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Abstract

We study the problem of how to define the concrete syntax of a modeling language
based on the standards proposed by the Object Management Group (OMG). The
OMG has recently published the Diagram Interchange (XMI[DI]) standard that
contains a language to describe the graphical representation of a model. XMI[DI]
is required to enableinteroperability between modeling tools. However, XMI[DI]
can only describe particular diagrams of a model. We consider that the definition
of a modeling language should also include a definition of what legal diagrams
exist for that modeling language. In this article, we present a language to describe
mappings between modeling languages and diagrams, some example mappings
and our experience using them.
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1 Introduction

The Object Management Group (OMG) maintains a series of standards such as the
Meta Object Facility (MOF) [7] and the UML 2.0 Infrastructure [5] that can be
used to define new modeling languages. These standards are actually modeling
languages that are used to define other modeling languages. Therefore, a model in
these languages is often called a metamodel.

The MOF and UML 2.0 Infrastructure are rich and complex metamodeling lan-
guages and they can be used to define modeling languages as large and complex as
the complete UML 2.0. They can also be used to define domain specific languages
and extensions or profiles to the UML. However, these metamodeling languages
can only describe the structure or abstract syntax of a modeling language. They can
be used to define model elements and relationships between model elements, but
not their visual representation. The UML language, as defined by its metamodel,
may state that there is a class named "Person" in a model, but it cannot state that
this class is represented by a rectangle in a diagram with a certain position, size,
and color.

To remedy this situation, the OMG has proposed the XMI[DI] [9] standard.
XMI[DI] is yet another modeling language that has been defined following the
same metamodeling approach as the UML. The XMI[DI] language brings new
concepts such as GraphNode and GraphEdge that can be combined to represent
two-dimensional diagrams. These diagrams can represent UML models graphi-
cally as UML practitioners are used to. However, XMI[DI] is not limited to UML
and it can be used to represent diagrams for other modeling languages as well.

XMI[DI] is a key standard to exchange models between tools that need to rep-
resent, create or transform diagrams. Examples of these tools range from a simple
diagram viewer to a full-featured interactive model editor or model transforma-
tion tool. Currently only one commercial tool, Gentleware’s Poseidon, supports
XMI[DI]. We consider this tool as a reference implementation of XMI[DI]. We
also note that there exist important tools that do not actually need to process di-
agram information in a model. Examples of these tools are code generators or
OCL [8] constraint evaluators. We should also note that despite the name similar-
ity, XMI[DI] has no actual relation with XMI. XMI[DI] is not a model interchange
format but a metamodel to describe diagram information. XMI[DI] models are
serialized using XMI in the same way as a UML or a MOF model.

We consider that XMI[DI] is definitely an step forward in the OMG modeling
standards. However, the current XMI[DI] standard does not tackle two important
aspects that are necessary to completely define the appearance of new modeling
languages. First, XMI[DI] does not describe how nodes and edges are rendered
in a diagram. Neither the XMI[DI] metamodel nor the UML metamodel contain
any information that states that a GraphNode representing an Actor is represented
as a “stickman” while a GraphNode representing a Class is represented using a
rectangle. However, the most important omission is that the standard does not
include a mechanism to define how the abstract syntax of a model, expressed in
a modeling language such as UML, relates to its concrete syntax, expressed in
XMI[DI]. For example, the XMI[DI] standard does not state that a UML Class
is represented as a GraphNode rendered as a rectangle that contains three other
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GraphNodes that are layouted as a vertical stack, the top GraphNode representing
the name of a Class, the middle GraphNode representing its lists of attributes
and the bottom GraphNode representing its list of operations. This information
is needed to create new XMI[DI] diagrams or to transform models that contain
XMI[DI] diagrams.

Based on the limitations of XMI[DI], we consider that MOF, the UML 2.0
Infrastructure and XMI[DI] are not expressive enough to define new visual lan-
guages. A modeling language defined using MOF or the UML 2.0 infrastructure
can describe the abstract syntax of a model but not its concrete syntax. An XMI[DI]
model can provide a diagrammatic representation to a given model, but it cannot
be used to define the concrete syntax of a complete modeling language. That is,
XMI-DI can be used to represent particular diagrams but it cannot be used to define
what are the all possible valid diagrams that can be used in a modeling language.

In this article, we tackle this last problem and study how to define a mapping
between the abstract syntax of a modeling language described using the MOF or the
UML 2.0 infrastructure and its concrete syntax described using the XMI[DI] stan-
dard. In the context of UML 2.0, this mapping is necessary to construct modeling
and transformation tools that can create, transform and exchange model diagrams.
In a broader context of Model Driven Engineering, this mapping is necessary to
build generic modeling tools that can create and transform visual models in do-
main specific modeling languages.

We proceed as follows. In Section 2 we present the basis of XMI[DI] and
define the need and uses of a mapping language from models to diagrams in more
detail. Section 3 contains our proposal for such a mapping language and explains
its semantics. We show a detailed example in Section 4 while we discuss how we
have validated our approach in Section 5. We finally take a look at related work
and conclude in Section 6, where we also consider future directions.

2 Models and Diagrams in the OMG Standards

In this section we describe how models and diagram are represented according to
the UML and XMI[DI] standards.

We assume that a model is organized as an object graph that is an instance of
a metamodel. Each node in this graph is an instance of a metaclass and each edge
is an instance of a meta-association as defined in a metamodel. The UML meta-
model contains more than 150 metaclasses such as Actor, Class, Association or
State which describe the concepts that are familiar to UML practitioners. On the
other hand, XMI[DI] is a rather small language with only 22 metaclasses. Figure 1
shows a fragment of its metamodel. There are basically three main concepts in
XMI[DI]: GraphNode, GraphEdge and SemanticModelBridge. A GraphNode
represents a rectangular shape in a diagram, such as a UML Class or an Actor,
while a GraphEdge represents an edge between two other elements such as two
nodes in a UML Association or a node and another edge such as in a UML As-
sociationClass. A SemanticModelBridge is used to establish a link between the
semantic or abstract model and the diagrammatic model. For example, a GraphN-
ode representing a UML Class is connected to that class using a SemanticMod-
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Figure 1: A subset of the XMI[DI] metamodel.

elBridge. There are two types of bridges. A Uml1SemanticModelBridge uses
a directed link to an element , while a SimpleSemanticModelBridge contains a
string named typeInfo. These concepts are explained in more detail in the XMI[DI]
standard.

Figure 2 shows an example of a fragment of a UML model and its diagram-
matic representation using XMI[DI]. The left part of the figure contains a single
CompositeState containing two regions that are also CompositeStates. This UML
model is an object graph organized according to the standard UML metamodel.

The middle part of the figure contains the CompositeStates represented using
XMI[DI]. To simplify the figure we have abbreviated the GraphNode name to GN
and omitted many XMI[DI] elements. Especially, we do not show the semantic
bridge elements but just a link between XMI[DI] graph elements and the UML
elements. We should also note that we show the links that correspond to composi-
tion associations using a black diamond. Although this notation is not defined in
the UML standard it is useful for the purposes of this article. We can see that this
particular XMI[DI] model contains GraphNodes that are not strictly necessary for
this diagram. For example, the model contains a GraphNode to represent internal
transitions of the state, even if there are no such transitions in the UML model.
However, this is the XMI[DI] representation as produced by Poseidon.

Finally, the right side of the figure shows the XMI[DI] model rendered as an
image, in this particular case as Encapsulated Postscript. This image was created by
a tool based on the information contained in the UML model, the XMI[DI] model
and built-in knowledge about the UML notation for Statecharts. Nothing prevents
us to render the diagram to another format such as SVG or using a slightly different
notation.
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Figure 2: (Top) UML model with a composite state and two orthogonal regions
and its diagram representation in XMI[DI]. (Bottom) XMI[DI] diagram rendered
using the UML concrete syntax

2.1 From Models to Diagrams

We have seen in the previous example that the XMI[DI] provides us with the basic
metaclasses that can be combined to create diagrams. However, neither the UML
standard nor XMI[DI] tell us what metaclasses we should use to create a specific
diagram to represent a specific model. As we have seen in the example, this task
is not trivial since each UML model element is represented as many XMI[DI] ele-
ments and the mapping between the model element and its diagram representation
is arbitrary. However the relation between UML model elements and their dia-
grammatic representation should be defined precisely since it is necessary to fully
define new modeling languages to guarantee interoperability between modeling
tools.

The relation between models and diagrams, or abstract and concrete syntax,
can be defined as two different mappings, one from abstract to concrete syntax and
vice versa. We consider the mapping between the abstract syntax to the concrete
syntax of a modeling language as the most important. There are three main uses
for this mapping language:

Documenting UML and other languages: The mappings can be used simply
as documentation to complement the existing UML standards. We consider that the
current UML 2.0 standard should be extended to include precise mappings from the
UML 2.0 diagrams to XMI[DI].

Creating new XMI[DI] diagrams: Another obvious application of the lan-
guage is to generate new XMI[DI] diagrams based on abstract models. This step
may be necessary e.g. after reverse engineering source code into a UML model.
Also, existing modeling tools may use a different language than XMI[DI] to rep-
resent diagrams internally. These tools may need to transform their proprietary
diagrams into XMI[DI] in order to interoperate with other modeling tools.

Reconciling diagram and models: The most ambitious application of the
mappings is to synchronize changes in an abstract model into an existing diagram.
In this case, the mappings should be applied incrementally, preserving existing di-
agram information such as layout and colors when possible. This application is
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also the most demanding since it needs to be fast enough to be used in interactive
model editors.

Nothing prevents us from defining mappings in the opposite direction from the
concrete syntax to the abstract syntax. It may be necessary to implement a tool that
converts a diagram represented as a bitmap or as SVG to a UML model. However,
in most cases, it is simpler and more efficient to consider that the concrete syntax
is derived from the abstract syntax and not the other way around. Therefore the
discussion of the mapping from a diagram to a model is not in the scope of this
article.

3 A Model to XMI[DI] Mapping Language

In this section we present a language called MODEL2XMIDI that can be used to
define mappings between abstract modeling languages and the XMI[DI] language.
Its purpose is to describe a unidirectional mapping from abstract model elements
to XMI[DI] elements. We expect that the MODEL2XMIDI language can serve the
three purposes described in the previous Section: First, it can be used to document
the UML 2.0 standard. Secondly, given a model and its corresponding diagrams,
we can map changes in the abstract model to the already-existing (but now ob-
solete) diagrams. Finally, we can create a diagram purely out of abstract model
data.

This section discusses general requirements of such a mapping language, de-
scribes the concepts we have used in creating the language and the semantics of
the language metaclasses. It is important to notice that we do not describe algo-
rithms per se on how to implement the actual synchronization. Rather, given an
abstract model, we provide a description of how the corresponding XMI[DI] dia-
gram should be and leave the synchronization algorithms as a different topic. This
split enables us to concentrate on acquiring a usable structure and semantics, while
leaving the algorithms as a quality-of-implementation concern for modeling tools.
However, in many cases it is quite self-explanatory how the synchronization needs
to do, although it might not be trivial to accomplish. In our opinion this split works
favorably for both standardization as well as enabling competing implementations.

3.1 Requirements

Since our understanding of modeling is the seamless combination of models of
several modeling languages, our first goal is metamodel-independence. Given any
modeling language, it should be possible to describe as many different kinds of
diagrams as possible using some kind of mapping rules. This requirement also au-
tomatically satisfies any requirement for displaying models using different profiles,
since they can be seen as different kinds of diagrams. This first requirement works
nicely together with the current XMI[DI] metamodel which is also independent of
the metamodel(s) of the abstract models.

Second, the system used to describe the diagrammatic mapping of a model—
be it a language or even something completely different—should not require too
much effort to implement. Especially this means that the mapping engine should
be a generic solution without metamodel-specific quirks, able to map any abstract
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Figure 3: The MODEL2XMIDI metamodel.

model to its corresponding diagrams given suitable mapping rules. Supporting new
metamodels should only require their MODEL2XMIDI mappings without changes
to the mapping engine.

Third, the mapping should be efficient to be a viable mechanism for modeling
tools. Although we do not have any formal definition of what efficiency means in
this context, the intuition is that changes in the abstract model only trigger such
mappings that are necessary to bring the diagrams up-to-date. Unnecessary work,
by e.g. doing a lot of queries or calculations where none are necessary should
be avoided. It is natural consequence of this requirement that the mapping works
incrementally.

Finally. we should note that diagrams contain information about size, color
and layout of its elements that is not present in the abstract models. Therefore,
when we apply a mapping between the abstract to concrete syntax we may need to
preserve as much information from existing diagrams as possible. That is, it should
be possible to apply the mappings incrementally when the target diagram already
exists.

3.2 Concepts

The metamodel for the MODEL2XMIDI mapping language is shown in Figure 3.
In the Figure, MOF::Class represents the type of any metaclass, not just UML
metaclasses. The OCL::OclExpression refers to any OCL expression. The fol-
lowing concepts and/or requirements are used when describing the semantics of
the mapping language.

Abstract Element An abstract element is a model element which cannot be dis-
played as such. Diagram elements must be used to represent an abstract
element graphically. In this article, abstract element types are mapped to
XMI[DI] subtrees using MODEL2XMIDI mappings.
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MODEL2XMIDI Mapping A MODEL2XMIDI mapping refers to a specific El-
ementToXMIDIMapping instance and its transitive children. A mapping al-
ways references a specific metaclass and there can be several mappings for
a metaclass.

Current Abstract Element When mapping a part of a model, OCL evaluations
are done in the context of an abstract element. The current abstract ele-
ment points to that abstract element and is changed during the course of a
mapping.

Subtree A MODEL2XMIDI subtree consists of a root ConcretePart and its transi-
tive children. Parts of a MODEL2XMIDI subtree are mapped to an XMI[DI]
subtree according to various constraints. The XMI[DI] subtrees can then be
connected together and displayed on-screen.

Connecting a Subtree A MODEL2XMIDI subtree contains special Delegate el-
ements which denote the position at which an XMI[DI] subtree can connect
to another XMI[DI] subtree.

OCL Very good OCL support is required for advanced mapping needs. However,
our experience tells us that most diagrams require only very simple OCL
expressions to make the model to diagram mapping possible, so the OCL
evaluation engine does not have to be very powerful.

3.3 Semantics

The main idea of the MODEL2XMIDI mapping language can be stated in three
assumptions. First, that our diagrams can be built top-down, i.e. starting from the
XMI[DI] Diagram element, child elements can be transitively connected to form
a complete diagram without any changes required in their parents during diagram
construction. This means that a parent diagram element does not depend on what
child diagram elements exist underneath it. Second, that an abstract element can
be mapped into an arbitrary XMI[DI] subtree with a single root element. The
exact contents of this subtree may depend on the context of the abstract element as
well as any transitive parent XMI[DI] GraphElements. Third, that there are rules
describing how to connect these subtrees together to form the final XMI[DI] tree.

Next, the semantics of each construct in the language is specified. The root
element in a MODEL2XMIDI model is a SynchronizationModel element, which
contains a set of mapping rules in its mappings slot.

3.3.1 ElementToXMIDIMapping

A mapping model consists of several ElementToXMIDIMappings. Such an ele-
ment m is the primary artifact designating one mapping rule. It is valid for in-
stances of m.element or its subclasses. The m.contextGuard expression defines
when a mapping is valid and can be used. It receives one parameter, xparent and
is executed in the context of the current abstract element which must be an instance
of m.element. The xparent parameter is the parent GraphElement in the XMI[DI]
model. This is guaranteed to exist for any GraphNode or GraphEdge except for
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Diagram, which has no XMI[DI] parent. If this expression evaluates to true, the
mapping can be applied. If several mappings are valid a nondeterministic choice is
made. If no mappings are valid, the element is ignored and cannot be mapped to
XMI[DI] in the given context.

When the mapping is applied, the m.root ConcretePart is accepted in the con-
text of the current abstract element and designates the starting point of the XMI[DI]
subtree creation. Accepting a ConcretePart means that a corresponding XMI[DI]
element (GraphEdge for GraphEdgePart and GraphNode for GraphNodePart) is
created or already exists from a previous synchronization.

3.3.2 ConcreteParts

The semantics of a ConcretePart c is its corresponding XMI[DI] element connected
to a SemanticModelBridge element. This SemanticModelBridge is a Simple-
SemanticModelBridge s if c.typeInfo is nonempty and thus s.typeInfo is set
equal to c.typeInfo, or a Uml1SemanticModelBridge u if c.typeInfo is empty
and thus u.element is set to the current abstract element. This last part connects
the XMI[DI] elements with their corresponding abstract element.

For a GraphEdgePart p, p.connectors describes the expression that when eval-
uated results in a sequence of abstract elements. For each element e in the se-
quence, a GraphConnector is created (or must already exist) and anchored to
the GraphEdge corresponding to p. The owner of the GraphConnector must then
be found in the set of all GraphElements whose corresponding abstract element
is e. This GraphElement must correspond to a root ConcretePart in a Element-
ToXMIDIMapping mapping such that its acceptsConnectors is satisfied. The
connectors expression is evaluated in the context of the corresponding abstract
element and receives the GraphEdge as an additional parameter. The acceptsCon-
nectors expression does not receive any parameters.

Although this scheme sounds complicated, it or similar functionality is re-
quired since not all GraphElements may be connected to and the only distinguish-
ing mark is the context. In our work, this context is provided by the different
ElementToXMIDIMappings.

The ordered list of Contained elements are entered. This is described next.

3.3.3 Contained

Creating different XMI[DI] diagrams based on context requires a framework which
can conditionally add information.

Entering a Contained element c from a ConcretePart p in the context of the
current abstract element a, the OCL expression c.guard is evaluated. An empty
guard is assumed to be true. If the guard holds there are two slightly different
outcomes. If c.selection exists it is evaluated. This expression must return an OCL
collection s of elements. For each element e in s, the c.child GraphElementPart
is accepted in the context self = e, xparent = p. It is worth emphasizing that this
recursively accepts the “next” node in the ElementToXMIDIMapping subtree and
changes the current abstract element to e. Usually in this case c.child is a Delegate
element (described later). If c.selection does not exist, it is assumed that the current
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abstract element is not changed and the child GraphElementPart is accepted in
the context self = a, xparent = p. Usually in this case c.child is an instance of
ConcretePart with a nonempty typeInfo.

If s is ordered, the child mappings must also be done in that order. The
c.separator is an optional subtree that will be added between each child in s. This
enables us to easily model the very common occurrence of having a simple separa-
tor between values, such as a comma sign between the parameters in an operation
in a UML class diagram.

The guard and selection expressions allow us to create a mapping to a subtree
highly context-dependent on the abstract model element and all the other abstract
model elements as well as the sequence of parents in the XMI[DI] tree. They, to-
gether with instances of ConcretePart and Delegate are the primary means to rep-
resent an XMI[DI] subtree as a MODEL2XMIDI subtree. Due to guards holding
at different times and differing return values on the selections, the actual XMI[DI]
subtree created looks like a subset of the MODEL2XMIDI subtree.

By using arbitrary OCL expressions the subtree can be dependent on any parts
of the abstract model or any XMI[DI] parents. It must be emphasized that the
Contained.selection allows us to “jump” in the abstract model from the current
abstract element via several associations to other abstract model elements. Thus the
mapping language is not limited to the structure of the abstract model regardless
of the metamodel of that abstract model empowering us to create very versatile
XMI[DI] models.

3.3.4 Delegation

In order to ensure the viability of our one-way synchronization language and make
the language usable in practice, we need to decouple the representation and com-
putation of the individual subtrees. This is done using Delegation elements. Such
elements denote a change of ElementToXMIDIMapping rule and a new subtree
creation can begin in the context of a new current abstract element and a GraphEle-
ment xparent. When the new subtree is ready, the Delegation element is replaced
by the subtree.

3.4 Updating and Creating an XMI[DI] Diagram

Our update scenario from Section 2.1 assumes a model and a diagram which cor-
rectly reflects the model using a set of MODEL2XMIDI mappings. When a change
to the model is done, the mapping framework inspects which abstract element
and abstract element slots have changed. Based on the various guard and se-
lection OCL expressions in the MODEL2XMIDI mappings, the OCL subsystem
can backtrack which changes have invalidated which XMI[DI] elements. Based
on this the mapping framework must somehow reconcile the XMI[DI] elements
so that they will again correctly reflect the model. At its disposal it has the the
current abstract model, the changes made to it, the now obsolete diagrams and the
MODEL2XMIDI mappings and how the diagrams relate to the MODEL2XMIDI
mappings. Because of the current abstract model and its changes the framework
can also calculate information about the abstract model before the changes. As
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discussed in the introduction of this section, the exact algorithms used to do this
are not explained further in this article.

In the MODEL2XMIDI framework, the problems of creating an XMI[DI] dia-
gram and updating it based on changes in the abstract model are the same problem.
Creation is just an extreme form of updating where the change to the abstract model
can be seen as creating the whole abstract model, whereby the update phase will
create the whole diagram.

4 Examples: UML CompositeState and UML Transition

In this section we present two example MODEL2XMIDI models. One mapping
represents the concrete syntax of UML CompositeStates and the other mapping
the concrete syntax of UML Transitions.

The representation of a UML CompositeState is quite interesting since it can
be represented in two different ways: as a rounded rectangle or as an orthogo-
nal region inside another CompositeState. These two representations are shown
as two MODEL2XMIDI mappings in Figure 4. Depending on the context of
the specific instance of the abstract element one of them is used. The first uses
the contextGuard self.isConcurrent, which means that the mapping applies to or-
thogonal CompositeStates. The second uses a slightly more complicated context-
Guard, xparent.semanticModel.typeInfo == “RegionCompartment”, to specify
the mapping for regions in an orthogonal CompositeState. As stated in Section 3,
each GraphNodePart in the mapping will map to a single GraphNode in XMI[DI].
All the different GraphNodePart children—for example the metaclasses Name-
Compartment, CompartmentSeparator, RegionCompartment and Internal-
TransitionCompartment — will also occur in XMI[DI] in the same order as in
the MODEL2XMIDI mapping. In the RegionCompartment GraphNodePart, the
separator is denoted by the dashed arrow and adds GraphNodes as separators be-
tween each region (given by self.subvertex. The separator has a SimpleSemantic-
ModelBridge with “RegionSeparator” as typeInfo.

Other cases (i.e. mappings) of CompositeStates are not shown in the Figure.
A very important aspect of the XMI[DI] and MODEL2XMIDI models is the

ordering of GraphElements and GraphElementParts. The ConcretePart.children
property is ordered meaning that in the MODEL2XMIDI model the order of the
occurrence of Contained should be preserved at any time during any possible in-
cremental mapping to XMI[DI]. In the Figures the Contained edges are ordered
left-to-right. Consider the scenario where one of the XMI[DI] creations is con-
trolled by a Contained.guard which initially does not hold. Then a change occurs
which makes the guard true, and the child XMI[DI] subtree is created. In an incre-
mental mapping, the subtree is inserted in the corresponding position in XMI[DI]
as specified in the MODEL2XMIDI model. E.g. the GraphNode mapped with
GraphNodePart with typeInfo = “StereotypeCompartment” is always inserted af-
ter the GraphNode mapped with GraphNodePart with typeInfo = “Name”. This
also applies to Delegations. The GraphElementPart with typeInfo = “InternalTran-
sitionCompartment” contains three Delegations that use the selections self.entry–
>asSet(), self.doActivity–>asSet() and self.exit–>asSet().

10



�� � ��� �� �� � 	 
 � �

� �� � ���  � �� �� � 	 	� � 
 �

� �� � �� � 
 � 	� � 
� �� � � �� 
 � � � 
� �� �

�� � ��� � � �� 
  �  
� � �� � �� 
 ��

�� � ��� � � 
 	� � �� � �� 
 �� �� � ��� � �  
 � �� � �� 
 ��

�� � ��� �� �� � 	 
 � �

� � �� 	� � 
 � �� �� � 
  � �� � � � � 
� ��  � � � ! ! "# � $  � � �� � �� 	 
 � � � 
 " �

% 	� � &' � � � (� 	 


% 	� � & ' � � � (� 	 


% 	� � & ' � � � (� 	 


% 	� � & ' � � � (� 	 


) � � � $ � 
  � �

) � � � $ � 
  � �

) � � � $ � 
  � �

% 	� � & ' � � � (� 	 


% 	� � & ' � � � (� 	 


) � � � $ � 
  � �

% 	� � & ' � � � (� 	 


) � � � $ � 
  � �

% 	� � & ' � � � (� 	 


* �+, -. . �� � �� �  
 � � 
 � 
 �

% 	� � & ' � � � (� 	 



� ��  � � � . ! " ' � � � "


� ��  � � � . ! "  � 
 � 	 �� �/ 	� � �  
  � � �� � �� 	 
 � � � 
 "


� ��  � � � . ! "# � $  � � �� � �� 	 
 � � � 
 "


� ��  � � � . ! " � 
 � 	� � 
� �� �� � �� 	 
 � � � 
 "


� ��  � � � . ! "# � $  � � �� �� 	� 
 � 	 "


� ��  � � � . ! " �� � �� 	 
 � � � 
 �� �� 	� 
 � 	 "
� ��  � � � . ! " ' � � � �� � �� 	 
 � � � 
 "

F
igure

4:
A

subsetof
the

X
M

I[D
I]

m
apping

m
odelof

C
om

positeS
tate.

11



��� � � � � ��� 	 
 �� � 	 � �

⇒

��� � � � � ��� � � �� � � � �

⇒

��� � � �  ��! " # $�% � " � &

% ' (*) # & % � " � &

Figure 5: The different revisions of a CompositeState. The corresponding XMI-DI
models are in Figures 2, 6 and 7.

An example of the application of this mapping for CompositeStates can be
shown in Figure 2. If we apply this mapping to the UML model at the left side of
the figure we will obtain the XMI[DI] model shown in the middle of the figure. A
UML tool can layout the nodes, in this case resize them to a proper size, and render
them into an image as shown in the right side of the figure.

In this example we can see how the ElementToXMIDIMappings are used for
the CompositeStates. The topmost CompositeState has the property isConcur-
rent set to true (not shown in the Figure), hence the mapping with the context-
Guard self.isConcurrent is used. The contents of the GraphNode with semantic-
Model.typeInfo = “RegionCompartment” is specified by a Delegation with a se-
lection of self.subvertex. The selection contains two CompositeStates; now, using
in turn the ElementToXMIDIMapping rule for regions in an orthogonal Compos-
iteState, the subtree created and inserted contains one GraphNode mapped to the
respective CompositeStates. Additionally, a GraphNode with the property seman-
ticModel.typeInfo = “RegionSeparator” is inserted between the two regions.

We can also apply this mapping incrementally. Let us assume that we introduce
a new region into the orthogonal CompositeState. This is achieved by inserting the
new model element in the subvertex slot. This change triggers an incremental
mapping of the XMI[DI] diagram. The incremental mapping component deter-
mines that there is one unmapped CompositeState, hence a new subtree for the
region is inserted. The change also triggers a creation of a separator subtree, which
is inserted before the new subtree for the region. The result is shown in Figure 6.
Finally we insert a new SimpleState into the second of the three regions of the
orthogonal CompositeState. The incremental mapping component determines that
the subvertex slot of the region has changed, and inserts an XMI[DI] subtree rep-
resenting a SimpleState into the XMI[DI] subtree of the region. The corresponding
result is shown in Figure 7. The mapping for a SimpleState is not shown in any
Figure due to space constraints.

The second MODEL2XMIDI example represents the mapping of a UML Tran-
sition and is shown in Figure 8. A Transition has only one ElementToXMIDIMap-
ping without a contextGuard set, which implies that the same mapping is used for
all instances regardless of the context. The root of the mapping is in this case a
GraphEdgePart, since a Transition is mapped to a GraphEdge in XMI[DI]. The
GraphEdgePart has specified two connectors, self.source and self.target, the se-
quence of abstract elements whose corresponding GraphNodes the GraphEdge can

12
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Figure 6: The abstract model (on the left side) and the XMI[DI] model (on the right
side) after adding a third region.

connect to. Provided that the corresponding GraphNodes for these abstract ele-
ments can accept GraphConnectors, GraphConnectors will be created to connect
the GraphEdge to the GraphNodes. A change in either self.source or self.target
will trigger this mapping rule again and re-link the GraphEdge appropriately.

5 Validation of the MODEL2XMIDI Language and Known
Limitations

We have built an experimental modeling tool called Coral that uses the XMI[DI]
and simplified MODEL2XMIDI mappings to represent and maintain model dia-
grams. The tool has full interoperability with Gentleware’s Poseidon. That is, it is
possible create a UML model in Poseidon, save it into a file using the XMI, UML,
and XMI[DI] standards, load it in Coral, transform the models and diagrams using
the information provided in the MODEL2XMIDI mappings, save the model back
into an XMI file and load it again in Poseidon without losing any model or diagram
information. Figure 9 shows an screenshoot from Poseidon and Coral rendering the
same model. The Coral tool supports other user-defined modeling languages and
profiles besides standard UML. We have also created MODEL2XMIDI mappings
to these languages although we are not aware of other tools that can process these
models. All the figures in this article have been drawn using Coral. Coral is open
source and it can be downloaded together with the UML to XMI[DI] mappings
from http://mde.abo.fi/.

We have used a simplified MODEL2XMIDI mapping in Coral due to two rea-
sons: performance and the lack of an OCL interpreter integrated in the tool. There-
fore, we do not support full OCL expressions and we only check single property
values in the Contained.guard and a subset (or subsequence) of a property value
in the Contained.selection.

We have implemented mappings only for UML class, statechart, object and de-
ployment diagrams but we are confident that the MODEL2XMIDI language can be
used to define mappings for other UML diagrams. We consider that this simplified
language is quite useful, but we acknowledge that the language proposed in this
paper is more general. However, not even the full MODEL2XMIDI language is
a complete transformation language, and there are some mapping constructs that
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Figure 8: The XMI[DI] mapping model of Transition.

Figure 9: A diagram shown in Poseidon 3.0 (top) and Coral (bottom). The model
was exchanged using the XMI 1.2, UML 1.4 and XMI-DI 2.0 standards.
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cannot be expressed with it:

• It is not possible to obtain a GraphNode with a SimpleSemanticModel-
Bridge with an empty string as the typeInfo.

• Since GraphEdgePart.connectors must return a sequence of abstract ele-
ments, it is not possible to create a GraphEdge which connects to elements
with a SimpleSemanticModelBridge, only to elements connected using a
Uml1SemanticModelBridge (or CoreSemanticModelBridge).

Additionally, several XMI[DI] metaclasses are not used by our mapping lan-
guage at all. In some cases, a synchronization framework does not need them,
whereas in other cases they might be useful. Some tools do not need a CoreSe-
manticModelBridge and handle everything via Uml1SemanticModelBridge. For
example our Coral tool does this, effectively treating the XMI[DI] Core::Element
as any [abstract] element and denoting it as MOF::Class in Figure 3. Point and
BezierPoint are required for layout and position purposes and do not contribute to
the structure of an XMI[DI] model, so they are not in the scope of MODEL2XMIDI
or any similar framework. Property elements are not supported. While they have
very little functionality as described in the XMI[DI] language and currently no
defined structural functionality, they could be useful in the future. Similar consid-
erations can be stated for SemanticModelBridge.presentation.

The reason no Reference, DiagramLink and LeafElements have been added
is primarily that we have little experience with them and have so far opted to val-
idate our research by basing it on working code. It can be noted that Diagram
elements can easily be added into the MODEL2XMIDI language, but due to size
constraints are not described further.

6 Conclusions and Related Work

In this paper we have studied a mapping language between the abstract syntax or
semantic representation of a modeling language and its concrete syntax as a dia-
gram. Beyond the scope of this paper is anything regarding diagrams that does not
relate to the creation of XMI[DI] diagrams. This includes the layout of diagrams
and the rendering of a diagram to an output device. Also, we did not discuss how
an interactive editor can manipulate the elements in a diagram. For example, how
and when the user can move a node or an edge in a diagram. Our future work
in this area will explore more thoroughly what are the synchronization algorithms
necessary and convenient in using the mapping language.

Several authors have proposed to use graph grammars to define visual lan-
guages [4] and there exist diagram editor generators for languages defined using
graph grammars such as GenGed [1] and AToM [2]. We have followed a different
approach and constrained our solution to the existing OMG modeling standards. In
these standards, modeling languages are not defined using grammars but models.
Therefore, it seems more adequate to use models to define the mappings between
the abstract and concrete syntax of a language. This approach has important draw-
backs: metamodeling is not as well defined and understood as formal languages
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and grammars are. Also, our mapping language is rather complex since it needs
to support all the idiosyncrasies of the UML to XMI[DI] mapping. However, the
advantage of following this approach is enormous: full compliance with existing
standards and tools.

It can be argued that we could use the QVT [6] or another generic model trans-
formation language to express transformations between the abstract and concrete
syntax instead of creating a new mapping language. However, there is a need to
implement these transformations to be as efficient as possible. That is why we have
created a domain-specific transformation language that can only be used to define
mappings between metamodels and XMI[DI]. There is a short discussion of a lan-
guage to describe the concrete syntax of models in Chapter 9 of [3]. This language
seems to assume that each model element is represented as one diagram element
but this assumption does not hold for XMI[DI].

We have validated our approach by constructing an experimental tool and ex-
changing UML models and their diagrams with a commercial modeling tool that
supports XMI[DI]. This allows us to conclude that the work presented in this ar-
ticle is a viable approach to define the concrete syntax of visual modeling lan-
guages based on the OMG standards. At the moment, the OMG does not have
a Request For Proposals for a general mapping or transformation language from
abstract models to XMI[DI] diagrams. We consider such a language important for
interoperability reasons and hope that this article will spur further discussion on
the topic.
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