find algorithmically an integer M such
that f(x) > 0 whenever x > M . But this is to say that, given C, we can
algoritmically find an integer M such that

|R(n)| ≤ 1

nC+1

11



when n ≥ M . In fact, the true vanishing rate of |R(n)| is exponential,
and consequently the above estimation is quite weak. However, the above
estimation is good enough for our purposes.

Expression (8) is of couse a good starting point when trying to find out
blogd G(n)c + 1, the length of the d-ary representation of the real part of
G(n). However, here are some problematic things when using (8). By a
simple example G(n) = 2n, we point out in the next section which are the
problems occurring.

Notice carefully we always regard quantities k, c1, . . ., ck, α1, . . ., αk in
(7) as fixed constants, and only n is the input variable to those algorithms we
describe. It follows that the computational time to discover aforementioned
M , for instance, is irrelevant – the time needed for that can be regarded
constant.

Remark 7. A general linear recurrence L(n) has solution

G(n) = P1(n)αn
1 + . . . + Pk(n)αn

k , (10)

where each Pi is a polynomial having deg Pi ≤ mi−1, where mi is the multi-
plicity of αi as the root of the characteristic polynomial of the recurrence [6].
Notice that the multiplicities of the roots, as well as representation (10) can
be found algorithmically (probably not in polynomial time) when L(n) is
given. If α1 is the unique root of maximal absolute value (with multiplicity
1), then P1 = c1 is a constant and it is possible to find an expression

logd G(n) = logd c1 + n logd α1 + R(n)

as in (8). Furthermore, given C > 0, it is possible to find algorithmically an
integer M such that

|R(n)| ≤ 1

nC+1
,

whenever n ≥ M . Hence all the cases where G(n) has a matrix repre-
sentation with nonnegative entries are covered as well, due to the Perron–
Frobenius Theorem, see [4].

6 An Example: 2n in Ternary Basis

In this section we introduce algorithms for computing |(2n)3|, the length
of ternary representation of 2n, and the first symbol of (2n)3, and analyze
their complexities. The function considered is a special case of (7) with
k = 1, c1 = 1, and α1 = 2, so G(n) = 2n. In the following section we prove
that the algorithms represented work correctly. Here we begin with some
observations.

Without loss of generality we can assume that the input n is given in bi-
nary representation, so the size of an input is |n2|, which, as seen previously,
is Θ(lnn). We can therefore state our problem rigorously as follows: given
an input n2 ∈ {0, 1}∗, compute (2n)3 ∈ {0, 1, 2}∗ , the ternary representa-
tion of 2n. As seen in Section 2, the size of the input is Θ(lnn), whereas

12



n (2n)3 |(2n)3| b0.6nc + 1
1 2 1 1
2 11 2 2
3 22 2 2
4 121 3 3
5 1012 4 4
6 2101 4 4
7 11202 5 5
8 100111 6 5(!)
9 200222 6 6
10 1101221 7 7
11 2210212 7 7
12 12121201 8 8
13 102020102 9 8(!)

Figure 1: Ternary representations of 2n for n = 1, 2, . . . , 13.

the output size is Θ(n), which is exponential in the input size, and it follows
that the problem is intractable by necessity.

On the other hand, computing n2 7→ |(2n)3| is a very different problem.
Now the output should be the length of the ternary representation of 2n,
or, from the algorithmic point of view, a word which represents the length.
Again, without loss of generality, we can require the output in binary, which
means that the output size would be

||(2n)3|2| = blog2 |(2n)3|c + 1 ≤ log2(bn log3 2c + 1) + 1

≤ log2(n log3 2 + n) + 1 = log2 n + log2(log3 2 + 1) + 1.

Therefore, the output size is only O(lnn).
Equation

|(2n)3| = bn log3 2c + 1 (11)

gives a good starting point for computing the length, but the straightforward
utilization of (11) contains at least two problematic features.

First, knowing n2 and log3 2 precisely enough allows us to compute the
product n log3 2, but it must be noted that we should be able to compute
log3 2 ≈ 0.6 at least up to precision 1

n
, since for larger imprecisions the

outcome could be incorrect. This is illustrated in the rightmost column
of Figure 1. In the previous sections, we have seen that this problem is
easy to handle, since exponentially precise approximations of log3 2 can be
computed in polynomial time.

The second, and more severe problem is, that an approximation for
log3 2, does not directly offer any tools to compute bn log3 2c, no matter
how precise the approximation is! To see this, let βn, n = 1, 2, 3, . . . be
a sequence of irrational numbers, and bn, n = 1, 2, 3, . . ., be a sequence of
their very precise rational approximations, |bn − βn| � 1 for each n. Let us
take some n, and assume, for instance, that bn < βn. If the interval (bn, βn)

13



happens to contain an integer M , then bbnc = M − 1, whereas the correct
value is bβnc = M . In other words, if we do not have apriori knowledge on
the distance between βn and the nearest integer M , we cannot certainly find
the value bβnc by using only an approximation bn of βn. In Section 7, we
use deep results of Alan Baker to solve this problem.

When computing the most significant (leftmost) digit of (2n)3, we note
that an estimation similar to that one used in Section 2 shows that if (2n)3 ∈
1{0, 1, 2}`−1 , then

3`−1 ≤ 2n < 2 · 3`−1,

whereas (2n)3 ∈ 2{0, 1, 2}`−1 implies

2 · 3`−1 ≤ 2n < 3`,

where ` = |(2n)3|. Thus, to recover the the most significant digit of (2n)3 is
to decide whether or not the inequality

2 · 3`−1 ≤ 2n ⇐⇒ 3`−1 ≤ 2n−1 (12)

holds. Inequality (12) is equivalent to

` − 1 ≤ (n − 1) log3 2, (13)

and (13) will be used for finding the first digit of (2n)3.
It should be emphasized that the crucial point in these investigations

is the expression blog3 2nc. In the following sections, we will study more
general expressions of form blogd G(n)c, where G is as in (7).

Now we are ready to describe the algorithms. The constant C occurring
in the algorithms emerges from Baker’s theorem and will be explained in
the next section.

Algorithm 1: The length of the ternary representation of 2n

Input: A natural number n in binary representation.
Output: |(2n)3| in binary representation.

1. Compute a rational approximation q of log3 2 so precise that

|q − log3 2| ≤ 1

nC+2
.

2. Compute qn.

3. Compute bqnc.

4. Output bqnc + 1.

In Section 3 we showed that step 1 can be done in time O(ln3 n(ln lnn)2),
and, moreover, the approximating q has size O(lnn ln lnn). Especially, the
numerator of q = a

b
has size O(lnn ln lnn), and hence the multiplication of

q by n in step 2 can be done in time O((ln n ln lnn)2), and the resulting
number qn = an

b
has size O(lnn ln lnn + lnn) = O(lnn ln lnn). For the

14



third step, an ordinary division of an by b is enough to reveal bqnc, and
because of the numerator and the nominator sizes, it can be done in time
O((lnn ln lnn)2). As verified earlier, the outcoming number has size O(lnn),
which implies that the last computation included in the fourth step can be
performed in time O(lnn).

As a conclusion: Computation n2 7→ |(2n)3|2 can be performed in time
O(ln3 n(ln lnn)2), or, to put it into other format, in time O(|n2|3 ln2 |n2|).

To prove the correctness, we should show that, for a suitably chosen C,
equation bqnc = bn log3 2c holds. This is the topic of the following sections.

Algorithm 2: The most significant digit of the ternary represen-
tation of 2n.
Input: A natural number n in binary representation.
Output: The leftmost digit of string (2n)3.

1. Compute ` = |(2n)3| by using Algorithm 1.

2. Compute a rational approximation q of log3 2 so precise that

|q − log3 2| ≤ 1

(n − 1)C+2
.

3. Compute numbers ` − 1 and (n − 1)q.

4. Decide, whether ` − 1 ≤ (n − 1)q.

5. If ` − 1 ≤ (n − 1)q, output 2, otherwise output 1.

The complexity analysis of Algorithm 2 is similar to that of the Algo-
rithm 1, and the outcoming complexity is O(|n2|3 ln2 |n2|).

7 Baker’s Theorem and Its Consequences

Let us recall the combinations

G(n) = c1α
n
1 + . . . + ckα

n
k (14)

of Section 5. As previously, we require that α1 > 0, c1 > 0, and that
α1 > max{|α2| , . . . , |αk|}. In the previous section we studied a special
case of (14) with k = 1, c1 = 1, and α1 = 2. The problematic issue,
computing proving that blogd G(n)c, can be correctly computed by using
rational approximations, is treated in this section.

The information for proving the corretness is provided in the following
theorem, the proof can be found in [1].

Theorem 2 (A. Baker, 1966). Let α1, . . ., αk be non-zero algebraic num-

bers with degrees at most d and heights at most A. Further, let β0, . . ., βk be

algebraic numbers with degrees at most d and heigths at most B ≥ 2. Then

for

Λ = β0 + β1 lnα1 + . . . + βk lnαk
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we have either Λ = 0 or |Λ| > B−C , where C is an algorithmically com-

putable number depending only on k, d, A, and on the principal value for

the logarithms is chosen.1

Remark 8. In the case when β0 = 0 and β1, . . ., βk ∈ Z, it has been shown
that the theorem holds with C = C ′(lnA)k ln(ln A)k and C ′ = (16kd)200k

[2].

Choosing k = 3, β0 = 0, β1 = −n, β2 = −1, β3 = M , α2 = c1, and
α3 = d we have

Λ = −n lnα1 − ln c1 + M ln d.

With these choices, H(β1) = n, H(β2) = 1, and H(β3) = M , which leads us
to a special case of Baker’s theorem, strong enough for our purposes, stated
as follows:

Theorem 3. Let M be an integer. If M ≥ 1, n ≥ 1
a
M for a given constant

a ≥ 1, and M ln d − ln c1 − n lnα1 6= 0, then

|M ln d − ln c1 − n lnα1| >
1

aC

1

nC
,

where C > 0 is an algorithmically computable constant.

Proof. In this case, we can choose B = an ≥ max{1, n,M}.

Recall from Section 5 that for G(n) as in (14) is possible to find a rep-
resentation

logd G(n) = logd c1 + n logd α1 + R(n),

where, for any given C > 0 it is possible to find algorithmically an integer
MR such that

|R(n)| ≤ 1

nC+1

when n ≥ MR.

For the statement of the following theorem, let G(n) be as before, and a,
c1, α1, d, and C be as in Theorem 3. Let also r ≈ logd c1 and q ≈ logd α1 be
rational approximations such that |r − logd c1| ≤ 1

nC+1 and |q − logd α1| ≤
1

nC+2 . Assume moreover that a number MI with the following property is
known: c1α

n
1 is not an integer if n ≥ MI .

Theorem 4. If n is large enough, then M ≤ logd G(n) if and only if M ≤
r + nq.

Proof. Assume first that M ≤ logd G(n) but M > r + nq, and that n ≥
max{MI ,MR, 4aC ln d}.

First we have that

1Over complex numbers, logarithm is generally many-valued. Any branch of the loga-

rithm could be used, but the choise of the branch may affect the value of C.
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|logd G(n) − M | = logd G(n) − M

= logd c1 + n logd α1 + R(n) − M

< logd c1 + n logd α1 + R(n) − r − nq

≤ |logd c1 − r| + n |logd α1 − q| + 1

nC+1

≤ 1

nC+1
+ n

1

nC+2
+

1

nC+1
=

3

nC+1
. (15)

On the other hand Theorem 3 implies that

|M − logd G(n)| = |M − logd c1 − n logd α1 − R(n)|
≥ |M − logd c1 − n logd α1| − |R(n)|

=
1

ln d
|M lnd − ln c1 − n lnα1| − |R(n)|

>
1

ln d

1

aC

1

nC
− 1

nC+1
. (16)

Inequalities (15) and (16) together give

1

ln d

1

aC

1

nC
− 1

nC+1
<

3

nC+1
,

which is equivalent to
n < 4aC ln d.

By the choice of n, this is a contradiction. Therefore M ≤ logd G(n) implies
M ≤ r + nq if n is sufficiently large. Similarly it can be shown that the
inequality M ≤ r + nq implies M ≤ logd G(n) if n is large enough.

Remark 9. Earlier we required that c1α
n
1 is not an integer when n ≥ MI .

The reason for this requirement is the following: if c1α
n
1 is not an integer,

it follows that M lnd − ln c1 − n lnα1 6= 0 for each natural number M , and
the Theorem 3 applies. It would be enough to require that c1α

M
1 is not a

power of d. It should also be noticed that, when studying linear recurrences
with integer coefficients (assuming that the characteristic polynomial has
simple dominating root), it is sometimes clear that c1α

n
1 ceases to be an

integer when n is large enough. For instance, when thinking about Fibonacci
numbers, c1α

n
1+“remainder” is always an integer, whereas the remainder

tends to zero but is never zero.

Theorem 5. Let the notations be chosen as before. It n is sufficiently large,

then blogd G(n)c = br + nqc.
Proof. Let M = br + nqc. Then M ≤ r + nq, and we can find a constant a
such that n ≥ 1

a
M , if n is large enough. It also follows that

M ≤ r + nq < M + 1 (17)

and the Theorem 4 implies immediately that M ≤ logd G(n), hence M ≤
blogd G(n)c. On the other hand, if M < blogd G(n)c strictly, then clearly
M +1 ≤ logd G(n), which, by Theorem 4, implies that M +1 ≤ r+nq. This
contradicts (17) and therefore blogd G(n)c = M = br + nqc.
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The correctness of the algorithms of Section 6

In Algorithm 1, we used an approximation q of log3 2 so sharp that

|q − log3 2| ≤ 1

nC+2
.

It remains to show that bqnc = bn log3 2c. But this is very straightforward:
We can now take a = c1 = d = MI = 1, r = 0, and C = 13.3 (that this
value of C can be chosen, see [11]) and apply Theorems 4 and 5 to see that
bn log3 2c = bqnc. Similarly, Algorithm 2 is correct.

Remark 10. In most cases, value bn log3 2c can be derived from a rational
approximation of log3 2 far more imprecise than that one required in Step
1 of Algorithm 1. It follows immediately that Algorithm 1 is not optimal
for computing bn log3 2c in most cases, and a more efficient algorithm would
compute rational approximations of log3 2 as long as the value bn log3 2c
can be decided with certainty. Step 1 of Algorithm 1 gives an upper bound
on how long one must compute the approximations. However, Algorithm
1 is notationally and conceptually simpler than more advanced ones. An
analogous idea can be used to modify the algorithm of the next section into
a practically useful one.

8 Fibonacci Numbers

As an other example, we mention Fibonacci numbers defined by the recur-
rence

Fn = Fn−1 + Fn−2 (18)

with initial values F0 = F1 = 1. It is a well-known fact that the following
closed form expression holds:

Fn =
1√
5

(1 +
√

5

2

)n

− 1√
5

(1 −
√

5

2

)n

, (19)

where the numbers
1 ±

√
5

2

are the roots of the characteristic equation

x2 − x − 1 = 0

of the recurrence (18). Now since

∣

∣

∣

∣

∣

1 +
√

5

2

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

∣

1 −
√

5

2

∣

∣

∣

∣

∣

,

we can apply the results of the previous section to design a polynomial time
algorithm (with respect to the length of n) for computing the length of Fn,
the nth Fibonacci number. We will demonstrate how to do that for ternary
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representation. The polynomial time algorithm presented here is of course
practically useless due to a large constant associated to Baker’s Theorem.

Using the previous notations we have c1 = 1√
5
, α1 = 1+

√
5

2 , and

G(n) = Fn =
1√
5

(1 +
√

5

2

)n(

1 −
(1 −

√
5

1 +
√

5

)n)

.

It is easy to verify that
∣

∣

∣

1−
√

5
1+

√
5

∣

∣

∣
< 2/5 and since ln 3 > 1, we have

log3 Fn = log3
1√
5

+ n log3
1 +

√
5

2
+ R(n),

where |R(n)| < ( 2
5)n. For computing rational approximations for c1 = 1√

5

and α1 = 1+
√

5
2 we can fix polynomials p1(x) = 5x2−1 and p2(x) = x2−x−1,

respectively. The additional information required (interval) for p1(x) can be
chosen as [0, 1], and [1, 2] for p2(x).

To find the constant a of Theorems 4 and 5, we should keep the proof
of Theorem 5 in mind: we are studying expressions of form r + nq, where r

and q are rational approximations of c1 = 1√
5

and α1 = 1+
√

5
2 , respectively.

Because of the choise of the initial intervals, r ∈ [0, 1] and q ∈ [1, 2] always.
Now if M = br +nqc, then M ≤ r +nq ≤ 1+2n, and n ≥ 1

2(M − 1) ≥ 1
3M ,

if M ≥ 3. Therefore, we can choose a = 3 and we know that n ≥ 1
3M ,

whenever M ≥ 3 (we need this to satisfy Theorem 3). But now M + 1 ≥
r + nq implies that M ≥ −1 + r + nq ≥ −1 + n, so we know that M ≥ 3
whenever n ≥ 4.

Now deg( 1√
5
) = 2, deg( 1+

√
5

2 ) =, H( 1√
5
) = 5, H( 1+

√
5

2 ) = 1, and accord-

ing to [2] we can choose C = (16 · 3 · 2)200·3 · (ln 5)3 · ln(ln 5)3 ≈ 1.37 · 101190

3 such that either

M ln 3 − ln
1√
5
− n ln

1 +
√

5

2
= 0 (20)

or
∣

∣

∣

∣

∣

M ln 3 − ln
1√
5
− n ln

1 +
√

5

2

∣

∣

∣

∣

∣

≥ 1

BC
,

where B ≥ max{1, n,M}. Whenever n ≥ 4, we will have 3n ≥ M , and we
can choose B = 3n to get

∣

∣

∣

∣

∣

M ln 3 − ln
1√
5
− n ln

1 +
√

5

2

∣

∣

∣

∣

∣

≥ 1

3C

1

nC
(21)

whenever n ≥ 4, if (20) does not hold. On the other hand, (20) can be
written equivalently as

3M =
1√
5

(1 +
√

5

2

)n

, (22)
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and this equation is impossible, since the left hand side is not an integer.
To see this, we recall that

Fn =
1√
5

(1 +
√

5

2

)n

− 1√
5

(1 −
√

5

2

)n

,

and that
∣

∣

∣

1−
√

5
2

∣

∣

∣
< 2

3 . Therefore, for n ≥ 4, the value of the right hand side

of (22) is Fn plus a number with absolute value smaller than 1, and that
cannot be an integer. As a conclusion, we have that (21) holds for each
n ≥ 4.

The next step in designing the algorithm is to find an integer MR such
that

|R(n)| ≤ 1

nC+1
(23)

whenever n ≥ MR. Knowing that |R(n)| < ( 2
5 )n it is straightforward to see

that (23) holds whenever n ≥ 1.5 · 101190 = MR.

Choose M = max{1,MR, 4 · 3C · 2, 4} (a huge number!). Now that
ln 3 < 2, Theorems 4 and 5 hold whenever n ≥ M .

Algorithm 3: The length of the ternary representation of Fn

Input: A natural number n in binary representation.

Output: |(Fn)3| in binary representation.

1. If n < M , compute Fn by using the recursion, give the answer and
stop.

2. Use the method of Section 4 to compute a rational approximation q

of log3
1+

√
5

2 so precise that

∣

∣

∣

∣

∣

q − log3

1 +
√

5

2

∣

∣

∣

∣

∣

≤ 1

nC+2
.

3. Use the method of Section 4 to compute a rational approximation r
of log3

1√
5

so precise that

∣

∣

∣

∣

r − log3
1√
5

∣

∣

∣

∣

≤ 1

nC+1
.

4. Compute r + qn.

5. Compute br + qnc.

6. Output br + qnc + 1.

As in the case of Algorithm 1, Theorems 4 and 5 imply the correctness
of the Algorithm 3 immediately.
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9 Extensions and Open Problems

9.1 Two First Digits

If k is fixed, we can extend the above procedures to compute in polynomial
time the k most significant digit of any expression G(n) as in (14). We out-
line here briefly how to compute two first digits of the ternary representation
of G(n). The extension to k > 2 and any base is straightforward. It must
be emphasized that the algorithm for computing the k first digits of G(n)
will be exponential in k, but polynomial in n.

For extracting the two first digits of a given number N given in base 3,
we first denote ` = |N3| (if N = G(n) as in (14), then ` is computable in
polynomial time). Estimations similar to those ones in Section 2 show that,
if m1 ∈ {1, 2} and m2 ∈ {0, 1, 2}, then

N3 ∈ m1m2{0, 1, 2}`−2 ⇐⇒ (3m1 +m2) ·3`−2 ≤ N < (3m1 +m2 +1) ·3`−2.

Now that m1 ∈ {1, 2} and m2 ∈ {0, 1, 2}, 3m1 +m2 ranges from 3 to 8. This
means that to find out the two most significant digits of N , we should find
the largest number m ∈ {3, 4, . . . , 8} which satisfies inequality m · 3`−2 ≤ N
(which is equivalent to ` − 2 ≤ log3 N − log3 m). To do so, we test that
inequality for each m ∈ {3, 4, . . . , 8} exhaustively, so it suffices to describe
how to test an individual inequality ` − 2 ≤ log3 N − log3 m in polynomial
time.

For that purpose, we will find good approximations for log3 m and log3 N ,
and then use Baker’s theorem to prove that the decision ` − 2 ≤ log3 N −
log3 m made by using the approximations is correct. Recall that log3 N =
log3 G(n) has a representation

log3 G(n) = log3 c1 + n log3 α1 + R(n),

Where R(n) tends to zero exponentially fast. Now we can use Baker’s the-
orem to find a constant C such that

|M ln 3 − ln c1 + lnm − n lnα1| ≥
1

BC
, (24)

where B ≥ max{M, 1, 1, n}. As before, one can choose a constant a such
that for each M which will be considered, we have n ≥ 1

a
M . This implies

that B can be chosen as an, and hence

|M ln 3 − ln c1 + lnm − n lnα1| ≥
1

aC

1

nC
.

Then, if r, s, and q satisfy |r − log3 c1| ≤ 1
nC+1 , |log3 m − s| ≤ 1

nC+1 , and

|q − log3 α1| ≤ 1
nC+2 , we can prove, analogously to Theorem 4, that

M ≤ log3 G(n) − log3 m ⇐⇒ M ≤ r + nq − s, (25)

if n is large enough. As previously, a lower bound for n to satify (25) can
be found effectively, but here we omit all the details, including proofs, since
they are similar to those ones associated to Theorem 4.
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Remark 11. According to Theorem 2, the same constant C selected for
m = 8 in (24) applies also for each choice of m ∈ {1, 2, 3, . . . 8}. Therefore,
it suffices to find C only once. Notice that this value C applies to finding
out the length of G(n) as well.

9.2 Multiplicity Greater Than One

Another way to extend the previous results is to consider the case where the
dominant real root of the characteristic polynomial of L(n) is not simple. It
turns out that a slight modification will yield a polynomial time algorithm
for computing blogd G(n)c in that case, too. Here we only outline how such
an algorithm can be found, the details are left to the reader.

In this case, we have

G(n) = P1(n)αn
1 + . . . + Pk(n)αn

k , (26)

|α1| > max{|α2| , . . . , |αk|}, each polynomial Pi has degree at most mi − 1,
where mi is the multiplicity of the root αi. Notice that it is decidable
whether L(n) satisfies the aforementioned conditions and that the expression
(26) can be found algorithmically but not necessarily in polynomial time.

We can write logd G(n) as

logd G(n) = logd P1(n) + n logd α1 + R(n),

where R(n) tends to zero exponentially fast.
It is easy to see that if β is an algebraic number of degree e, then for

each integer n, deg(nβ) = e and H(nβ) ≤ neH(β). It can also be shown
that if H(β1), H(β2) ≤ H and d(β1), d(β2) ≤ e, then H(β1 + β2) ≤ HCe ,
where Ce is an algorithmically computable number depending only on e [1].

Assume that the coefficients of P1(x) belong to a extension of Q of de-
gree e and have heights at most H. Then it can be shown that for each
integer n, deg(P1(n)) ≤ e and H(P1(n)) ≤ C1n

C2 , where C1 is an algorith-
mically computable number that depends only on m1, H, and e, and C2 is
also an algorithmically computable number depending only on e and m1.
Notice that exponentially precise approximations of P (n) can be computed
in polynomial time with respect to log n.

To use Baker’s theorem (Theorem 2) we choose

Λ = −n lnα1 − lnP1(n) + M ln d,

n ≥ 1
a
M , B = an ≥ max{1, n,M}, and and have an analogous result

to Theorem 3. For large n, the heights of numbers α1, P1(n), and d is
bounded above by C1n

C2 , so according to Remark 8 we can choose C =
C ′(ln(C1n

C2))3 ln(ln(C1n
C2))3, where C ′ depends only on e. Quite simply

one can find an constant C ′′ depending only on e and H such that C ≤
C ′′ ln3 n ln(lnn)3) if n is large enough.

A statement analogous to Theorem 2 now says that

|M ln d − lnP1(n) − n lnα1| ≥
1

(an)C′′ ln3 n ln(ln n)3
, (27)
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if n is large enough. Even though the exponent of n in the nominator of
the right hand side of (27) is not fixed, it is anyway polynomial in lnn.
Analogously to previous considerations, it is possible to design a polynomial
time algorithm for computing blogd G(n)c, but we leave the details to the
reader.

9.3 Roots of Unity Times a Constant

Yet another extension can be done when

G(n) = P1(n)αn
1 + . . . + Ps(n)αn

s + Ps+1(n)αn
s+1 + . . . + Pk(n)αn

k ,

where α = |α1| = . . . = |αs| > max{|αs+1| , . . . , |αk|} and α1/α, . . ., αs/α

are roots of unity, say α1 = αe
2πi
r1 , . . ., αs = αe

2πi
rs .

Here we must, however, agree on how to give a definition of a complex
algebraic number in such a way that it is possible to compute exponentially
precise approximations in polynomial time. There are many ways to do
that, we leave it to reader.

We can choose r = lcm(r1, . . . , rs) and, for each n ∈ N find an expression
n = qr + b to see that

G(n) = αn
(

P1(n)(e
2πi
r1 )b + . . . P1(n)(e

2πi
rs )b

)

+ Ps+1α
n
s+1 + . . . + Pkα

n
k .

Thus we can divide the original series G(n) into r subcases and study them
separately. Notice that this last example covers also the case where both α
and −α (α ∈ R) are roots of the characteristic polynomial of the recurrence.

9.4 Open Problems

We conclude with some open problems.

Problem 1. It there a polynomial time algorithm for computing blogd L(n)c
if L(n) is any linear recurrence?

Problem 2. The “middle digit” of expression (14) seems to be difficult to
compute. The problem can be posed as follows: Given n, compute first
` = |G(n)| (this can be done in polynomial time), then compute the b`/2cth
most significant digit of G(n). Is there a polynomial time algorithm for this
task?
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