
Johanna Tuominen | Tero Säntti | Juha Plosila

Towards a Formal Power Estimation
Framework

TUCS Technical Report
No 672, March 2005





Towards a Formal Power Estimation
Framework

Johanna Tuominen
Turku Centre for Computer Science
Lemminkäisenkatu 14 A, 20520 Turku, Finland
joeltu@utu.fi

Tero Säntti
University of Turku, Dept. of Information Technology
Lemminkäisenkatu 14 - 18, 20520 Turku, Finland
teansa@utu.fi

Juha Plosila
University of Turku, Dept. of Information Technology
Lemminkäisenkatu 14 - 18, 20520 Turku, Finland
juplos@utu.fi

TUCS Technical Report

No 672, March 2005



Abstract

Conventionally, the correctness of functional and non-functional properties of
hardware components is ensured during design process by simulation. Moreover,
different description languages are needed during development phases. Thus, by
adopting the Action Systems, we are able to use the same formalism from spec-
ification down to implementation. In this study, we introduce a formal approach
for an abstract level power estimation in Action Systems context. The purpose is
to develop formal power estimation flow, which can be used to monitor the power
consumption from an abstract level down to the gate level implementation.

Keywords: Power estimation, formalism, abstract-level

TUCS Laboratory
Communication Systems



1 Introduction

Formal methods provides an environment to design, analyze, and verify digital
hardware with the benefits of rigorous mathematical basis. In this study, the Ac-
tion Systems formalism is applied [2]. It is a framework for specification and
correctness preserving development of concurrent systems and it is based on an
extended version of Dijkstra’s language of guarded commands [3]. Development
of the action system is done in a stepwise manner within the refinement calculus
[1]. The specification of a hardware system is transformed into an implementa-
tion using correctness preserving transformations. In conventional Action Sys-
tems, only the logical correctness of the system is verified, while non-functional
properties, like time, power and area, are not validated. The Action Systems for-
malism has been proved to be suitable for designing both synchronous [5], and
asynchronous [4] systems.

In this study, we introduce a formal approach for power estimation in an Ac-
tion Systems context. The power analysis is carried out in an abstract level using
basic Action System compositions and system structures as an example. For the
power consumption estimate, we have tospecify an approximation for energy
consumption and an execution time for the action under analysis. Moreover, we
specify an activity factor for the given action, where we can assume either con-
tinuous or discrete time. The purpose is to develop a formal power estimation
flow from initial specification down to implementation [6]. This would give us a
possibility to formally estimate and verify the power consumption of a hardware
system during the design process.

Overview of the paper; We proceed as follows. In Section 2 we shortly de-
scribe the properties of the Action Systems formalism. Section 3 concentrates
on the semantics of the abstract level power estimation, and show how these are
applied to the basic composition structures. Section 4 discusses system level is-
sues, and gives a more detailed example onsystem level power estimation. Finally
in Section 5, we draw some conclusions and describe future efforts in a field of
formal power analysis.

2 Action Systems

Action Systems [2, 4] is a state-based formalism for concurrent system specifi-
cation and correctness-preserving development. The basic building blocks of the
formalism are calledactions. An action A is defined (for example) by

A ::= abort (abortion, non − termination)
| skip (empty statement)
| A1[] ... [] An (non − deterministic choice)
| A1; ... ; An (sequential composition)
| x := e ((multiple) assignement)
| g → A (guarded command)

1



whereAi, i = 0, ..., n, are actions;x is a variable or a list of variables;x0

is a value(s) of the variable(s);e is an expression or a list of expressions; g is a
predicate.

The actions are defined using weakest precondition for predicate transformers
[3]. For instance, the correctness of an actionA with respect to predicatesP and
Q (precondition and postcondition) is denoted by:

{P}A{Q} = P ⇒ wp(A, Q)

Herewp(A, Q) is the weakest precondition for the actionA to establish the
postconditionQ.

Action is considered to be atomic, which means that only the initial and fi-
nal states are observed by the system. Furthermore, when action is selected for
execution, it is completed without any interference from other actions.

Theguard gA of an actionA is defined bygA = ¬wp(A, false) . An action
is enabled when its guard evaluates totrue, otherwise disabled.

2.1 Action System

An action system has a form:

sys Name (g) [par]
|[
type t
const c
var v
actions A
init “initialization of the variables g and v“
exec
do “composition of actions A′′ od
]|

Three different parts can be identified from the action system description:
interface, declarations, anditeration.

The interface part specifies global variablesg, that is, variables that are visible
outside the action system. In other words, global variables are accessible by other
action systems. If an action system doesnot have any interface variables, it is
a closed action system otherwise it is anopen action system. The declaration
part consists of type(t), variable(v), constant(c), and action(A) declarations.
Furthermore, type definitions and initializations are described in the declaration
part.

In this paper, we will use anon-atomic composition structures in the system
models. Non-atomicity means that an action outside the composition can execute
between two component actions of the construct, which is not possible in the
atomic composition structures. For instance, we will use the bold semicolon ’;’
as the operator symbol for the non-atomic sequential composition.

2



The operation of an action system is started by initialization in which the vari-
ables are set to predefined values. Actions are selected for execution based on the
composition operators and the enabledness of the actions. Thus, non-independent
actions cannot operate operatein parallel. The operationis continued until there
are no actions to enable, which temporarily aborts the system. Thus, the operation
continues if some action enables it.

3 Semantics of Abstract Power Modeling

This section discusses about the semantics of abstract power modeling. At first,
we define the activity factor, which is used to estimate the number of execution
per action during some predefined time period. Then we continue the discussion
by analyzing the power estimation procedure for action compositions.

3.1 Activity Factor

Consider an example actionA. We can approximate the energy consumption and
the execution time of the actionA as eA and tA, respectively. Therefore, we
can estimate that one execution consumes power by the amount ofPA = eA

tA
.

In general, we should be able to estimate the power consumption during some
time periodT , which includes several execution cycles. Therefore, we define an
activity factorα which describes the number of execution times during some time
periodT . For the action,A we define the activity factor by adopting the execution
sequence, shown in Figure 1.

T

At tA
t idleidlet

tA

Figure 1: Execution sequence for the actionA

In general, we can define an estimate for the activity factor of the actionA
during a certain time periodT by:

α(A, T ) =
n · tA

T

where then is a number of executions during time periodT . However, there
may be idle period of variable length between the executions, as shown in Figure
1. Therefore, we define time periodT by:

T = n · tA +
∑

tidle

3



which is a sum of the execution timesn · tA and the sum of the idle periods
tidle. Next, by using the definition for theT , we can estimate the activity factor
α(A, T ) as shown in Equation 1.

α(A, T ) =
n · tA

n · tA +
∑

tidle
=

tA

tA +
P

tidle

n

(1)

Next, we assume that there is no fixed time periodT under which we estimate
the activity factor. Thus, the activity factor is estimated without any time periods,
i.e. by adopting the concept of continuous time. Therefore, we re-define the
equation 1 by:

α(A) =
tA

tA + lim
P

tidle

n

(2)

where evaluation process depends on the limit value of
P

tidle

n
. For instance, if

we assume thatlimn→∞, the value ofα(A) is approaching to long term average.
Thus, in general we can define the power estimate for the actionA as shown in
Equation 3.

PA =
eA

tA
· α(A) (3)

3.2 Power Estimation for Action Compositions

Consider two arbitrary actionsA andB. We assume that the actions are composed
as follows:

do A [] B od

We define the unit energy values and execution times for the actionsA andB
as(eA, tA) and(eB, tB), respectively. The activity factorα for actionsA andB is
defined according to Equation 2.

At first, we assume that the actions are independent (no write-read or write-
write conflicts between the actionsA and B). Thus, from the Action System
description we can define two execution sequences:(AB) and(BA). Thus, inde-
pendent actions have potential for parallelbehavior. The physical interpretation
of the execution sequenceAB is illustrated in Figure 2 (a)-(b).

The first two sequences 2(a)-(b) illustrates the simultaneous execution of the
actionsA andB. The third one 2(c) models parallel behavior as well, but the
actions are not enabled simultaneously. Finally the last sequence 2(d) describes
sequential execution.

Consider the situation, shown in Figure 2(b), where the two actions are exe-
cuted at the same time, but the other one is completed earlier. We can estimate
the average power consumption by using the execution time of the slowest action,
noted asmax(tA, tB). The transition activity is defined for both actions separately

4



(c)(a)

A A

B

(b)
A

B

B

(d)
A

B

Figure 2: Physical interpretations of the execution sequences for the actionsA and
B

because, for instance, there might be cycle where the actionB is not executed at
all. The average power estimate is shown in Equation 4.

Pavg =
eA · α(A) + eB · α(B)

max(tA, tB)
(4)

Moreover, we can estimate the instantaneous power consumption as shown in
Equation 5.

Pinst =
eA

tA
· α(A) +

eB

tB
· α(B) (5)

In conclusion, we can estimate the average power consumption and instanta-
neous power consumption for the executionsequences 2(a)-(c) by using the equa-
tions 4 and 5, respectively.

By adopting the asynchronous execution sequence from Figure 2(d) the power
consumption estimate is calculated as shown in Equation 6.

P =
eA · α(A) + eB · α(B)

tA + tB
(6)

Moreover, if the operation of the actionsA andB would not considered to be
independent, this would be the only possible execution sequence.

To illustrate the effect of timing in power estimation, we assumed that the
composition presented in Figure 2(a) is synchronous. Therefore, we can roughly
estimate the power consumption by assuming that the execution time is half of the
clock period,(tA, tB) = tclk/2.

Moreover, we assume that the actionsA andB have completed their tasks
during one clock cycle. Thus, we can define the the power consumption estimate
for the synchronous execution as shown in Equation 7.

P =
eA · α(A) + eB · α(B)

tclk/2
(7)

5



The α(A) andα(B) are denoted as an activity factors for actionsA andB,
respectively.

Comparison were made between the synchronous and the asynchronous se-
quences, shown in the Figures 2(a) and 2(d), respectively. The purpose was to
analyze the effect of timing to the power consumption estimate. Therefore, we
can simplify the equation (7) for synchronous execution toP = 1

Tclk/2
, which is

noted as a relative power consumption. For instance, we can assume that the two
actionsA andB are executed using a clock frequency offclk = 2 GHz. Thus, the
relative power consumption is4. Similarly, the equation for asynchronous execu-
tion 6 can be simplified toP = 1

TA+TB
. By adopting the0.35 ns execution time

per action the relative power consumption for sequential execution is decreased
31 % with the expense of0.15 ns increment in delay. Therefore, comparisons be-
tween these two equations shows that there is a trade off between speed and power
consumption.

4 Abstract Level Power Consumption Estimation

In this section the power estimation techniques are applied to the action system
structures. At first, we give an overview of the system level estimation approach.
Then we concentrate on defining the power estimate for a one subsystem descrip-
tion. The scope is at abstract level, which give us possibility to analyze problem
areas, that has to be taken care as we move towards the gate level analysis.

4.1 Overview of the System Level Estimation

Consider the following example, an abstract level description of the target module
M and its environmentEnv, shown in Figure 3.

System model M

Subsystem of the Env

Env

model
Environment

Figure 3: Target system module within its environment

The computation is carried out in the target moduleM , but communication
is assumed between the moduleM and its environmentEnv. To analyze the
power consumption, we roughly divide the system into three power consuming
parts: the targeted systemM , communication channelCom, and the environment
Env. We can estimate the power consumption during time periodt, if we have
some information or approximation on themodules energy consumption and their
execution times. The activity factor is defined according to the equations 1 and

6



2. For instance, if we assume that the operations of the given system construct is
sequential, and that the execution times ofthe different parts do not overlap, the
power estimate can be described as:

PM =
eC · α(E) + eM · α(E) + eE · α(E)

tC + tM + tE
where theeC , eM , andeE are the energy consumption of one computation

cycle, and thetC , tM , andtE are the corresponding execution times. The activity
factor α is described under continuous timedomain. Depending on the timing
issues the power consumption estimate varies, which is discussed more detailed
in the next section.

The initial specification of the target system moduleM can be decomposed
into an architecture of dedicated subsystem modules. Typically lots of new vari-
ables, procedures, invariants and protocols are introduced during the refinement
process. This combined with several atomicity refinement steps introduces new
actions into the system. Thus, result of thedecomposition is a correct architecture
model from the initial specification. The first steps of the decomposition process
is illustrated in Figure 4.

21 MM

M

Initial Specification

Figure 4: Decomposition steps for target system

The initial specification of the moduleM is extracted into two submodules
M1 andM2. The power estimation techniques can be applied to estimate the
power consumption for each of the submodules together and separately. The pur-
pose is to develop a flow that can monitor the power consumption from the initial
specification to the final architecture model. The next case study presents the
power estimation procedure for a one submodule.

4.2 Detailed Subsystem Power Estimation

The systemsysMod specification includes three arbitrary actions:A, B, andC.

sys subMod ()
actions A, B, C
exec
do

(A ; B) [] C
od

7



The estimation procedure depends on how the abstract level description is
interpreted. From the Action Systems we can define three possible execution
sequences:ABC, CAB, andACB. At first, consider the case when the operation
of the actions is not independent. In other words, the execution times of the given
actions do not overlap, and therefore the operation is sequential. Thus, the power
estimate can be constructed according to the Equation 6.

PsubMod =
eA · α(A) + eB · α(B) + eC · α(C)

tA + tB + tC

The activity factorα is defined according to the equation 2. Furthermore, we
estimate the energy consumption and execution times for each actionA, B, and
C to be (eA, eB,eC) and (tA, tB, tC), respectively.

In the second case, we assume that the operation of the actionC is independent
with respect to the operation of the actionsA and B. Thus, the execution of
the actionsA is followed by the execution of the actionB, and the actionC
operates parallel with the actionsA andB. This situation is illustrated in Figure
5. Therefore, the problem is to determine the timetx, which describes the amount
of delay before the actionC is executed. The first execution sequence, shown in
Figure 5, presents the worst case situation in terms of power consumption. Thus,
the actionC is executed simultaneously along with the actionsA andB. The last
one presents the best case where the actions are executed sequentially.

C

A B

A B

A B

Ct

Ct x

x

Figure 5: Physical interpretation of the executions sequences for the systemsub-
Mod

In order to determine the power estimate in each case we have to be able to
estimate the value oftx properly. Thetx is variable delay between the execution
of the actionA and the actionC, as shown in the Figure 5. Therefore, we estimate
the power consumption of the systemsubMod by integrating over the difference
of the starting times. The equation for the power estimate is shown in 8.

8



1

ttot

∫ ta+tb

−tc

P (tx)dtx (8)

The equation, shown in 8, does not take into account the possible idle periods
between two executions. To evaluate the integral, we divided the analysis into
three cases:

tA + tB < tC
tA + tB = tC
tA + tB > tC

where the second one represents the situation when the actions are executed
simultaneously. The first and the last case presents the situation where the execu-
tion of actionC is interleaved by the amount oftx. Furthermore, the first and the
last case returns to a similar result, and therefore it is necessary to discuss only
one of them. For simplicity, we define thattA + tB = tZ . In conclusion, we have
two cases under evaluation:tZ = tC andtZ ≥ tC . The graphical representations
of these two cases are shown in Figure 6 (a) and (b), respectively.

1

xtxt

PP

121

(b)     (a)

t
2 1

2

P

P

c ctct−zttc

Figure 6: Graphs for power estimation

We solved the equations for the power estimates with the aid of geometry. At
first, consider the situation wheretZ = tC , shown in Figure 6 (a). The power
estimate integral is solved by using the properties of the right triangle. Therefore,
we define the pivotal points for the triangle, shown in Figure 6 (a). The points are
defined as:P1 = etot

tZ+tC
andP2 = etot

tZ
. Next, we form a square from the right

triangle, marked as1 in the Figure 6 (a). Thus, now we can determine the length
of the2, which isP1 + P2−P1

2
. In other words the average power consumption for

the simultaneous execution is shown in Equation 9.

Pavg = P1 +
P2 − P1

2
=

P2 + P1

2
(9)

9



Next, consider the situation shown in Figure 6 (b), where thetZ ≥ tC . By
applying the same pivotal points as in the previous example, we can define the
average power consumption by:

Pavg =
2 · (P1 + P2−P1

2
) · tC + P2(tZ − tC)

tC + tZ
=

(P2 + P1) · tC + P2(tZ − tC)

tC + tZ
(10)

By assuming that thetZ − tC = 0 the equation 10 recurs to the equation 9. In
other words, the power estimate presented in Equation 9 is a special set from the
estimate presented in Equation 10.

5 Conclusions and Future Work

In this paper, we introduced an approach to estimate power consumption in an
Action Systems context. The work carried out so far showed that the power con-
sumption procedure is highly time dependent process, and therefore we analyzed
timing and energy consumption separately. For instance, if we consider the activ-
ity factor specification we have to know whether the activity factor is calculated
under discrete time period or continuous one. Furthermore, we have to take into
account the possible idle periods between the execution of an action. Secondly,
as we moved into system level implementations, the timing issues depends on
whether the actions under investigation are independent or not. Thus, indepen-
dent actions introduces parallel behavior, which complicates the estimation pro-
cedure. The issues presented above wereanalyzed using example compositions
and systems.

Future Work: The experiences of this study showed the possibilities and the
problem areas to formally investigate and verify the power estimation from an
abstract level system description. The next step is to expand the current work
into a complete power estimation framework for the Action System formalism.
This includes the definition of update action, which should monitor the energy
consumption and timing from the abstractlevel system specification to the final
architecture model. Moreover, the updateaction should include possibility to in-
sert technology dependent information as we move towards gate level analysis.
For timing, we have a framework for timed actions [7], which we will use as a
guideline. In conclusion, the purpose is to create a power estimation flow that
would be usable for both synchronous and asynchronous systems.

References

[1] R. J. R. Back,On the Correctness of Refinement Steps in Program Develop-
ment, Ph.D Thesis, University of Helsinki, 1978.

10



[2] R. J. R. Back and K. Sere,From Modular Systems to Action Systems, in Proc.
of Formal Methods Europe’ 94, Spain, October 1994. Lecture notes on com-
puter science, Springer-Verlag.

[3] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall International,
1976.

[4] J. Plosila,Self-Timed Circuit Design - The Action Systems Approach, Ph.D
Thesis, University of Turku, 1999.

[5] T. Seceleanu,Systematic Design of Synchronous Digital Circuits, Ph.D The-
sis, Turku Centre for Computer Science, 2001.

[6] J. Tuominen and J. Plosila,High Level Power Estimation, Turku Center for
Computer Science Technical Report Series, Number 623, September 2004,
ISBN 952-12-1416-3.

[7] T. Westerlund and J. Plosila,Formal Timing Model for Hardware Compo-
nents, in Proc. IEEE Norchip 2004, November 8-9, Oslo, Norway.

11



Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 952-12-1517-8
ISSN 1239-1891


