
Tur ku Cent re Computer Sciencefor

TUCS Technical Report
No 667, February 2005

Author One | Author Two | Author Three
Author Four | Author Five

Title of the Technical Report

Dubravka Ilić | Elena Troubitsyna

A Formal Model-Driven
Approach to Requirements
Engineering

TUCS Technical Report
No 667, February 2005

A Formal Model-Driven Approach to
Requirements Engineering

Dubravka Ilić

Åbo Akademi University, Department of Computer Science

Elena Troubitsyna
Åbo Akademi University, Department of Computer Science

Abstract

Model Driven Architecture (MDA) gains increasing acceptance in software engineering

community. MDA promotes system development by gradual transformation of system

models expressed in Unified Modelling Language (UML). UML modelling facilitates

better understanding of system requirements, but it is yet insufficient for guaranteeing

overall correctness of the final product. In this paper we propose an approach to

formalizing model-driven development in the B Method. The B Method is a top-down

approach to the development of systems correct by construction. We show how the

proposed approach facilitates structuring complex system requirements, requirements

changes and traceability, integration of emergent requirements and navigation through

the overall design space. To validate the proposed approach we conduct a case study –

development of Ad hoc On-Demand Distant Vector routing protocol.

Keywords: MDA, UML, B Method, refinement, requirements traceability and change

TUCS Laboratory
Distributed Systems Design Laboratory

 1

1. Introduction

UML [10] has become de-facto a standard modeling technique for

visualizing, specifying and documenting software systems. UML facilitates

requirements analysis and specification. UML helps to visualize and express

the system structure and behaviour at different levels of abstraction.

Transformations of system models expressed in UML are in the basis of

Model Driven Architecture (MDA) [8]. MDA is a methodology promoting

top-down system development by transformation of abstract, platform

independent models to platform specific models. Transformation steps,

called refinements, aim at gradual introduction of requirements into system

model. Correctness of both, models and transformations, is crucial for the

quality of the final product. In this paper we propose a formal model-driven

approach to requirements engineering with UML.

 To verify consistency of our UML models we demonstrate how to

translate them into a formal specification in the B Method [1, 11]. We

extend the previous work on translating state and class diagrams into B by

defining how in addition activity diagrams can be translated and integrated

into the process of translating class and state diagram. While translating

state and class diagrams we obtain a formal specification which lacks the

details of implementation of class methods. After translating the

corresponding activity diagrams we arrive at the complete formal

specification.

 The top-down development methodology of the B method, called

stepwise refinement, coincides with the idea of MDA development by

model transformations and hence, their combination is natural. We show

how MDA in combination with formal refinement in B can result in an

implementation of a system correct by construction. Since requirements

changes and evolution are intrinsic part of software development process we

show how they can be handled in the process of UML model transformation

and corresponding formal refinement in B. We propose UML patterns for

integrating arising requirements into the system models via model

transformation. Establishing refinement between formal specifications

representing system models before and after the transformation allows us to

ensure correctness of model transformation.

 Since the derivation of technology independent patterns is impractical,

our approach is aiming at developing specification and development

patterns generic to ad-hoc mobile networks. We create UML-based

templates for modeling ad-hoc networks and corresponding patterns for

specifying them in B. Moreover, we propose a generic development process

based on transformations of UML models. By establishing refinement

between the corresponding B models we verify the correctness of our

development.

 2

 Our approach allows us to understand and structure complex system

requirements and to reason about correctness of the system under

construction.

 To validate the proposed approach we conducted a case study – model-

driven development of routing protocol for ad hoc networks, Ad hoc On-

Demand Distance Vector protocol [9].

1. Modeling system requirements in UML

2.1. Requirements modeling with UML

A process of software development is a process of modeling a real world

problem described as a set of requirements, transforming it into a number of

refined models, eventually ending with executable code. Usually use case

diagrams serve as a starting point for requirements modeling. From the

functional requirements described by use cases we create a system structure,

traditionally rendered by class diagrams.

To establish conformance to the requirements we should ensure that on

the basis of created static model – classes with their associations, attributes

and methods – the behaviour described by use case model can be provided.

The dynamic aspect of behaviour is usually captured via state diagrams. The

state space of a class is a Cartesian product of the types of class attributes

depicted at the class diagram. The transitions from state to state correspond

to the invocation of corresponding methods. The initialization of class

attributes brings the class to its initial state.

 State diagrams can model the requirements on different level – from

dynamic behaviour of a certain class to overall system behaviour. In the

later case the states are formed from the attributes of all classes. The state

transitions correspond to methods of certain classes.

 While state diagram describes how an invocation of certain methods

affects the state of the class it leaves the detailed specification of the

computation implemented by these methods aside. The activity diagrams

help us to unfold these details by describing how methods are actually

implemented. To construct activity diagram we distinguish between basic

and complex methods. The basic methods are the ones whose invocation

changes or access a single attribute of the class. The complex methods

describe elaborated computation and often are composed of basic methods.

In our activity diagrams an activity – an execution flow step – corresponds

to an execution of a basic method. Sequential dependencies between the

execution steps are expressed as transitions.

 In this paper we demonstrate how UML modeling can assist us in

handling requirements changes in a structured systematic way. While the

connection between class and state diagrams in the process of requirements

change has been studied before [6], the affect of it on the connection

between the class, state and activity diagram has not been sufficiently

 3

explored yet. Meanwhile, changing requirements usually have a profound

impact on the way the methods are implemented. Next we will describe how

to modify the activity diagram to facilitate the requirements changes.

 Usually an activity diagram has the following three standard elements:

1)

basic method

2)

sequential branch

with guard

conditions on

multiple exit

arrows

3)

parallel execution

of basic methods

Below we propose a modification of activity diagram to make the meaning

of several elements more precise. Namely, we introduce the following

variations:

4)

alternative branch

with alternative

guards on exit

arrows

5)

nondeterministic

branch with

multiple exit

arrows without

guards

6)

block

The first element is essentially a specialization of the sequential branch. It

renders the alternative choice. The second element is a specialization of the

sequential branch to model non-determinism, i.e., the choice with

overlapping conditions. The third element is a block. It models “folded”

activity diagram and serves as a reference. An introduction of block

improves scalability of the activity diagrams.

 To illustrate modeling the requirements with class, state and activity

diagram next we will present a model of route manipulation in Ad hoc On-

Demand Distant Vector routing protocol (AODV).

2.2. Example of requirements modeling

AODV has been proposed for ad-hoc mobile wireless networks [9].

Essentially the protocol describes the communication, i.e., sending and

 4

receiving information (called packets), between the nodes of a network.

Ad-hoc networking is a rather new and hence not thoroughly explored

technology. The protocol is a complex and changes constantly as the

technology evolves. Therefore it offers us a good test-case for exploring

requirements change. We omit a detailed description of the entire protocol

and present small excerpts from it. Since the topology of an ad-hoc network

is volatile, sending data from one node to another requires establishing a

route between these nodes. Each node in the network is uniquely identified.

It stores and updates a routing table containing routes already found from

this node, called source, to the other nodes, called destinations, in the

network. When the route is requested at the first time, node inserts it into its

routing table with the status unknown. When the route is found it is marked

as valid which means it can be used for sending packets. However, it can

also become invalid when network topology changes. When node wishes to

send a packet to the destination marked in the route, it sends the packet to

the node which is listed as a next node from the observed source node in the

route. In this way, packets are propagated toward destination nodes. Packets

are buffered. Buffering allows the node to not process packets with the same

identifier more then once.

We list and label a subset of the described requirements which we

model in this paper:

[1] Each node has a unique ID

[2] Each node can send packets it has received

[3] Each node can receive packets

[4] Each packet has its own unique ID

[5] Each packet has its source and a destination

[6] Each node maintains routs toward other nodes

[7] Each node has its status; it is valid if the route can be used for sending

packets, invalid if for various reasons this can’t be done or unknown if

it is not completely established

[8] Each node is buffering received packets

[9] If a node has a route toward the destination in its routing table, it sends

the packet to the next node along this route and either just waits for

other packets to be received or at the same time also buffers the sending

packet.

Next, we show how each of listed requirements can be modeled in UML.

Figure 1 gives an excerpt from the AODV modeled in UML. The complete

activity diagram of the method Send can be found in the Appendix (Figure

A1).

 5

IF

IF

Sent:=Sent\/({Param|->NextHop((Node |->To(Param)))})

((Node|->To(Param))|->valid):RT

Buffer :=Buffer\/({Node|->Param})

State: = ST_idle

Sent:=Sent\/({Param|->NextHop((Node |->To(Param))) })

 ...

State : =ST_idle

Figure 1. Excerpt from the AODV UML model

Observe that activity diagrams allow us to capture a significant part of the

requirements, which we could not model with the class and state diagrams,

as illustrated in Table 1.

Table 1. System requirements – abstract level

Label Description of requirement modelling
Used UML

diagrams

R1

Static feature of the node representing its unique

identifier – Node – modeled as an attribute of the

identified CMobileNode class.

Class diagram

(Figure 1(a))

R2

Method Send of the CMobileNode class and at the

same time association named Sent between classes

CMobileNode and CPacket. R2 is modeled also as a

state Sending and condition on a transition between

states Idle and Sending - when some packet shows up

in node’s receiving channel HasPackets, node goes

from Idle state to Sending state following the

transition which invocates the method Send.

Class diagram
CMobileNode
State diagram

(Figure 1(b))

+HasPackets

+Route

+Buffer

+Sent

CMobileNode

Node : T_NODE_ID

Send ()

Receive ()

CRoute

RT

NextHop

: STATUS

: T_NODE_ID

CPacket

PacketID

From

To

: T_Packet_ID

: T_NODE_ID

: T_NODE_ID

(a) MobileNode Class diagram (b) CMobileNode state diagram

(c) Method Send activity diagram

ST_Idle
Sending

Receiving
Send [{Node}<|HasPackets/={}]

 6

R3

Method Receive of the CMobileNode class, and at the

same time association HasPackets between classes

CMobileNode and CPacket. R3 is modeled also as a

state Receiving.

Class diagram
CMobileNode
State diagram

(Figure 1(b))

R4 Class CPacket has its own ID attribute – PacketID.
Class diagram

(Figure 1(a))

R5
Attributes of the CPacket class: From and To

modeling the packet source and destination node.

Class diagram

(Figure 1(a))

R6
The association Route together with the aggregated

class CRoute models the node routing table.

Class diagram

(Figure 1(a))

R7

NextHop is the attribute of the aggregated class

CRoute modeling next node toward the destination

node along the route; RT is the attribute of the

aggregated class CRoute modeling its status.

Class diagram

(Figure 1(a))

R8
Association relationship Buffer between classes

CMobileNode and CPacket.

Class diagram

(Figure 1(a))

R9 Body of the method Send.

Method Send

activity diagram

(Figure 1(c))

Next, we demonstrate our approach to verifying the consistency of our

UML modeling.

3. From UML models to formal specifications

3.1. Formal system modeling in the B Method

To ensure consistency we supplement our UML models with formal

specifications. In this paper we have chosen the B Method as our formal

modeling framework. The B Method is an approach for the industrial

development of correct software. The method has been successfully used in

the development of several complex real-life applications [7]. The tool

support available for B provides us with the assistance for the entire

development process. For instance, Atelier B [3], one of the tools supporting

the B Method, has facilities for automatic verification and code generation

as well as documentation, project management and prototyping. The high

degree of automation in verifying correctness improves scalability of B,

speeds up development and, also, requires less mathematical training from

the users.

In B a specification is represented by a module or a set of modules,

called Abstract Machines. The common pseudo-programming notation,

called Abstract Machine Notation (AMN), is used to construct and formally

verify them. An abstract machine encapsulates a state and operations of the

specification and has the following general form:

 7

Each machine is uniquely identified by its name. The state variables of

the machine are declared in the VARIABLES clause and initialized in the

INITIALISATION clause. The variables in B are strongly typed by

constraining predicates of INVARIANT clause. The constraining predicates

are conjoint by conjunction (denoted as &). All types in B are represented by

non-empty sets and hence set membership (denoted as :) expresses typing

constraint for a variable, e.g., x:TYPE. Local types can be introduced by

enumerating the elements of the type, e.g., TYPE = {element1, element2,…}

in the SETS clause. The operations of the machine are defined in

OPERATIONS clause. The operations are atomic meaning that, once an

operation is chosen, its execution will run until completion without

interference.

In this paper we adopt event-based approach to system modeling [2].

The events are specified as the guarded operations SELECT cond THEN

body END. Here cond is a state predicate, and body is a B statement

describing how state variables are affected by the operation. If cond is

satisfied, the behaviour of the guarded operation corresponds to the

execution of its body. If cond is false at the current state then the operation

is disabled, i.e., cannot be executed. Event-based modeling is especially

suitable for describing reactive systems. Then SELECT operation describes

the reaction of the system when particular event occurs.

In this paper we use the following B statements to describe the

computation in operations:

Statement Informal meaning

X := e Assignment

X, y := e1, e2 Multiple assignment

IF P THEN S1 ELSE S2 END If P is true then execute S1, otherwise S2

S1 ; S2 Sequential composition

S1 || S2 Parallel execution of S1 and S2

X :: T
Nondeterministic assignment – assigns

variable x arbitrary value from given set T

ANY x WHERE Q THEN S END

Nondeterministic block – introduces new

local variable x according to the predicate Q

which is then used in S

CHOICE S OR T OR … OR U END

Nondeterministic choice – one of the

statements S, T…U is arbitrarily chosen for

execution

 8

B also provides structuring mechanisms which enable machines to be

expressed as combinations of other machines. Here we use EXTENDS

clause. When machine M1 extends machine M2, written as EXTENDS M2 in

the definition of M1, it means that M1 includes M2 and promotes all of the

operations of M2, i.e., it provides all of the facilities provided by M2, with

some further operations of its own.

Constructing a formal specification from a requirements description

given in a natural language is often cumbersome. In our approach the formal

specifications are obtained by translating UML models. Next we

demonstrate our approach to doing this.

3.2. Translating UML diagrams into B

In this paper we further extend an approach to translating class and state

diagrams into B described in [12]. We start from a brief revision of the

existing translation mechanism and then present our extension.

Classes in UML correspond to machines in B. In the process of

translating a class into a machine we transform attributes into the variables

and the methods into the operations. Initial values of the attributes become

initial values of variables in the initialization clause. The tagged values of

the class describing the invariant are translated into the machine invariant.

The state diagram provides a basis for constructing operations of the

machine. The names of the states form the set of values of the variable

modeling state. The names of operations correspond to the names of the

transitions. The guard of a transition forms the guard of the corresponding

operation. For instance, as a result of translating class and state diagram

presented in Figure 1(a) and 1(b), the B specification shown on Figure 2 can

be obtained.

Observe that unidirectional associations between classes are modeled as

relations between types of variables representing identifiers of the classes.

In the B specification resulting from translating class and state diagram we

have captured only the requirements. The body of the operation is still

unspecified. Next we show how the translation of an activity diagram

complements the body of the corresponding B operation.

Since B can express not only sequential but also parallel processes and

their synchronization it is suitable for representing activity diagram

formally.

 9

MACHINE CMobileNode
EXTENDS CPacket, CRoute / Additional machines – see Appendix (Figure A2 b) and c))

SEES Global / Definition of types – see Appendix (Figure A2 a))

VARIABLES
Node, / attribute of CMobileNode class
Route, / association between CMobileNode and CRoute classes

HasPackets, / association between CMobileNode and CPacket classes
Sent, Buffer, / association between CMobileNode and CPacket classes
CMobileNode_State, / automatically generated variable for modeling the machine

 state (name corresponds to the machine name)

INVARIANT
Node : T_NODE_ID &
Route <: T_NODE_ID <-> T_NODE_ID &
HasPackets : T_NODE_ID <->PacketID &
CMobileNode_State : STATES &
Sent : PacketID<-> T_NODE_ID &
Buffer : T_NODE_ID <-> PacketID &

INITIALISATION

Node:=IP_address || / initially Node gets a unique IP_address which is a constant
Route:={} || / initially Node doesn’t have any established routes
HasPackets:={} || / initially Node doesn’t have any sent, received or buffered
 packets
Sent:={} ||
Buffer:={} ||
CMobileNode_State:=ST_Idle || / initially Node is in the state Idle

OPERATIONS
Send= / the operation is executed when the Node is in the state

 Sending it has some packets to send
SELECT
 CMobileNode_State=Sending & {Node}<|HasPackets/={}
THEN

END
...

Figure 2. Excerpt from the AODV class and state diagram translation into B

 10

We define a mapping as a set of rules given below:

 UML element Corresponding B notation

Rule 1 Activity diagram NAME Body of operation

NAME

Rule 2 Sequential branch

IF Condition 1

 THEN Statement 1

ELSIF Condition 2

 THEN Statement 2

ELSIF Condition 3

 THEN Statement 3

ELSE skip

END

Rule 3 Basic method

Assignment

Rule 4 Parallel execution

Statement 1 || Statement 2

Rule 5 Alternative branch

IF Condition

THEN Statement 1

ELSE Statement 2

Rule 6 Nondeterministic branch

CHOICE
 Statement 1
OR
 Statement 2
OR
 Statement 3
END

Rule 7 Block

* There exist an activity diagram AcD_1

Corresponds to the

translation of the

contained activity

diagram (see Rule 1).

[Condition 3] [Condition 1]

[Condition 2]

Statement 1 Statement 3 Statement 2

AcD_1

Activity

Statement 3 Statement 1 Statement 2

Statement 1 Statement 2

[NOT Condition] [Condition]
IF

Statement 2 Statement 1

IF

 11

To illustrate the translation of the activity diagrams into B in Figure 3

we present the results of translating the activity diagram given in Figure 1

(c). The translation of the complete activity diagram for the method Send

can be found in Appendix (Figure A3).

Figure 3. Excerpt from the AODV activity diagram translation into B

Observe that translation of the activity diagram as represented by

CMobileNode’ in Figure 3 has allowed us to complete the formal

specification of CMobileNode. Indeed, the translation has supplemented the

body of the operation Send constructed as described by the corresponding

activity diagram.

Currently the tool U2B supports the automatic translation of the class

and state diagrams into B [13].

To achieve a completely automatic translation some restrictions on

UML modeling should be imposed, e.g. logical conditions should be

described in B notations. By defining logical conditions in terms of Object

Constraint Language (OCL) and then automatically translating it into B, this

restriction can be removed.

In this section we have demonstrated how to supplement UML modeling

with formal specification which allowed us to ensure consistency of our

UML models. We have demonstrated so called horizontal consistency of

UML models. However, our specification is still on an abstract level and

needs to be refined. In the following section we show how MDA in

combination with formal refinement in B will lead us towards a correct

system implementation.

OPERATIONS
 Send =

 SELECT CMobileNode_ State = Sending & { Nod e } <| HasPackets /= {}

THEN

<specification of the operation body>
 IF
 ((Node | - > To (Param)) | - > valid) : RT

 THEN
 Sent := Sent \ / ({ Param | - > NextHop ((N ode | - > To (Param))) }) ||

 CHOICE

 CMobileNode_ State : = ST_Idle
 OR

 Buffer := Buffer \ / ({ Node | - > Param }) ||

CMobileNode_ State : = ST_Idle

 END
 ELSE

<specific ation of the operation body – cont d >

 END

MACHINE CMobileNode’
 <specificatio n of machine’s sets, variables, invariants and initialization>

 / If the route from the observed node to

 desired destination To in the routing table
 RT is valid

 / Then
 / Pa cket is sent to the next node along that

 route and
 / node either becomes idle

 / or the packet is buffered and node goes

 to idle

 12

4. B-supported model transformations in MDA

MDA has appeared as a result of recognizing that reasoning about software

on the code level is unfeasible. MDA stresses an importance of abstraction -

as a main mechanism for coping with complexity - and stepwise refinement

- as a technique for transforming abstract models into an implementation on

a desired platform. In the previous section we demonstrated how class, state

and activity diagrams can capture different views on system behaviour and

then shown how to ensure the consistency of these views by formal

verification. In this section we will demonstrate how these models are

transformed in the process of requirements evolution and change.

Refinement is a process of gradual incorporation of requirements and

implementation details into the system specification. While incorporating

new requirements we should ensure that the observable behaviour of the

system is preserved, i.e., to guarantee an adherence of final implementation

to the initial abstract specification. While refining system model we

distinguish between two types of transformations: reduction of non-

determinism and extension of system functionality. Following [4] we call

these transformations narrowing and supplementing correspondingly.

Invariant I2
attribute1<->attribute12

Invariant I1
attribute1<->attribute11

REF_A2

attribute12
attribute2
…

method1
method2

A

attribute1
attribute2
…
method1
method2

State 1 State 2

method1

method2 [G2]

State 1

State 2
method2 [G21]

method2 [G22]

State21

State22

method1 [G11]

method1 [G12]

(a)

(b)

(c)

Part of the activity diagram for the method1.

Action1 Action2 Action1 Action2

[G12]

[G11]

Refinement

REF_A1

attribute11
attribute2
…

method1
method2

Refinement

attribute1
attribute11 U attribute12

Figure 4. Narrowing pattern

 13

Narrowing focuses on refining generic types of attributes of the system

model. Such a transformation results in replacing abstract attributes with the

attributes, whose representation is closer to eventual implementation.

The forms of narrowing vary widely and hence are difficult to

generalize. However, in the design of protocol the form of narrowing shown

in Figure 4 is frequently used. Hence, this transformation can be seen as a

generic pattern for narrowing in the filed of protocol design.

Essentially the pattern describes the splitting a generic class into several

specialized subclasses. The generic class is replaced by the specialized

subclasses. Such a narrowing transforms the system model as follows. The

classes REF_A1 and REF_A2 refine the class A. They replace A in the class

diagram. The invariants I1 and I2 of REF_A1 and REF_A2 respectively,

define data refinement relation which describes connection between

replaced and newly introduced classes in the class diagram. It is expressed

in terms of connecting the attribute representing the identifier of the generic

class with the subtypes of that attribute in subclasses. Introduced subclasses

have the same methods as a generic class. The associations between generic

class and other classes in the class diagram are transformed too. If a

relationship should be established on the subtype, the association is split

into two new associations connecting one of the subclasses and other class.

Otherwise, the invariant of the association is updated so that it connects the

union of subtypes instead of the specialized attribute. Observe that only

specialized attribute is changed by narrowing while others are staying

unchanged (see, e.g., attribute2 in Figure 4(a)). Hence, while transforming

state diagram we leave the states and transitions unaffected by narrowing

intact, as, e.g., State 1 in Figure 4(b). The states affected by narrowing are

transformed into superstates. Such superstates contain states which describe

the dynamic behaviour of the system in terms of newly introduced

attributes. For instance, State 2 becomes a superstate containing states State

21 and State 22. The transitions, trigged by the invocation of methods

affected by narrowing, are also transformed. If they were originally not

restricted by the conditions (see, e.g., transition labeled method1) then they

become conditional and conditions over newly introduced attributes

determine the destination states. If they were conditional originally (see,

e.g., transition labeled method2) then conditions are reformulated in terms

of newly introduced attributes.

The activity diagrams modeling the methods affected by narrowing are

transformed too. The pattern for this transformation is shown in Figure 4(c).

Within the transformation nondeterministic branch element is replaced with

the sequential or alternative branch. The guards introduced in the state

diagrams to define the destination state after the invocation of the

corresponding method (see, e.g., method1) are introduced into activity

diagram as guards of the deterministic or alternative branch. This reduces

the non-determinism of the corresponding method.

 14

Let us demonstrate how requirements change can be handled via

narrowing. In the process of protocol development it is necessary to

distinguish between the types of packets which node transmits. The

modified requirements are as follows:

R2’. Each node can send data and messages it has received

R3’. Each node can receive data and messages

R9’. If a node has a route toward the destination in its routing table, it sends

data and messages to the next node along this route. After sending data it

waits for other data and messages to be received. When sending messages

node buffers them first and then waits for the new information.

Notice that changing one requirement may have the impact on all the

existing requirements which include some packet manipulation and hence in

the corresponding UML models (listed in the third column of the Table 1).

Implemented changes are depicted in the refined diagrams named as: REF

number of the refinement step_existing diagram name.

Table 2. System requirements – first refinement

Label
Description of requirement

modelling
Used UML diagrams

R2’

Instead of class CPacket we obtain

classes CData & CMsg. PacketID

attribute is replaced by attributes

Data and Msg.

REF1_Class diagram

R3’

The superstate Sending is split

into substates SendingData and

SendingMsg. The transition from

the state Idle to these two new

states is also partitioned since the

method of this transition – Send –

manipulates over attribute

PacketID. Thus, Send becomes

conditional transition.

REF1_Class diagram

REF1_CMobileNode

State diagram

R9’ Refined body of the method Send.
REF1_Method Send

activity diagram

We omit the demonstration of transformations of class and state diagrams –

they can be reconstructed from Table 1.

 15

Figure 5. Excerpt from the narrowing of the activity diagram for the method

Send

In Figure 5 we illustrate how the activity diagram is transformed by this

narrowing according to the pattern described in Figure 4(c).

To guarantee consistency of UML model transformation we should

ensure that system specification described by the transformed models is a

refinement of a more abstract model. To verify this we again translate the

obtained UML model into B and verify refinement between these formal

specifications.

The ideas underlying formal stepwise refinement in B and model

transformations in MDA coincide: in both cases we aim at advancing

implementation while preserving externally observable system behaviour.

The results of intermediate refinement steps in B are also machines, called

REFINEMENT. Their structure coincides with the structure of abstract

machine.

However, refined machine should contain an additional clause REFINES

which defines the machine which is refined by the current specification.

Besides definitions of variables types the invariant of the refinement

machine should contain the refinement relation. This is a predicate which

describes the connection between state spaces of more abstract and refined

machines.

[Param:Data] [Param:Msg]
IF

IF

SentD:=SentD\/({Param|->NextHop((Node |->To(Param)))})

((Node|->To(Param))|->valid):RT

 ...

State : =ST_idle

BufferM:=BufferM\/({Node|->Param})

State : = ST_idle

SentM:=SentM\/({Param|->NextHop((Node |->To(Param))) })

 16

OPERATIONS
Send =

<specification of the operation body>

IF
 ((Node |-> To (Param)) |-> valid) : RT

THEN
IF

Param:Data
THEN

SentD:=SentD\/({Param|->NextHop((Node|->To(Param)))}) ||
 State := ST_idle

ELSIF
Param : Msg

THEN
SentM:=SentM\/({Param|->NextHop((Node|->To(Param)))}) ||
BufferM := BufferM \/ ({ Node |-> Param }) ||

 State := ST_idle
ELSE skip
END

ELSE
<specification of the operation body – contd>

END

REFINEMENT CMobileNode_R1
REFINES CMobileNode
<specification of machine’s sets and variables>
INVARIANT

Data <: PacketID & Msg <: PacketID &
Data \/ Msg = PacketID & Data /\ Msg = {} &
SentD <: Sent & SentM <: Sent &
SentD : Data <-> T_NODE_ID & SentM : Msg <-> T_NODE_ID &
BufferD <: Buffer & BufferM <: Buffer &
BufferD : T_NODE_ID <-> Data & BufferM : T_NODE_ID <-> Msg &

<initialisation>

Figure 6. Narrowing of the method Send in B

An excerpt from the specification resulting from the translation of our

transformed UML models in B is shown in Figure 6. The excerpt illustrates

construction of date refinement relation and changes introduced by the

refinement into the body of the method Send.

Another typical model transformation is supplementing. While

supplementing a model we introduce new features into system functionality

while preserving already existing features. We model supplementing by

introducing new class with attributes and methods describing the

manipulation over new attributes. The connection between classes is an

(unidirectional) association which has the same name as the introduced class

as shown in Figure 7. In the process of supplementing, previously defined

methods can be modified to specify computation over newly introduced

attributes and links to new methods.

 17

 NEW_funct

attribute3
…

method3

A

attribute1
attribute2

…

method1

method2

+ new_funct

Figure 7. Supplementing pattern

Supplementing presented in Figure 7 demonstrates an introduction of

new attribute attribute3 and computation over it defined by method3. This

transformation affects the models describing the behaviour of already

existing class A, i.e., it requires modification of corresponding state and

activity diagram. Essentially, such a modification integrates into these

models a specification of computation over newly introduced attribute and

the link to the new method.

Next we demonstrate how supplementing can facilitate an introduction

of a new requirement into the model of AODV protocol. The requirement to

be captured is as follows:

R10: To ensure that the routing information is fresh enough and to

guarantee loop free routes, each node maintains a sequence number (SN).

The sequence number is incremented every time when the node sends a

message to initiate discovery of a missing route.

Figure 8. Supplementing in the activity diagram

An introduction of this requirement via supplementing, results in

creating a new class CSn with the attribute Sn and the method increment.

[From(Param)=Node]
IF

IF

State: =ST_idle

SentM:=SentM\/({Param|->NextHop((Node |->To(Param))) })

BufferM:=BufferM\/({Node|->Param})

increment(Sn(Node))
[NOT From(Param)=Node]

 18

We transform the activity diagram of the method Send by inserting

activity elements describing computation over Sn as shown in Figure 8. The

excerpt from the corresponding B specification capturing this modification

is shown in Figure 9.

 REFINEMENT CMobileNode_R2
REFINES CMobileNode_R1
 <specification of machine’s sets and variables>
INVARIANT
 Sn : { Node } --> NAT &

INITIALISATION
 Sn := { (IP_address |-> 0) } ||

OPERATIONS
Send=
 <specification of the operation body>
 ELSIF
 Param : Msg
 THEN
 IF
 From (Param) = Node
 THEN
 Sn (Node) := Sn (Node) + 1 ;
 SentM:=SentM\/({Param|->NextHop((Node|->To(Param)))}) ||
 BufferM := BufferM \/ ({ Node |-> Param }) ||
 State := ST_idle
 ELSE
 SentM:=SentM\/({Param|->NextHop((Node|->To(Param)))}) ||
 BufferM := BufferM \/ ({ Node |-> Param }) ||
 State := ST_idle
 END
 ELSE skip
 END
 <specification of the operation body-contd>
END

Figure 9. Supplementing in the method Send

The further refinement steps result in differentiating between types of

messages and replacing sets with more concrete data structures. Namely the

messages are split into RREQ and RREP subsets (B specification of this

step for the method Send can be found in Appendix - Figure A4).

Replacement of sets with concrete data structures allows us to specify the

way in which exchanging packets are to be handled, i.e., packets are sent in

the FIFO manner – first packet received, first sent.

While presenting the case study, we focused on examples illustrating

the requirements evolution and change. In this section we demonstrated how

the new and changing requirements are introduced into a system model in a

systematic and correctness preserving way.

increment (Sn(Node)) ;

 19

5. Conclusion

This paper has presented an approach to handling requirements changes and

evolution in formalized model-driven development. We proposed patterns

for refining UML models to implement changing or new requirements.

Moreover, we described formal semantics in B for refinement of class, state

and activity UML diagrams. We demonstrated how UML modeling

combined with formal specification can improve requirements traceability

and support navigation through the design space. The proposed approach

was validated by a case study – development of AODV routing protocol for

mobile ad-hoc networks.

Correctness preserving development in UML has been studied also by

Liu et al. [5]. They showed how the stepwise refinement of UML models

supports the maintenance of consistency during model transformation and

evolution. Their UML model of a system consists of a class, use case,

sequence and state diagrams. They do not consider activity diagrams since

the computation which methods specify is assumed to be simple. In our

work, we demonstrated that capturing system requirements with activity

diagrams is especially useful when complex computation should be

modeled.

Varro and Pataricza have also proposed an approach supporting model

transformations in the MDA environment [14]. They presented a visual yet

formal specification technique based on metamodeling and graph

transformations. They demonstrated how to automatically implement model

transformations specified on a very abstract level based on transformation

rules and mappings of UML on Action Semantics. Our approach uses the B

Method as a formal framework and allows to address modeling at different

levels of abstraction.

The development conducted in this paper was supported by Atelier B –

an automatic tool for verification and refinement in B. The tool support has

significantly simplified the development process and increased our

confidence in the correctness of obtained models. We believe that the

availability of the tool supporting formal specification and verification as

well as tight integration with UML can facilitate acceptance of our approach

in industry.

As a future work it would be interesting to explore the use of OCL

instead of B notation to define logical conditions in UML modeling.

Moreover, it would be useful to integrate the formalized model-driven

development presented in this paper with simulators used to estimate

performance of ad-hoc protocols. In this case we could address not only

correctness but also performance issues in the development process.

 20

References

[1] J.-R. Abrial, The B Book: Assigning Programs to Meanings, Cambridge

University Press, 1996.

[2] J. R. Abrial. Event Driven Sequential Program Construction, 2001.

http://www.atelierb.societe.com/ressources/articles/seq.pdf

[3] ClearSy, Aix-en-Provence, France. Atelier B - User Manual, Version

3.6, 2003.

[4] R. Kobro Runde, “Refining UML interactions”, In Proceedings of the

16th Nordic Workshop on Programming Theory, Uppsala University,

Sweden, Oct 2004, pp: 36-38.

[5] Z. Liu, X. Li, J. Liu and H. Jifeng, “Integrating and Refining UML

Models”, UNU-IIST Technical Report No. 295, March 2004.

http://www.iist.unu.edu/newrh/III/1/docs/techreports/report293.pdf

[6] Z. Liu, X. Li, J. Liu and H. Jifeng, “Linking UML Models of Design

and Requirement”, Australian Software Engineering Conference

(ASWEC'04), Melbourne, Australia, April 2004, pp: 329-339.

[7] MATISSE Handbook for Correct Systems Construction. EU-project

MATISSE: Methodologie and Technologies for Industrial Strength

Systems Engineering, IST-199-11345, 2003.

http://www.esil.univ-mrs.fr/~spc/matisse/Handbook

[8] J. Miller and J. Mukerji (Editors), MDA Guide Version 1.0.1, 2003.

http://www.omg.org/docs/omg/03-06-01.pdf

[9] C. E. Perkins, E. M. Belding-Royer and I. Chakeres, “Ad Hoc on

Demand Distance Vector (AODV) Routing”, IETF Internet draft,

2003.

http://moment.cs.ucsb.edu/pub/draft-perkins-manet-aodvbis-00.txt

[10] J. Rumbaugh, I. Jacobson and G. Booch, Unified Modeling Language

Reference Manual, Addison Wesley, 1999.

[11] S. Schneider, The B Method. An introduction, Palgrave, 2001.

[12] Snook, C. Combining UML and B. In Proceedings of Forum on

specification & design languages, Marseille, 2002.

[13] U2B Manual for U2B Version 3.6.8, University of Southampton

http://www.ecs.soton.ac.uk/~cfs/U2Bdownloads/U2Bevaluation/U2B_

Manual.pdf

[14] D. Varro and A. Pataricza, “UML Action Semantics for Model

Tranformation Systems”, International Journal of Periodica litechnica,

2003

 21

Appendix

Figure A1. Complete activity diagram of the method Send

[((Node|->To(Param))|->valid):RT]

[{Node}<|HasPackets={} & {Node}<|Buffer={}]
[{Node}<|HasPackets/={} & Param:PacketID & (Node|->Param):HasPackets]

[NOT((Node|->To(Param))|->valid):RT]

[{Node}<|Buffer/={} & Param:PacketID & (Node|->Param):Buffer]

[NOT((Node|->To(Param))|->valid):RT]

IF

IF

Sent:=Sent\/({Param|->NextHop((Node |->To(Param)))})
State : =ST_idle

Buffer:=Buffer\/({Node|->Param })

State : = ST_idle

Sent:=Sent\/({Param|->NextHop((Node |->To(Param)))})

State :=ST_idle

HasPackets:=HasPackets - ({Node|->Param})

State : = ST_idle
Buffer:=Buffer\/({Node|-> Param }) Buffer:=Buffer\/({Node|-> Param})

State : = Creating

State := ST_idle

Sent:=Sent\/({Param}*NextHop[dom(RT|>{valid})])

Buffer :=Buffer\/({Node|->Param})

IF

State : = ST_idle

Sent:=Sent\/({Param|->NextHop((Node |->To(Param)))})

Buffer:=Buffer\/({Node |-> Param })

State : = ST_idle

IF

 22

MACHINE Global

SETS STATES = { ST_Idle , Sending , Receiving , Creating } ;

 STATUS = { valid , invalid , unknown }

ABSTRACT_CONSTANTS

 T_NODE_ID ,

 T_ROUTE ,

 T_PACKET_ID ,

 IP_address

PROPERTIES

 T_NODE_ID <: NAT1 &

 T_ROUTE : T_NODE_ID <-> T_NODE_ID &

 T_PACKET_ID <: NAT1 &

 IP_address : T_NODE_ID

END

Figure A2. a) Machine defining types

MACHINE CRoute

SEES Global

VARIABLES

 Route,

 RT,

 NextHop

INVARIANT

 Route<:T_ROUTE &

 RT : Route --> STATUS &

 NextHop : Route --> T_NODE_ID

INITIALISATION

 Route:={} || RT:={} || NextHop:={}

END

Figure A2. b) CRoute machine

MACHINE CPacket

SEES Global

VARIABLES

 PacketID,

 From,

 To

INVARIANT

 PacketID <: T_PACKET_ID &

 From : PacketID --> T_NODE_ID &

 To : PacketID --> T_NODE_ID

INITIALISATION

 PacketID:={} || From:={} || To:={}

END

Figure A2. c) CPacket machine

 23

Send=

 SELECT CMobileNode_State=Sending & {Node}<|HasPackets ={} &

 {Node}<|Buffer={}

 /*If the node doesn't have any packets

 to send it becomes idle.*/

 THEN

 CMobileNode_State:=ST_Idle

 WHEN

 CMobileNode_State=Sending & {Node}<|HasPackets /={} &

 Param:PacketID & (Node|->Param):HasPackets

 THEN

 HasPackets:=HasPackets - ({Node|->Param}) ||

 IF

 ((Node|->To(Param))|->valid):RT

 /* Checks if the destination exists in the

 routing table of the sending node.*/

 THEN

 Sent:=Sent\/({Param|->NextHop((Node|->To(Param)))}) ||

 CHOICE

 CMobileNode_State:=ST_Idle

 OR

 Buffer:=Buffer\/({Node|->Param}) ||

 CMobileNode_State:=ST_Idle

 END

 ELSE

 Buffer:=Buffer\/({Node|->Param}) ||

 CHOICE

 CMobileNode_State:=Creating

 OR

 CMobileNode_State:=ST_Idle

 OR

 Sent:=Sent\/({Param}*NextHop[dom(RT|>{valid})]) ||

 CMobileNode_State:=ST_Idle

 END

 END

 WHEN

 CMobileNode_State=Sending & {Node}<|Buffer/={} &

 Param:PacketID & (Node|->Param):Buffer

 THEN

 IF

 ((Node|->To(Param))|->valid):RT

 THEN

 Buffer:=Buffer-({Node|->Param}) ||

 Sent:=Sent\/({Param|->NextHop((Node|->To(Param)))}) ||

 CMobileNode_State:=ST_Idle

 ELSE

 CMobileNode_State:=ST_Idle

 END

 END;

Figure A3. B specification of the method Send (obtained by translating the

diagram from the Figure A1)

 24

Send =

SELECT

 CMobileNode_State=Sending & {Node}<|HasPackets={} &

 {Node}<|BufferD={} & {Node}<|BufferM= {}

THEN

 CMobileNode_State:=ST_Idle

WHEN

 CMobileNode_State=Sending & {Node}<|HasPackets/={} &

 Param:Data\/RREQ\/RREP & (Node|->Param):HasPackets

THEN

 HasPackets:=HasPackets-({Node|->Param}) ||

 IF

 ((Node|->To(Param))|->valid):RT

 THEN

 IF

 Param:Data

 THEN

 SentD:=SentD\/({Param|->NextHop((Node|->To(Param)))}) ||

 CMobileNode_State:=ST_Idle

 ELSIF

 Param:RREQ

 THEN

 SentM:=SentM\/({Param|->NextHop((Node|->To(Param)))}) ||

 IF

 From(Param)=Node

 THEN

 Sn(Node):=Sn(Node)+1;

 SnM(Param):=Sn(Node) ||

 BufferM:=BufferM\/({Node|->Param}) ||

 State:=ST_Idle

 ELSE

 BufferM:=BufferM\/({Node|->Param}) ||

 CMobileNode_State:=ST_Idle

 END

 ELSIF

 Param:RREP

 THEN

 SentM:=SentM\/({Param|->NextHop((Node|->To(Param)))}) ||

 CMobileNode_State:=ST_Idle

 ELSE

 Skip

 END

 ELSE

 IF

 Param:Data

 THEN

 BufferD:=BufferD\/({Node|->Param}) ||

 CMobileNode_State:=Creating

 ELSIF

 Param:RREQ

 THEN

 BufferM:=BufferM\/({Node|->Param}) ||

 SentM:=SentM\/({Param}*NextHop[dom(RT|>{valid})]) ||

 CMobileNode_State:=ST_Idle

 ELSIF

 Param:RREP

 THEN

 BufferM:=BufferM\/({Node|->Param}) ||

 CMobileNode_State:=ST_Idle

 ELSE

 Skip

 END

 END

WHEN

 CMobileNode_State=Sending & {Node}<|BufferD/={} &

 Param:Data\/RREQ\/RREP & (Node|->Param):BufferD\/BufferM

THEN

 25

 IF

 ((Node|->To(Param))|->valid):RT

 THEN

 IF

 Param:Data & (Node|->Param):BufferD

 THEN

 BufferD:=BufferD-({Node|->Param}) ||

 SentD:=SentD\/({Param|->NextHop((Node|->To(Param)))}) ||

 CMobileNode_State:=ST_Idle

 ELSIF

 Param:RREQ\/RREP & (Node|->Param):BufferM

 THEN

 BufferM:=BufferM-({Node|->Param}) ||

 SentM:=SentM\/({Param|->NextHop((Node|->To(Param)))}) ||

 CMobileNode_State:=ST_Idle

 ELSE

 Skip

 END

 ELSE

 CMobileNode_State:=ST_Idle

 END

END;

Figure A4. Refinement of the method Send – introduction of two kinds of

messages: RREQ and RREP

University of Turku

• Department of Information Technology

• Department of Mathematics

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 952-12-1507-0
ISSN 1239-1891

