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Abstract 
 

Model Driven Architecture (MDA) gains increasing acceptance in software engineering 

community. MDA promotes system development by gradual transformation of system 

models expressed in Unified Modelling Language (UML). UML modelling facilitates 

better understanding of system requirements, but it is yet insufficient for guaranteeing 

overall correctness of the final product. In this paper we propose an approach to 

formalizing model-driven development in the B Method. The B Method is a top-down 

approach to the development of systems correct by construction. We show how the 

proposed approach facilitates structuring complex system requirements, requirements 

changes and traceability, integration of emergent requirements and navigation through 

the overall design space. To validate the proposed approach we conduct a case study – 

development of Ad hoc On-Demand Distant Vector routing protocol. 
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1. Introduction 
 

 

UML [10] has become de-facto a standard modeling technique for 

visualizing, specifying and documenting software systems. UML facilitates 

requirements analysis and specification. UML helps to visualize and express 

the system structure and behaviour at different levels of abstraction. 

Transformations of system models expressed in UML are in the basis of 

Model Driven Architecture (MDA) [8]. MDA is a methodology promoting 

top-down system development by transformation of abstract, platform 

independent models to platform specific models. Transformation steps, 

called refinements, aim at gradual introduction of requirements into system 

model. Correctness of both, models and transformations, is crucial for the 

quality of the final product. In this paper we propose a formal model-driven 

approach to requirements engineering with UML.  

 To verify consistency of our UML models we demonstrate how to 

translate them into a formal specification in the B Method [1, 11]. We 

extend the previous work on translating state and class diagrams into B by 

defining how in addition activity diagrams can be translated and integrated 

into the process of translating class and state diagram. While translating 

state and class diagrams we obtain a formal specification which lacks the 

details of implementation of class methods. After translating the 

corresponding activity diagrams we arrive at the complete formal 

specification. 

 The top-down development methodology of the B method, called 

stepwise refinement, coincides with the idea of MDA development by 

model transformations and hence, their combination is natural. We show 

how MDA in combination with formal refinement in B can result in an 

implementation of a system correct by construction. Since requirements 

changes and evolution are intrinsic part of software development process we 

show how they can be handled in the process of UML model transformation 

and corresponding formal refinement in B. We propose UML patterns for 

integrating arising requirements into the system models via model 

transformation. Establishing refinement between formal specifications 

representing system models before and after the transformation allows us to 

ensure correctness of model transformation.  

 Since the derivation of technology independent patterns is impractical, 

our approach is aiming at developing specification and development 

patterns generic to ad-hoc mobile networks. We create UML-based 

templates for modeling ad-hoc networks and corresponding patterns for 

specifying them in B. Moreover, we propose a generic development process 

based on transformations of UML models. By establishing refinement 

between the corresponding B models we verify the correctness of our 

development.  
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 Our approach allows us to understand and structure complex system 

requirements and to reason about correctness of the system under 

construction.  

 To validate the proposed approach we conducted a case study – model-

driven development of routing protocol for ad hoc networks, Ad hoc On-

Demand Distance Vector protocol [9]. 

 

1. Modeling system requirements in UML 
 

2.1. Requirements modeling with UML 
 

A process of software development is a process of modeling a real world 

problem described as a set of requirements, transforming it into a number of 

refined models, eventually ending with executable code. Usually use case 

diagrams serve as a starting point for requirements modeling. From the 

functional requirements described by use cases we create a system structure, 

traditionally rendered by class diagrams.  

To establish conformance to the requirements we should ensure that on 

the basis of created static model – classes with their associations, attributes 

and methods – the behaviour described by use case model can be provided. 

The dynamic aspect of behaviour is usually captured via state diagrams. The 

state space of a class is a Cartesian product of the types of class attributes 

depicted at the class diagram. The transitions from state to state correspond 

to the invocation of corresponding methods. The initialization of class 

attributes brings the class to its initial state.  

 State diagrams can model the requirements on different level – from 

dynamic behaviour of a certain class to overall system behaviour.  In the 

later case the states are formed from the attributes of all classes. The state 

transitions correspond to methods of certain classes.  

 While state diagram describes how an invocation of certain methods 

affects the state of the class it leaves the detailed specification of the 

computation implemented by these methods aside. The activity diagrams 

help us to unfold these details by describing how methods are actually 

implemented.  To construct activity diagram we distinguish between basic 

and complex methods. The basic methods are the ones whose invocation 

changes or access a single attribute of the class. The complex methods 

describe elaborated computation and often are composed of basic methods. 

In our activity diagrams an activity – an execution flow step – corresponds 

to an execution of a basic method. Sequential dependencies between the 

execution steps are expressed as transitions.  

 In this paper we demonstrate how UML modeling can assist us in 

handling requirements changes in a structured systematic way. While the 

connection between class and state diagrams in the process of requirements 

change has been studied before [6], the affect of it on the connection 

between the class, state and activity diagram has not been sufficiently 
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explored yet. Meanwhile, changing requirements usually have a profound 

impact on the way the methods are implemented. Next we will describe how 

to modify the activity diagram to facilitate the requirements changes. 

 Usually an activity diagram has the following three standard elements: 

 

1) 

                

basic method 

2) 

    

sequential branch 

with guard 

conditions on 

multiple exit 

arrows 

3) 

 

parallel execution 

of basic methods 

 

Below we propose a modification of activity diagram to make the meaning 

of several elements more precise. Namely, we introduce the following 

variations: 

 

4) 

 

alternative branch 

with alternative 

guards on exit 

arrows 

5) 

            

nondeterministic 

branch with 

multiple exit 

arrows without 

guards 

6) 
 

block 

 

The first element is essentially a specialization of the sequential branch. It 

renders the alternative choice. The second element is a specialization of the 

sequential branch to model non-determinism, i.e., the choice with 

overlapping conditions. The third element is a block. It models “folded” 

activity diagram and serves as a reference. An introduction of block 

improves scalability of the activity diagrams. 

 To illustrate modeling the requirements with class, state and activity 

diagram next we will present a model of route manipulation in Ad hoc On-

Demand Distant Vector routing protocol (AODV). 

 

2.2. Example of requirements modeling  
 

AODV has been proposed for ad-hoc mobile wireless networks [9]. 

Essentially the protocol describes the communication, i.e., sending and 
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receiving information (called packets), between the nodes of a network.  

Ad-hoc networking is a rather new and hence not thoroughly explored 

technology. The protocol is a complex and changes constantly as the 

technology evolves. Therefore it offers us a good test-case for exploring 

requirements change.  We omit a detailed description of the entire protocol 

and present small excerpts from it. Since the topology of an ad-hoc network 

is volatile, sending data from one node to another requires establishing a 

route between these nodes. Each node in the network is uniquely identified. 

It stores and updates a routing table containing routes already found from 

this node, called source, to the other nodes, called destinations, in the 

network. When the route is requested at the first time, node inserts it into its 

routing table with the status unknown. When the route is found it is marked 

as valid which means it can be used for sending packets. However, it can 

also become invalid when network topology changes. When node wishes to 

send a packet to the destination marked in the route, it sends the packet to 

the node which is listed as a next node from the observed source node in the 

route. In this way, packets are propagated toward destination nodes. Packets 

are buffered. Buffering allows the node to not process packets with the same 

identifier more then once. 

We list and label a subset of the described requirements which we 

model in this paper:  

 

[1] Each node has a unique ID 

[2] Each node can send packets it has received 

[3] Each node can receive packets 

[4] Each packet has its own unique ID 

[5] Each packet has its source and a destination 

[6] Each node maintains routs toward other nodes 

[7] Each node has its status; it is valid if the route can be used for sending   

packets, invalid if for various reasons this can’t be done or unknown if 

it is not completely established  

[8] Each node is buffering received packets 

[9] If a node has a route toward the destination in its routing table, it sends 

the packet to the next node along this route and either just waits for 

other packets to be received or at the same time also buffers the sending 

packet. 

 

Next, we show how each of listed requirements can be modeled in UML. 

Figure 1 gives an excerpt from the AODV modeled in UML. The complete 

activity diagram of the method Send can be found in the Appendix (Figure 

A1). 
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IF

IF

Sent:=Sent\/({Param|->NextHop((Node |->To(Param)))})

((Node|->To(Param))|->valid):RT

Buffer :=Buffer\/({Node|->Param})

State: = ST_idle

Sent:=Sent\/({Param|->NextHop((Node |->To(Param))) })

        ...

State : =ST_idle

 
 

Figure 1. Excerpt from the AODV UML model 

 

Observe that activity diagrams allow us to capture a significant part of the 

requirements, which we could not model with the class and state diagrams, 

as illustrated in Table 1. 

 
Table 1. System requirements – abstract level 

Label Description of requirement modelling 
Used UML 

diagrams 

R1 

Static feature of the node representing its unique 

identifier – Node – modeled as an attribute of the 

identified CMobileNode class. 

Class diagram  

(Figure 1(a)) 

R2 

Method Send of the CMobileNode class and at the 

same time association named Sent between classes 

CMobileNode and CPacket. R2 is modeled also as a 

state Sending and condition on a transition between 

states Idle and Sending - when some packet shows up 

in node’s receiving channel HasPackets, node goes 

from Idle state to Sending state following the 

transition which invocates the method Send. 

Class diagram 
CMobileNode 
State diagram 

(Figure 1(b)) 

+HasPackets

+Route

+Buffer

+Sent

CMobileNode

Node : T_NODE_ID

Send ()

Receive ()

CRoute

RT

NextHop

: STATUS

: T_NODE_ID

CPacket

PacketID

From

To

: T_Packet_ID

: T_NODE_ID

: T_NODE_ID

(a) MobileNode Class diagram (b) CMobileNode state diagram 

(c) Method Send activity diagram 

      

ST_Idle       
Sending       

Receiving   
Send [{Node}<|HasPackets/={}]       
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R3 

Method Receive of the CMobileNode class, and at the 

same time association HasPackets between classes 

CMobileNode and CPacket. R3 is modeled also as a 

state Receiving.  

Class diagram 
CMobileNode 
State diagram 

(Figure 1(b)) 

R4 Class CPacket has its own ID attribute – PacketID. 
Class diagram 

(Figure 1(a)) 

R5 
Attributes of the CPacket class: From and To 

modeling the packet source and destination node. 

Class diagram 

(Figure 1(a)) 

R6 
The association Route together with the aggregated 

class CRoute models the node routing table. 

Class diagram 

(Figure 1(a)) 

R7 

NextHop is the attribute of the aggregated class 

CRoute modeling next node toward the destination 

node along the route; RT is the attribute of the 

aggregated class CRoute modeling its status. 

Class diagram 

(Figure 1(a)) 

R8 
Association relationship Buffer between classes 

CMobileNode and CPacket. 

Class diagram 

(Figure 1(a)) 

R9 Body of the method Send. 

Method Send 

activity diagram 

(Figure 1(c))  

 

Next, we demonstrate our approach to verifying the consistency of our 

UML modeling. 

3. From UML models to formal specifications 
 
3.1. Formal system modeling in the B Method 
 

To ensure consistency we supplement our UML models with formal 

specifications. In this paper we have chosen the B Method as our formal 

modeling framework. The B Method is an approach for the industrial 

development of correct software. The method has been successfully used in 

the development of several complex real-life applications [7]. The tool 

support available for B provides us with the assistance for the entire 

development process. For instance, Atelier B [3], one of the tools supporting 

the B Method, has facilities for automatic verification and code generation 

as well as documentation, project management and prototyping. The high 

degree of automation in verifying correctness improves scalability of B, 

speeds up development and, also, requires less mathematical training from 

the users.  

In B a specification is represented by a module or a set of modules, 

called Abstract Machines. The common pseudo-programming notation, 

called Abstract Machine Notation (AMN), is used to construct and formally 

verify them. An abstract machine encapsulates a state and operations of the 

specification and has the following general form: 
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Each machine is uniquely identified by its name. The state variables of 

the machine are declared in the VARIABLES clause and initialized in the 

INITIALISATION clause. The variables in B are strongly typed by 

constraining predicates of INVARIANT clause. The constraining predicates 

are conjoint by conjunction (denoted as &). All types in B are represented by 

non-empty sets and hence set membership (denoted as :) expresses typing 

constraint for a variable, e.g., x:TYPE. Local types can be introduced by 

enumerating the elements of the type, e.g., TYPE = {element1, element2,…} 

in the SETS clause. The operations of the machine are defined in 

OPERATIONS clause.  The operations are atomic meaning that, once an 

operation is chosen, its execution will run until completion without 

interference.  

In this paper we adopt event-based approach to system modeling [2]. 

The events are specified as the guarded operations SELECT cond THEN 

body END. Here cond is a state predicate, and body is a B statement 

describing how state variables are affected by the operation. If cond is 

satisfied, the behaviour of the guarded operation corresponds to the 

execution of its body. If cond is false at the current state then the operation 

is disabled, i.e., cannot be executed.  Event-based modeling is especially 

suitable for describing reactive systems. Then SELECT operation describes 

the reaction of the system when particular event occurs. 

In this paper we use the following B statements to describe the 

computation in operations: 

 
Statement Informal meaning 

X := e Assignment 

X, y := e1, e2 Multiple assignment 

IF P THEN S1 ELSE S2 END If P is true then execute S1, otherwise S2 

S1 ; S2 Sequential composition 

S1 || S2 Parallel execution of S1 and S2 

X :: T 
Nondeterministic assignment – assigns 

variable x arbitrary value from given set T 

ANY x WHERE Q THEN S END 

Nondeterministic block – introduces new 

local variable x according to the predicate Q 

which is then used in S 

CHOICE S OR T OR … OR U END 

Nondeterministic choice – one of the 

statements S, T…U is arbitrarily chosen for 

execution 
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B also provides structuring mechanisms which enable machines to be 

expressed as combinations of other machines. Here we use EXTENDS 

clause. When machine M1 extends machine M2, written as EXTENDS M2 in 

the definition of M1, it means that M1 includes M2 and promotes all of the 

operations of M2, i.e., it provides all of the facilities provided by M2, with 

some further operations of its own. 

Constructing a formal specification from a requirements description 

given in a natural language is often cumbersome. In our approach the formal 

specifications are obtained by translating UML models. Next we 

demonstrate our approach to doing this. 

 

3.2. Translating UML diagrams into B 
 
In this paper we further extend an approach to translating class and state 

diagrams into B described in [12]. We start from a brief revision of the 

existing translation mechanism and then present our extension.  

Classes in UML correspond to machines in B. In the process of 

translating a class into a machine we transform attributes into the variables 

and the methods into the operations. Initial values of the attributes become 

initial values of variables in the initialization clause. The tagged values of 

the class describing the invariant are translated into the machine invariant. 

The state diagram provides a basis for constructing operations of the 

machine. The names of the states form the set of values of the variable 

modeling state. The names of operations correspond to the names of the 

transitions. The guard of a transition forms the guard of the corresponding 

operation. For instance, as a result of translating class and state diagram 

presented in Figure 1(a) and 1(b), the B specification shown on Figure 2 can 

be obtained. 

Observe that unidirectional associations between classes are modeled as 

relations between types of variables representing identifiers of the classes.  

In the B specification resulting from translating class and state diagram we 

have captured only the requirements. The body of the operation is still 

unspecified. Next we show how the translation of an activity diagram 

complements the body of the corresponding B operation.  

Since B can express not only sequential but also parallel processes and 

their synchronization it is suitable for representing activity diagram 

formally. 
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MACHINE CMobileNode 
EXTENDS CPacket, CRoute   / Additional machines – see Appendix (Figure A2 b) and c)) 

SEES  Global    / Definition of types – see Appendix (Figure A2 a)) 

VARIABLES  
Node,      / attribute of CMobileNode class  
Route,     / association between CMobileNode and CRoute classes 

HasPackets,    / association between CMobileNode and CPacket classes 
Sent, Buffer,    / association between CMobileNode and CPacket classes 
CMobileNode_State,  / automatically generated variable for modeling the machine  

  state (name corresponds to the machine name) 
 

INVARIANT 
Node : T_NODE_ID & 
Route <: T_NODE_ID <-> T_NODE_ID & 
HasPackets : T_NODE_ID <->PacketID & 
CMobileNode_State : STATES & 
Sent : PacketID<-> T_NODE_ID & 
Buffer : T_NODE_ID <-> PacketID & 

 
INITIALISATION 

 
Node:=IP_address ||   / initially Node gets a unique IP_address which is a constant 
Route:={} ||    / initially Node doesn’t have any established routes 
HasPackets:={} ||   / initially Node doesn’t have any sent, received or buffered  
         packets   
Sent:={} || 
Buffer:={} ||     
CMobileNode_State:=ST_Idle || / initially Node is in the state Idle 
 

OPERATIONS 
Send=     / the operation is executed when the Node is in the state  

  Sending it has some packets to send 
SELECT  
 CMobileNode_State=Sending & {Node}<|HasPackets/={} 
THEN 
 
 
END 
... 
 
 

Figure 2. Excerpt from the AODV class and state diagram translation into B 
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We define a mapping as a set of rules given below: 

 

 
 UML element Corresponding B notation 

Rule 1 Activity diagram NAME Body of operation 

NAME 

Rule 2 Sequential branch 

              

IF Condition 1 

  THEN Statement 1 

ELSIF Condition 2 

  THEN Statement 2 

ELSIF Condition 3 

  THEN Statement 3 

ELSE skip 

END 

Rule 3 Basic method 

                             

Assignment 

Rule 4 Parallel execution 

                  

Statement 1 || Statement 2 

Rule 5 Alternative branch 

            

IF Condition 

THEN Statement 1 

ELSE Statement 2 

Rule 6 Nondeterministic branch 

 

CHOICE  
   Statement 1 
OR  
   Statement 2 
OR  
   Statement 3 
END 

Rule 7 Block  

                        
* There exist an activity diagram AcD_1 

Corresponds to the 

translation of the 

contained activity 

diagram (see Rule 1). 

 

[Condition 3] [Condition 1] 

[Condition 2] 

Statement 1 Statement 3 Statement 2 

AcD_1 

Activity 

Statement 3 Statement 1 Statement 2 

Statement 1 Statement 2 

[NOT Condition] [Condition] 
IF 

Statement 2 Statement 1 

IF 



 

 11 

To illustrate the translation of the activity diagrams into B in Figure 3 

we present the results of translating the activity diagram given in Figure 1 

(c). The translation of the complete activity diagram for the method Send 

can be found in Appendix (Figure A3). 

 

 

Figure 3. Excerpt from the AODV activity diagram translation into B 

 

Observe that translation of the activity diagram as represented by 

CMobileNode’ in Figure 3 has allowed us to complete the formal 

specification of CMobileNode. Indeed, the translation has supplemented the 

body of the operation Send constructed as described by the corresponding 

activity diagram. 

Currently the tool U2B supports the automatic translation of the class 

and state diagrams into B [13].  

To achieve a completely automatic translation some restrictions on 

UML modeling should be imposed, e.g. logical conditions should be 

described in B notations. By defining logical conditions in terms of Object 

Constraint Language (OCL) and then automatically translating it into B, this 

restriction can be removed. 

In this section we have demonstrated how to supplement UML modeling 

with formal specification which allowed us to ensure consistency of our 

UML models. We have demonstrated so called horizontal consistency of 

UML models. However, our specification is still on an abstract level and 

needs to be refined. In the following section we show how MDA in 

combination with formal refinement in B will lead us towards a correct 

system implementation. 

  

OPERATIONS   
    Send =   

    SELECT    CMobileNode_   State   =   Sending    & { Nod   e } <| HasPackets /= {}    
    

       
THEN   

    
    

<specification of the operation body>   
                    IF   
                            ( ( Node |   -   > To ( Param ) ) |   -   > valid ) : RT   

                    THEN   
                            Sent := Sent    \   / ( { Param |   -   > NextHop ( ( N ode |   -   > To ( Param ) ) ) } ) ||   

    
            

              CHOICE   
    

                     CMobileNode_   State   :   =   ST_Idle   
                            OR   

                                    Buffer := Buffer    \   / ( { Node |   -   > Param } ) ||   
    

                                  
CMobileNode_   State   :   =   ST_Idle   

    
                    

      END   
                    ELSE   

    
                  

<specific ation of the operation body  –  cont d >   
    

    END   

MACHINE CMobileNode’ 
  <specificatio n  of machine’s sets, variables, invariants and initialization> 

  

  
  
  / If the route from the observed node to  

    desired destination To in the routing table  
    RT is valid 

  / Then 
  / Pa cket is sent to the next node along that  

    route and 
  / node either becomes idle 

  
  / or the packet is buffered and node goes  

    to idle  
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4. B-supported model transformations in MDA 
 
MDA has appeared as a result of recognizing that reasoning about software 

on the code level is unfeasible. MDA stresses an importance of abstraction - 

as a main mechanism for coping with complexity - and stepwise refinement 

- as a technique for transforming abstract models into an implementation on 

a desired platform.  In the previous section we demonstrated how class, state 

and activity diagrams can capture different views on system behaviour and 

then shown how to ensure the consistency of these views by formal 

verification. In this section we will demonstrate how these models are 

transformed in the process of requirements evolution and change. 

Refinement is a process of gradual incorporation of requirements and 

implementation details into the system specification. While incorporating 

new requirements we should ensure that the observable behaviour of the 

system is preserved, i.e., to guarantee an adherence of final implementation 

to the initial abstract specification. While refining system model we 

distinguish between two types of transformations: reduction of non-

determinism and extension of system functionality. Following [4] we call 

these transformations narrowing and supplementing correspondingly.  

 

Invariant I2 
attribute1<->attribute12 

Invariant I1 
attribute1<->attribute11 

 

REF_A2 
 
attribute12 
attribute2 
… 
 
method1 
method2 

A 
 
attribute1 
attribute2 
… 
method1 
method2 

State 1 State 2 

method1 

method2 [G2] 

State 1 

State 2 
method2 [G21] 

method2 [G22] 

State21 

State22 

method1 [G11] 

method1 [G12] 

(a) 

(b) 

(c) 

Part of the activity diagram for the method1. 

Action1 Action2 Action1 Action2 

[G12] 

[G11] 

Refinement 

REF_A1 
 
attribute11 
attribute2 
… 
 
method1 
method2 

Refinement 

attribute1 
attribute11 U attribute12 

 

 
 

Figure 4. Narrowing pattern 
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Narrowing focuses on refining generic types of attributes of the system 

model. Such a transformation results in replacing abstract attributes with the 

attributes, whose representation is closer to eventual implementation.  

The forms of narrowing vary widely and hence are difficult to 

generalize. However, in the design of protocol the form of narrowing shown 

in Figure 4 is frequently used. Hence, this transformation can be seen as a 

generic pattern for narrowing in the filed of protocol design. 

Essentially the pattern describes the splitting a generic class into several 

specialized subclasses. The generic class is replaced by the specialized 

subclasses. Such a narrowing transforms the system model as follows. The 

classes REF_A1 and REF_A2 refine the class A. They replace A in the class 

diagram. The invariants I1 and I2 of REF_A1 and REF_A2 respectively, 

define data refinement relation which describes connection between 

replaced and newly introduced classes in the class diagram. It is expressed 

in terms of connecting the attribute representing the identifier of the generic 

class with the subtypes of that attribute in subclasses. Introduced subclasses 

have the same methods as a generic class. The associations between generic 

class and other classes in the class diagram are transformed too. If a 

relationship should be established on the subtype, the association is split 

into two new associations connecting one of the subclasses and other class. 

Otherwise, the invariant of the association is updated so that it connects the 

union of subtypes instead of the specialized attribute. Observe that only 

specialized attribute is changed by narrowing while others are staying 

unchanged (see, e.g., attribute2 in Figure 4(a)). Hence, while transforming 

state diagram we leave the states and transitions unaffected by narrowing 

intact, as, e.g., State 1 in Figure 4(b). The states affected by narrowing are 

transformed into superstates. Such superstates contain states which describe 

the dynamic behaviour of the system in terms of newly introduced 

attributes. For instance, State 2 becomes a superstate containing states State 

21 and State 22. The transitions, trigged by the invocation of methods 

affected by narrowing, are also transformed. If they were originally not 

restricted by the conditions (see, e.g., transition labeled method1) then they 

become conditional and conditions over newly introduced attributes 

determine the destination states. If they were conditional originally (see, 

e.g., transition labeled method2) then conditions are reformulated in terms 

of newly introduced attributes.  

The activity diagrams modeling the methods affected by narrowing are 

transformed too. The pattern for this transformation is shown in Figure 4(c). 

Within the transformation nondeterministic branch element is replaced with 

the sequential or alternative branch. The guards introduced in the state 

diagrams to define the destination state after the invocation of the 

corresponding method (see, e.g., method1) are introduced into activity 

diagram as guards of the deterministic or alternative branch. This reduces 

the non-determinism of the corresponding method.  
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Let us demonstrate how requirements change can be handled via 

narrowing. In the process of protocol development it is necessary to 

distinguish between the types of packets which node transmits. The 

modified requirements are as follows: 

 

R2’. Each node can send data and messages it has received 

R3’. Each node can receive data and messages 

R9’. If a node has a route toward the destination in its routing table, it sends 

data and messages to the next node along this route. After sending data it 

waits for other data and messages to be received. When sending messages 

node buffers them first and then waits for the new information. 

 

Notice that changing one requirement may have the impact on all the 

existing requirements which include some packet manipulation and hence in 

the corresponding UML models (listed in the third column of the Table 1). 

Implemented changes are depicted in the refined diagrams named as: REF 

number of the refinement step_existing diagram name. 

 

Table 2. System requirements – first refinement 
 

Label 
Description of requirement 

modelling 
Used UML diagrams 

R2’ 

Instead of class CPacket we obtain 

classes CData & CMsg. PacketID 

attribute is replaced by attributes 

Data and Msg. 

REF1_Class diagram 

R3’ 

The superstate Sending is split 

into substates SendingData and 

SendingMsg. The transition from 

the state Idle to these two new 

states is also partitioned since the 

method of this transition – Send – 

manipulates over attribute 

PacketID.  Thus, Send becomes 

conditional transition. 

REF1_Class diagram 

REF1_CMobileNode 

State diagram 

R9’ Refined body of the method Send. 
REF1_Method Send 

activity diagram 

 

We omit the demonstration of transformations of class and state diagrams – 

they can be reconstructed from Table 1.  
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Figure 5. Excerpt from the narrowing of the activity diagram for the method 

Send 
 

In Figure 5 we illustrate how the activity diagram is transformed by this 

narrowing according to the pattern described in Figure 4(c).  

To guarantee consistency of UML model transformation we should 

ensure that system specification described by the transformed models is a 

refinement of a more abstract model. To verify this we again translate the 

obtained UML model into B and verify refinement between these formal 

specifications.  

The ideas underlying formal stepwise refinement in B and model 

transformations in MDA coincide: in both cases we aim at advancing 

implementation while preserving externally observable system behaviour. 

The results of intermediate refinement steps in B are also machines, called 

REFINEMENT. Their structure coincides with the structure of abstract 

machine.  

However, refined machine should contain an additional clause REFINES 

which defines the machine which is refined by the current specification. 

Besides definitions of variables types the invariant of the refinement 

machine should contain the refinement relation. This is a predicate which 

describes the connection between state spaces of more abstract and refined 

machines. 

 

[Param:Data] [Param:Msg] 
IF 

IF 

SentD:=SentD\/({Param|->NextHop((Node |->To(Param)))}) 

((Node|->To(Param))|->valid):RT 

        ... 

State : =ST_idle 

BufferM:=BufferM\/({Node|->Param}) 

State : = ST_idle 

SentM:=SentM\/({Param|->NextHop((Node |->To(Param))) }) 
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OPERATIONS   
Send =   

       
  

<specification of the operation body>   

                                
                  

  

                

  
  

IF 
 ( ( Node |-> To ( Param ) ) |-> valid ) : RT 

THEN 
IF   

Param:Data 
THEN 

SentD:=SentD\/({Param|->NextHop((Node|->To(Param)))}) || 
               State := ST_idle 

ELSIF   
Param : Msg  

THEN 
SentM:=SentM\/({Param|->NextHop((Node|->To(Param)))}) || 
BufferM := BufferM \/ ( { Node |-> Param } ) || 

                           State := ST_idle 
ELSE skip 
END 

ELSE 
<specification of the operation body – contd> 

END 

REFINEMENT CMobileNode_R1 
REFINES CMobileNode 
<specification of machine’s sets and variables> 
INVARIANT 

Data <: PacketID & Msg <: PacketID & 
Data \/ Msg = PacketID & Data /\ Msg = {} & 
SentD <: Sent & SentM <: Sent & 
SentD : Data <-> T_NODE_ID & SentM : Msg <-> T_NODE_ID & 
BufferD <: Buffer & BufferM <: Buffer & 
BufferD : T_NODE_ID <-> Data & BufferM : T_NODE_ID <-> Msg & 

 
<initialisation> 

 
 

Figure 6. Narrowing of the method Send in B 

 

An excerpt from the specification resulting from the translation of our 

transformed UML models in B is shown in Figure 6. The excerpt illustrates 

construction of date refinement relation and changes introduced by the 

refinement into the body of the method Send. 

Another typical model transformation is supplementing. While 

supplementing a model we introduce new features into system functionality 

while preserving already existing features. We model supplementing by 

introducing new class with attributes and methods describing the 

manipulation over new attributes. The connection between classes is an 

(unidirectional) association which has the same name as the introduced class 

as shown in Figure 7. In the process of supplementing, previously defined 

methods can be modified to specify computation over newly introduced 

attributes and links to new methods.  
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 NEW_funct 
 

attribute3 
… 

 
 
method3 

A 
 

attribute1 
attribute2 

… 
 
method1 

method2 

+ new_funct 

 
 

Figure 7. Supplementing pattern 

 

Supplementing presented in Figure 7 demonstrates an introduction of 

new attribute attribute3 and computation over it defined by method3. This 

transformation affects the models describing the behaviour of already 

existing class A, i.e., it requires modification of corresponding state and 

activity diagram. Essentially, such a modification integrates into these 

models a specification of computation over newly introduced attribute and 

the link to the new method.  

Next we demonstrate how supplementing can facilitate an introduction 

of a new requirement into the model of AODV protocol. The requirement to 

be captured is as follows: 

 

R10: To ensure that the routing information is fresh enough and to 

guarantee loop free routes, each node maintains a sequence number (SN). 

The sequence number is incremented every time when the node sends a 

message to initiate discovery of a missing route. 

 
Figure 8. Supplementing in the activity diagram 

 

An introduction of this requirement via supplementing, results in 

creating a new class CSn with the attribute Sn and the method increment.  

[From(Param)=Node] 
IF 

IF 

State: =ST_idle 

SentM:=SentM\/({Param|->NextHop((Node |->To(Param))) }) 

BufferM:=BufferM\/({Node|->Param}) 

increment(Sn(Node)) 
[NOT From(Param)=Node] 
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We transform the activity diagram of the method Send by inserting 

activity elements describing computation over Sn as shown in Figure 8. The 

excerpt from the corresponding B specification capturing this modification 

is shown in Figure 9. 

 

 REFINEMENT CMobileNode_R2 
REFINES CMobileNode_R1 
            <specification of machine’s sets and variables> 
INVARIANT 
            Sn : { Node } --> NAT & 
 
INITIALISATION 
            Sn := { ( IP_address |-> 0 ) } || 
 
OPERATIONS 
Send= 
            <specification of the operation body> 
            ELSIF   
                        Param : Msg  
            THEN 
                        IF 
                                    From ( Param ) = Node 
                        THEN 
                                    Sn ( Node ) := Sn ( Node ) + 1 ; 
                                    SentM:=SentM\/({Param|->NextHop((Node|->To(Param)))}) || 
                                    BufferM := BufferM \/ ( { Node |-> Param } ) || 
                                    State := ST_idle 
                        ELSE 
                                    SentM:=SentM\/({Param|->NextHop((Node|->To(Param)))}) || 
                                    BufferM := BufferM \/ ( { Node |-> Param } ) || 
                                    State := ST_idle 
                        END 
            ELSE skip 
            END 
            <specification of the operation body-contd> 
END  

 

Figure 9. Supplementing in the method Send 

 

The further refinement steps result in differentiating between types of 

messages and replacing sets with more concrete data structures. Namely the 

messages are split into RREQ and RREP subsets (B specification of this 

step for the method Send can be found in Appendix - Figure A4). 

Replacement of sets with concrete data structures allows us to specify the 

way in which exchanging packets are to be handled, i.e., packets are sent in 

the FIFO manner – first packet received, first sent. 

While presenting the case study, we focused on examples illustrating 

the requirements evolution and change. In this section we demonstrated how 

the new and changing requirements are introduced into a system model in a 

systematic and correctness preserving way.  

increment (Sn(Node)) ; 
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5. Conclusion 
 

This paper has presented an approach to handling requirements changes and 

evolution in formalized model-driven development. We proposed patterns 

for refining UML models to implement changing or new requirements. 

Moreover, we described formal semantics in B for refinement of class, state 

and activity UML diagrams. We demonstrated how UML modeling 

combined with formal specification can improve requirements traceability 

and support navigation through the design space. The proposed approach 

was validated by a case study – development of AODV routing protocol for 

mobile ad-hoc networks. 

Correctness preserving development in UML has been studied also by 

Liu et al. [5]. They showed how the stepwise refinement of UML models 

supports the maintenance of consistency during model transformation and 

evolution. Their UML model of a system consists of a class, use case, 

sequence and state diagrams. They do not consider activity diagrams since 

the computation which methods specify is assumed to be simple. In our 

work, we demonstrated that capturing system requirements with activity 

diagrams is especially useful when complex computation should be 

modeled.  

Varro and Pataricza have also proposed an approach supporting model 

transformations in the MDA environment [14]. They presented a visual yet 

formal specification technique based on metamodeling and graph 

transformations. They demonstrated how to automatically implement model 

transformations specified on a very abstract level based on transformation 

rules and mappings of UML on Action Semantics. Our approach uses the B 

Method as a formal framework and allows to address modeling at different 

levels of abstraction.   

The development conducted in this paper was supported by Atelier B – 

an automatic tool for verification and refinement in B. The tool support has 

significantly simplified the development process and increased our 

confidence in the correctness of obtained models. We believe that the 

availability of the tool supporting formal specification and verification as 

well as tight integration with UML can facilitate acceptance of our approach 

in industry. 

As a future work it would be interesting to explore the use of OCL 

instead of B notation to define logical conditions in UML modeling. 

Moreover, it would be useful to integrate the formalized model-driven 

development presented in this paper with simulators used to estimate 

performance of ad-hoc protocols. In this case we could address not only 

correctness but also performance issues in the development process. 
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Appendix 

 

 
 

Figure A1. Complete activity diagram of the method Send  

 
 

[((Node|->To(Param))|->valid):RT] 

[{Node}<|HasPackets={} & {Node}<|Buffer={}] 
[{Node}<|HasPackets/={} & Param:PacketID & (Node|->Param):HasPackets] 

[NOT((Node|->To(Param))|->valid):RT] 

[{Node}<|Buffer/={} & Param:PacketID & (Node|->Param):Buffer] 

[NOT((Node|->To(Param))|->valid):RT] 
 

IF 

IF 

Sent:=Sent\/({Param|->NextHop((Node |->To(Param)))}) 
State : =ST_idle 

Buffer:=Buffer\/({Node|->Param }) 

State : = ST_idle 

Sent:=Sent\/({Param|->NextHop((Node |->To(Param)))} ) 

State  :=ST_idle 

HasPackets:=HasPackets - ({Node|->Param}) 

State : =  ST_idle 
Buffer:=Buffer\/({Node|-> Param }) Buffer:=Buffer\/({Node|-> Param}) 

State : =  Creating 

State :=  ST_idle 

Sent:=Sent\/({Param}*NextHop[dom(RT|>{valid})]) 

Buffer :=Buffer\/({Node|->Param}) 

IF 

State  : = ST_idle 

Sent:=Sent\/({Param|->NextHop((Node |->To(Param)) )}) 

Buffer:=Buffer\/({Node |-> Param }) 

State  : =  ST_idle 

IF 



 

 22 

MACHINE  Global 

SETS STATES = { ST_Idle , Sending , Receiving , Creating } ; 

  STATUS = { valid , invalid , unknown } 

ABSTRACT_CONSTANTS  

                 T_NODE_ID , 

                T_ROUTE , 

                T_PACKET_ID , 

                IP_address 

PROPERTIES 

                 T_NODE_ID <: NAT1 &    

                 T_ROUTE : T_NODE_ID <-> T_NODE_ID & 

                 T_PACKET_ID <: NAT1 & 

                 IP_address : T_NODE_ID 

END 

 

Figure A2. a) Machine defining types 

 
MACHINE  CRoute 

 

SEES  Global 

 

VARIABLES   

  Route, 

  RT,  

  NextHop 

   

INVARIANT 

  Route<:T_ROUTE & 

  RT : Route --> STATUS & 

  NextHop : Route --> T_NODE_ID 

 

INITIALISATION  

  Route:={} || RT:={} || NextHop:={} 

 

END 

 

Figure A2. b) CRoute machine  

 
MACHINE  CPacket 

 

SEES  Global 

 

VARIABLES   

  PacketID,  

  From,  

  To 

   

INVARIANT 

  PacketID <: T_PACKET_ID &  

  From : PacketID --> T_NODE_ID & 

  To : PacketID --> T_NODE_ID  

 

INITIALISATION  

  PacketID:={} || From:={} || To:={}  

 

 

END 

 

Figure A2. c) CPacket machine 
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Send= 

 SELECT CMobileNode_State=Sending & {Node}<|HasPackets ={} &  

                   {Node}<|Buffer={} 

    /*If the node doesn't have any packets  

      to send it becomes idle.*/ 

 THEN  

  CMobileNode_State:=ST_Idle 

 WHEN 

  CMobileNode_State=Sending & {Node}<|HasPackets /={} &  

                   Param:PacketID & (Node|->Param):HasPackets 

 THEN  

  HasPackets:=HasPackets - ({Node|->Param}) || 

  IF  

   ((Node|->To(Param))|->valid):RT 

           /* Checks if the destination exists in the  

                       routing table of the sending node.*/ 

  THEN  

     Sent:=Sent\/({Param|->NextHop((Node|->To(Param)))}) || 

     CHOICE 

         CMobileNode_State:=ST_Idle 

     OR 

         Buffer:=Buffer\/({Node|->Param}) || 

         CMobileNode_State:=ST_Idle 

     END 

  ELSE 

     Buffer:=Buffer\/({Node|->Param}) || 

     CHOICE 

         CMobileNode_State:=Creating 

     OR 

         CMobileNode_State:=ST_Idle 

     OR 

         Sent:=Sent\/({Param}*NextHop[dom(RT|>{valid})]) || 

            CMobileNode_State:=ST_Idle 

     END 

  END 

 WHEN 

  CMobileNode_State=Sending & {Node}<|Buffer/={} &  

                   Param:PacketID & (Node|->Param):Buffer   

 THEN 

  IF 

   ((Node|->To(Param))|->valid):RT 

  THEN 

     Buffer:=Buffer-({Node|->Param}) || 

     Sent:=Sent\/({Param|->NextHop((Node|->To(Param)))}) || 

     CMobileNode_State:=ST_Idle 

  ELSE 

     CMobileNode_State:=ST_Idle 

  END  

 END; 

 

Figure A3. B specification of the method Send (obtained by translating the 

diagram from the Figure A1) 
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Send = 

SELECT 

      CMobileNode_State=Sending & {Node}<|HasPackets={} &  

         {Node}<|BufferD={} & {Node}<|BufferM= {} 

THEN 

         CMobileNode_State:=ST_Idle 

WHEN 

      CMobileNode_State=Sending & {Node}<|HasPackets/={} &  

         Param:Data\/RREQ\/RREP & (Node|->Param):HasPackets 

THEN 

      HasPackets:=HasPackets-({Node|->Param}) || 

         IF 

           ((Node|->To(Param))|->valid):RT 

         THEN 

             IF  

                Param:Data 

             THEN 

                SentD:=SentD\/({Param|->NextHop((Node|->To(Param)))}) || 

                CMobileNode_State:=ST_Idle 

             ELSIF 

                Param:RREQ 

             THEN   

                SentM:=SentM\/({Param|->NextHop((Node|->To(Param)))}) || 

                IF 

                 From(Param)=Node 

                THEN 

                 Sn(Node):=Sn(Node)+1; 

                  SnM(Param):=Sn(Node) || 

                  BufferM:=BufferM\/({Node|->Param}) || 

                  State:=ST_Idle 

                ELSE 

                  BufferM:=BufferM\/({Node|->Param}) || 

                  CMobileNode_State:=ST_Idle 

                END 

             ELSIF 

      Param:RREP 

             THEN 

                 SentM:=SentM\/({Param|->NextHop((Node|->To(Param)))}) || 

                 CMobileNode_State:=ST_Idle 

             ELSE 

       Skip 

             END 

  ELSE 

   IF  

                 Param:Data 

   THEN 

                 BufferD:=BufferD\/({Node|->Param}) || 

                 CMobileNode_State:=Creating 

             ELSIF 

                 Param:RREQ 

             THEN   

                 BufferM:=BufferM\/({Node|->Param}) || 

                 SentM:=SentM\/({Param}*NextHop[dom(RT|>{valid})]) || 

                 CMobileNode_State:=ST_Idle 

             ELSIF 

       Param:RREP 

             THEN 

                 BufferM:=BufferM\/({Node|->Param}) || 

                 CMobileNode_State:=ST_Idle   

             ELSE  

                 Skip 

             END 

         END    

WHEN 

      CMobileNode_State=Sending & {Node}<|BufferD/={} &  

         Param:Data\/RREQ\/RREP & (Node|->Param):BufferD\/BufferM 

THEN 
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         IF 

           ((Node|->To(Param))|->valid):RT 

         THEN 

            IF  

                 Param:Data & (Node|->Param):BufferD 

             THEN 

                 BufferD:=BufferD-({Node|->Param}) || 

                 SentD:=SentD\/({Param|->NextHop((Node|->To(Param)))}) || 

                 CMobileNode_State:=ST_Idle 

             ELSIF 

                 Param:RREQ\/RREP & (Node|->Param):BufferM 

             THEN   

                 BufferM:=BufferM-({Node|->Param}) || 

                 SentM:=SentM\/({Param|->NextHop((Node|->To(Param)))}) || 

                 CMobileNode_State:=ST_Idle 

             ELSE 

       Skip 

             END 

         ELSE 

          CMobileNode_State:=ST_Idle 

         END 

END; 

 

Figure A4. Refinement of the method Send – introduction of two kinds of 

messages: RREQ and RREP  
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