
Kim Solin | Joakim von Wright

Refinement Algebra Extended with
Operators for Enabledness and
Termination

TUCS Technical Report
No 658, January 2005





Refinement Algebra Extended with
Operators for Enabledness and
Termination

Kim Solin
University of Turku, Department of Mathematics
FIN-20014 Turku, Finland
kim.solin@utu.fi

Joakim von Wright
Åbo Akademi University, Department of Computer Science
Lemminkäisenkatu 14 A
FIN-20520 Turku, Finland
jockum.wright@abo.fi

TUCS Technical Report

No 658, January 2005



Abstract

Refinement algebras are axiomatisations intended for reasoning about pro-
grams in a total correctness framework. We reduce von Wright’s demonic re-
finement algebra to only allow strong iteration and introduce two operators for
modelling enabledness and termination of programs, respectively. We show how
the operators can be used for expressing properties between programs and apply
the algebra to reasoning about action systems.

Keywords: refinement algebra, total correctness, action systems, predicate trans-
formers

TUCS Laboratory
Discrete Mathematics for Information Technology

Learning and Reasoning

and

CREST – the Centre for Reliable Software Technology



1 Introduction

Refinement algebras are axiomatisations for reasoning about program refinement [1,
15, 4], total-correctness preserving program transformations. The intended models
are different classes of predicate transformers over a fixed state space. Applica-
tions include reasoning about distributed systems, data refinement, and program
inversion [17, 18].

In this report, which is an elaboration of our earlier work [16], we introduce a
reduct of von Wright’s refinement algebra [17]. It differs from previous approaches
to abstract algebraic total-correctness reasoning [17, 18, 16, 8, 9] in that it only
has one iteration operator, the strong iteration operator. In a program intuition, a
strong iteration of a statement either terminates or goes on infinitely. Conjunctive
predicate transformers form a motivating model for the axiomatisation.

Along the lines of von Wright in [17, 18], we extend the algebra with guards
and assertions. Guards should be thought of as programs that check if some predi-
cate holds, skips if that is the case, and otherwise a miracle occurs. Assertions are
similar, but instead of performing a miracle when the predicate does not hold, they
abort. That is to say, an assertion that is executed in a state where the predicate
does not hold establishes no postcondition. We prove a result concerning the char-
acterisation of assertions: defining assertions explicitly as a function of guards is
equivalent to defining assertions implicitly by means of Galois connections.

We also extend the refinement algebra with two operators. The first one maps
elements in the carrier set to the subset of guards. The intuition is that the operator
applied to a program returns a guard that skips in those states in which the program
is enabled. This operator is axiomatised in the same way as the domain operator
in [10]. The second operator, which is a “dual” operator to the first one, maps
elements in the carrier set to the subset of assertions. This operator determines if a
program will terminate or not.

Different properties between programs, such as exclusion and a program inver-
sion condition, can be expressed using the new operators. Moreover, we encode
actions systems [3, 2] into refinement algebra and use it for proving refinement
properties of them.

Five papers stand out in the lineage of this report. Kozen’s axiomatisation of
Kleene algebra and his introduction of tests into the algebra has been a very signifi-
cant inspiration for this work [13, 14]. Von Wright’s non-conservative extension of
Kleene algebra with tests was the first axiomatisation that was genuinely an algebra
for total correctness [17]. It rests upon previous work on algebraic program reason-
ing by Back and von Wright [5]. Finally, Desharnais, Möller, and Struth’s Kleene
algebra with domain extended Kleene algebra with a domain operator [10]. This
algebra has successfully been applied to reasoning about different structures [6].
The domain operator appears again in this report and is given a program-theoretic
interpretation.

The report is organised as follows. We begin by presenting a refinement algebra
and extend it with guards and assertions in Section 2. In the following section, we
introduce the new operators and investigate their basic algebraic properties. Sec-
tion 4 contains applications, upon which the succeeding section gives an account
of a predicate-transformer model for the algebra. We end with some concluding

1



remarks and an outlook on future work.
We strive to use a calculational proof format.

2 Refinement Algebra

In this section we present a refinement algebra and extend it with guards and asser-
tions.

2.1 A refinement algebra

With an R structure we shall understand a structure over the signature

(u, ; ,ω ,>, 1)

that satisfies the identities (; left implicit)

x u (y u z) = (x u y) u z (1)

x u y = y u x (2)

x u > = x (3)

x u x = x (4)

x(yz) = (xy)z (5)

1x = x (6)

x1 = x (7)

>x = > (8)

x(y u z) = xy u xz (9)

(x u y)z = xz u yz (10)

xω = xxω u 1 (11)

and the equational implication

xz u y u z = xz u y ⇒ xωy u z = xωy

Moreover, define v as

x v y
def
⇔ x u y = x (12)

Then the equational implication can be written as

xz u y v z ⇒ xωy v z (13)

and (3) as

x v >

If x v y, we can also write y w x.

2



Note that v is a partial order and, by (3), > is its top element, and also that xω

is a least fixpoint with respect to v. All operators are isotone in all their arguments
with respect to v.

The axiomatisation is similar to Kozen’s Kleene algebra [13]. The difference
is that there is no right annihilation axiom, so x> = > does not hold in general,
and that ∗ is replaced by ω.

The operator ω bears similarities to the iteration operator in Cohen’s conserva-
tive extension of Kleene algebra, ω-algebra [8, 9], but is different. Cohen’s ω can
be given the classic interpretation of infinite strings over an alphabet or be inter-
preted as an infinite repetition of a program statement. Our ω should be seen as a
repetition of a program statement that either terminates or goes on infinitely. The
Kleene-algebra ∗ can clearly not be defined in terms of the other operators of an R

structure.
The reason for not having a right annihilation axiom is that we want to reason

about non-termination, we want a total correctness framework. Right annihilation
would prevent that (this is elaborated further below, and a semantical clarification is
given in Section 5). In ω-algebra right annihilation holds, so it is really an algebra
for partial correctness.

The intention to reason about total correctness also motivates the restriction of
the framework to one iteration operator. The refinement algebra by von Wright
in [17, 18] has two related iteration operators, one equal to our ω and the other
equal to ∗ in Kleene algebra. The ∗ can be seen as a terminating repetition of a
program statement. However, since total correctness is what we are interested in,
we exclude ∗ in our axiomatisation to get a more comprehensible framework.

In a program intuition the elements of the carrier set should be seen as program
statements. The operator ; is sequential composition and u is demonic choice.
When x u y is executed, a choice over which we have no influence is made be-
tween x and y. The iteration operator ω is, as mentioned earlier, thought of as a
terminating or infinitely repeating execution of a program statement. The order v
is refinement, x v y means that y establishes anything that x does and possibly
more. Finally, > is interpreted as magic, a non-implementable program statement
that establishes any postcondition, and 1 is skip. A semantical justification for this
intuition is given in terms of predicate transformers in Section 5.

We also introduce a syntactic constant ⊥ with the intuition that it stands for an
always infinitely executing program statement, an abort statement [17]:

⊥
def
= 1ω

The statement 1ω can be thought of as a loop with the loop condition true. It is
easily seen that ⊥ is a bottom element

⊥ v x (14)

and that it is left annihilating

⊥x = ⊥ (15)

The algebraic reason for excluding x> = x is now apparent. Since ⊥ is a bottom
element and since

⊥ = ⊥> = >

3



holds if x> = >, we would only get a one-point model.
Many properties of Kleene-algebra ∗ have analogs for ω. For example,

x(yx)ω = (xy)ωx (16)

(x u y)ω = xω(yxω)ω (17)

and

yx v xz ⇒ yωx v xzω (18)

hold. However, there are differences as the fact that

xz v yx ⇒ xzω v yωx (19)

does not hold in general (take y = 1) reveals [17].

2.2 Guards and assertions

An element p of the carrier set that has a complement p̄ satisfying

pp̄ = > and p u p̄ = 1 (20)

is called a guard. It is easily established that the guards form a Boolean algebra
over (u, ; , ¯ , 1,>), where ; is meet, u is join, ¯ is complement, 1 is the zero, and
> is the unit.

Every guard is defined to have a corresponding assertion

p◦ = p̄⊥ u 1 (21)

Thus ◦ is a mapping from guards to a subset of the carrier set.
Intuitively, guards are statements that check if a predicate holds and, if so, skip,

otherwise abort. Assertions are similar, but do magic if the predicate does not hold.
The assertions have the properties

(p1p2)
◦ = p◦

1
p◦
2

= p◦
1
u p◦

2
, p◦p̄◦ = ⊥, and p◦p◦ = p (22)

These are easily verified; similarly that we have

p◦ v 1 v p (23)

for any assertion and any guard [17].
The assertions could implicitly have been defined by Galois connections as the

following proposition shows.

Proposition 1. Let x and y be any elements in the carrier set of an R structure and
let p be any guard in the same set. Then the equality

p◦ = p̄⊥ u 1

holds if and only if the Galois connections

p◦x v y ⇔ x v py and xp v y ⇔ x v yp◦ (24)

do.

4



Proof. The calculations make use of the monotonicity of the operators and the
easily proved facts that

⊥ v 1 ⇒ p̄⊥ u p v p̄ u p (25)

and that

p(p̄⊥ u 1) = > u p (26)

For one direction we follow [17]. Assume then that (21) holds. If p◦x v y, we
have

py

w {assumption}
p(p̄⊥ u 1)x

= {(8, 26)}
> u px

w {(23, 3)}
x

If x v py, then

(p̄⊥ u 1)x
v {assumption, (10)}

p̄⊥ u py

v {(8, 10)}
(p̄⊥ u p)y

v {(25, 20)}
y

If xp v y, then

y(p̄⊥ u 1)
w {assumption, (9)}

xpp̄⊥ u xp

w {(10, 26)}
x(> u p)

w {(23, 3)}
x

Finally, if x v yp◦, then

xp

v {assumption, (21)}
yp̄⊥ u yp

v {(9, 25)}
y(p̄ u p)

= {(20)}
y

5



For the other direction it suffices to observe that one part of a Galois connection is
uniquely defined by the other and that (21) satisfies (24). �

The following propositions summarise some important properties of guards
and assertions that will be used later on.

Proposition 2 ([17]). Let x be an element in the carrier set of an R structure and
let p1 and p2 be any guards in the same set. Then

> v p1xp̄2 ⇒ p1x w p1xp2 ⇔ xp2 v p1x (27)

Proposition 3. Let x be an element in the carrier set of an R structure and let p

be any guard in the same set. Then

> v p̄x ⇔ px v x (28)

p̄◦x v ⊥ ⇔ x v p◦x (29)

Proof. Firstly,

gx v x

⇒ {monotonicity}
ḡgx v ḡx

⇔ {guard property}
>x v ḡx

⇔ {(8)}
> v ḡx

and secondly

> v ḡx

⇒ {monotonicity}
> u gx v ḡx u gx

⇔ {(3, 2)}
gx v (ḡ u g)x

⇔ {guard property}
gx v 1x

⇔ {(6)}
gx v x

This establishes (28).
Then, for one direction of (29) calculate

x v p◦x

⇒ {monotonicity}
p̄◦x v p̄◦p◦x

⇔ {assertion property}
p̄◦x v ⊥x

⇔ {⊥ property}
p̄◦x v ⊥

6



For the other direction, first note that the left hand side is equivalent to

p⊥ u x v ⊥

by (21), (10), and (15). Now assume that this holds. Then

x

v {guard property}
p̄x

= {(3)}
(p̄ u>)x

= {(26)}
p̄(p⊥ u 1)x

v {assumption}
p̄⊥x

= {(15)}
p̄⊥

Since

x v p◦x ⇔ x v p̄⊥ u x ⇔ x v p̄⊥

this proves the claim. �

Proposition 4. Let x be an element in the carrier set of an R-structure and let p1

and p2 be any guards in the same set. Then

xp1 w p2xp1 ⇔ p2x v xp1 (30)

xp◦1 v p◦2xp◦1 ⇔ p2x w xp1 (31)

Proof. Assume xp1 w p2xp1. Since 1 v p for any guard p, this means that

xp1 = p2xp1

Then

xp1 = p2xp1 w p2x

Conversely, assume that p2x v xp1. Then

p2xp1 v xp1p1 = xp1

The case for assertions is proved in a similar fashion. �

Proposition 5. Let p be a guard in the carrier set of any R structure. Then

pp◦ = p (32)

p◦p = p◦ (33)

7



Proof. The first statement is proved directly by

pp◦

= {(21, 9)}
pp̄⊥ u p

= {guard property}
>⊥ u p

= {(8, 3)}
p

For the second statement, first note that it is clear by (23) that p◦ v p◦p. For the
other direction calculate

p◦p v p◦

⇔ {(24)}
p v pp◦

⇔ {first direction}
p v p

⇔ {v partial order}
True

�

3 Enabledness and Termination

In this section we introduce two new operators, the enabledness operator and the
termination operator, and investigate their basic properties.

3.1 Enabledness

Let ε be a unary operator on an R structure, such that it maps an element of the
carrier set to a guard and satisfies the following axioms

εxx = x (34)

p v ε(px) (35)

ε(xy) = ε(xεy) (36)

By convention, ε binds stronger than the other operators, so e.g. εxx is (εx)x.
The intuition behind ε is that it maps any program to a guard that skips in

those states in which the program is enabled, that is, in those states from which
the program will not terminate miracuosly. Axiom (34), for example, says that a
program x equals a program that first checks if x is enabled and then executes x.

ε is axiomatised as the domain operator of KAD (Kleene algebra with do-
main) [10]. To see this, note that our v corresponds to ≥ in Kleene algebra. This
means that many properties of the domain operator in [10] will also hold for ε in

8



our framework, but we need to remember the lack of right annihilation and that ω

is different from ∗.
As in KAD, the first two axioms of ε can be replaced by the equivalence

px v x ⇔ p v εx (37)

This can proved by reusing and slightly modifying proofs from [10], as can the
properties

ε(x u y) = εx u εy (38)

x v y ⇒ εx v εy (39)

3.2 Termination

Let τ be a unary operator on an R structure such that it maps an element in the
carrier set to an assertion, and satisfies the following axioms

x = τxx (40)

τ(p◦x) v p◦ (41)

τ(xτy) = τ(xy) (42)

By convention, τ has the same precedence as ε.
The operator τ applied to a program denotes those states from which the pro-

gram is guaranteed to terminate, that is, states from which it will not abort. Axiom
(41) says that a program that checks if the program p◦x will terminate can be re-
placed by the assertion p◦. That this holds, is due to the fact that the program p◦x’s
termination is determined by the assertion. The same line of thinking, gives that

τp◦ = p◦

That the first two τ -axioms have a characterization analogous to (37) and is
additive and isotone can be shown.

Proposition 6. Let x be an element in the carrier set of an R structure and let p

be any guard in the same set. Then

x v p◦x ⇔ τx v p◦ (43)

Proof. Right to left is equivalent to the first axiom:

x v τxx ⇔ (x v p◦x ⇐ τx v p◦)

(⇐):

x v p◦x ⇐ τx v p◦

⇒ {let p◦ := τx}
x v τxx ⇐ τx v τx

⇔ {v reflexive}
x v τxx ⇐ True

⇔ {logic}
x v τxx

9



(⇒):

x v τxx ∧ τx v p◦

⇒ {monotonicity of ;, v transitivity}
x v p◦x

Left to right is equivalent to the second axiom:

τ(p◦x) v p◦ ⇔ (x v p◦x ⇒ τx v p◦)

(⇐):

x v p◦x ⇒ τx v p◦

⇒ {let x := p◦x}
p◦x v p◦p◦x ⇒ τ(p◦x) v p◦

⇔ {(22), v reflexive }
τ(p◦x) v p◦

(⇒):

x v p◦x ∧ τ(p◦x) v p◦

⇒ {(23)}
x = p◦x ∧ τ(p◦x) v p◦

⇒ {v transitive}
τx v p◦

�

We can also define τ explicitly by

τx = x> u 1 (44)

It is quite elementary to show that the right hand side of (44) satisfies the axioms.
To see that τ is unique, suppose that another function f satisfies the axioms. Then
by (43)

τx v p ⇔ fx v p

which by the principle of indirect equality means that

τx = fx

Proposition 7. Let x and y be any elements in the carrier set of an R structure and
let p be any guard in the same set. Then

τx v p◦ ⇔ p̄◦x v ⊥ (45)

τ(x u y) = τx u τy (46)

x v y ⇒ τx v τy (47)

10



Proof. Propositions 6 and 3 establish (45). The calculation

τ(x u y)
= {(44)}

(x u y)> u 1
= {(10)}

x> u y> u 1
= {(2, 4)}

x> u 1 u y> u 1
= {(44)}

τx u τy

settles (46). Last, too see that τ is monotone first assume that x v y. By (12) this
means that x = x u y. Using (46) and the assumption we can then see that

τx u τy = τ(x u y) = τx

This says exactly that τx v τy. �

3.3 Some basic properties

In this section we investigate some of the basic properties of ε, τ and ω . The
investigation reveals that all propositions that can be shown in KAD regarding
δ and ∗ [10], for example the induction rule, do not necessarily hold for ε and ω in
an R structure.

Proposition 8. Let 1, > and ⊥ be the constants in an R structure. Then

ε1 = 1 (48)

τ1 = 1 (49)

ε> = > (50)

τ⊥ = ⊥ (51)

Proof. The first two statements follow from the fact that 11 = 1 and axioms (34)
and (40), respectively. The third part follows from > being a top element and axiom
(35), whereas the fourth part follows from ⊥ being a bottom element and (41). �

Proposition 9. Let x and y be any elements in an R structure. Then

ε(τx) = 1 = τ(εx) (52)

εxτx = τxεx (53)

ε(xτy) = εx (54)

τ(xεy) = τx (55)

Proof. The first part. 1 v ε(τx) follows from (22), whereas

ε(τx) v ε(1) v ε(11) = 1

11



follows from (22), (34) and properties of 1. τ(εx) v 1 follows from (22), whereas

1 = τ11 = τ1 v τ(εx)

follows from (22), (40) and properties of 1.
The second part can be done as a direct calculation:

εxτx

= {(34, 9, 44)}
x> u εx

= {(8)}
x>εx u εx

= {(10)}
(x> u 1)εx

= {(44)}
τxεx

The third part follows from

ε(xτy)
= {(36)}

ε(xε(τy)
= {(23)}

ε(x1)
= {(7)}

εx

The fourth part is shown similarly as the third. �

Proposition 10. Let x be an element in an R structure. Then

(εx)ω v 1 (56)

ε(xω) = 1 (57)

(τx)ω = ⊥ (58)

τ(xω) v 1 (59)

Proof. The first part holds since (εx)ω = εx(εx)ω v 1. For a counter example
to see that the converse does not hold, take x = 1. The second part holds since
ε(xω) v ε1 = 1 by (11) and (34), and the converse follows from (23). For the third
part, note that one way follows from ⊥ being a bottom element. The other way
follows from (23) by (τx)ω v 1ω = ⊥. The last part follows from (23). To see
that the converse does not hold, take x = 1. �

Proposition 11. Let x and y be elements in an R structure. Then

ε(xωy) = ε(xε(xωy)) u ε(y) (60)

τ(xωy) = τ(xτ(xωy)) u τ(y) (61)

12



Proof. The calculation

ε(xωy)
= {(11)}

ε((xxω u 1)y)
= {(10)}

ε((xxωy u y)
= {(46)}

ε(xxωy) u ε(y)
= {(36)}

ε(xε(xωy)) u ε(y)

establishes the first part. The second part is proved in a similar fashion. �

Proposition 12. Let x be any element and p be any guard in an R structure. Then
the implication

p v ε(xp) ⇒ p v ε(xωp)

does not hold in general. That is, there is an instantiation of x and p, such that

p v ε(xp)

holds, but

p v ε(xωp)

does not.

Proof. Take x = 1. Then the antecedent becomes p v εp = p, which clearly holds
for any p. The consequent becomes p v ε(1ωp) = ε(⊥p) = ε⊥ = ε(τ⊥) = 1,
which clearly does not hold generally for any p. �

The reason that this does not hold stems from the fact that we cannot prove (19)

xz v yx ⇒ xzω v yωx

in an R structure. This is easily seen when trying to prove the rule along the lines
of [10]:

p v ε(xp)
⇔ {(37)}

pxp = xp

⇔ {(30)}
px v xp

6⇒ {(19)}
pxω v xωp

⇔ {(30)}
pxωp = xωp

⇔ {(37)}
p v ε(xωp)

But as can be seen from this, we do nevertheless have the following result.

13



Proposition 13. Let x be any element and p, p1, and p2 be any guards in an R

structure. Then

pxω v xωp ⇔ p v ε(xωp) (62)

p1x
ω v xωp2 ⇔ p1 v ε(xωp2) (63)

�

On the other hand, we have an induction rule for τ .

Proposition 14. Let x be any element and p be any guard in an R structure. Then

τ(xp◦) v p◦ ⇒ τ(xωp◦) v p◦ (64)

Proof. The derivation

τ(xp◦) v p◦

⇔ {(6)}
xp◦ v p◦xp◦

⇔ {(31)}
xp◦ v p◦x

⇒ {(18)}
xωp◦ v p◦xω

⇔ {(31, 6)}
τ(xωp◦) v p◦

proves the claim. �

4 The Algebra in Action

Here we apply the algebra for expressing different properties between programs.
We also demonstrate the algebra’s applicability by using it for proving some prop-
erties of action systems.

4.1 Expressing properties between programs

The enabledness and the termination operator can be used to express properties
between programs. We list here some examples.

First note that εx is a guard that skips in those states where x is disabled. Anal-
ogously, τx denotes an assertion that skips in the states from which x will abort.

Excludes. A program x excludes a program y if whenever x is enabled y is not.
This can be formalised by saying that x is equal to first executing a guard that
checks that y is disabled and then executing x:

x = εyx

Enables. A program x enables y if y is enabled after having executed x:

x = xεy

14



Disables. Similarly as above x disables y if

x = xεy

Using the algebra, we can prove that exclusion is commutative, x excludes y if
and only if y excludes x:

x = εy

⇔ {(37)}
εy v εx

⇔ {guards Boolean algebra}
εy v εx

⇔ {(37)}
y = εxy

We can also express that termination of x requires termination or enabledness
of y, respectively:

x = τyx

x = εyx

If x requires that y both terminates and is enabled, then by (53) the order of the
requirements is all the same:

x = εyτyx = τyεyx

Program inversion. A program x′ inverts a program x when execution of the
sequence xx′ under the same precondition results in the final state being the same
as the initial state [12, 7].

If we assume that the precondition is included as part of the program to be
inverted, that is

x = p◦y

for some program y and some assertion p◦ that specifies the precondition, then this
means that

τx = τ(p◦y) v p◦

Program inversion can then be defined as

x′ inverts x ⇔ τx v xx′

Intuitively, this says that the assertion that skips in those states from which x

terminates and aborts in all other states, can be replaced by the program xx ′: if x

terminates and x′ inverts x then xx′ skips, otherwise xx′ aborts.
In [17] von Wright uses the explicit definition of τ to derive several rules for

program inversion.

15



4.2 Action systems

Action systems comprise a framework for reasoning about parallel programs [3, 2].
The intuition is that an action system is an iteration of n demonic choices x1 u
· · · u xn, that terminates when none of the actions x1, . . . , xn is longer enabled. It
is denoted

do x1[] . . . []xn od

Using our extended refinement algebra, we can encode an action system as

(x1 u . . . u xn)ωε(x1) . . . ε(xn)

When the operators are interpreted as in Section 5, this definition gives rise the
classical predicate-transformer definition of an action system [5].

We begin by showing that action systems have a leapfrog property.

x; do y;x od v do x; y od;x

We will prove this property in the algebra and at the same time expose a method-
ology for performing derivations.

Action-system leapfrog takes the form

x(yx)ωε(yx) v (xy)ωε(xy)x (65)

in our algebra. We can now embark on proving (65) with basic rules, collecting
assumptions as needed. The assumptions are then, in turn, proved.

x(yx)ωε(yx)
= {(16)}

(xy)ωxε(yx)

v {collect: if xε(yx) v ε(xy)x}

(xy)ωε(xy)x

The assumption collected in the second step is then shown to hold by the following
derivation.

xε(yx) v ε(xy)x
⇐ {(27)}

> v ε(xy)xε(yx)
⇔ {(37, 3)}

ε(xy) v ε(xε(yx))
⇔ {(36)}

ε(xy) v ε(xyx)
⇔ {(36)}

ε(xy) v ε(xyεx))
⇐ {(23) }

True

The same result has been shown in the predicate transformer model [5], but our
proof is much cleaner and simpler.

16



An action system of the form

do x1 []x2 od

can be refined by

do x2 od; dox1; do x2 od od

provided that x1 excludes x2.
Action-system decomposition is encoded as

(x u y)ωεx εy v yωεy(xyωεy)ωε(xyωεy) (66)

and the assumption as

x = εyx

We can then prove (66).

(x u y)ωεx εy

= {(17)}
yω(xyω)ωεx εy

= {assumption}
yω(εyxyω)ωεx εy

= {guards Boolean algebra}
yω(εyxyω)ωεy εx

= {(16)}
yωεy(xyωεy)ω εx

v {collect: if εx v ε(xyωεy)}

yωεy(xyωεy)ω ε(xyωεy)

The collected assumption follows from the fact that

εx = ε(x1) v ε(xεy) = ε(xy)

for any x and y.
In [17] a similar result has been shown for loops with explicit guards. Here,

the enabledness operator ε allows action systems with implicit guards.
With predicate-transformer semantics, the opposite direction has also been

shown to hold [5]. We have not been able to prove this direction in the algebra.
However, the derivation goes in the ”right” direction, since the the initial program
is refined to a program where the order of execution is clearly expressed.

5 Predicate Transformers as a Model

We show how conjunctive predicate transformers form a model for the algebra
described in the previous sections.

17



5.1 Predicate transformers

A predicate transformer [11] is a function

S : ℘(Σ) → ℘(Σ)

where Σ is any set. Let p, q ∈ ℘(Σ). If a predicate transformer S satisfies

p ⊆ q ⇒ S.p ⊆ S.q

it is monotone and if it satisfies

S.(p ∩ q) = S.p ∩ S.q (67)

it is conjunctive. A predicate transformer S is universally conjunctive if S is con-
junctive and S.Σ = Σ.

Clearly, any universally conjunctive predicate transformer is conjunctive and it
is easily shown that any conjunctive predicate transformer is monotone.

5.2 Interpreting programs

Programs can be modelled by predicate transformers according to a weakest pre-
condition semantics [11]: S.q denotes those sets of states from which the execution
of S is bound to terminate in q.

Universally conjunctive predicate transformers cannot model non-termination.
Too see this, suppose that S is an always non-terminating program, that is,

(∀q ∈ ℘(Σ) • S.q = ∅) (68)

Now, if S is universally conjunctive, then

S.Σ = Σ

so clearly (68) does not hold.

5.3 Refinement algebra

There are three distinguished predicate transformers

abort = (λq • ∅) (69)

magic = (λq • Σ) (70)

skip = (λq • q) (71)

and a predicate transformer S1 is refined by S2, written S1 v S2, if

(∀q ∈ ℘(Σ) • S1.q ⊆ S2.q)

This report deals with three operations on predicate transformers [4, 15] defined by

(S;T ).q = S.T.q (72)

(S u T ).q = S.q ∩ T.q (73)

Sω = µ.(λX • S;X u skip) (74)

18



where µ denotes the least fixpoint with respect to v.
Let CtranΣ be the set of conjunctive predicate transformers over a set Σ. Then

it is quite easily verified that

(CtranΣ,u, ; ,ω ,magic, skip)

is an algebra of the type R described in Section 2. It is also clear that abort models
⊥, since it can be shown that skipω = abort [4].

We can now give semantical justification for not having a right annihilation
axiom

x> = >

If we would have right annihilation, then for any predicate transformer S and any
q ∈ ℘(Σ)

S.Σ = S.(magic.q) = magic.q = Σ

so our predicate transformer model would be universally conjunctive. As noted
above, universally conjunctive predicate transformers cannot model non-termination,
that is, they do not facilitate total-correctness reasoning.

5.4 Guards and assertions

Consider the function [·] : ℘(Σ) → (℘(Σ) → ℘(Σ)) such that when p, q ∈ ℘(Σ)

[p].q = ¬p ∪ q

For every element p ∈ ℘(Σ) there is thus a predicate transformer

Sp : ℘(Σ) → ℘(Σ), Sp : q 7→ ¬p ∪ q

These predicate transformers are called guards. There is an analog that is an asser-
tion and it is defined by

{p}.q = p ∩ q

Negation ¬ is defined on guards and assertions by

¬[p] = [¬p] and ¬{p} = {¬p}

where ¬p is set complement.
Let GrdΣ be the set of all guards over a a set Σ. Then GrdΣ ⊆ CtranΣ, since if

[p] is any guard, it holds that

[p].(q1 ∩ q2) = ¬p ∪ (q1 ∩ q2) = (¬p ∪ q1) ∩ (¬p ∪ q2) = [p].q1 ∩ [p].q2

for any q1, q2 ∈ ℘(Σ).
It is also easily established that

(GrdΣ, ; ,u,¬,magic, skip)

19



is a Boolean algebra, where ; is meet, u is join, and ¬ is complement. For example,
if g ∈ GrdΣ, then g u ¬g = skip as the following shows: Let [p] be any guard and
q ∈ ℘(Σ). Then

([p] u ¬[p]).q = ([p] u [¬p]).q = (¬p ∪ q) ∩ (¬(¬p) ∪ q) = q = skip.q.

The rest of the axioms for Boolean algebra are verified similarly.
The guards and assertions in the predicate-transformer sense thus correspond

to the guards and assertions of the algebraic structure in Section 2.2.

5.5 Enabledness and Termination

In the predicate-transformer model, we interpret

εS as [¬S.∅]

and

τS as {S.Σ}

where S is a conjunctive predicate transformer. It can easily be established that
this interpretation is sound for the axioms of ε, (34 – 36) and of τ , (40 – 42). For
example, the axioms (34) and (41) are verified by

[¬S.∅];S v S

⇔ {definitions}
(∀q ∈ ℘(Σ) • [¬S.∅].(S.q) ⊆ S.q)

⇔ {definitions}
(∀q ∈ ℘(Σ) • S.∅ ∪ S.q ⊆ S.q)

⇔ {monotonicity of S}
(∀q ∈ ℘(Σ) • True)

⇔ {logic}
True

and

(∀p ∈ ℘(Σ) • {({p};S).Σ} v {p})
⇔ {definitions}

(∀p, q ∈ ℘(Σ) • {{p}.(S.Σ)}.q ⊆ {p}.q)
⇔ {definitions}

(∀p, q ∈ ℘(Σ) • p ∩ S.Σ ∩ q ⊆ p ∩ q)
⇔ {set theory}

(∀p, q ∈ ℘(Σ) • True)
⇔ {logic}

True

respectively. The other axioms can be verified similarly.

20



6 Concluding Remarks

We have introduced a refinement algebra restricted to strong iteration and extended
it with the enabledness operator and the termination operator. We have shown
that the axiomatisation is sound with respect to a predicate-transformer model and
applied the algebra to reasoning about action systems.

The reduced refinement algebra and its extensions deserve further investiga-
tion. Since total correctness is what we are interested in, the restriction of the
framework to merely the strong iteration operator is motivated. However, some
propositions concerning ω that were proved in related algebras, e.g.

xy v yx ⇒ (x u y)ω = xωyω

rely on axioms for the Kleene ∗ operator in their proofs. To what extent these types
of propositions can be proved in the reduced algebra, which lacks the ∗ operator, is
under investigation.

Applying the new operators, ε and τ , to larger problems is yet to be done. Two
important metaresults, completeness and decidability, are also pending questions
that we hope to return to elsewhere.

Acknowledgements. Thanks are due to Orieta Celiku and Viorel Preoteasa for
elucidating discussions, and to Herman Norrgrann and anonymous referees for
comments on an earlier draft of this report.

21



References

[1] R.J. Back. Correctness Preserving Program Refinements: Proof Theory and
Applications, volume 131 of Mathematical Centre Tracts. Mathematical Cen-
tre, Amsterdam, 1980.

[2] R.J. Back. Refining atomicity in parallel algorithms. In PARLE Conference
on Parallel Architectures and Languages Europe, Eindhoven, the Netherlands,
June 1989. Springer-Verlag, 1989.

[3] R.J. Back and K. Sere. Stepwise refinement of action systems. Structured
Programming, 12:17–30, 1991.

[4] R.J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer-Verlag, 1998.

[5] R.J. Back and J. von Wright. Reasoning algebraically about loops. Acta Infor-
matica, 36:295–334, 1999.

[6] R. Berghammer, B. Möller, and G. Struth, editors. Relational and Kleene-
Algebraic methods in Computer Science, LNCS 3051. Springer, 2004.

[7] W. Chen and J.T. Udding. Program inversion: more than fun! Report CS 8903,
Dept. of Mathematics and Computer Science, University of Groningen, 1988.

[8] E. Cohen. Hypotheses in Kleene Algebra. Unpublished manuscript, Telcordia,
1994.

[9] E. Cohen. Separation and reduction. In Mathematics of Program Construc-
tion, volume 1837 of Lecture Notes in Computer Science, Portugal, July 2000.
Springer-Verlag.

[10] J. Desharnais, B. Möller and G. Struth. Kleene algebra with domain. Techni-
cal Report 2003-7, Universität Augsburg, Institut für Informatik, June 2003.

[11] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall International,
1976.

[12] D. Gries. The Science of Programming. Springer-Verlag, New York, 1981.

[13] D. Kozen A Completeness Theorem for Kleene Algebras and the Algebra of
Regular Events. Inf. Comput. 110(2): 366-390,1994.

[14] D. Kozen. Kleene algebra with tests. ACM Transactions on Programming
Languages and Systems, 19(3):427–443, 1999.

[15] C.C. Morgan. Programming from Specifications (2nd edition). Prentice-Hall,
1994.

[16] K. Solin and J. von Wright. Demonic refinement algebra with domain. In
K. Sere and M. Waldén, editors, Proceedings of the 15th Nordic Workshop on
Programming Theory - NWPT’03, page 43, Åbo Akademi, Reports on Com-
puter Science and Mathematics, Ser. B, No. 34, October 2003. (Extended Ab-
stract.)

22



[17] J. von Wright. From Kleene algebra to refinement algebra. In Mathematics
of Program Construction, volume 2386 of Lecture Notes in Computer Science,
Germany, July 2002. Springer-Verlag.

[18] J. von Wright. Towards a refinement algebra. Science of Computer Program-
ming, 51:23–45, 2003.

23



Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology
• Department of Mathematics

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 952-12-1493-7
ISSN 1239-1891


