Tero Santti | Juha Plosila

Internal Structure of an/Enhanced’Java
Execution Engine

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 665, February 2005

<7
7
¥ rucs

Internal Structure of an Enhanced Java
Execution Engine

Tero Santti _
University of Turku, Department of Information Technology

Lemminkaisenkatu 14 A, 20520 Turku, Finland
t eansa@it u. fi

Juha Plosila _
University of Turku, Department of Information Technology

Lemminkaisenkatu 14 A, 20520 Turku, Finland
juplos@itu. fi

TUCS Technical Report
No 665, February 2005

Abstract

This report describes pipeline structure for a Java coga®sar (from now on
JPU). The pipeline structure is tailored with the peculiesi of Java bytecode
streams in mind. Also the instruction set of bytecode isrtiaké account at the
pipeline structure analysis. The JPU can be used in a sirgl¢ &d single co-
processor environment or in a network of multiple CPUs angrozessors. The
co-processor does not need to know what kind of environntestplaced in, as

all communication goes through an interface unit desigspeeally for that en-

vironment. This modularity of the design makes the co-pseoe more reusable
and allows system level scalability. This work is a part ofrajgct focusing on

design of an advanced Java co-processor for Java intersivalications.

Keywords: Java, co-processor, pipeline, asynchronous

TUCS Laboratory
Communication Systems Laboratory

1 Introduction

Java is very popular and portable, as it is a write-once nyavehere language.
This enables coders to develop portable software for artjopta. Java code is
first compiled into bytecode, which is then run on a Java ¥irtdachine (here-
after JVM). The JVM acts as an interpreter from bytecode tiveanicrocode,
or more recently uses just in time compilation (JIT) to affdee same result a
bit faster at the cost of memory. This software only appraadjuite inefficient
in terms of power consumption and execution time. Theselenob rise from
the fact that executing one Java instruction requires aévative instructions.
Another source for inefficiency is the cache usage. As the J&/Me only part
of software running natively, it occupies the instructi@tlee, whereas the Java
bytecode is treated as data for the JVM, hence being locatétkeidata cache.
Also the actual data processed by the Java code is assigtieridata cache. This
clearly causes more memory accesses missing the cache. tWhexecution
of the bytecode is performed on a hardware co-processoisthsoided and the
overall amount of memory accesses is reduced.

This work is a part of the REALJava [2] project, which aims &sin a Java
co-processor that is easily implemented to various systéies have chosen to
use asynchronous techniques in this project because theanvachieve good
performance with reasonable power consumption and vasyiategration with
existing systems, since no clock limitations need to beidensd. Asynchronous
self-timed circuit technology [5], where timing is basedlooal handshakes be-
tween circuit blocks instead of a global clock signal, pd®a a promising plat-
form for obtaining a highly modular low-power and low-noidava accelerator
implementation.

Overview of the paper We proceed as follows. In Section 2 we shortly de-
scribe the structure of any JVM, and show how the proposgataoessor fits into
the specifications. Section 3 describes the pipeline strectin Section 4 the
connections between pipeline stages are described, vetméin functionality of
the stages. Finally in Section 5 we draw some conclusionslascribe the future
efforts related to the REALJava co-processor.

2 Generic Java Virtual Machine Structure

In the Java Virtual Machine Specification [4], Second Edittbe structure and
behavior of all JVM’s is specified at a quite abstract levelisispecification can
be met using several techniques. The usual solutions ameasefonly, including
some performance enhancing features, such as JIT (Jusii@ Compilation).
We have chosen to use a HW/SW combination [2] in order to maenhe hard-

1

ware support and minimize the power consumption.

2.1 Partitioning

The HW portion (highlighted in Figure 1) handles most of tistual Java byte-
code execution, whereas the SW portion takes care of memamagement, class
loading and native method calling. This partitioning gitee possibility to use
the co-processor with any type of host CPU(s) and operaystems, as all of
the platform dependent properties are implemented in soéwand (most of) the
common bytecode execution is done in hardware.

Class
Class files ———————p» Loader
Subsystem
Method Java PC Native
area Heap stacks registers method
stacks
Runtime data areas
A
\ 4
Execution Native method Native
. >) L.4—— method
engine interface S
libraries

Figure 1: Internal architecture of the JVM

Because Java supports multithreading at language levegkes sense to in-
tegrate several co-processors as a SoC. This gives an watbe for complex
systems running several Java threads and possibly sonve catie at the same
time. This approach brings forth true multithreading anastimproves perfor-
mance. Also large systems possibly contain several sadtaansystems, such as
internet protocols, user interface controllers and soluesé can easily be coded
in Java, and since they all are executed in parallel the xperience is enhanced.
The multithreading also improves the predictability of teal time performance,
as the threads do not get any wait states and the caches aksl fetaeach thread
are kept intact inside their respective JPUs.

The system architecture can be chosen to be a network of adydki bus
based, as suitable for other components in the system. fitedise of the under-
lying network or bus is rather irrelevant, as long as the lolseel provides two
properties: 1) the datagrams must arrive in their desbnati the same order that

2

they were sent, and 2) the datagrams arriving from two d@iffesources to a same
destination must be identifiable. The first property can badbéeved with a lower
level network protocol, like ATM adaptation layer (AAL) fanternet, or by the
physical structure of bus. The example we use here is a pgiebus structure
which guarantees the order of the datagrams by structure.s@&bond property
seems quite natural, and should be present in all solutions.

2.2 Bus selection for SoC environment

We chose to use the pipelined bus [3], since it provides a g¢attbrm for mul-

tiple processing units accessing the bus simultaneousig bls provides high
throughput at the expense of increased latency in compatgsa conventional
bus. These properties rise from the structure of bus. Figwsteows the internal
3-level pipelines in each transfer stage. Our example syktes a bus with 32-bit
data word and 4 control bits per datagram as a payload. Thédaliscontains

more information about destination and the sender. Thees&nd is also passed
on to the interface unit. A simple yet efficient protocol fbistcase is given in [6].

Interface 1 Interface 2 Interface 3 Interface 4 ... | Interface
/N /N /N /N /N
NV NV NV N4 N4
transfer stage transfer stage transfer stage transfer stage transfer stage
arb& ctl [o—<{ arb&cll [o—| arb&ctl <—<| arb&ctl [<o— arb&cll

Figure 2: Detailed view of the pipelined bus with the integainits.

3 Pipeline Structure

The pipeline structure of the co-processor differs fromstinecture normally used
for processors. This is due to the fact, that normally theuesion base of a pro-
cessor is engineered with hardware implementation in nadl this is not the
case for Java. The Java bytecode is designed to be execwettware, result-
ing in several significant differences. The bytecode irctioms are also based on
(one) stack, instead of the normal processor approach ofjssveral registers.
This also calls for optimizations not seen in conventiomatpssor design.

3.1 Conventional Processor Pipeline Architecture

The normal strategy for pipelining a general purpose pmeasvolves 5 stages,
namely:

1. instruction fetch

2. instruction decode / register access
3. execute / ALU

4. memory access

5

. write back

This approach has been used in several processors and igratamnted in
textbooks, such as the DLX presented in [1]. This stratedyased on the as-
sumption that the processor has internal registers for eeanp or working data
storage. Usually these registers can be accessed in paaaliethere usually are
several registers available. As an example the DLX has 3@t3feneral-purpose
registers Some processors also include separate redmtstsring floating point
numbers. The DLX provides 32 32-bit floating point registarsich can be used
as even-odd pairs to hold 16 64-bit double-precision values

3.2 The Modified Architecture for the Java Co-Processor

The Java Virtual Machine Specification states that the JVBr@internal reg-
isters, instead the temporary and working data is storedsiagk. Normally the
coder can improve performance by ordering the accesseg t@djisters to keep
the pipeline flowing, but in Java this is not possible, sintaatructions that ma-
nipulate data are based on the stack. This situation is cabjgawith a normal
processor architecture with only one register availablgnéprogrammer. This
would keep the pipeline stalled for a large portion of theetjrhecause of data
dependency issues. To keep our pipeline in effective usehave modified the
normal strategy to better suit the stack based operation.

We also begin our structure with instruction fetching, wet juse a fifo inside
this unit to provide the folding unit with fast access to thstruction stream. The
instruction decoder is the next unit. Since we are usinguetbn folding to min-
imize unnecessary stack access, the folding is also indludthis stage. After
that we have a intermediate buffer level to store the folastructions before ex-
ecution. This buffer also performs minor operations, siucexending data items
to 32 bits, and generation addresses for local variablesacce

The next stage performs data fetching, if necessary. Theresdhe ALU,
which contains the write back stage. The write back stagecisded to the ALU

4

because the bytecode instructions are based on the staekni@ht wonder what
this has to do with selecting the pipeline stages, but thevans rather simple.
In Java bytecode the instructions take the operands frorstduk and write the
result back to the stack. This causes the “normal” pipeltngcture to generate
huge amounts of wait-states to move the data to and from #uok.stThus the
execution in the ALU will be often halted while the data is redback and forth.
Actually we will describe also more advanced methods tovate this problem,
but those will be presented later in Chapter 4.2.

Instr. Cache K Memory

PC
OP_TOF

{ Instr. Buffer }

Halt
IRQ

)
=
©
=
o

{ Fold & Decod(%

J

{Fifo & Sign Ext}

J
[Operand Accesﬁi —:4%
| AILLU — " |sc_sotion

‘ Data Cache k:>Memory

Figure 3: A Simplified view of the pipeline.

In the Figure 3 a simplified view of the pipeline structure ®wn. The PC
and OPTOP labels stand for program counter and stack top, reseéctiThe
boxes below those labels show how they are moved along tledinep to keep
the values correct with the instructions related to thene PE value is required
for flow control commands (for example the conditional jungmmenands) and
the ORTOP is used for finding the correct addresses for data iteims pipeline
control unit sends a halt command to all pipeline stages wpogiving an exter-
nal halt command or a halt request from the fold and decode Uihie fold and
decode unit is required to have halt access to facilitateljpip halting when a
software handled instruction is encountered. After thelepipeline is idle, the
pipeline control sends an IRQ to the host processor.

3.3 Shared Resources

Several pipeline stages need to access certain sharedaesourhese include
the stack, the control registers and the program counteg. athess to these re-
sources is controlled by similar handshakes as the datalfflmugh the pipeline.
The main difference is, that since several units need tosadtese resources, we
must provide some mechanisms to prevent simultaneousssascasd to guaran-
tee the correct ordering of events.

The pipeline control unit can also be seen as a shared resaacnected to
most of the pipeline stages. Note that the control needsabetconnected to
all of the pipeline stages, since for instance the instonctifo is passive on both
direction, and thus remains idle if the previous and the séagie remain idle.
This helps us in many ways, such as a slightly simpler cdetr@nd a faster fifo
structure, due to the fact that the fifo is “free-floating”.

4 Stages in More Detall

This chapter gives a more detailed view of the pipeline stagel the communi-
cation between them.

4.1 Instruction Fetching, Decoding and Buffering

This section starts after the instruction cache. The caehdlbs all memory ac-
cessing, so the instruction buffer needs only to accessatigec The address is
generated at the instruction buffer. The buffer is activeammunication towards
the cache and passive towards the folding and decoding Timé.folding unit is
active in both directions, towards the buffer and towar@sdbcoded instruction
fifo. The fifo performs sign extension on the data, if requir€de fifo is passive
in all directions, towards the folding unit and towards tbgister access unit.

The pipeline control unit is connected to the folding andadi#eg unit with
two way communication. The folding unit needs to requestiwiaen it encoun-
ters an instruction to be handled in software. Of course tpelipe control unit
must be able to stop the processing in this segment, so teedsrio be bidirec-
tional channel. The control unit also connects to all othpelne stages, with a
halt signal. The CPU can also request a halt, for thread bimgoor setting new
values to internal registers.

The folding and decode unit has two communication chanoetise instruc-
tion buffer. This is required because instructions may llevieed by data, such

6

32-bit

Instr. Cache (326t Memory

Re
Ack
éddress

Instruction Offset

Program Counter IIlStI' BUffer

1-4 bytes|

ERE ‘%? 33 0 —
= gl £ © L Halt
Trap B E
Program Counter
OP_TOP Fold & Decode O% 8 —=IRQ

Req

i
B
<

g
1
>

Program Counter

ortor__| Fifo & Sign Ext.

Figure 4: The instruction folding and decoding pipeline.

as literal operand or an address. The amount of data can bd tau only by de-

coding the instruction first. After the decoding is compietide correct amount
of data bytes is read in parallel. The amount of data is betWesnd 4 bytes. If it

is 0 bytes, no request is send to the data read port.

After the instruction has been decoded and the data relatédt instruction
is read in, the next instruction is checked to see if it carolsefd with the previous
one. If it can be, then the procedure is repeated to see ihthekihstruction can
be folded. If at any point the instructions can not be foldmgkther, the previous
instructions are sent out, and the procedure starts oveithgtcurrent instruction
as a base for new foldings.

The fifo is only a few levels long, and both provides time maadfor folding
and performs sign extension. Because the ALU is 32 bits vl sign exten-
sion is required for 16-bit and 8-bit literal data values. eTtme marginal for
folding is increased because with asynchronous technigjliagits exhibit aver-
age case performance. This means that the ALU may complete sstructions
(bit-vice OR, etc.) in very short time, whereas some insioms (32-bit multipli-
cation) take a lot more time. Since folding may produce neWwWI(\Very Long
Instruction Word) instructions at the rate of 1/1 to 1/4 imgmarison to the origi-
nal bytecode stream, the fifo balances the effects of botlinigland the average
case performance of the ALU. The fifo also generates actulitades for local
variable area accesses.

4.2 Operand access, ALU and Result Storing

The operand access unit takes care of providing the ALU \Wittattual operands,
which may come from the local variable area, the stack or #erall data from
the bytecode stream. The operand access has two read chemtied top of the
stack, one read channel to the local variable area and opass/channel to the
end of the ALU. This by-pass channel reduces unnecess#iig tteand from the
stack. This can be demonstrated with an example of an addiitowed by a
multiplication. In straight forward method the operatiovsuld be carried out as
follows. First the addition is performed and the result stbto the stack, then
the stack is read out to perform the multiplication. The lestithe addition is
consumed and does not remain in use. The improved methodesrtite consec-
utive write and read functions and replaces them with agtitaionnection from
the result of the ALU to the operand access unit. This saiugimvides better
performance in terms of execution time and power usage.

‘ Fifo & Sign Ext

ﬁ Operand Access -

‘ | SC_Botton

ALU T

Local Variable Data Cache <—>Memory
Control

Stack

Figure 5: The execution pipeline and data transportation.

The Figure 5 shows the data connections in the executioroptre pipeline.
The request and acknowledge signals are not shown, in ardexep the figure
readable. As stated before, the fifo is passive in both dimest The operand ac-
cess is active towards the fifo and also towards the datass@namely the local
variable controller, both of the stack read ports and thaltes the ALU. The
operand access is also active towards the ALU. The ALU ivaanly towards
the stack write port.

4.3 Caches, Stack and Registers

The JPU contains two caches, namely the data cache and thectits cache.
The instruction cache is (quite naturally) read-only, védasrthe data cache can
be written and read. The instruction cache is less compgextacause it is con-
nected to only one unit, namely the instruction buffer. Tagadache, on the other
hand, is connected to the stack and to the local variableaomoth caches are
also giving state information to the pipeline control umit,notify the controller
when the current operations are finished.

The stack is implemented as a 64 words long ring buffer. Tliebholds the
top of the stack. When the buffer is close to full, the bottdnthe ring is rolled
to the memory via data cache. Naturally if the buffer is clasdeing empty
more data is retrieved from the memory. The stack perforrasethransactions
automatically, and no direct commands are required. Howaw@mmand for
flushing the cache to the memory is required, since jumpirggrtethod causes a
new stack-frame to be initialized, with its own local vatebetc.

The internal registers of the JPU are all addressable frarCtAU. This is
required in order to be able to configure the JPU in the beggai the execution
as well as during thread switching. Two of the registers &e eopied along the
pipeline, namely the program counter and the GPP. The rest of the registers
remain in a normal register bank. The registers are passiak their communi-
cation, with the exception of the two registers travelingtwthe pipeline. Those
registers copy the communication scheme from the pipetinledir own commu-
nication to keep the register versions and the relateduatstms coherent.

5 Conclusions and Future Work

A novel pipeline structure for executing Java threads eatiwas presented. The
structure takes into account the peculiarities of the Jgtacbhde streams, and
provides reasonable performance with low power usage. Td@oped structure
also includes some “tricks” to enhance the execution ofdnde, such as instruc-
tion folding and stack by-passing.

The approach chosen here is energy aware, even in compaoisonning
compiled C code on the CPU. This is achieved by using asyncusmethods.
Asynchronous methods excel especially in situations wheravorkload of the
processing unit is not constant. Synchronous systems vaaksteof power by
clocking internal latches even when no processing is dorgs fype of energy
wasting is not present in asynchronous system. Also thecuoonsumption of
asynchronous systems (usually) is more stable, resutiitesser noise.

We are currently investigating the potential benefits oégnating hardware
timers and expanding the JVM with own functions designed &keruse of the
timers. These functions would make it possible for userséagte pieces of code
based on timer information. We are considering a set-up4itieernal timers and
4 external timing connections. All of these would be confajple and they could
be masked out, when not needed. This would bring the realgen®rmance of
Java applications to a new level.

We plan to continue with designing the REALJava co-procesdine co-
processor concept and hardware-software co-operatibhewkerified by building
a FPGA demonstrator. After the FPGA phase we will continuaufecturing the
co-processor as a separate ASIC. Later a larger NoC systdmsexeral CPUs
and JPUs will be designed to implement a real-life applacati

References

[1] J. Hennessy and D. Patterson. “Computer ArchitecturQuantitative Ap-
proach”, Second Edition, Morgan Kaufmann Publishers, [1@96.

[2] Z. Liang, J. Plosila, and K. Sere. “Asynchronous Javaeleator for Embed-
ded Java Virtual Machine’ln Proc. of IEEE CAS Symposium on Emerging
Technologies, Frontiers of Mobile and Wireless Communication, Shanghai,
China, June 2004.

[3] P. Liljeberg, J. Plosila, and J. Isoaho. “Self-Timed Goomication Platform
for Implementing High-Performance Systems-on-Chip& VLS Integration
Journal 38, Elsevier, 2004.

[4] T. Lindholm and F. Yellin. “The Java Virtual Machine Spkcation”, Second
Edition, Addison-Wesley, 1997.

[5] J. Sparso and S. Furber. "Principles of AsynchronousuiiDesign - A Sys-
tem Perspective”, Kluwer Academic Publishers, 2001.

[6] T. Santti and J. Plosila. “Communication Scheme for atv@&nced Java Co-
Processor”|n Proc. Norchip 2004, Oslo, Norway, November 2004.

10

TURKU

CENTRE for

COMPUTER

SCIENCE

Lemminkaisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

\\ ?A ,/ University of Turku
& é e Department of Information Technology
[— 4
Z N e Department of Mathematics
1y

O

Abo Akademi University
e Department of Computer Science
e Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
e Institute of Information Systems Sciences

ISBN 952-12-1505-4
ISSN 1239-1891

