
Tero Säntti | Juha Plosila

Internal Structure of an Enhanced Java
Execution Engine

TUCS Technical Report
No 665, February 2005





Internal Structure of an Enhanced Java
Execution Engine

Tero Säntti
University of Turku, Department of Information Technology
Lemminkäisenkatu 14 A, 20520 Turku, Finland
teansa@utu.fi

Juha Plosila
University of Turku, Department of Information Technology
Lemminkäisenkatu 14 A, 20520 Turku, Finland
juplos@utu.fi

TUCS Technical Report

No 665, February 2005



Abstract

This report describes pipeline structure for a Java co-processor (from now on
JPU). The pipeline structure is tailored with the peculiarities of Java bytecode
streams in mind. Also the instruction set of bytecode is taken into account at the
pipeline structure analysis. The JPU can be used in a single CPU and single co-
processor environment or in a network of multiple CPUs and co-processors. The
co-processor does not need to know what kind of environment it is placed in, as
all communication goes through an interface unit designed especially for that en-
vironment. This modularity of the design makes the co-processor more reusable
and allows system level scalability. This work is a part of a project focusing on
design of an advanced Java co-processor for Java intensive SoC applications.

Keywords: Java, co-processor, pipeline, asynchronous

TUCS Laboratory
Communication Systems Laboratory



1 Introduction

Java is very popular and portable, as it is a write-once run-any-where language.
This enables coders to develop portable software for any platform. Java code is
first compiled into bytecode, which is then run on a Java Virtual Machine (here-
after JVM). The JVM acts as an interpreter from bytecode to native microcode,
or more recently uses just in time compilation (JIT) to affect the same result a
bit faster at the cost of memory. This software only approachis quite inefficient
in terms of power consumption and execution time. These problems rise from
the fact that executing one Java instruction requires several native instructions.
Another source for inefficiency is the cache usage. As the JVMis the only part
of software running natively, it occupies the instruction cache, whereas the Java
bytecode is treated as data for the JVM, hence being located in the data cache.
Also the actual data processed by the Java code is assigned tothe data cache. This
clearly causes more memory accesses missing the cache. Whenthe execution
of the bytecode is performed on a hardware co-processor thisis avoided and the
overall amount of memory accesses is reduced.

This work is a part of the REALJava [2] project, which aims to design a Java
co-processor that is easily implemented to various systems. We have chosen to
use asynchronous techniques in this project because then wecan achieve good
performance with reasonable power consumption and vary easy integration with
existing systems, since no clock limitations need to be considered. Asynchronous
self-timed circuit technology [5], where timing is based onlocal handshakes be-
tween circuit blocks instead of a global clock signal, provides a promising plat-
form for obtaining a highly modular low-power and low-noiseJava accelerator
implementation.

Overview of the paper We proceed as follows. In Section 2 we shortly de-
scribe the structure of any JVM, and show how the proposed co-processor fits into
the specifications. Section 3 describes the pipeline structure. In Section 4 the
connections between pipeline stages are described, with the main functionality of
the stages. Finally in Section 5 we draw some conclusions anddescribe the future
efforts related to the REALJava co-processor.

2 Generic Java Virtual Machine Structure

In the Java Virtual Machine Specification [4], Second Edition the structure and
behavior of all JVM’s is specified at a quite abstract level. This specification can
be met using several techniques. The usual solutions are software only, including
some performance enhancing features, such as JIT (Just In Time Compilation).
We have chosen to use a HW/SW combination [2] in order to maximize the hard-

1



ware support and minimize the power consumption.

2.1 Partitioning

The HW portion (highlighted in Figure 1) handles most of the actual Java byte-
code execution, whereas the SW portion takes care of memory management, class
loading and native method calling. This partitioning givesthe possibility to use
the co-processor with any type of host CPU(s) and operating systems, as all of
the platform dependent properties are implemented in software and (most of) the
common bytecode execution is done in hardware.

Figure 1: Internal architecture of the JVM

Because Java supports multithreading at language level, itmakes sense to in-
tegrate several co-processors as a SoC. This gives an ideal solution for complex
systems running several Java threads and possibly some native code at the same
time. This approach brings forth true multithreading and thus improves perfor-
mance. Also large systems possibly contain several software subsystems, such as
internet protocols, user interface controllers and so on, these can easily be coded
in Java, and since they all are executed in parallel the user experience is enhanced.
The multithreading also improves the predictability of thereal time performance,
as the threads do not get any wait states and the caches and stacks for each thread
are kept intact inside their respective JPUs.

The system architecture can be chosen to be a network of any kind or bus
based, as suitable for other components in the system. The structure of the under-
lying network or bus is rather irrelevant, as long as the lower level provides two
properties: 1) the datagrams must arrive in their destination in the same order that

2



they were sent, and 2) the datagrams arriving from two different sources to a same
destination must be identifiable. The first property can be beachieved with a lower
level network protocol, like ATM adaptation layer (AAL) forinternet, or by the
physical structure of bus. The example we use here is a pipelined bus structure
which guarantees the order of the datagrams by structure. The second property
seems quite natural, and should be present in all solutions.

2.2 Bus selection for SoC environment

We chose to use the pipelined bus [3], since it provides a goodplatform for mul-
tiple processing units accessing the bus simultaneously. The bus provides high
throughput at the expense of increased latency in comparison to a conventional
bus. These properties rise from the structure of bus. Figure2 shows the internal
3-level pipelines in each transfer stage. Our example system has a bus with 32-bit
data word and 4 control bits per datagram as a payload. The busitself contains
more information about destination and the sender. The sender’s id is also passed
on to the interface unit. A simple yet efficient protocol for this case is given in [6].

Interface nInterface 4Interface 3Interface 2Interface 1

transfer stage transfer stage transfer stage transfer stage transfer stage

arb & ctl arb & ctlarb & ctlarb & ctlarb & ctl

. . .

Figure 2: Detailed view of the pipelined bus with the interface units.

3 Pipeline Structure

The pipeline structure of the co-processor differs from thestructure normally used
for processors. This is due to the fact, that normally the instruction base of a pro-
cessor is engineered with hardware implementation in mind,but this is not the
case for Java. The Java bytecode is designed to be executed insoftware, result-
ing in several significant differences. The bytecode instructions are also based on
(one) stack, instead of the normal processor approach of using several registers.
This also calls for optimizations not seen in conventional processor design.

3



3.1 Conventional Processor Pipeline Architecture

The normal strategy for pipelining a general purpose processor involves 5 stages,
namely:

1. instruction fetch

2. instruction decode / register access

3. execute / ALU

4. memory access

5. write back

This approach has been used in several processors and is alsopresented in
textbooks, such as the DLX presented in [1]. This strategy isbased on the as-
sumption that the processor has internal registers for temporary or working data
storage. Usually these registers can be accessed in parallel, and there usually are
several registers available. As an example the DLX has 32 32-bit general-purpose
registers Some processors also include separate registersfor storing floating point
numbers. The DLX provides 32 32-bit floating point registers, which can be used
as even-odd pairs to hold 16 64-bit double-precision values.

3.2 The Modified Architecture for the Java Co-Processor

The Java Virtual Machine Specification states that the JVM has no internal reg-
isters, instead the temporary and working data is stored in astack. Normally the
coder can improve performance by ordering the accesses to the registers to keep
the pipeline flowing, but in Java this is not possible, since all instructions that ma-
nipulate data are based on the stack. This situation is comparable with a normal
processor architecture with only one register available tothe programmer. This
would keep the pipeline stalled for a large portion of the time, because of data
dependency issues. To keep our pipeline in effective use, wehave modified the
normal strategy to better suit the stack based operation.

We also begin our structure with instruction fetching, we just use a fifo inside
this unit to provide the folding unit with fast access to the instruction stream. The
instruction decoder is the next unit. Since we are using instruction folding to min-
imize unnecessary stack access, the folding is also included in this stage. After
that we have a intermediate buffer level to store the folded instructions before ex-
ecution. This buffer also performs minor operations, such as extending data items
to 32 bits, and generation addresses for local variable access.

The next stage performs data fetching, if necessary. Then comes the ALU,
which contains the write back stage. The write back stage is included to the ALU

4



because the bytecode instructions are based on the stack. One might wonder what
this has to do with selecting the pipeline stages, but the answer is rather simple.
In Java bytecode the instructions take the operands from thestack and write the
result back to the stack. This causes the “normal” pipeline structure to generate
huge amounts of wait-states to move the data to and from the stack. Thus the
execution in the ALU will be often halted while the data is moved back and forth.
Actually we will describe also more advanced methods to alleviate this problem,
but those will be presented later in Chapter 4.2.

O
P

_T
O

P

P
C

Data Cache

S
ta

ck

Memory

ALU

Operand Access

Fifo & Sign Ext.

MemoryInstr. Cache

Fifo & Sign Ext.

Fold & Decode IRQ

Halt

Instr. Buffer

C
on

tr
ol

P
ip

el
in

e

SC_Bottom

Figure 3: A Simplified view of the pipeline.

In the Figure 3 a simplified view of the pipeline structure is shown. The PC
and OPTOP labels stand for program counter and stack top, respectively. The
boxes below those labels show how they are moved along the pipeline, to keep
the values correct with the instructions related to them. The PC value is required
for flow control commands (for example the conditional jump commands) and
the OPTOP is used for finding the correct addresses for data items. The pipeline
control unit sends a halt command to all pipeline stages uponreceiving an exter-
nal halt command or a halt request from the fold and decode unit. The fold and
decode unit is required to have halt access to facilitate pipeline halting when a
software handled instruction is encountered. After the whole pipeline is idle, the
pipeline control sends an IRQ to the host processor.

5



3.3 Shared Resources

Several pipeline stages need to access certain shared resources. These include
the stack, the control registers and the program counter. The access to these re-
sources is controlled by similar handshakes as the data flow through the pipeline.
The main difference is, that since several units need to access these resources, we
must provide some mechanisms to prevent simultaneous accesses and to guaran-
tee the correct ordering of events.

The pipeline control unit can also be seen as a shared resource, connected to
most of the pipeline stages. Note that the control needs not to be connected to
all of the pipeline stages, since for instance the instruction fifo is passive on both
direction, and thus remains idle if the previous and the nextstage remain idle.
This helps us in many ways, such as a slightly simpler controller, and a faster fifo
structure, due to the fact that the fifo is “free-floating”.

4 Stages in More Detail

This chapter gives a more detailed view of the pipeline stages and the communi-
cation between them.

4.1 Instruction Fetching, Decoding and Buffering

This section starts after the instruction cache. The cache handles all memory ac-
cessing, so the instruction buffer needs only to access the cache. The address is
generated at the instruction buffer. The buffer is active incommunication towards
the cache and passive towards the folding and decoding unit.The folding unit is
active in both directions, towards the buffer and towards the decoded instruction
fifo. The fifo performs sign extension on the data, if required. The fifo is passive
in all directions, towards the folding unit and towards the register access unit.

The pipeline control unit is connected to the folding and decoding unit with
two way communication. The folding unit needs to request a halt when it encoun-
ters an instruction to be handled in software. Of course the pipeline control unit
must be able to stop the processing in this segment, so there needs to be bidirec-
tional channel. The control unit also connects to all other pipeline stages, with a
halt signal. The CPU can also request a halt, for thread switching or setting new
values to internal registers.

The folding and decode unit has two communication channels to the instruc-
tion buffer. This is required because instructions may be followed by data, such

6



Instruction Offset

Program Counter

OP_TOP 

OP_TOP 

Program Counter

Program Counter

A
d

d
re

ss

A
ck

Trap

R
eq

In
st

ru
ct

io
n

8
−

b
it

32−bit

Fifo & Sign Ext.

Fold & Decode IRQ

Halt

Instr. Buffer

A
ck

R
eq

A
ck

R
eq

D
at

a

1
−

4
 b

y
te

s

C
o

n
tr

o
l

P
ip

el
in

e

32−bit MemoryInstr. Cache

R
eq

A
ck

V
L

IW

Figure 4: The instruction folding and decoding pipeline.

as literal operand or an address. The amount of data can be found out only by de-
coding the instruction first. After the decoding is completed, the correct amount
of data bytes is read in parallel. The amount of data is between 0 and 4 bytes. If it
is 0 bytes, no request is send to the data read port.

After the instruction has been decoded and the data related to that instruction
is read in, the next instruction is checked to see if it can be folded with the previous
one. If it can be, then the procedure is repeated to see if the third instruction can
be folded. If at any point the instructions can not be folded together, the previous
instructions are sent out, and the procedure starts over with the current instruction
as a base for new foldings.

The fifo is only a few levels long, and both provides time marginal for folding
and performs sign extension. Because the ALU is 32 bits wide,the sign exten-
sion is required for 16-bit and 8-bit literal data values. The time marginal for
folding is increased because with asynchronous techniquesall units exhibit aver-
age case performance. This means that the ALU may complete some instructions
(bit-vice OR, etc.) in very short time, whereas some instructions (32-bit multipli-
cation) take a lot more time. Since folding may produce new VLIW (Very Long
Instruction Word) instructions at the rate of 1/1 to 1/4 in comparison to the origi-
nal bytecode stream, the fifo balances the effects of both folding and the average
case performance of the ALU. The fifo also generates actual addresses for local
variable area accesses.

7



4.2 Operand access, ALU and Result Storing

The operand access unit takes care of providing the ALU with the actual operands,
which may come from the local variable area, the stack or as a literal data from
the bytecode stream. The operand access has two read channels to the top of the
stack, one read channel to the local variable area and one by-pass channel to the
end of the ALU. This by-pass channel reduces unnecessary traffic to and from the
stack. This can be demonstrated with an example of an addition followed by a
multiplication. In straight forward method the operationswould be carried out as
follows. First the addition is performed and the result stored to the stack, then
the stack is read out to perform the multiplication. The result of the addition is
consumed and does not remain in use. The improved method removes the consec-
utive write and read functions and replaces them with a straight connection from
the result of the ALU to the operand access unit. This solution provides better
performance in terms of execution time and power usage.

Control

Fifo & Sign Ext.

Operand Access

ALU

Memory

S
ta

ck

Data CacheLocal Variable

SC_Bottom

Figure 5: The execution pipeline and data transportation.

The Figure 5 shows the data connections in the execution partof the pipeline.
The request and acknowledge signals are not shown, in order to keep the figure
readable. As stated before, the fifo is passive in both directions. The operand ac-
cess is active towards the fifo and also towards the data sources (namely the local
variable controller, both of the stack read ports and the result of the ALU. The
operand access is also active towards the ALU. The ALU is active only towards
the stack write port.

8



4.3 Caches, Stack and Registers

The JPU contains two caches, namely the data cache and the instruction cache.
The instruction cache is (quite naturally) read-only, whereas the data cache can
be written and read. The instruction cache is less complex also because it is con-
nected to only one unit, namely the instruction buffer. The data cache, on the other
hand, is connected to the stack and to the local variable control. Both caches are
also giving state information to the pipeline control unit,to notify the controller
when the current operations are finished.

The stack is implemented as a 64 words long ring buffer. The buffer holds the
top of the stack. When the buffer is close to full, the bottom of the ring is rolled
to the memory via data cache. Naturally if the buffer is closeto being empty
more data is retrieved from the memory. The stack performs these transactions
automatically, and no direct commands are required. However a command for
flushing the cache to the memory is required, since jumping toa method causes a
new stack-frame to be initialized, with its own local variables etc.

The internal registers of the JPU are all addressable from the CPU. This is
required in order to be able to configure the JPU in the beginning of the execution
as well as during thread switching. Two of the registers are also copied along the
pipeline, namely the program counter and the OPTOP. The rest of the registers
remain in a normal register bank. The registers are passive in all their communi-
cation, with the exception of the two registers traveling with the pipeline. Those
registers copy the communication scheme from the pipeline to their own commu-
nication to keep the register versions and the related instructions coherent.

5 Conclusions and Future Work

A novel pipeline structure for executing Java threads natively was presented. The
structure takes into account the peculiarities of the Java bytecode streams, and
provides reasonable performance with low power usage. The proposed structure
also includes some “tricks” to enhance the execution of bytecode, such as instruc-
tion folding and stack by-passing.

The approach chosen here is energy aware, even in comparisonto running
compiled C code on the CPU. This is achieved by using asynchronous methods.
Asynchronous methods excel especially in situations wherethe workload of the
processing unit is not constant. Synchronous systems wastea lot of power by
clocking internal latches even when no processing is done. This type of energy
wasting is not present in asynchronous system. Also the current consumption of
asynchronous systems (usually) is more stable, resulting in lesser noise.

9



We are currently investigating the potential benefits of integrating hardware
timers and expanding the JVM with own functions designed to make use of the
timers. These functions would make it possible for users to execute pieces of code
based on timer information. We are considering a set-up with4 internal timers and
4 external timing connections. All of these would be configurable and they could
be masked out, when not needed. This would bring the real timeperformance of
Java applications to a new level.

We plan to continue with designing the REALJava co-processor. The co-
processor concept and hardware-software co-operation will be verified by building
a FPGA demonstrator. After the FPGA phase we will continue manufacturing the
co-processor as a separate ASIC. Later a larger NoC system with several CPUs
and JPUs will be designed to implement a real-life application.

References

[1] J. Hennessy and D. Patterson. “Computer Architecture: aQuantitative Ap-
proach”, Second Edition, Morgan Kaufmann Publishers, Inc., 1996.

[2] Z. Liang, J. Plosila, and K. Sere. “Asynchronous Java Accelerator for Embed-
ded Java Virtual Machine”,In Proc. of IEEE CAS Symposium on Emerging
Technologies, Frontiers of Mobile and Wireless Communication, Shanghai,
China, June 2004.

[3] P. Liljeberg, J. Plosila, and J. Isoaho. “Self-Timed Communication Platform
for Implementing High-Performance Systems-on-Chip”,the VLSI Integration
Journal 38, Elsevier, 2004.

[4] T. Lindholm and F. Yellin. “The Java Virtual Machine Specification”, Second
Edition, Addison-Wesley, 1997.

[5] J. Sparso and S. Furber. ”Principles of Asynchronous Circuit Design - A Sys-
tem Perspective”, Kluwer Academic Publishers, 2001.

[6] T. Säntti and J. Plosila. “Communication Scheme for an Advanced Java Co-
Processor”,In Proc. Norchip 2004, Oslo, Norway, November 2004.

10





Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 952-12-1505-4
ISSN 1239-1891


