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Abstract

We construct some geometrically dense matrix lattices with good minimum prod-
uct distances for 4 transmit antenna MISO applications. The construction is based
on the theory of rings of algebraic integers and related subrings of the Hamilto-
nian quaternions. Simulations in a quasi-static Rayleigh fading channel show that
our dense quaternionic constructions outperform the earlier rectangular lattices as
well as the DAST-lattice.
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1 Background and basic definitions

We are interested in the coherent multiple input-single output (MISO) case where
the receiver perfectly knows the channel coefficients. The received signal is

y1×n = h1×kXk×n + n1×n,

whereX is the transmitted codeword taken from Space-Time Block Code (STBC),
h is the Rayleigh fading channel response and the components of the noise vector
n are i.i.d. complex Gaussian random variables.

A lattice is simply a discrete finitely generated free abelian subgroupL of a
real (or complex) finite dimensional vector spaceV, called the ambient space. In
the space-time setting a natural ambient space is the spaceMn(C) of complex
n × n-matrices. When a code is a subset of a latticeL in this ambient space, the
rank criterion states that any non-zero matrix inL must be invertible. This follows
from the fact that the difference of any two matrices fromL is again inL. As a
main design criterion we recall theminimum product distanceof the codeC. In
the case of square matrix lattice this takes the form

δC = minM∈C,M6=0{det(MM∗)
1
k },

whereM∗ is the adjoint of the matrixM andk is the number of transmit antennas.
The receiver, however, (recall that we work in the MISO setting) sees vector lat-
tices instead of matrix lattices. When the channel state ish, the receiver expects
to see the latticehL. If h 6= 0 andL meets the rank criterion, thenhL is, indeed,
a free abelian group of the same rank asL. However, it is possible thathL is not
a lattice, as its generators may be linearly dependent over the reals — the lattice
is said to havecollapsedwhenever this happens.

This work is a continuation of the reports [1] and [2]. The reader interested in
more background is referred to [3]-[9].

2 Rings of algebraic numbers, quaternions and lat-
tice constructions

It is widely known how the so calledAlamouti design(cf. e.g. [26]) represents
multiplication in the ring of quaternions. As the quaternions form a division al-
gebra, such matrices must be invertible, i.e. the resulting STBC meets the rank
criterion. Matrix representations of other division algebras have been proposed as
STBC codes at least in [2], [11]-[19], and (though without explicitly saying so)
[20]. The most recent work ([12]-[20]) has concentrated on adding multiplexing
gain (i.e. MIMO applications) and/or combining it with good minimum product
distance. We do not seek any multiplexing gains, but want to improve upon e.g.
the DAST-lattices introduced in [11] by using non-commutative division algebras.
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Other efforts to improve the DAST-lattices and ideas alike can be found in [21],
[22], and [23].

We shall use extension rings of the Gaussian integersG = {a + bi|a, b ∈ Z}
inside a given division algebra. It would be easy to adapt the construction to use
the ring of the Eisensteinian integersE = {a + bω|a, b ∈ Z}, whereω3 = 1,
as a basic alphabet. However, the Gaussian integers fit nicely with the popular
16-QAM and QPSK alphabets. Natural examples of such rings are the rings of
algebraic integers inside an extension field of the quotient fields ofG, as well as
their counterparts inside the quaternions. To that end we need division algebrasA
that are also 4-dimensional vectors spaces over the fieldK = Q(i). Let ζ = eπi/8

(resp. ξ = eπi/4 = (1 + i)/
√

2) be primitive16th (resp. 8th) root of unity. Our
main examples of such division algebras are the number fieldL = Q(ζ) and
the following subskewfield of the Hamiltonian quaternionsH = Q(ξ) ⊕Q(ξ)j.
Note that aszj = jz for all complex numbersz, and as the fieldQ(ξ) is stable
under the usual complex conjugation, the setH is, indeed, a subskewfield of the
quaternions.

As always, multiplication (from the left) by a non-zero element of the division
algebraA is an invertibleQ(i)-linear mapping (withQ(i) acting from the right).
Therefore its matrix with respect to a chosenQ(i)-basisB of A is also invertible.
Our example division algebrasL andH have as naturalQ(i)-bases the setsBL =
{1, ζ, ζ2, ζ3} andBH = {1, ξ, j, jξ} respectively. Thus we immediately arrive at
the following matrix representations of our division algebras.

Proposition 2.1.Let the variablesc1, c2, c3, c4 range over all the elements ofQ(i).
The division algebrasL andH can be identified via an isomorphismφ with the
following rings of matrices

L =








c1 ic4 ic3 ic2

c2 c1 ic4 ic3

c3 c2 c1 ic4

c4 c3 c2 c1








,

and

H =





M = M(c1, c2, c3, c4) =




c1 ic2 −c∗3 −c∗4
c2 c1 ic∗4 −c∗3
c3 ic4 c∗1 c∗2
c4 c3 −ic∗2 c∗1








.

The isomorphismφ from L into the matrix ring is determined byQ(i)-linearity
and the fact thatζ corresponds to the choicec2 = 1, c1 = c3 = c4 = 0. The
isomorphismφ fromH into the matrix ring is determined byQ(i)-linearity and the
facts thatξ corresponds to the choicec2 = 1, c1 = c3 = c4 = 0, andj corresponds
to the choicec3 = 1, c1 = c2 = c4 = 0. In particular the determinants of these
matrices are non-zero whenever at least one of the coefficientsc1, c2, c3, c4 is non-
zero.
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Remark 2.1. The algebraH could also be viewed as cyclic division algebra in the
sense of [12]. As it is a subring of the Hamiltonian quaternions, its center consists
of the intersectionH ∩R = Q(

√
2). Also Q(ξ) is an example of a splitting field

of H. In the notation of section 7 of [12] we have an obvious isomorphism

H ' (Q(ξ)/Q(
√

2), σ,−1),

whereσ is the usual complex conjugation.

In order to get STBC-lattices and useful bounds for the minimum product
distance we need to identify suitable subringsR of these two algebras. Actually
we want these rings to be free (right)G-modules of rank 4. This is because then the
determinants of those matrices of Proposition 2.1 that belong to the subringφ(R)
must be elements of the ringG. We repeat the well-known reason for this for the
sake of completeness: the determinant of the matrix representing multiplication
by a fixed elementx ∈ R does not depend on the choice of the basisB, so we may
assume that it is actually aG-module basis. However, in that casexB ⊂ R, so the
matrix will have entries inG, as all the elements ofR areG-linear combinations
of B. The claim follows.

In the case of the fieldL we are only interested in its ring of integersOL =
Z[ζ] that is a freeG-module with basisBL. In this case the ringφ(OL) consists of
those matrices ofL that have all the coefficientsc1, c2, c3, c4 ∈ G. Similarly the
G-module spanned by our earlier basisBH is a ringL of the required type. This
ring should probably be called the ring of Lipschitz’ integers ofH. Again φ(L)
consists of those matrices ofH that have all the coefficientsc1, c2, c3, c4 ∈ G.
WhileOL is known to be maximal among the rings satisfying our requirements,
the same is not true aboutL. The ring of Hurwitz’ integral quaternions also has
an extension of the prescribed type insideH. This ring, denoted byH, is the
(right) G-module generated by the basisBHur = {ρ, ρξ, j, jξ}, whereρ = (1 +
i+ j +k)/2. The fact thatH is a subring can easily be verified by straightforward
computations, e.g.ξρ = ρξ − jξ. For future use we express the ringH in terms
of the basisBH of Proposition 2.1. We easily see that the quaternion

q = c1 + ξc2 + jc3 + jξc4

is an element ofH, if and only if the coefficientsct, t = 1, 2, 3, 4 satisfy the
requirements(1 + i)ct ∈ G for all t and c1 + c3, c2 + c4 ∈ G. As the ideal
generated by1 + i is of index two inG, we see thatL is an additive subgroup of
index four inH. We summarize these findings in the next proposition. The bound
on the minimum product distance is a consequence of the fact that all the elements
of G have norm at least 1.
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Proposition 2.2. The following rings of matrices form STBC-lattices of minimum
product distance 1.

L1 =








c1 ic4 ic3 ic2

c2 c1 ic4 ic3

c3 c2 c1 ic4

c4 c3 c2 c1


 |c1, c2, c3, c4 ∈ G





,

L2 = {M(c1, c2, c3, c4)|c1, c2, c3, c4 ∈ G} ,

L3 = {M(c1, c2, c3, c4)|c1, c2, c3, c4 ∈ 1 + i

2
G,

c1 + c3 ∈ G, c2 + c4 ∈ G}.

Remark 2.2. The latticeL1 is quite similar to the DAST-lattice in the sense that
all of its matrices can be diagonalized simultaneously. The latticeL2, for its part,
is a more developed case from the so-calledquasi-orthogonalSTBC suggested
e.g. in [24]. The matrix ofL2 can be found as an example also in [12], but no
optimization has been done there by using, for example, ideals as we do here.

A drawback shared by the latticesL1 andL2 is that in the ambient space of the
transmitter they are isometric to the rectangular latticeZ8. The rectangular shape
does carry the advantage that the sets of information carrying coefficients of the
basic matrices are simple and all identical (this is useful in e.g. sphere decoding),
but this shape is very wasteful in terms of transmission power. Geometrically
denser sublattices ofZ8, e.g. the checkerboard latticeD8 and the root latticeE8

are well known (cf. e.g. [25]). However, we must be careful in picking the copies
of the sublattices, as it is the minimum product distance we want to keep an eye
on.

As our earlier simulations ([1],[2]) showed thatL2 outperformsL1, we con-
centrate on finding good sublattices ofL2. The units of the ringL2 are exactly the
non-zero matrices, whose determinants have the minimal absolute value of one.
Thus a natural way to find a sublattice with a better minimum product distance is
to take the latticeφ(I), whereI ⊂ R is a proper ideal. This idea has appeared in
[2] and [14]. Even earlier, ideals of rings of algebraic integers were used in [8] to
produce dense lattices. Let us first record the following simple fact.

Lemma 2.3. LetA andB be diagonalizable complex square matrices of the same
size. Assume that they commute and that their eigenvalues are all real and non-
negative. Then

det (A + B) ≥ det A + det B,

and we have a strict inequality, if bothA andB are invertible.
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Proof. As A andB commute, they can be diagonalized simultaneously. Thus
we can reduce the claim to the case of diagonal matrices with non-negative real
entries. In that case the claim is obvious.

Proposition 2.4. LetI be the prime ideal of the ringG generated by1+ i. Define

IL = {(c1 + ξc2) + j(c3 + ξc4) ∈ L|c1 + c2 + c3 + c4 ∈ I}.

ThenIL is an ideal of index two inL. The corresponding lattice

L4 = {M ∈ L2|c1 + c2 + c3 + c4 ∈ I}

is a rank2 sublattice inL2. Furthermore, the absolute value ofdet(MM∗), M ∈
L4 \ {0}, is then at least4.

Proof. It is straightforward to check thatIL is stable under (left or right) multi-
plication with the quaternionsξ andj, soIL is an ideal inL.

Let us consider a matrixM ∈ L4 and write it in the block form

M =

(
A −B∗

B A∗

)
.

We see that

MM∗ =

(
AA∗ + BB∗ 0

0 AA∗ + BB∗

)
,

and

AA∗ + BB∗ =

(
α k∗

k α

)
,

whereα =
∑4

j=1 |cj|2 is a non-negative integer andk = −ic1c
∗
2+c2c

∗
1−ic3c

∗
4+c4c

∗
3

is a Gaussian integer with the propertyk∗ = ik. We are to prove thatdet MM∗ =
(α2 − |k|2)2 ≥ 4. Assume first thatc3 = c4 = 0, i.e. the blockB = 0. Then
det(A) is the relative normdet(A) = N

Q(ξ)
Q(i) (c1+ξc2), which is a Gaussian integer.

As c1 +ξc2 is a non-zero element of the idealI, we conclude thatdet(A) is a non-
zero non-unit. Thereforedet(A) det(A∗) ≥ 2, and the claim follows.

Let us then assume that bothA andB are non-zero. Thendet(A) anddet(B)
are non-zero Gaussian integers and have a norm of at least one. The matrices
A,A∗, B,B∗ all commute, so by Lemma 2.3 we get

det(MM∗) > det(AA∗)2 + det(BB∗)2 ≥ 2.

As det(MM∗) = (α2 − |k|2)2 is the square of a rational integer, it must be at least
4.
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Remark 2.3. It is easy to see that in the previous propositiona + bi ∈ I, iff a + b
is an even integer. Thus geometrically the matrix latticeL4 is, indeed, isometric
to D8.

We proceed to describe two more interesting sublattices ofL2 with even better
minimum product distances. To that end we use the ringH (or the latticeL3).
The first sublattice is isometric to the direct sumD4 ⊥ D4 of two 4-dimensional
checkerboard lattices.

Proposition 2.5. Let againI be the ideal(1 + i)G and M(c1, c2, c3, c4) be the
matrices of Proposition 2.1. The lattice

L5 = {M(c1, c2, c3, c4) ∈ L2|c1 + c3, c2 + c4 ∈ I}

has minimum prodcut distance equal to 2.

Proof. The matricesA in the latticeL5 are of the formA = (1 + i)M , whereM
is a matrix in the latticeL3 of Proposition 2.2. Thusdet(AA∗) = 16 det(MM∗),
so the claim follows from Proposition 2.2.

The root latticeE8 can be described in terms of Gaussian integers as follows
(cf. [26])

E8 =
1

1 + i
{(c1, c2, c3, c4) ∈ G4|c1 + I = ct + I,

t = 2, 3, 4,
4∑

t=1

ct ∈ 2G}.

By our identification of quadruples(c1, c2, c3, c4) ∈ G4 and elements ofH it is
easily verified thatΛ = (1 + i)E8 has{2, (1 + i) + (1 + i)ξ, (1 + i)ξ + (1 + i)j,
1+ ξ + j + jξ} ⊆ L as aG-basis, whence the set{1+ i, 1+ ξ, ξ + j, ρ+ρξ} ⊆ H
is aG-basis forE8. By another simple computation we see thatE8 = H(1 + ξ),
i.e. E8 is the left ideal of the ringH generated by1 + ξ.

Proposition 2.6. The lattice

L6 = {M(c1, c2, c3, c4) ∈ L2 | c1 + I = ct + I,

t = 2, 3, 4,
4∑

t=1

ct ∈ 2G}.

is an index 16 sublattice ofL2. Furthermore, the minimum product distance ofL6

is 2
√

2.
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Proof. Let MI = M(1, 1, 0, 0) be the matrixφ(1 + ξ) under the isomorphism
of Proposition 2.1. We see thatdet(MIM

∗
I ) = 4. By the preceeding discussion

any matrixA of the latticeL6 is of the formA = MMI(1 + i), whereM is
a matrix fromH. As in the proof of Proposition 2.5, we see thatdet AA∗ =
16 det(MIM

∗
I ) det(MM∗). Therefore the claim on the minimum distance follows

from Proposition 2.2. We see that the coefficientc1 can be chosen arbitrarily
within G. The coefficientsc2 andc3 then must belong to the cosetc1 + I, andc4

must be chosen such thatc1 + c2 + c3 + c4 ∈ 2G = I2. AsI is of index two inG,
we see that the index ofL6 in L2 is 16 as claimed.

Remark 2.4. We have been able to prove that the latticeL6 is optimal within the
cyclic division algebraH in the sense that the root latticeE8 is a maximal order
in H. For the general theory of maximal orders required for this, see[27].

Remark 2.5. We have now produced a nested sequence of lattices

2Z8 = 2L2 ⊆ L6 ⊆ L5 ⊆ L4 ⊆ L2 = Z8(⊆ L3).

We concentrate on the lattices that are sandwiched between2Z8 andZ8. Such lat-
tices are in a bijective correspondence with binary linear code of length 8 by ”pro-
jection modulo 2”. As it happens, within this sequence of lattices the minimum
Hamming distance of the binary linear code and the minimum product distance of
the lattice are somewhat related.

The 8-dimensional rectangular gridZ8 (no coding)
↓

The checkerboard latticeD8 (↔ overall parity check code of length8)
↓

The latticeD4 ⊥ D4 (↔ two blocks of the overall parity check code of length4)
↓

The root latticeE8 (↔ extended Hamming-code of length8).

Thus it is natural to ask that what if we simply concatenate the useL2 with a
good binary code (extended over severalL2-blocks, if need be), and be done with
it. While the binary linear codes appearing above are the first ones that come to
mind, we want to caution the unwary end-user. Namely, it is possible that there are
high weight units in the ring in question. If such binary words are included, then
the minimum product distance of the corresponding lattice is equal to1, i.e. no
coding gain will take place. E.g. the unit(1−ξ3)/(1−ξ) = 1+ξ+ξ2 = (1+i)+ξ
of the ringL corresponds to the matrixM(1+ i, 1, 0, 0) of determinant 1, and thus
we must not allow such words of weight 3. If the latticeL1 were used, the situation
would be even worse, as then we have units like(1 − ζ7)/(1 − ζ) in the ringOL

that would be mapped to a word of Hamming weight 7. A construction based on
ideals provides a mechanism to avoid the problems caused by high weight units.
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3 Energy considerations and simulations

As a summary of Propositions 2.2–2.6 we get the following.

Proposition 3.1. (1) The latticeL2 is isometric to the rectangular latticeZ8 and
has minimum product distance 1.

(2) The latticeL4 is an index two sublattice ofL2 and has minimum product
distance

√
2.

(3) The latticeL5 is an index four sublattice ofL2 and has minimum product
distance 2.

(4) The latticeL6 is an index 16 sublattice ofL2 and has minimum product
distance2

√
2.

In order to compare these lattices we scale them to the same minimum product
distance. When a real scaling factorρ is used the minimum product distance is
multiplied byρ2. As all the lattices have rank 8, the fundamental volume is then
multiplied byρ8. Let us choose the units so that the fundamental volume ofL2 is
m(L2) = 1. Then after scalingm(L4) = 1/2, m(L5) = 1/4 andm(L6) = 1/4.
As the density of a lattice is inversely proportional to the fundamental volume, we
thus expect the codes constructed within e.g. the latticesL4 andL6 to outperform
the codes of the same size withinL2.

We have collected the exact average transmission power data into Table 1. The
data is computed as follows. Given the sizeM of the code we chooseM short-
est vectors from each lattice. The average energy of the code is then computed
with the aid of theta functions [25]. All the lattices were normalized to have min-
imum product distance equal to 1. When using the matricesM(c1, c2, c3, c4) of
Proposition 2.1 we sometimes selected the input vectors(c1, c2, c3, c4) from the
coset1

2
(1 + i, 1 + i, 1 + i, 1 + i) + G4 instead of letting them range overG4. Ob-

viously such a translation does not change the minimum product distance of the
code, but it sometimes results in significant energy savings. E.g. to get a code
of size 256 it is clearly desirable to let the coefficientsc1, c2, c3, c4 range over the
QPSK-alphabet.

Figure 1 shows the block error rates of the various competing lattice codes
at the rate 2 bits/s/Hz, i.e. all the codes contain 256 matrices. For the lattices
L1, L2, LDAST andLABBA [28] this simply amounted to letting the coefficients
c1, c2, c3, c4 take all the values in the QPSK-alphabet. Therefore, it would have
been easy to obtain bit error rates as well. For the latticesL4, L5 andL6 a more
or less random set of 256 shortest vectors was chosen. As there is no natural way
to assign bit patterns to vectors ofD8, D4⊥D4 or E8, we chose to show the block
error rates instead of the bit error rates. Figure 1 shows that the latticeL6 wins
over all the other lattices.

The simulations were set up, here, so that the 95 per cent reliability range
amounts to a relative error of about 3 per cent at the low SNR end, and to about 10
per cent at the high SNR end (or to about 4000 and 400 error events respectively).
One receiver was used for all the lattices.
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Figure 2 shows the block error rates of the code withinL6 and the Golden code
[14] at the rate 4 bits/s/Hz with two receivers. At the rate 4 bits/s/Hz one block of
our code consists of 16 bits, whereas one block of the Golden code carries 8 bits
only. For that reason we decided to show the error rate of two consecutive blocks
of the Golden code; i.e. if the usual error rate of the block of length two isp, the
rate we show is2p− p2.

We can conclude that the latticeL6 outperforms the Golden code when SNR
reaches about 13 dB. However, this is an unfair comparison because our code
uses four transmit antennas while the Golden code uses only two — this is just a
manifestation of the diversity gain, but we were interested in finding the approxi-
mate crossing point. The fact that the Golden code triumphs over our lattice at the
low SNR end is not such a severe drawback either, since our codes are designed
mainly for MISO channels when the Golden code is intended wholly for MIMO
channels.

Table 1: Average energy of four antenna full-diversity matrix lattices

Rate Lattice
bit/s/Hz L2 L4 L6 LDAST

1.0 3.75 2.83 2.66 5.93
1.5 6.88 5.57 2.79 10.88
2.0 8.00 8.13 2.98 12.65
2.5 14.00 10.68 4.99 22.14
3.0 19.00 15.09 6.66 30.04
3.5 26.12 21.57 9.28 41.30
4.0 40.00 30.13 12.86 63.25
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4 Conclusions and suggestions for further research

In this paper, we present new constructions of rate one, full diversity, and energy
efficient4× 4 space-time codes by using the theory of rings of algebraic integers
and their counterparts within the division rings of Lipschitz’ and Hurwitz’ integral
quaternions. A comfortable, purely number theoretic way to improve space-time
lattice constellations is introduced. The use of ideals provides us denser lattices
and an easy way to present the exact proofs for the minimum product distances.
The constructions can be naturally extended also to a larger number of transmit
antennas and they fit nicely with the popular Q2-QAM and QPSK modulation
alphabets.

Comparisons with DAST-code show that our codes provide lower energy and
block error rates due to their good minimum product distance and high density.
Despite the fact that our codes are mainly designed to use only one receiver an-
tenna, comparisons with the Golden code give hope that the ideas of this paper
will work with slight changes also with multiple receivers. For that reason, our
next goal is to improve these ideas and codes so that they would perform well
also in MIMO channels. We are also searching for well-performing MIMO codes
arising from the theory of crossed product algebras and maximal orders of cyclic
division algebras.

We have also started analyzing more closely the situation, where the receiver’s
version of the lattice collapses in the sense that the real spanV of the free abelian
group hL is of dimension strictly less than 8. The spaceV is obviously the
R ⊗Q H-submodule ofC4 generated by the vectorh. It is easy to see that the
R-algebraR ⊗Q H is a direct sum of two copies of the algebra of Hamiltonian
quaternions. Thus the spaceC4 will also be a direct sum of two 4-dimensional
submodules, and the lattice collapses exactly when the channel state vector hap-
pens to be in one of the submodules. This is in sharp contrast to the case of the
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commutative ringL1 and the DAST-construction. This is because theR-algebra
R ⊗Q L is isomorphic to a direct sum of four copies of the field of complex
numbers (a consequence of simultaneous diagonalizability). Thus in those cases
the receiver’s signal spaceC4 has four submodules of real dimension 6 as well as
smaller submodules that are intersections of the maximal ones. Therefore we have
every reason to expect that the lattice will collapse more often, if we use, e.g.L1.
The set of these critical channel vectors (= the union of proper submodules) obvi-
ously has measure zero, but, nevertheless, it is natural to assume that something
bad will happen, when we are close to the critical set. Preliminary simulations
(we are indebted to M.Sc. Miia M̈aki for carrying out this work) show that the
complexity of the sphere decoder increases sharply, when we approach the critical
set. A comparison between the latticesL1 andL2 does not show a dramatic differ-
ence between the average complexities of the sphere decoder, but the difference is
very clear, when studying the high-complexity tails of the complexity distribution.
This phenomenon may merit further study.
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