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Abstract

We divide infinite sequences of subword complexity2n + 1 into four subclasses
with respect to left and right special elements and examine the structure of the
subclasses with the help of Rauzy graphs. Letk � 2 be an integer. If the ex-
pansion in basek of a number is Arnoux-Rauzy word, then it belongs to Subclass
I and the number is known to be transcendental. We prove the transcendence of
numbers with expansions in the subclasses II and III.
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1 Introduction

For any natural numberk � 2, the expansion in basek of an irrational algebraic
number is conjectured to benormalin the sense that the expansion contains every
block of digits of lengthn with a frequency asymptotic to1=kn. Define the
complexitypv(n) to be the number of different blocks of digits of lengthn in
a fixed expansionv. The conjecture implies that numbers with low complexity
expansion are either transcendental or rational. Hedlund and Morse [4] proved
already in the first half of the 20th century that, if there exists a natural numbern
such thatpv(n) � n, the expansionv is ultimately periodic and the corresponding
number rational. In 1997 Ferenczi and Mauduit [3] proved that numbers with an
expansionv in basek of complexitypv(n) = n+ l�1, where2 � l � k, are tran-
scendental. Such expansions are called Sturmian words. They also generalized the
transcendence result to so called Arnoux-Rauzy expansions, which form a sub-
class of sequences with complexity2n + 1. The proof method was based on the
combinatorial translation of a number theoretical result of Ridout [5] concerning
rational approximations. The transcendence in the generalcase of complexity2n + 1 was left open. In this article we divide the sequences of thiscomplexity
into four subclasses as in [2]. Arnoux-Rauzy words belong toSubclass I. Our aim
is to generalize the transcendence result to numbers with expansions in the sub-
classes II and III. We remark that these results follow from the more general result
recently obtained by Adamczewskiet al [1]. By improving the combinatorial
criterion for transcendence they proved that numbers with expansions of com-
plexityO(n) are transcendental. Our proof is based on the original combinatorial
criterion of Ferenczi and Mauduit [3] and thus requires moredetailed analysis of
the combinatorial structure of the expansions in these specific subclasses.

2 Basic definitions

Alphabet� is a nonempty finite set of symbols and aword over� is a (finite or
infinite) sequence of symbols from�. Catenationof words is an operation defined
asa1 : : : an � b1 : : : bm = a1 : : : anb1 : : : bm for ai; bi 2 �. Denote by��; �+ and�! the sets of all finite, finite nonempty and infinite words over�, respectively.
Word w is a factor of word u (resp. a left factor or aprefix, a right factor or a
suffix), if there exist wordsx andy such thatu = xwy (resp.u = wy, u = xw).
The lengthof w, denoted byjwj, is the total number of letters inw. The num-
ber of lettersa in w is denoted byjwja. Let Ln(w) be the set of all factors ofw of lengthn. The complexity function ofw is pw(n) = #Ln(w). Sequencev = (vn) = v1v2 : : : vn : : : 2 �! is calledrecurrentwhen every factor ofv occurs
infinitely many times inv. It is minimalwhen the factors occur also with bounded
gaps, that is, the length of a word inv between any two consecutive occurrences
of factorw cannot be arbitrarily large.
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3 Combinatorial criterion for transcendence

We state here a combinatorial criterion for transcendence which is the basis of our
transcendence proof. The proof of this theorem can be found,for example, in [3].

Theorem 1. (Combinatorial criterion for transcendence)If � is an irrational
number and, for everyn 2 N , the expansion of� in base k begins by0:UnVnVnV 0n, whereUn is a possibly empty andVn is a nonempty word on
an alphabetf0; : : : ; k � 1g, V 0n is a prefix ofVn and jVnj ! 1, asn ! 1,lim sup jUnj=jVnj <1 and lim inf jV 0nj=jVnj > 0, then � is a transcendental
number.

In the following we use a modified form of this theorem. Suppose the expansion of� is 0:v, wherev 2 f0; : : : ; k � 1g!. The theorem implies that� is transcendental
if we find an infinite number of different word tripletsU; V andV 0 satisfying the
conditions v = UV 2V 0 : : : ; jU jjV j � h and

jV 0jjV j � 1h (�)
for some fixed positive integerh depending on the sequencev. We say that we
arein the situation of Theorem1 for the wordsV; V 0 andU , if conditions (�) are
satisfied.

4 Subclasses of complexity2n + 1
Let v be an infinite recurrent word.Right specialfactorX 2 Ln(v) is a word
with two or more extensions to the right. More precisely, there exist different
lettersa1 anda2 such thatXa1; Xa2 2 Ln+1(v). Left specialwords are defined
respectively. Denote by�+(X) (resp.��(X)) the number of different right (resp.
left) extensions ofX. Suppose nowpv(n) = 2n + 1 for everyn 2 N . Then
clearlyXX2Ln(v)(�+(X)� 1) = XX2Ln(v)�+(X)� XX2Ln(v)1 = pv(n+ 1)� pv(n) = 2:
This means that there are just two possibilities. There exist only one right special
elementD 2 Ln(v) with �+(D) = 3 or two distinct elementsD1 andD2 with�+(D1) = �+(D2) = 2. Since same conclusions can be made with��, we have
four types of languagesLn(v):

I: �+(D) = 3 and��(G) = 3.
II: �+(D) = 3 and��(G1) = ��(G2) = 2, whereG1 6= G2.

III: �+(D1) = �+(D2) = 2, whereD1 6= D2, and��(G) = 3.
IV: �+(D1) = �+(D2) = 2, whereD1 6= D2, and��(G1) = ��(G2) = 2, whereG1 6= G2.
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Note that it is possible that right special element is also left special. Note also that
ultimatelyLn(v) is of constant type. This can be easily verified. If there exists
a word inLm(u) with three different extensions to the right, then deletingletters
from the left we get elements ofLn(u) with the same three extensions to the right
for everyn < m. Similar reasoning can be made for words with three extensions
to the left. Thus, the possibilities are

1. for alln � 0, Ln(u) is of type I.
2. there exists an integern0 such thatLn(u) is of type I forn < n0, and of type II forn � n0.
3. there exists an integern0 such thatLn(u) is of type I forn < n0, and of type III forn � n0.
4. there exist integersn0 andn1 such thatLn(u) is of type I

for n < n0, of type II for n0 � n < n1, and of type IV forn � n1.
5. there exist integersn0 andn1 such thatLn(u) is of type I

for n < n0, of type III for n0 � n < n1, and of type IV forn � n1.
Hence, the wordsv of complexity2n + 1 can be divided into four subclasses
with respect to the ultimate type ofLn(v). Minimal words in Subclass I are the
Arnoux-Rauzy words for which the transcendence result is known [3]. Our aim is
to prove the transcendence of minimal words in Subclass II and in the symmetric
case III.

5 Rauzy graphs

To examine the combinatorial structure of minimal words in Subclass II we need
the notion ofRauzy graphs.The following construction is presented for Arnoux-
Rauzy words in [2] with slight modifications on notations. Let v be an infinite
recurrent word over�. The vertices of the Rauzy graph�n of v are the factors of
lengthn in v and there is an arrow going from vertexE to vertexF with labela
wheneverE = bH; F = Ha with a; b 2 � andbHa 2 Ln+1(v). Now �+(X)
(resp.��(X)) is the number of outgoing (resp. incoming) arrows of vertexX.

We calln-segmentany finite sequence(E0; : : : ; Ek) of vertices of�n such that
there exists an arrow fromEi toEi+1, E0 andEk are right special and from eachEi; 1 � i � k�1 leaves only one arrow. Thename of then-segment(E0; : : : ; Ek)
is the catenation of the labels of the arrowsE0 ! E1 ! : : : ! Ek�1 ! Ek.
Because of the recurrence ofv, the graph must bestrongly connected,i.e. for
every pair of verticesX andY; there exists a path fromX to Y and fromY
to X. It follows that the graph�n of a minimal word in Subclass II has up to
isomorphism one of the two forms of Figure 1. The presentation of Rauzy graphs
is simplified by representing only the right special elementDn and left special
elementsG1;n andG2;n. All the segments indicated in Figure 1 begin and end by
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Figure 1: Graph types of Subclass IIDn. We fix the following notation:An is the name of the uniquen-segment going
through only one left special elementG1;n. Bn andCn are the names of then-
segments going through both left special elementsG1;n andG2;n. Sometimes we
simplify the notation and mark thesen-segments without the subscriptn.

In the first case,G1;n 6= Dn. For any wordX 6= Dn in Ln(v) there ex-
ists a unique wordXa in Ln+1(v) andG1;n+1 = G1;n1, G2;n+1 = G2;n2 andDn+1 = ÆDn are uniquely determined by the graph�n. Thus, the graph�n+1 is
known entirely and we can easily see thatAn+1 = An; Bn+1 = Bn andCn+1 = Cn.
Note that the length of the path fromG1;n+1 toDn+1 is one smaller than fromG1;n
to Dn. This means that finallyG1;n+l = Dn+l for somel � 1 and we are in the
second case.

The interesting case is thebreak down case,whereG1;n = Dn. Let the threen-segments be An : (Dn;D0na1; : : : ; b1D00n;Dn);Bn : (Dn;D0na2; : : : ; b2D00n;Dn);Cn : (Dn;D0na3; : : : ; b2D00n;Dn):
We see thatG1;n+1 = G1;n1, G2;n+1 = G2;n2 and Dn+1 = ÆDn, where1 2 fa1; a2; a3g, Æ 2 fb1; b2g and 2 is fixed by the graph�n. Now �n does
not determine�n+1 entirely. Suppose, for example, thatÆ = b1. Since, by the
recurrence ofv, the graph is strongly connected, we must have1 = a1. This is
illustrated by the dashed arrow in the left graph of Figure 2.From the figure we
can also clearly see thatAn+1 = An, Bn+1 = BnAn andCn+1 = CnAn. We call
thisbreak down type 1.

Other possible break down types and the names of the new segments can be
calculated similarly. They are presented in Table 1. Note that in the types 2 and
3 the roles of the left special elements change in such a way thatG2;n+1 = G1;n1
andG1;n+1 = G2;n2 for some1 and2 in the alphabet�.

For thenth break down graph of a wordv we connect the break down typein 2 f1; 2; 3g and the sequence(in) is called thedirective sequence ofv. Thus,
we have the following lemma.
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Figure 2: Rauzy graph�n+1 in break down types 1 and 3in An+1 Bn+1 Cn+1
1 An BnAn CnAn
2 Cn AnBn Bn
3 Bn AnCn Cn

Table 1: Recursion formulae of the names of then-segments

Lemma 1. Let v be a recurrent word in Subclass II of complexity2n + 1. Then
there exists three words,A1, B1 and C1 and a directive sequence of integers1 � in � 3, n � 1, such that if the wordsAn, Bn, Cn, n 2 N , are given by
the recursion formulae of Table1 , then for anyN � 1 andn � 1, the wordv0v1 : : : vN�1 is of the formX0X1 : : :Xm, whereX1; X2; : : :Xm�1 are equal toAn, Bn or Cn; X0 is a (possibly empty) suffix ofAn, Bn or Cn ; and Xm is a
(possibly empty) prefix ofAn, Bn or Cn.

6 Transcendence of numbers with the expansions in
subclasses II and III

Let � be a number with expansion0:v, where the sequencev is a minimal word
belonging to Subclass II of complexity2n + 1. Our aim is now to show that for
such a sequencev we are in the situation of Theorem 1 for an infinite number
of different word tripletsV; V 0 andU satisfying conditions (�) with some fixed
positive integerh. We examine the directive sequence(in) given in Lemma 1. We
have tree different cases:
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Case I: The sequence(in) contains an infinite number of occurrences of
the factor 11.

Case II: Ultimately, the sequence(in) does not contain any occurrences of
11, but it contains infinitely many occurrences of the factor1.

Case III: Ultimately, the sequence(in) consists only of integers 2 and 3.

First, we take an example. Suppose thatl � 3, im = 2, im+1 = : : : im+l = 1
andim+l+1 = 2, then Am+l+2 = BmC lm;Bm+l+2 = CmAmBmC lm;Cm+l+2 = AmBmC lm:
Clearly, every segment contains nowCmCmCm and we may chooseV = V 0= Cm. Consider then all possible prefixesU of v not containing the cubeC3m. We
use the notation of Lemma 1. If the cube can be found inX0, thenU is a suffix
of Bm, CmAmBm or AmBm. Otherwise,X0 is a strict suffix ofC3m andU is a
strict suffix ofC3mBm, Cm or C3mAmBm. Hence, if there exists a fixed integerh0
depending on the sequencev such thath0jCmj � jAmj andh0jCmj � jBmj for
infinitely manym and situations similar to our example, then the conditions(�)
are satisfied infinitely often withh = 3 + 2h0. In the following we are going to
prove the existence of such an integerh0.

In order to find repetitions and fixed positive integersh0 andh in every above
mentioned case our strategy is the following. We find prefixesUV 2V 0 of v with
the help ofusefulfactorsu of (in) as in the previous example. For the length
conditions we divide factors of sequence(in) into three blocks. We introduce
suitablewordss, which together with finite prefixes of(in) act as beginning blocks
and useful words act as end blocks. Each middle blockt consists of at most
one inequality preservingand oneinequality changingword in this order. This
construction is illustrated in Figure 3. More precise descriptions of these concepts
are given later.

...stu...=...1 3 3 3 1 3 3 1 3 3 3 3 1 1 3 3 3 2 3 3 3 2 1 1 1 1 1 3...

beginning block middle block end block

useful wordsuitable word inequality preserving

word

inequality

changing word

...stu...=...1 3 3 3 1 3 3 1 3 3 3 3 1 1 3 3 3 2 3 3 3 2 1 1 1 1 1 3...

beginning block middle block end block

useful wordsuitable word inequality preserving

word

inequality

changing word

Figure 3: Illustration of blocks in the sequence(in).
We say that weexecutea wordw = ij : : : ij0, when we apply recursion rulesij; : : : ; ij0 in this order to the names of the segmentsAj; Bj andCj. By asuitable

word we mean a sequence132l+11; 232l+11; 132l2 or 232l2, where l � 0. By
executing suitable words we have the following lemma.
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Lemma 2. Let ij0 : : : ij1�1 be a suitable word for0 � j0 < j1. Then we have the
inequality 2jAj1Cj1j � jBj1j � jCj1j � jAj1j: (1)

Proof. Denote the names of the segmentsAj0; Bj0; Cj0 by small lettersa; b;  andAj1; Bj1; Cj1 by capital lettersA;B andC. The names of the segments and some
length calculations are presented in Table 2. Note that, by the recursion formulae
of Table 1, the inequalityjbj � jj is always valid. Thus, by the calculations,
after the execution of suitable words we have2jACj � jBj � 0 for everyl � 0.
Examining the names of the segments in Table 2, we can also seethat jCj � jAj.
Hence, the inequality2jACj � jBj � jCj � jAj holds.ij0 : : : ij1�1 Names of the segments 2jACj � jBj132l+11 A = ba(a)lB = aa(a)lba(a)lC = aba(a)l (2(2l+ 3)� (2l+ 3))jaj+ (4� 1)jbj+(2(2l+ 1)� (2l + 1))jj= (2l+ 3)jaj+ 3jbj+ (2l + 1)jj232l+11 A = abblB = bblabblC = babbl (4� 1)jaj+ (2(2l+ 3)� (2l + 2))jbj � jj= 3jaj+ (2l+ 4)jbj � jj132l2 A = aB = a(a)lba(a)lC = ba(a)l (2(l + 2)� (2l + 2))jaj+ (2� 1)jbj+(2(l + 1)� (2l))jj= 2jaj+ jbj+ 2jj232l2 A = bB = blabblC = abbl (2� 1)jaj+ (2(l+ 2)� (2l+ 1))jbj � jj= jaj+ 3jbj � jj

Table 2: Length calculations after executing suitable words

The suitable wordss are beginning blocks in the factorstu of (in). Now we
look into the structure of the middle blockt. Suppose thats is the nearest suitable
word before the end blocku. We assume that this suitable word doesn’t overlap
with the end block. Since the words ends with either 1 or 2, the sequencet must
begin by32l1 or 32l+12 or t = 3l for somel � 0. Otherwise we would have a
suitable word closer tou than ours, which is impossible by definition. Since the
first two cases end with 1 or 2, we can apply the previous reasoning to the end of
the middle block. This shows that the wordt between the suitable words and the
useful wordu belongs tof(33)�1 [ (33)�32g�3�. We call a word in the beginning
partf(33)�1[(33)�32g� inequality preserving.The following lemma justifies this
term. The end part oft belonging to3� is called inequality changing.

Lemma 3. Let ij1 : : : ij2�1 be an inequality preserving word for0 � j1 < j2.
SupposerjAj1Cj1j � jBj1j � jCj1j � jAj1j for a positive integerr � 2. Then we
have rjAj2Cj2j � jBj2j � jCj2j � jAj2j: (2)
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Proof. Denote the names of the segmentsAj1; Bj1; Cj1 by small lettersa; b;  andAj2; Bj2; Cj2 by capital lettersA;B andC. Remember that alwaysjBj � jCj. Re-
gardless of the lengths ofa; b and, Table 3 shows that after executing a word32l1
or 32l+12 for anyl � 0, we havejCj � jAj. Since2r�1 � r+1; whenr � 2, we
can use the assumptionrjaj � jbj to concluderjACj � jBj � 0 in the case32l1.
For the case32l+12 we also need to note that(2r � 1)jj+ (r � 1)jaj � rjaj,
becausejj � jaj. Thus, after any number of executions of words32l1 and32l+12
our inequality (2) holds.ij1 : : : ij2�1 Names of the segmentsrjACj � jBj32l1 A = alB = blalC = al (2r� 1)jaj � jbj+ (r(2l+1)� 2l))jj= (2r� 1)jaj� jbj+((r� 1)2l+ r)jj32l+12 A = B = blalC = al (r�1)jaj�jbj+(r(l+2)�(2l+1))jj= (r�1)jaj�jbj+((r�2)l+2r�1)jj

Table 3: Length calculations after executing inequality preserving words

If the suitable words do not occur infinitely many times as factors of(in), then
the whole sequence is a catenation of inequality preservingwords, at least after
a finite (possibly empty) prefix. This prefix combined with a word of the form32l1 or 32l+12 is considered as the beginning block in this case. Whatever the
situation is, Lemma 4 shows that a beginning block followed by a middle block is
convenient for our purposes.

Lemma 4. Let 0 � j0 < j1 � j2 � j3. Supposeij0 : : : ij1�1 is a beginning block
and middle blockt consists of inequality preserving wordij1 : : : ij2�1 and inequal-
ity changing wordij2 : : : ij3�1. (Word ijij�1 means the empty word.) Then after
executing the beginning block and the middle block we are either in the situation
of Theorem1 , or h0jBj3j � h0jCj3j � jXj3j, for everyX 2 fA;B;Cg and for a
fixed integerh0 � 2.

Proof. After executing any beginning block we haverjAj1Cj1j � jBj1j � jCj1j � jAj1j; (3)

for some fixed integerr � 2. Namely, if the beginning block is a suitable word,
then by Lemma 2 we may chooser = 2. Otherwise, the beginning block is
the non-inequality-preserving finite prefix of(in) combined with a word of the
form 32l1 or 32l+12. After executing32l1 or 32l+12 we havejCj1j � jAj1j, as
seen in Lemma 3, and by the finiteness of the beginning part, the desired num-
ber r surely exists. As before,jBj1j � jCj1j. Therefore (3) holds. After the
execution of an inequality preserving word, inequality (2)is valid by Lemma 3
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or trivially, if j1 = j2. The question is, what happens in the inequality changing
part ij2 : : : ij3�1 = 3l 2 3�. We may suppose thatj3 > j2. In order to simplify
notations denote the names of the segmentsAj2; Bj2 ; Cj2 by small lettersa; b; 
andAj3; Bj3; Cj3 by capital lettersA;B andC. Then we haveA = al0; B = bl0
andC = , if l = 2l0, or A = bl0 ; B = al0 andC = , if l = 2l0 + 1.
If l0 � 3, we may chooseV = V 0 = C = . Now segmentsA andB con-
tain the wordV 2V 0 = 3 and using the notations of Lemma 1, one or the other
must appear afterX0, X0C or X0CC or we havev = X0CCC : : :. We may
suppose thatX0 is a strict suffix ofCCC. Otherwise,jU j � maxfjbj; jajg.
Using equation (2) we also conclude thatjj � jaj and 2rjj � jbj. Hence,jU j � jX0CCj + maxfjbj; jajg � (5 + 2r)jj = (5 + 2r)jV j and after the exe-
cution of the middle block we are in the situation of Theorem 1with h = 5 + 2r.
Thus, we may now suppose thatl � 5. Then, after executing the inequality chang-
ing word,(2r + 2)jCj � jAj and(2r + 2)jCj � jBj. We chooseh0 = 2r + 2 and
the lemma follows, sincejBj � jCj as noted before.

Now the only thing to do is to introduce the useful words for the three cases
mentioned in the beginning of this section, find the wordsU , V , V 0 and prove that
the conditions (�) of Theorem 1 are satisfied by applying Lemma 4. From now
on useful wordu = ij3 : : : ij4�1 and small lettersa; b;  and capital lettersA;B;C
denote the names of the segments before and after the execution ofu, respectively.

Lemma 5. If there exist infinitely many occurrences of the factor11 in (in), we
are in the situation of Theorem1 for infinitely many different word tripletsU; V
andV 0.
Proof. First we note that there must be infinitely manyin 2 f2; 3g. Otherwise, for
somem � 1, we haveAm+l = Am; Bm+l = BmAlm andCm+l = CmAlm for everyl � 0. This implies an ultimately periodic sequence, which is notpossible by our
assumptions on the complexity ofv. Thus, we have infinitely many occurrences
of 21l2, 21l3, 31l2 or 31l3, wherel � 2. These are theusefulwords for Case I. The
execution of21l2 and21l3 are represented in Table 4. By the recursion formulae
of Table 1, the other cases are obtained from these by replacing b by  and vice
versa. ij3 : : : ij4�1 Names of the segments21l2 A = blB = ablC = abl21l3 A = ablB = blC = bl

Table 4: Names of the segments after executing21l2 or 21l3.

9



X0

A

B

CB

CA B CA

B CAB CA

B CAB CA

X1

X0

A

B

CB

CA B CA B CA

B CA B CAB CA B CA

B CA B CAB CA B CA

X1

Figure 4: Tree representation of prefixes of the sequencev: SegmentB and end
symbols of squares are underlined.

Suppose first thatl � 3. The case21l2 is analysed in the example in the
beginning of this section withj3 = m andj4 � 1 = m + l + 1. The analysis for
the case21l3 is similar. By Lemma 4 we are either in the situation of Theorem 1
after the execution of the middle block orh0jbj � h0jj � jxj; (4)

for everyx 2 fa; b; g and a fixed integerh0. Thus, by our example, we find a
cubeV 3 = C3 and the conditions (�) are satisfied withh = 3 + 2h0.

Secondly, supposel = 2 and inequality (4) holds. Now none of the segments
seems to contain a cube, but we take advantage of the fact thatall the segments
share a common suffixb2. If this is followed by segmentB, we haveV 2V 0 = 3
in b2B. Also squares over the alphabetfA;Cg in X2X3X4 : : : allow us to haveb2(yb2)2 = (b2y)2b2 = V 2V 0 as a factor of the sequencev for some wordy 2 fa; b; g�. Because we can not avoid squares in binary alphabetfA;Cg andb2B contains3, we cannot avoid repetitionsV 2V 0 and the length ofU must be
bounded. This is illustrated in Figure 4. Since in any caseV andV 0 contain
and inequality (4) holds, we can approximatejV j � (jV ja + jV jb + jV j) � h0jV 0j,
wherejV jx is the number of occurrences of letterx in the representation ofV .
Hence, jV j � 7h0jV 0j as, for example, in the caseV 2V 0 = b2CACA= b2(ab2b2)2 = (b2ab2)2b2. The length ofU can also be approximated,
becausejXij � jabj � 5h0jV j andV 2V 0 must occur at least beforeX5. ThusjU j � 5 � 5h0jV j. Hence, the conditions (�) are obtained withh = 25h0. The anal-
ysis for the other cases are similar, since the approximations can be done equiv-
alently also forV andV 0 containingb. Thus, the existence of infinite number of
occurrences of the factor11 in the directive sequence, allows us to be infinitely
often in the situation of Theorem 1.
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Lemma 6. If the sequence(in) does not ultimately contain any occurrences of11,
but does contain infinitely many occurrences of the factor1, we are in the situation
of Theorem1 for infinitely many different word tripletsU; V andV 0.
Proof. By the assumption, we have infinitely many words2121, 2122, 2123, 2131,2132, 2133, 3121, 3122, 3123, 3131, 3132 or 3133. These are theusefulwords for
Case II. We analyse those beginning with integer 2. The othercases are similar;
the segmentb must be replace by and vice versa. From Table 5 we conclude that
in every case all the segments end with and one of the segments, sayY = x,
is a suffix of the others. More precisely, the other segments end with x. It
means thatY takes the role of segmentB in the previous lemma. For example,
in the case 2122,Y = ab = A and there isV 2V 0 = (ab)2 in v if we find a
sequenceXiAA (i � 1), BA or CA. Also any segment catenated with a square
over the alphabetfA;B;CgnY contains word(y)2 = (y)2 for some wordy in fa; b; g�. Using Lemma 4 we conclude as in Lemma 5 that either we are
in the situation of Theorem 1 after the middle block or inequality (4) holds. In
the latter case we use the repetitions mentioned above. Since V andV 0 contain, we calculate as in Lemma 5 thatjV j < 11h0jV 0j for the fixedh0 � 2. AlsojXij < 6h0jV j and jU j < 6 � 6h0jV j, becauseV 2V 0 must now occur beforeX6.
Since there are infinitely many occurrences of the factor1, we are infinitely often
in the situation of Theorem 1 withh = 36h0.ij3 : : : ij4�1 Names of the segmentsij3 : : : ij4�1 Names of the segments2121 A = bB = abbC = abb 2131 A = abB = babC = bab2122 A = abB = babC = ab 2132 A = bB = abbC = b2123 A = abB = babC = ab 2133 A = bB = abbC = b
Table 5: Names of the segments after executing2121; 2122; 2123; 2131; 2132 or2133.

Lemma 7. If the sequence(in) consists ultimately only of integers2 and3, we are
in the situation of Theorem1 for infinitely many different word tripletsU; V andV 0.

11



Proof. We divide this examination into subcases:1Æ: The sequence(in) contains infinitely many occurrences of factors 22
and 3.2Æ: Ultimately, the sequence(in) does not contain any occurrences of
22, but the sequence contains infinitely many occurrences offactors
33 and 2.3Æ: Ultimately, the sequences(in) is (23)!; (32)!; 2! or 3!.

First we note that the sequence3! is impossible. Otherwise, for everyl � 1,
after executing32l we haveA = al; B = bl andC = . This implies period-
icity, which contradicts with the complexity ofv. Table 6 introduces the useful
sequences and corresponding names of the segments. One of the useful words
must occur infinitely often in each subcase.

Case ij3 : : : ij4�1 Names of the segmentsij3 : : : ij4�1 Names of the segments1Æ 3222 A = baB = abaC = ba 3223 A = baB = abaC = ba2Æ 2332 A = bB = babbC = abb 2333 A = abbB = bbC = b3Æ 3232 A = aB = baaC = a 2222 A = abB = abbabC = bab
Table 6: Names of the segments after executing 3222, 3223, 2332, 2333, 3232 or
2222.

As in Lemma 6, in every case the segmentsA;B andC end with the same
letter which is eitherb or . One segmentY = x or Y = xb is a suffix of
the other segments, which end withx or bxb, respectively. Now Lemma 4 is
valid and we are either in the situation of Theorem 1 before the end block or the
repetitionV 2V 0 is found analysing the segments inv = X0X1X2 : : : same way as
in Lemma 6. In the latter casejV j < 10h0jV 0j, jU j < 6 � 6h0jV j and we chooseh = 36h0.

Finally, we state our result.

Theorem 2. Let � be a number with expansion0:v, where the sequencev is a
minimal word belonging to Subclass II of complexity2n + 1. Then� is transcen-
dental.

Proof. This is a straightforward consequence of Lemmata 5-7 and Theorem 1, the
combinatorial criterion for transcendence.
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Corollary 1. Let � be a number with expansion0:v, where the sequencev is a
minimal word belonging to Subclass III of complexity2n+ 1. Then� is transcen-
dental.

Proof. The Rauzy graphs of Subclass III can be obtained from the graphs in
Figure 1 by converting all the arrows and replacingG byD and vice versa. Using
similar considerations as in Section 5, we easily find out that the recursion formu-
lae for the names of the segments are inverses of those of Table 1. All the lemmata
are valid, since length calculations are exactly the same and repetitionsV 2V 0 can
be found similarly. Note that now the segments have a common prefix instead of
a common suffix in Lemmata 6-7.

7 Future work

Our aim is to search concrete examples of transcendental numbers with expan-
sions in these subclasses. We are also going to examine, how the methods intro-
duced here are suitable for the words in Subclass IV. However, this case seems
to be quite complicated and, naturally, the transcendence result follows from the
work of Adamczewskiet al. [1].
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