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Abstract

We divide infinite sequences of subword complexity+ 1 into four subclasses
with respect to left and right special elements and exanfieestructure of the
subclasses with the help of Rauzy graphs. Let 2 be an integer. If the ex-
pansion in basé of a number is Arnoux-Rauzy word, then it belongs to Subclass
| and the number is known to be transcendental. We prove éimsd¢endence of
numbers with expansions in the subclasses Il and llI.
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1 Introduction

For any natural numbeér > 2, the expansion in bageof an irrational algebraic
number is conjectured to mormalin the sense that the expansion contains every
block of digits of lengthn with a frequency asymptotic tv/k". Define the
complexityp,(n) to be the number of different blocks of digits of lengthin

a fixed expansiom. The conjecture implies that numbers with low complexity
expansion are either transcendental or rational. HedlmadMorse [4] proved
already in the first half of the 20th century that, if thereséxia natural number
such thap, (n) < n, the expansion is ultimately periodic and the corresponding
number rational. In 1997 Ferenczi and Mauduit [3] proved thambers with an
expansion in basek of complexityp,(n) = n+1—1, where2 <[ < k, are tran-
scendental. Such expansions are called Sturmian wordg.al$wegeneralized the
transcendence result to so called Arnoux-Rauzy expanswmsh form a sub-
class of sequences with complexity + 1. The proof method was based on the
combinatorial translation of a number theoretical restiRimlout [5] concerning
rational approximations. The transcendence in the gemasse of complexity
2n + 1 was left open. In this article we divide the sequences ofdbraplexity
into four subclasses as in [2]. Arnoux-Rauzy words belongubclass I. Our aim
is to generalize the transcendence result to numbers wganskons in the sub-
classes Il and Ill. We remark that these results follow frbmrmore general result
recently obtained by Adamczewsét al [1]. By improving the combinatorial
criterion for transcendence they proved that numbers wiffaesions of com-
plexity O(n) are transcendental. Our proof is based on the original coatdiial
criterion of Ferenczi and Mauduit [3] and thus requires naetailed analysis of
the combinatorial structure of the expansions in theseifipsabclasses.

2 Basic definitions

Alphabet> is a nonempty finite set of symbols andvard overY. is a (finite or
infinite) sequence of symbols from Catenatiorof words is an operation defined
asai...ay by...by, =ai...axby...by, fora;, b, € X. Denote byx*, ¥+ and
¥ the sets of all finite, finite nonempty and infinite words o¥gmrespectively.
Word w is afactor of word u (resp. a left factor or @refix, a right factor or a
suffiy, if there exist words: andy such thatu = xwy (resp.u = wy, u = xw).
Thelengthof w, denoted byw|, is the total number of letters im. The num-
ber of lettersa in w is denoted byw|,. Let L,(w) be the set of all factors of
w of lengthn. The complexity function ofv is p,(n) = #L,(w). Sequence
v=(v,) =v10s...0,... € X¢is calledrecurrentwhen every factor of occurs
infinitely many times irv. Itis minimalwhen the factors occur also with bounded
gaps, that is, the length of a word irbetween any two consecutive occurrences
of factorw cannot be arbitrarily large.



3 Combinatorial criterion for transcendence

We state here a combinatorial criterion for transcendergehs the basis of our
transcendence proof. The proof of this theorem can be fdonéxample, in [3].

Theorem 1. (Combinatorial criterion for transcendence)lf 6 is an irrational
number and, for everyn € N, the expansion ofl in base k begins by
0.U,V,V,V.., whereU, is a possibly empty and/,, is a nonempty word on
an alphabet{0, ...,k — 1}, V! is a prefix ofV,, and |V,,| — oo, asn — oo,
limsup |U,|/|Va| < oo and liminf|V]!|/|V,,] > 0, then§ is a transcendental
number.

In the following we use a modified form of this theorem. Supgtbe expansion of
6 is0.v, wherev € {0, ...,k — 1}*. The theorem implies thatis transcendental
if we find an infinite number of different word triplet§ V' and V"’ satisfying the
conditions

!/
1
v=UVV'. .., M<h and ‘V|>

v = V=0 “

for some fixed positive integer depending on the sequence We say that we
arein the situation of Theorerh for the wordsl’, V' andU, if conditions §) are
satisfied.

4 Subclasses of complexityn + 1

Let v be an infinite recurrent wordRight specialffactor X € L, (v) is a word
with two or more extensions to the right. More precisely,réhexist different
lettersa; anda, such thatXa;, Xay, € L, (v). Left speciawords are defined
respectively. Denote by ' (X)) (resp.0 (X)) the number of different right (resp.
left) extensions ofX'. Suppose now,(n) = 2n + 1 for everyn € N. Then
clearly

> (0f(x = Y 0X) = > 1=pn+1)—py(n) =2

X€Ln(v) X€Lp(v) Xeln(v)

This means that there are just two possibilities. There exily one right special
elementD € L, (v) with 07 (D) = 3 or two distinct element®); and D, with
0t (Dy) = 07 (D,) = 2. Since same conclusions can be made Withwe have
four types of languages,, (v):

I: 0" (D)=3ando (G) = 3.
Il 0%(D) =3andod (Gy) = 0 (G2) = 2, whereG # Gs.
: 0t (Dy) = 0% (Dy) = 2, whereD; # D,, ando~(G) = 3.
I\V:  07(D,) = 0% (D,) = 2, whereD; # D,, and
0~ (Gh) = 0~ (G4) = 2, whereGG; # Gs.
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Note that it is possible that right special element is alfisjgecial. Note also that
ultimately L, (v) is of constant type. This can be easily verified. If there texis
aword inL,,(u) with three different extensions to the right, then deletetters
from the left we get elements @f, (1) with the same three extensions to the right
for everyn < m. Similar reasoning can be made for words with three ext@ssio
to the left. Thus, the possibilities are

1. foralln >0, L,(u) is of type I.

2. there exists an integer, such thatZ, (u) is of type | for
n < ng, and of type Il forn > ny.

3. there exists an integer, such thatZ, (u) is of type | for
n < ng, and of type lll forn > n,.

4. there exist integers, andn; such thatZ, (u) is of type |
for n < ng, of type Il forng < n < ny, and of type IV for
n > ny.

5. there exist integers, andn; such thatZL, (u) is of type |
for n < nyg, of type Il for ng < n < ny, and of type IV for
n>n.

Hence, the words of complexity2n + 1 can be divided into four subclasses
with respect to the ultimate type @f,(v). Minimal words in Subclass | are the
Arnoux-Rauzy words for which the transcendence result akn[3]. Our aim is
to prove the transcendence of minimal words in Subclassdliathe symmetric
case lll.

5 Rauzy graphs

To examine the combinatorial structure of minimal words ut&8ass 1l we need
the notion ofRauzy graphsThe following construction is presented for Arnoux-
Rauzy words in [2] with slight modifications on notations.tkebe an infinite
recurrent word oveE. The vertices of the Rauzy graph of v are the factors of
lengthn in v and there is an arrow going from vertéxto vertex F' with labela
wheneverE = bH,F = Ha with a,b € ¥ andbHa € L,1(v). Now 9 (X)
(resp.0 (X)) is the number of outgoing (resp. incoming) arrows of veitex

We calln-segmenany finite sequencgFy, . . ., Ey) of vertices ofl",, such that
there exists an arrow from; to F; ., E, and E;, are right special and from each
E;,1 < i< k—1leaves only one arrow. Thexme of then-segmentE,, ..., Ey)
is the catenation of the labels of the arroWg — F, — ... — E,_, — FE,.
Because of the recurrence of the graph must betrongly connected,e. for
every pair of verticesY andY, there exists a path fronX to Y and fromY
to X. It follows that the grapH", of a minimal word in Subclass Il has up to
isomorphism one of the two forms of Figure 1. The presematidRauzy graphs
is simplified by representing only the right special elemBptand left special
elementss, ,, andg, ,. All the segments indicated in Figure 1 begin and end by

3



‘Bn/ ®n
=
gZ, n

Figure 1: Graph types of Subclass Il

D,,. We fix the following notation4,, is the name of the unique-segment going
through only one left special eleme@t,,. B, andC, are the names of the-
segments going through both left special eleméhts andg, ,,. Sometimes we
simplify the notation and mark thesesegments without the subscript

In the first caseg,,, # D,. For any wordX # D, in L,(v) there ex-
ists a unique word\'a in L,1(v) andGi 11 = Giav1, Goni1 = Ganve and
D..1 = 0D, are uniquely determined by the graph. Thus, the graph’, . is
known entirely and we can easily see tdgt., = A,,, B,,1 = B, andC,,,, = C,,.
Note that the length of the path frofi ;.1 to D, is one smaller than frorg, ,,
to D,,. This means that finallg, ,.;, = D,, for somel > 1 and we are in the
second case.

The interesting case is theeak down caseyhereg, ,, = D,,. Let the three
n-segments be

An : (Dn: D'nal, ceey bID”n, Dn):
Bn . (Dna D’na2a ey bQD”na Dn)a
Cn : (Dn: D’nag, ceey bQD”n, Dn)

We see thalG, ,+1 = GinYi, Gont1 = Gopve and D,y = 0D,, Where
v € {ay,a9,a3}, 6 € {by,by} and s is fixed by the grapH’,. Now I',, does
not determind’,,;; entirely. Suppose, for example, that= b;. Since, by the
recurrence ob, the graph is strongly connected, we must have= a;. This is
illustrated by the dashed arrow in the left graph of Figuré-&om the figure we
can also clearly see that, ., = A,, B,,1 = B,A, andC,; = C,,A,,. We call
thisbreak down type 1

Other possible break down types and the names of the new sé&goan be
calculated similarly. They are presented in Table 1. No& iththe types 2 and
3 the roles of the left special elements change in such a vayih ., = G, 7
andg ,+1 = G272 for somey; and~, in the alphabek.

For thenth break down graph of a word we connect the break down type
in € {1,2,3} and the sequenag,) is called thedirective sequence of Thus,
we have the following lemma.
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D,,,=bD, ———> Pitts= Ginis

~
v
’
’

. D.a

n°2

n

D,

we1 =b,D, > D,a3s= G s

c,,/

GonY2= Gruit

GonY2 = Gt

Figure 2: Rauzy graph,, ., in break down types 1 and 3

in ‘ An+1 ‘ Bn+1 ‘ C(nJrl
114, B, A, | CLA,
2| C, A,B, | B,
3| B, A Ch | Cp

Table 1. Recursion formulae of the names of theegments

Lemma 1. Letv be a recurrent word in Subclass Il of complexity + 1. Then
there exists three words4,, B; and C'; and a directive sequence of integers
1 <14, <3,n > 1, such that if the words{,,, B,, C,, n € N, are given by
the recursion formulae of Tablé, then for anyN > 1 andn > 1, the word
vy ... vy _1 IS Of the formXy X, ... X,,, whereX;, X,,... X,, ; are equal to
A,, B, or C,; X, is a (possibly empty) suffix of,, B, or C,, ; and X,, is a
(possibly empty) prefix of,,, B, or C,,.

6 Transcendence of numbers with the expansions in
subclasses Il and IlI

Let # be a number with expansidnv, where the sequenceis a minimal word
belonging to Subclass Il of complexi®y + 1. Our aim is now to show that for
such a sequence we are in the situation of Theorem 1 for an infinite number
of different word tripletsV, V! andU satisfying conditions#) with some fixed
positive integeih. We examine the directive sequeriég) given in Lemma 1. We
have tree different cases:



Casel:  The sequencgg,) contains an infinite number of occurrences of
the factor 11.

Case ll:  Ultimately, the sequenc¢g,) does not contain any occurrences of
11, but it contains infinitely many occurrences of the fadtor
Case lll: Ultimately, the sequencg,) consists only of integers 2 and 3.
First, we take an example. Suppose that 3, i, = 2, i1 = .. iy = 1

andi,, ;.1 = 2, then

Am+l+2 - Bmcin:
Bm—l—l+2 - CmAmBmCrlna
Cm—l—l—i—? = AmBmen

Clearly, every segment contains naw,C,,C,, and we may choos& = V'’
= C,,. Consider then all possible prefixgsof v not containing the cub€? . We
use the notation of Lemma 1. If the cube can be foundinthenU is a suffix
of B,,, CnAB,, or A, B,,. Otherwise, X is a strict suffix ofC3 andU is a
strict suffix of C3 B,,, C,,, or C3 A,, B,,. Hence, if there exists a fixed integer
depending on the sequencesuch thath'|C,,| > |A,,| andh'|C,,| > |By,| for
infinitely manym and situations similar to our example, then the conditiens
are satisfied infinitely often with = 3 + 2A'. In the following we are going to
prove the existence of such an integér

In order to find repetitions and fixed positive integetend/ in every above
mentioned case our strategy is the following. We find prefix@g1”’ of v with
the help ofusefulfactorsu of (i,) as in the previous example. For the length
conditions we divide factors of sequengg) into three blocks. We introduce
suitablewordss, which together with finite prefixes ¢f,,) act as beginning blocks
and useful words act as end blocks. Each middle blocknsists of at most
oneinequality preservingand oneinequality changingvord in this order. This
construction is illustrated in Figure 3. More precise dggimns of these concepts
are given later.

beginning block middle block end block
f—% A
wStu.=..1333133133331133323332111113...

suitable word inequality preserving inequality useful word
word changing word

Figure 3: lllustration of blocks in the sequengg).

We say that wesxecutea wordw = ;... 7, when we apply recursion rules
ij,..., 1 inthis order to the names of the segmenisB; andC;. By asuitable
word we mean a sequendg?+'1,23%+11, 1322 or 2322, wherel > 0. By
executing suitable words we have the following lemma.
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Lemma 2. Leti,, ...7;,_1 be a suitable word fob < j, < j;. Then we have the
inequality
2|A]'10j1‘ > ‘B]'1| > ‘le‘ > |Aj1|' (l)

Proof. Denote the names of the segments, B;,, C;, by small lettersy, b, c and
A;, B;,, C;, by capital lettersA, B andC. The names of the segments and some
length calculations are presented in Table 2. Note thathéydcursion formulae
of Table 1, the inequalityb| > |c| is always valid. Thus, by the calculations,
after the execution of suitable words we havdC| — |B| > 0 for everyl > 0.
Examining the names of the segments in Table 2, we can aldbaeé’| > |A|.

Hence, the inequality| AC| > |B| > |C| > | A| holds. O
‘ Qo -1 ‘ Names of the segments ‘ 2|AC| —|B| ‘
A = ba(ca) (2021 + 3) — (21 + 3))|al + (4 — 1)]p|
132+11 B = aca(ca)'ba(ca) +(2(21 + 1) = (21 + 1))]c|
C = caba(ca) = (20 + 3)|a| + 3]b] + (21 + 1)|c|
- !
wrty | B oo ey (4= 1)|al + (2(21+3) — (20 + 2))Jb| |
23 1 B = cbb'abb — 3Jaf + (20 + 4)[b] — |¢
C = babb
A = 20 +2) — (20 +2))|al + (2 — 1)[b)
13%2 B = a(ca)'ba(ca) +(2(1+ 1) — (21))|¢]
C = ba(ca) = 2|a| + [b] + 2|¢|
ooz (2= 1)fal + (2 +2) — (21 + 1)[b| - |
23712 B = cblabl . ‘a|+g|b‘_‘c| ¢
C = abb N

Table 2: Length calculations after executing suitable word

The suitable words are beginning blocks in the factetu of (i,,). Now we
look into the structure of the middle blo¢kSuppose that is the nearest suitable
word before the end block. We assume that this suitable word doesn’t overlap
with the end block. Since the wordends with either 1 or 2, the sequerntaaust
begin by3%1 or 32*+'2 ort = 3! for somel > 0. Otherwise we would have a
suitable word closer ta than ours, which is impossible by definition. Since the
first two cases end with 1 or 2, we can apply the previous reagaa the end of
the middle block. This shows that the warbetween the suitable wordand the
useful wordu belongs to{ (33)*1 U (33)*32}*3*. We call a word in the beginning
part{(33)*1U(33)*32}* inequality preservingThe following lemma justifies this
term. The end part aofbelonging to3* is called inequality changing.

Lemma 3. Leti;, ...i;,_1 be an inequality preserving word far < j; < j.
Suppose |A;,C;,| > |B;,| > |C},| > |A,,| for a positive integer > 2. Then we
have

T‘Aj20j2| > |Bj2‘ > |Cj2| > ‘AJZ‘ (2)



Proof. Denote the names of the segments, B;,, C;, by small letters:, b, c and
A;,, Bj,, C}, by capital lettersd, B andC. Remember that alway®| > |C|. Re-
gardless of the lengths af b andc, Table 3 shows that after executing a warth
or 32+12 for anyl > 0, we havgC| > |A|. Since2r —1 > r +1, whenr > 2, we
can use the assumptionuc| > |b| to concluder|AC| — | B| > 0 in the case3?1.
For the case3?*'2 we also need to note th@dr — 1)|c| + (r — 1)|a| > r|ac|,
becausec| > |a|. Thus, after any number of executions of wosdd and3+12

our inequality (2) holds. O

‘ Gy ooyt ‘ Names of the segmen¢Sr\AO| —|B| ‘

A = acl
2 = bclac (2r —1)]al — b + (r(20 +1) = 21)) ¢
371 B bctac
C = cad = (2r = 1)lal = [o| + ((r = 1)2 +1)|
5o (r=1)lal = [b] + (r(I+2) — (21 +1))|c]
3212 B = bclacc
C = acd = (r—1)al—=[b]+((r—2)I+2r—1)|c|

Table 3: Length calculations after executing inequaligsgrving words

If the suitable words do not occur infinitely many times asdezof (i,,), then
the whole sequence is a catenation of inequality presewongls, at least after
a finite (possibly empty) prefix. This prefix combined with ard@f the form
3211 or 3%*12 is considered as the beginning block in this case. Whaténeer t
situation is, Lemma 4 shows that a beginning block followg@ Imniddle block is
convenient for our purposes.

Lemma 4. Let0 < jy < ji < jo < j3. Suppose,, ...i; 1 IS a beginning block
and middle block consists of inequality preserving woig . . . 7;,_; and inequal-
ity changing word;, . ..7;,_,. (Wordi;i;_; means the empty word.) Then after
executing the beginning block and the middle block we aleeein the situation
of Theoremt , or /'|B;,| > I|C},| > |X,,|, for everyX € {A, B, C} and for a
fixed integen’ > 2.

Proof. After executing any beginning block we have
T‘Aj1Cj1| > |Bj1‘ > |Cj1| > ‘Aj1‘7 (3)

for some fixed integer > 2. Namely, if the beginning block is a suitable word,
then by Lemma 2 we may choose= 2. Otherwise, the beginning block is
the non-inequality-preserving finite prefix ¢f,) combined with a word of the
form 3%1 or 32+12. After executing3®1 or 3?*'2 we have|C;,| > |4, |, as
seen in Lemma 3, and by the finiteness of the beginning patddisired num-
berr surely exists. As beforeB;,| > |C;,|. Therefore (3) holds. After the
execution of an inequality preserving word, inequality iRyalid by Lemma 3
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or trivially, if j; = j». The question is, what happens in the inequality changing
parti;, ...i;, 1 = 3" € 3*. We may suppose tha > j,. In order to simplify
notations denote the names of the segmetisB,,. C;, by small lettersa, b, ¢
andA;,, B,,, C;, by capital lettersd, B andC. Then we havel = ac’, B = bc"
andC = ¢, ifl = 2I'orA = b, B = acd andC = ¢, if | = 2I' + 1.

If I > 3, we may choosé’ = V' = C = ¢. Now segmentsi and B con-
tain the word?21’ = ¢ and using the notations of Lemma 1, one or the other
must appear afteX,, X,C or X,CC or we havev = X,CCC.... We may
suppose thaf\, is a strict suffix of CCC. Otherwise,|U| < max{|b|, |ac|}.
Using equation (2) we also conclude that > |a| and2r|c| > |b]. Hence,

|U| < |XoCC| + max{|b|, |ac|} < (5+ 2r)|c| = (5 + 2r)|V| and after the exe-
cution of the middle block we are in the situation of Theoremith h = 5 + 2r.
Thus, we may now suppose thiat 5. Then, after executing the inequality chang-
ing word, (2r + 2)|C| > |A| and(2r + 2)|C| > | B|. We choosé' = 2r + 2 and

the lemma follows, sincEB| > |C| as noted before. O

Now the only thing to do is to introduce the useful words fag three cases
mentioned in the beginning of this section, find the wdrd$’, V' and prove that
the conditions £) of Theorem 1 are satisfied by applying Lemma 4. From now
on useful wordy = ij, ..., and small letterg, b, c and capital lettersi, B, C'
denote the names of the segments before and after the exteotiti, respectively.

Lemma 5. If there exist infinitely many occurrences of the factorin (i, ), we
are in the situation of Theorer for infinitely many different word triplet&, V/
andV”.

Proof. First we note that there must be infinitely mapy {2, 3}. Otherwise, for
somem > 1, we haveA,,; = A,,, By, = B, AL andC,,,, = C,, Al for every

[ > 0. This implies an ultimately periodic sequence, which ispadsible by our
assumptions on the complexity of Thus, we have infinitely many occurrences
of 212, 21!3, 31’2 or 31'3, wherel > 2. These are thesefulwords for Case I. The
execution of21'2 and21'3 are represented in Table 4. By the recursion formulae
of Table 1, the other cases are obtained from these by reglady ¢ and vice
versa.

ij, - 1,1 | Names of the segments
bc!

cabct
abc!

2112

abc!
cbc!

bt

21!3

Q=W

Table 4: Names of the segments after executinig or 21'3.
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Figure 4: Tree representation of prefixes of the sequen&esgmentB and end
symbols of squares are underlined.

Suppose first that > 3. The case1'2 is analysed in the example in the
beginning of this section withy = m andj, — 1 = m + [ + 1. The analysis for
the case1'3 is similar. By Lemma 4 we are either in the situation of Theore
after the execution of the middle block or

Wb > Wlel > [al. (4)

for everyx € {a,b,c} and a fixed integeh’. Thus, by our example, we find a
cubel? = C? and the conditionsx] are satisfied withh = 3 + 24’

Secondly, suppose= 2 and inequality (4) holds. Now none of the segments
seems to contain a cube, but we take advantage of the faaltiihe segments
share a common suffix?. If this is followed by segmenB, we havel’?V’ = ¢?
in bc? B. Also squares over the alphabet, C} in X, X3X) ... allow us to have
be* (ybe?)? = (bc’y)?*be* = V2V as a factor of the sequeneefor some word
y € {a,b,c}*. Because we can not avoid squares in binary alphghet’} and
bc? B containse?, we cannot avoid repetitioris?V’ and the length of/ must be
bounded. This is illustrated in Figure 4. Since in any cisand V"’ containc
and inequality (4) holds, we can approximdie < (|V|, + |V, + [V|.) - #'|V],
where|V|, is the number of occurrences of lettelin the representation df.
Hence, |V| < 7h'|V'| as, for example, in the casg?V’ = bc*CACA
= bc?(abc®bc?)? = (bc*abc?)?bc?. The length ofU can also be approximated,
becauséX;| < |cabee| < 51|V | andV2V' must occur at least befor€;. Thus
|U| < 5-5h'|V]. Hence, the conditions) are obtained witth = 254’. The anal-
ysis for the other cases are similar, since the approximatan be done equiv-
alently also forl” andV’ containingb. Thus, the existence of infinite number of
occurrences of the factdrn in the directive sequence, allows us to be infinitely
often in the situation of Theorem 1. O
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Lemma 6. If the sequencé,,) does not ultimately contain any occurrences bf
but does contain infinitely many occurrences of the fattare are in the situation
of Theorenil for infinitely many different word triplets, V- and V.

Proof. By the assumption, we have infinitely many wod&1, 2122, 2123, 2131,
2132, 2133, 3121, 3122, 3123, 3131, 3132 or 3133. These are thasefulwords for
Case Il. We analyse those beginning with integer 2. The athses are similar;
the segment must be replace byand vice versa. From Table 5 we conclude that
in every case all the segments end withnd one of the segments, sgy= zc,

is a suffix of the others. More precisely, the other segmentsveith czc. It
means that” takes the role of segmeiit in the previous lemma. For example,
in the case 2122y = abc = A and there iS/?V’
sequenceX;AA (i > 1), BA or CA. Also any segment catenated with a square
over the alphabefA, B, C}\Y contains worde(yc)? = (cy)?c for some word

y in {a,b, c}*. Using Lemma 4 we conclude as in Lemma 5 that either we are
in the situation of Theorem 1 after the middle block or indiqy&4) holds. In

the latter case we use the repetitions mentioned abovee Sirand V'’ contain

¢, we calculate as in Lemma 5 th@t| < 112/|V’| for the fixedh' > 2. Also

| X;| < 6K'|V]and|U| < 6 - 6h'|V

(cab)?c in v if we find a

, becausd’?V' must now occur beforé(,.

Since there are infinitely many occurrences of the fattave are infinitely often
O

in the situation of Theorem 1 with = 36A/.
ij, ---15,—1 | Names of the segmentsi;, ...4;,_, | Names of the segmen

A = be A = abe

2121 B = cabchbe 2131 B = cbecabe
C = abche C = bcabe
A = abc A = be

2122 B = bceabe 2132 B = abcche
C = cabc C = cbe
A = cabe A = cbe

2123 B = bcabc 2133 B = abcbe
C = abc C = be

S

Table 5: Names of the segments after execudititjl, 2122, 2123, 2131, 2132 or

2133.

Lemma 7. If the sequencé,,) consists ultimately only of intege2sand3, we are
in the situation of Theorerh for infinitely many different word triplet§, V' and

V'
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Proof. We divide this examination into subcases:

1°:  The sequencg,,) contains infinitely many occurrences of factors 22
and 3.

2°:  Ultimately, the sequencg,,) does not contain any occurrences of
22, but the sequence contains infinitely many occurrencésctdrs
33 and 2.

3°:  Ultimately, the sequences,) is (23)“, (32)“, 2% or 3“.

First we note that the sequenge is impossible. Otherwise, for evelty> 1,
after executingg® we haveA = ac', B = bc! andC = c. This implies period-
icity, which contradicts with the complexity af. Table 6 introduces the useful
sequences and corresponding names of the segments. Ore wdetul words
must occur infinitely often in each subcase.

‘ Case‘@3”.@t4 Namesofmesegmen#@3”.@t4 Namesoﬂhesegmenk

A = bac A = cbac
1° 3222 B = accbac 3223 B = acbac
C = cbac C = bac
A = b A = abb
2° 2332 B = cbabb 2333 B = c¢bb
C = abb C = b
A = ac A = cab
3° 3232 B = baccac 2222 B = abbcab
C = cac C = bcab

Table 6: Names of the segments after executing 3222, 3232, 2333, 3232 or
2222.

As in Lemma 6, in every case the segmeAts3 andC end with the same
letter which is eitheh or c. One segment” = zc or Y = xzb is a suffix of
the other segments, which end withe or bxzb, respectively. Now Lemma 4 is
valid and we are either in the situation of Theorem 1 befoeeethd block or the
repetitionV 21" is found analysing the segmentsin= XX, X, ... same way as
in Lemma 6. In the latter cag®’| < 10»'|V’|, |U| < 6 - 6’|V | and we choose
h = 36h/. O

Finally, we state our result.

Theorem 2. Let § be a number with expansianv, where the sequenceis a
minimal word belonging to Subclass Il of complexXty+ 1. Thend is transcen-
dental.

Proof. This s a straightforward consequence of Lemmata 5-7 andrénel, the
combinatorial criterion for transcendence. O

12



Corollary 1. Letf be a number with expansidnv, where the sequenceis a
minimal word belonging to Subclass Il of complexXty+ 1. Thend is transcen-
dental.

Proof. The Rauzy graphs of Subclass Il can be obtained from thehgrap
Figure 1 by converting all the arrows and replacihy D and vice versa. Using
similar considerations as in Section 5, we easily find outtth@recursion formu-
lae for the names of the segments are inverses of those @& Tabll the lemmata
are valid, since length calculations are exactly the sardegpetitionsi’21’ can
be found similarly. Note that now the segments have a commefixpnstead of
a common suffix in Lemmata 6-7. 0J

7 Future work

Our aim is to search concrete examples of transcendentabensmvith expan-

sions in these subclasses. We are also going to examine hieowdthods intro-

duced here are suitable for the words in Subclass IV. Howéhier case seems
to be quite complicated and, naturally, the transcendessdtrfollows from the

work of Adamczewsket al. [1].

Acknowledgement: The problem of this paper was introduced to me by J. Karhu-
maki. | would also wish to thank J. Cassaigne, V. Halava, TjiHand A. Renvall
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