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Abstract

In this paper we analyze the implications of three different factors (preprocess-
ing method, data distribution and training mechanism) on the classification per-
formance of artificial neural networks (ANN). We use three preprocessing ap-
proaches: no preprocessing, normalization and division by the maximum absolute
values. We study the implications of input data distributions by using five datasets
with different distributions: the real data, uniform, normal, logistic and Laplace
distributions. We test two training mechanisms: one belonging to the gradient-
descent techniques, improved by a retraining procedure (RT), and theother is a
genetic algorithm (GA), which is based on the principles of natural evolution. The
results show statistically significant influences of all individual and combined fac-
tors on both training and testing performances. A major difference with otherre-
lated studies is the fact that for both training mechanisms we train the network
using as starting solution the one obtained when constructing the network archi-
tecture. In other words we use a hybrid approach by refining a previously obtained
solution. We found that when the starting solution has relatively low accuracy rates
(80-90%) GA clearly outperformed the retraining procedure, while the difference
was smaller to zero when the starting solution had relatively high accuracy rates
(95-98%). As reported in other studies we found little to no evidence of crossover
operator influence on the GA performance.

Keywords: Artificial Neural Networks, Genetic Algorithms, preprocessing method,
data distribution, training mechanism
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1 Introduction

Predictive data mining has two different aims: (1) the uncovering of hiddenre-
lationships and patterns in the data, and (2) the construction of usable prediction
models (Zupanet al. 2001). One type of prediction model is represented by clas-
sification models or models for predicting the relative positions of newly observed
cases against what is known. Financial performance classification problems con-
cern many business players: from investors to decision makers, from creditors to
auditors. They are all interested in the financial performance of the company, what
are its strengths and weaknesses, and how the decision process can beinfluenced
so that poor financial performance or, worse, bankruptcy, is avoided. Usually, the
classification problem literature emphasizes binary classification, also known as
two-group discriminant analysis problems, which is a simpler case of the classi-
fication problem. In the case of binary classifications everything is seen in black
and white (e. g.: A model which implements a binary classifier would just show
a bankruptcy or a non-bankruptcy situation giving no detailed information about
the real problems of the company). Greater information would be obtained from
the classification models if one particular business sector would be divided inmore
than two financial performance classes (and it would be easier to analyzethe com-
panies placed in these classes). This study introduces an artificial neural network
trained using genetic algorithms (GA-based ANN) to help solve the multi-class
classification problem. The predictive performance of the GA-based ANNwill be
compared to a retraining-based ANN which is a new way of training an ANN based
on its past training experience and weights reduction. The two different training
mechanisms have something in common, which is the ANN architecture. A new
empirical method to determine the proper ANN architecture is introduced. More-
over, the study investigates the influence of data distributions and preprocessing
approach on the predictive performances of the models.

The paper is organized as follows. In the second section we review the litera-
ture on classification models emphasizing ANN-based models for classification.
Next, we introduce our model for assessing companies’ financial performance.
Research questions and derived hypotheses are formulated in section four. The
datasets used are presented in section five. In the sixth section, we show our exper-
iments’ results, and finally, the conclusions and directions for future research are
discussed.

2 Literature review

The problem of financial performance classification has been tackled in the liter-
ature for nearly 40 years. The taxonomy of classification models is based on the
algorithm solution being used (Pendharkar, 2002). Firstly,statistical techniques
have been deployed: univariate statistics for prediction of failures introduced by
Beaver (1966), multivariate analysis in Altman (1968), linear discriminant anal-
ysis (LDA) introduced by Fisher (1936) who firstly applied it on Anderson’s iris
data set (Anderson, 1935), multivariate discriminant analysis (MDA) - Edmister
(1972), Jones (1987), probit and logit models - Hamer (1983), Zavgren (1985),
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Rudolpheret al. (1999) and recursive partitioning algorithm (RPA) in Frydman
et al. (1985). The next step in solving the classification problem was the estab-
lishment ofinduction techniques. Some of the most popular such techniques are:
CART (Breimanet al., 1984), ID3-C4.5-C5.0 (Quinlan, 1993a; Quinlan, 1993b).
In (Costeaet al., 2002; Costea and Eklund, 2003) the authors applied and com-
pared two of the above classifiers: multinomial logistic regression and Quinlan’s
C5.0 decision tree. The two classifiers performed similarly in terms of accuracy
rates and outperformed SOM (Kohonen, 1997) classification. Among the financial
application areas ofneural networks in the early 80s, the financial performance
classification problem was not an exception. ANNs were extensively used in finan-
cial applications, the emphasis being on bankruptcy prediction. A comprehensive
study on ANNs for failure prediction can be found in O’Leary (1998). The author
investigates fifteen related papers for a number of characteristics: whatdata was
used, what types of ANN models, what software, what kind of network architec-
ture, etc. Table 1 presents a sample of studies with their results which compared
different classification techniques.

Table 1: Sample of pattern classification studies

Authors Tasks Techniques Results
Maraiset
al. (1984)

Modelling
commercial
bank loan
classifications

Probit, RPA RPA is not significantly better,
especially when data do not in-
clude nominal variables

Schtzeet al.
(1995)

Document rout-
ing problem

Relevance feed-
back, LDA, Lo-
gistic regression,
ANN

Complex learning algorithms
(LDA, logistic regression,
ANN) outperformed weak
learning algorithm (relevance
feedback)

Jenget al.
(1997)

Prediction of
bankruptcy,
biomedical

Fuzzy Inductive
Learning Algo-
rithm (FILM),
ID3, LDA

Induction systems achieve bet-
ter results than LDA. FILM
slightly outperforms ID3

Backet al.
(1996,
1997)

Prediction of
bankruptcy

LDA, Logit,
ANN

ANN outperformed the other 2
methods in terms of accuracy

Koskivaara (2004) summarizes the ANN literature relevant to auditing prob-
lems. She concludes that the main auditing application areas of ANNs are as fol-
lows: material error, going concern, financial distress, control risk assessment,
management fraud, and audit fee which are all, in our opinion, particular cases of
classification problems. In other words, in these applications ANNs were used,
mainly, as classifiers. Going concern and financial distress can be considered to be
particular cases of bankruptcy prediction.
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Costea and Eklund (2004) compared three classifiers for financial performance
classification of telecom companies and found that the ANN performed similarly
in terms of accuracy rates against statistical and induction techniques.

Coakley and Brown (2000) classified ANN applications in finance by the para-
metric model used, the output type of the model and the research questions.

Another technique to learn the connection weights for an ANN corresponds to
theevolutionary approach and is represented by genetic algorithms. The litera-
ture in this area is relatively rich: Schafferet al. (1992) listed 250 references that
combined ANNs and genetic algorithms. GAs are used in the majority of these
papers for solving the following problems: to find the proper architecture for the
ANN, reduce the input space to the relevant variables, and as an alternative way
of learning the connection weights. One paper that uses GAs to solve the last two
forementioned problems is Sexton and Sikander (2001). The GA was found to be
an appropriate alternative to gradient-descent-like algorithms for training neural
networks and, at the same time, the GA could identify relevant input variablesin
the data set.

Many authors (e.g. Schaffer, 1994) found that GA-based ANNs arenot as com-
petitive as their gradient-descent-like counterparts. Sextonet al. (1998) argued that
this difference has nothing to do with the GA’s ability to perform the task, but rather
with the way it is implemented. The candidate solutions (the ANN weights) were
encoded as binary strings which is both unnecessary and unbeneficial(Davis, 1991
and Michalewicz, 1992) when the ANN has a complex structure. The tendency is
toward using non-binary (real) values for encoding the weights. Pendharkar (2002)
studied the application of a non-binary GA for learning the connection weights of
an ANN under various structural design and data distributions, finding that addi-
tive noise, size and data distribution characteristics play an important role in the
learning, reability and predictive ability of ANNs.

In this study we compare two different ANN training mechanisms for pattern
classification: one based on the traditional gradient-descent training algorithms
(RT-based ANN) and another one based on natural selection and evolution (GA-
based ANN). We also propose an empirical procedure to determine the ANNar-
chitecture which is kept fix for both training mechanisms. We reveal classesof
financial performance for the companies in the telecommunication sector based on
profitability, liquidity, solvency and efficiency financial ratios. These ratios are sug-
gested in Lehtinen’s (1996) study of the reliability and validity of financial ratios
in international comparisons.

3 Financial performance classification models

In this section we present our two approaches for financial performance classifi-
cations. Firstly, we describe the empirical procedure for determining the ANN
architecture. Then, we present the two ANN training mechanisms. The generic
classification model based on neural approaches is depicted in Figure 1.

Usually, when constructing classification models, the first step is to separate
the data into training (TR) and test (TS) sets. We are concerned with decisions
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INPUT DATA

Data Preprocessing

Determine the ANN Architecture

ANN Training & Testing

OUTPUT MODEL

Figure 1: ANN generic classification model

regarding preprocessing of the data (what method of standardization, what method
of removing the outliers, if any). In case the class variable is missing, as in our
case, a clustering method could be applied to build this variable. The second step
consists of selecting the proper ANN architecture. This step is concernedwith
determining the proper number of hidden layers, and the right number of neurons in
each hidden layer. Also, here we decide how the class variable should becodified.
In other words, how many neurons are necessary on the output layer torepresent
the class variable? The last step, ANN training, consists of specific tasks depending
on the training mechanism used.

3.1 Data Preprocessing

Next, we present the steps undertaken to create the training and test sets for the
classification models, which we generically call data preprocessing steps:

1. In order to ease the training and to avoid the algorithms placing too much
emphasis on extreme values, we removed far outliers and outliers from the
data. This has been done by calculating the quartiles for each variable. If
we denote withl the lower quartile, withm the median and withu the upper
quartile of variablex, then the far outliers (fo), outliers (o) and anomalies (a)
for that variable belong to the following intervals:

fo ∈ (−∞, l − 3d) ∪ (u + 3d, +∞)
o ∈ [l − 3d, l − 1.5d) ∪ (u + 1.5d, u + 3d]
a ∈ [l − 1.5d, l − d) ∪ (u + d, u + 1.5d]

whered = u - l is the distance from the upper quartile to the lower. Once we
have detected the far outliers and the outliers of each variable we have two

4



alternatives: to discard a sample that has at least one outlier value or to keep
it by taking the peak(s) off. We chose the later alternative.

2. Regarding standardization three approaches were undertaken: one was to
keep the data un-standardized (“no preprocessing”), the second was to nor-
malize data to zero mean and unit standard deviation (“normalization”) and
the third was to divide the data by the maximum of absolute values (“maxi-
mum of absolute values”).

3. A clustering technique was applied to build the class variable. We have used
the fuzzy C-means clustering algorithm (Bezdek, 1984) to build the clusters
and, consequently, the class variable. The number of clusters is a parameter
of our models. It was set to 7 as this was the proper number of classes
reported in our previous studies (Costea and Eklund, 2003).

4. In order to allow the ANN to equally learn the patterns within each cluster
we chose an equal number of observations for each cluster.

5. Finally, we split the data into aproximately 90% for training and the remain-
der for testing.

As was described above, we reduce as much as possible the subjectivity indeter-
mining the class variable by applying directly FCM clustering algorithm. (Alcaraz
and Costea, 2004) compared a modified version of FCM algorithm with normal
FCM and SOM clustering. The modified FCM algorithm outperformed both the
normal FCM and the SOM with respect to pattern classification. In this study, nor-
mal FCM was chosen for practical implementation reasons. We created for each
financial ratio a linguistic variable that can help us in characterizing the clusters.
Linguistic variables are quantitative fuzzy variables whose states are fuzzy num-
bers that represent linguistic terms (Klir and Yuan, 1995). Alcaraz and Costea
(2004) model the seven financial ratios with the help of seven linguistic variables
using five linguistic terms:very low(VL), low (L), average(A), high(H), very high
(VH). Table 2 shows the characterization of the seven clusters for the real telecom
dataset without preprocessing the data (first preprocessing approach).

We considered that one linguistic term characterizes one cluster if it represents
more than40 % out of total number of observations for that cluster. It seems that
Receivables Turnover does not have any discriminatory power among data except
for one cluster. By comparing the clusters we can easily label them as beinggood,
bad, worst, etc. depending on their linguistic terms.

3.2 Empirical procedure for determining the ANN architecture

Once the data is ready to be trained, we need to perform one more preliminarystep:
to find a suitable architecture for the ANN. Choosing the number of hidden layers
and the number of neurons in each hidden layer is not a straight-forwardtask. The
choices of these numbers depend on input-output function complexity (Nastac and
Matei, 2003). It is well known that neural networks are very sensitiveregarding
the dimensionality of the dataset. In general, a good model is obtained when we
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Table 2: Characterization of Clustersa

OM ROTA ROE Current E to C IC Rec. T. Order

Cluster 1 VL VL VL&L - A&H VL&L - Bad

Cluster 2 A A A&H - A A - Average

Cluster 3VL&L VL VL - VL&L L - Worst

Cluster 4 H H VH VL A A A Good

Cluster 5 A A A&H H H VH - Good

Cluster 6 L L A L L L - Bad

Cluster 7 VH VH H VH VH VH - Best
aAlcaraz and Costea (2004)

have 10 times more training samples than the number of weights. We performed a
number of experiments for ANN architectures with one and two hidden layers to
see what the appropriate number of hidden layers is. Almost in every case, an ANN
with two hidden layers performed better in terms of training mean square error. We
did not take into consideration three hidden layer cases due to the number ofcases
per weights ratio-restriction.

We used the sigmoid and linear activation functions for the hidden and out-
put layers, respectively. Regarding the training algorithms, they fall into two main
categories: heuristic techniques (momentum, variable learning rate) and numeri-
cal optimization techniques (conjugate gradient, Levenberg-Marquardt). Various
comparative studies, on different problems, were initiated in order to establish the
optimal algorithm (Demuth and Beale, 2001; Nastac and Koskivaara, 2003). As a
general conclusion, it is difficult to know which training algorithm will provide the
best (fastest) result for a given problem. A smart choice depends on many param-
eters of the ANN involved, the data set, the error goal, and whether the network
is being used for pattern recognition (classification) or function approximation.
Statistically speaking, it seems that numerical optimization techniques present nu-
merous advantages. Analyzing the algorithms that fall into this class, we observed
that the Scaled Conjugate Gradient (SCG) algorithm (Moller, 1993) performs well
over a wide variety of problems, including the experimental dataset presented in
this paper. Even if SCG is not the fastest algorithm (as Levenberg-Marquardt in
some situations), the great advantage is that this technique works very efficiently
for networks with a large number of weights. The SCG is something of a compro-
mise: it does not require large computational memory, and yet, it still has a good
convergence and is very robust. Furthermore, we always apply the early stopping
method (validation stop) during the training process, in order to avoid the over-
fitting phenomenon. And it is well known that for early stopping, one must be
careful not to use an algorithm that converges too rapidly. The SCG is well suited
for the validation stop method.
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In our experiments we have kept all parameters of the ANN constant (the learn-
ing algorithm - Scale Conjugate Gradient, the performance goal of the classifier,
the maximum number of epochs), except the numbers of neurons in the hidden
layers (NH1, NH2).

The procedure used to determine the proper values forNH1 andNH2 consists
of iteratively performing the following experiment:

• Randomly split the training set (TR) into two parts: one for the effective
training (TRe) and the other for validation (VAL). In order to avoid the over-
fitting phenomenon we have applied the early stopping method (validation
stop) during the training process.

• Train the network for different values ofNH1 andNH2. For each com-
bination ofNH1 andNH2, we performed 4 random initializations of the
weights.NH1 andNH2 take values in the vicinity of the geometric mean
(Basheer and Hajmeer, 2000) of the number of inputs (NI) and outputs
(NO), respectively.

√
NI · NO − 2 ≤ NHi ≤

√
NI · NO + 2

E.g.: NI = 7, NO = 7 ⇒ NH1, NH2 = 5, 9 . In this case, in total 5*5*4
= 100 trainings are performed for each experiment.

• Save the best ANN architecture in terms of mean square error of the training
set (MSETRe) with the supplementary condition:MSEV AL ≤ (6/5) ∗
MSETRe. This supplementary condition was imposed so that the validation
error is not too far from the training error, thus, avoiding over-fitting for the
test set.

We ran 3 experiments like the one described above (3*100 = 300 trainings)to
determine the proper values forNH1 andNH2. See the flowchart of the procedure
in the Appendix.

Regarding the number of output neurons, we have two alternatives whenap-
plying ANNs for pattern classification. The first alternative, which is the most
commonly used, is to have as many output neurons as the number of classes.The
second alternative is to have just one neuron in the output layer, which willtake
the different classes as values. We chose the first approach in orderto allow the
network to better disseminate the input space.

After we performed the 3 experiments we obtained the best ANN architecture
and the set of final weights (the solution) that corresponds to this architecture. In
the next two sections we will present two training mechanisms used torefinethis
solution.

3.3 RT-based ANN training

Once we determine the ANN architecture (with the corresponding set of weights),
the next step is to train the network. The first training mechanism is a retraining-
based ANN (Nastac and Costea, 2004), briefly described next:
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• Start with a network with an initial set of weights from the previous step
(Determining ANN architecture) as the reference network;

• Run a number ofL experiments to improve the ANN classification accuracy.
After each experiment we save the best set of weights (the solution) in terms
of classification accuracy. Each experiment consists of:

– Reduction of the weights of the current best network with successive
values of scaling factorγ (γ = 0.1, 0.2, . . . ,0.9).

∗ Retrain the ANN with the new weights and obtain 9 accuracy rates.

– Choose the best network from the above 9 experiments in terms of
classification accuracy.

– Compare the accuracy rate of the current network with that obtained
in the previous step and save the best one for the next experiment as
current the best network.

Depending on the splitting of the training set (TR) in the effective training set
(TRe) and validation set (VAL) we have 3 types of retraining mechanisms: one
whereTReandVAL are common for all the experiments, another whereTReand
VAL are different for each experiment, but the same for all 9 reduction weights
trainings (second step of the experiment), and finally, whereTReandVAL are dis-
tinct for each training. We have 4 types of accuracy rates: training accuracy rate
(ACRTRe), validation accuracy rate (ACRV AL), total training (effective training
+ validation) accuracy rate (ACRTR) and test accuracy rate (ACRTS). Corre-
spondingly, we calculate 4 mean square errors:MSETRe, MSEV AL, MSETR,
andMSETS . In total 5 experiments were conducted resulting in 5*9 = 45 new
trainings for each type of retraining mechanism.

3.4 GA-based ANN training

The second ANN training mechanism used torefine the solution is based on the
principle of natural evolution. A population of solutions is provided, and byinitial-
ization, selection and reproduction mechanisms, near-optimal solutions are reached.

Unlike the traditional gradient-descent training mechanisms, GA-based ANN
training starts with a population of solutions. A solution is the set of ANN weights
after training represented as a vector. All solutions (chromosomes) compete with
each other to enter the new population. They are evaluated based on the objective
function.

3.4.1 Initialization and fitness evaluation

The population size is set toPS = 20. Several authors suggested that this value is
good enough for any grade of problem complexity (Dorsey and Mayer,1995). The
first chromosome of the population is the set of weights obtained when determining
the ANN architecture. The other 19 chromosomes are generated by trainingthe
ANN with the previously obtained architecture. Afterwards, the first generation of
the algorithm may begin. The number of generations is related with the empirical
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formula suggested in Ankenbrandt (1991). The number of generationsfor a non-
binary GA without mutation is given by the formula:Ngen = ln[(n − 1)2]/ ln(r)
wheren is the population size andr is the average fitness of candidates with a
particular gene value over the average fitness of all other candidates.

Each chromosome is evaluated using the accuracy rate for the training set
(ACRTR).

3.4.2 Selection

Firstly, the elitism technique is applied in the sense that the bestNelite chromo-
somes in terms ofACRTR are inserted into the new population. The rest of
the chromosomes (20 − Nelite) are selected based on the probability of selection

(roulette wheelprocedure) for each chromosome:Pi = ACRTRi
/

20
∑

i=1

ACRTRi

The higher the probabilityPi for a chromosome is, the higher its chance of
being drawn into the new population. This procedure tries to simulate the process
of natural selection or survival of the fittest.

Next, 80% (probability of crossover:Pc = 0.8 ) of the chromosomes obtained
previously are randomly selected for mating.

3.4.3 Reproduction

The selected chromosomes are randomly paired and recombined to producenew
solutions. There are two reproduction operators:crossoverandmutation. With
the first the mates are recombined and new born solutions inherit information from
both parents. With the second operator new parts of the search space are explored
and, consequently, we expect that new information is introduced into the popula-
tion. In this study we have applied four types of crossover: arithmetic, one-point,
multi-point and uniform crossover. Let us denote withL the length of the chromo-
somes and withP1 andP2 two parent-chromosomes:

P1 = g11, g12, . . . , g1L

P2 = g21, g22, . . . , g2L

One-point crossover
For each pair of chromosomes we generate a random integerX, X ∈ {1, L}. The
two new born children are constructed as follows:

C1 = g11, g12, . . . , g1X , g2,X+1, . . . , g2L

C2 = g21, g22, . . . , g2X , g1,X+1, . . . , g1L

Multi-point crossover
We split the chromosomes inn parts (n ≤ 5). We generate randomly the num-
ber of splitting pointsn. Then,n distinct random numbers (X1, X2, . . . , Xn) are
generated withXi ∈ {1, L} andX1 < X2 < . . . < Xn. The two children are:

C1 = g11, g12, . . . , g1X1
, g2,X1+1, . . . , g2X2

, g1,X2+1, . . . , g1X3
, g2,X3+1, . . .

C2 = g21, g22, . . . , g2X1
, g1,X1+1, . . . , g1X2

, g2,x2+1, . . . , g2X3
, g1,x3+1, . . .
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Arithmetic crossover
Firstly, we split the parent-chromosomes inn parts as we did for multi-point

crossover. The children’ genes are convex combinations of the parents’ genes.

C1 =



















α ∗ g1i + (1 − α) ∗ g2i, i = 1, X1

(1 − α) ∗ g1i + α ∗ g2i, i = X1 + 1, X2

α ∗ g1i + (1 − α) ∗ g2i, i = X2 + 1, X3

. . .

C2 =



















(1 − α) ∗ g1i + α ∗ g2i, i = 1, X1

α ∗ g1i + (1 − α) ∗ g2i, i = X1 + 1, X2

(1 − α) ∗ g1i + α ∗ g2i, i = X2 + 1, X3

. . .

whereα ∈ [0, 1] is a random number and is generated for each chromosome-pair.

Uniform crossover
For each pair of genes of the parent-chromosomes we generate a random number
α ∈ [0, 1]. If α < 0.5 the gene of the first parent goes to the first child and the gene
of the second parent goes to the second child. Otherwise, the genes areinversed.

The children-chromosomes areaddedto the population. The size of the pop-
ulation becomesPS′ > PS. Next we apply the mutation operator for all the
chromosomes inPS′. We used only uniform mutation.

Uniform mutation
The probability of mutation is set toPm = 0.01 which means that approximately
1% of the genes will mutate for each chromosome. Anα ∈ [0, 1] is generated
for each gene of each chromosome and ifα ≤ Pm, the new gene is randomly
generated within the variable domain. Otherwise, the gene remains the same. If
at least one gene is changed then the new chromosome is added to the population,
obtainingPS′′ > PS′ > PS.

The final step in constructing the new population is to reduce it in size to 20 chro-
mosomes. We select fromPS′′ the best 20 chromosomes in terms ofACRTR

satisfying the condition that one chromosome can have no more thanmax lim du-
plicates. We use the mutation operator to generate more chromosomes in the case
that the number of best chromosomes which satisfy the above condition is lessthan
20.

As a summary, excluding the crossover, the parameters of our GA models are
as follows: number of generations (Ngen), number of elite chromosomes (Nelite),
maximum number of splitting points (max split), probability of crossover (Pc),
probability of mutation (Pm), and maximum number of duplicates for the chromo-
somes (max lim).

4 Research questions and derived hypotheses

The main advantages of neural approaches for classification over the traditional
ones are: ANNs are free of any distributional assumptions, are universal approx-
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imators, no problems with intercorrelated data, and they provide a mapping func-
tion from the input to the outputs without any a priori knowledge about the function
form (function approximation capability). The most popular ANN learning tech-
nique in the literature is back-propagation (BP), which is “an approximate steepest
descendent algorithm”(Haganet al., 1996) for feedforward neural networks. BP
has several limitations, the most important one being its scalability: as the size
of the training problem increases, the training time increases non-linearly (Pend-
harkar and Roger, 2004). When the basic BP is applied to a practical problem, the
training may take a relatively long time (Haganet al., 1996). Among other limi-
tations: the difficulty of the training data itself, handling the outliers, and reduced
power of generalization due to large solution space. The cause for the last limita-
tion could be the fact that the BP algorithm is likely to quickly get stuck in a local
optimum, which means that the algorithm depends strongly on the initial starting
values. As we described in section 3.2 many techniques have been proposed to
decrease the learning time of BP and to ignore shallow local minimum. SCG was
used for ANN training throughout this study.

The difference between BP/BP-variants and GA-based ANN training tech-
niques is that BPs start from one solution and try to improve it based on some
error minimization technique, while GAs start with a population of solutions and
through some initialization, reproduction and recombination methods tries to reach
an optimal or near-optimal (heuristic) solution. GAs are known as hill climb-
ing techniques, a capability that arises from the convex combination (arithmetic
crossover operator) of two parents on the opposite sides of a hill. Moreover, the
possible risk of reaching a local optimum is avoided by the GA since it creates
new solutions by altering some elements of the existing ones (mutation operator),
hence, widening the search space.

In this study we analyze the implications of three different factors (prepro-
cessing method, data distribution and training mechanism) and their combinations
on the classification performance of neural networks. We use three preprocessing
approaches: no preprocessing, normalization and division with the maximumab-
solute values. We study the implications of input data distributions by using five
datasets with different distributions: the real data, uniform, normal, logistic and
Laplace distributions. We test two training mechanisms: one based on a traditional
gradient-descent technique improved by a retraining procedure (RT),and the other
on genetic algorithms (GA). Moreover, we analyze the influence of the crossover
operator on the predictive performance of genetic algorithms.

We compared our research questions with what was previously reportedin the
literature (e.g.: Pendharkar and Rodger, 2004). However there are some important
differences in the assumptions in our study compared with the others:

• The main difference is that here GA and gradient descent methods are used to
refinethe classification accuracy of an already obtained ANN-based solution
for the classification problem. Both the GA and the RT-based ANNs start
from a solution provided when determining the ANN architecture and they
try to refineit. All other studies compared GA and gradient-descent methods
starting from random solutions. We expect that the GA-based ANN will
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outperform the RT-based ANN in refining what the ANN already learned
due to the GA’s better searching capabilities.

• The second main difference is the type of the classification problem itself.
Here we are interested in separating the input space into more than 2 parts
(e.g. 7 financial performance classes) providing more insights in the data.

• We are interested if the preprocessing approach and the distribution of the
data have any impact on the classifiers’ predictive performances.

• Here non-parametric statistical tests are used to validate the hypotheses.
Only t-tests or ANOVA were used in the other studies, but no evidence of sat-
isfaction of the assumptions was provided. We performed a 3-way ANOVA
to strengthen the results of the non-parametric tests.

• Also four different crossover operators are used in order to find whether this
operator has an influence on the GA’s predictive performance. We introduce
one crossover operator - multi-point crossover - that was not found inother
similar studies.

The first difference has an impact on all the hypotheses that we formulatein this
study since, here, there is a different problem. The GA and RT-based ANNs im-
prove an already existing solution and do not construct it from scratch. Their be-
havior depends on how that solution was obtained (using what kind of method).

The main hypothesis of our paper is formulated as follows:
H1. The GA-based ANN will outperform the RT-based ANN both in train-

ing and testing on refining the solution obtained when determining theANN
architecture.

Additional hypotheses:
H2. The Crossover operator will have an influence on GA-based ANN training

and testing performances.
H3. Data preprocessing will have an influence on both RT and GA-basedANN

training and testing performances.
H4. Data distribution will have an influence on both RT and GA-based ANN

training and testing performances.

5 Datasets

Telecommunications sector dataset.We used financial data about worldwide
telecom companies. There are 88 companies structured in five groups: US(32),
Europe except Scandinavian companies (20), Asia (20), Scandinavia(10), and
Canada (6). The time span is 1995-2001. For each company and for each year
seven financial ratios were collected with the Internet as the primary source. These
ratios are suggested in Lehtinen’s (1996) study of financial ratios’ reliability and
validity in international comparisons. The ratios measure four different aspects of
companies’ financial performance: profitability - 3 ratios (operating margin, return
on total assets, and return on equity), liquidity - 1 ratio (current ratio = current as-
sets / current liabilities), solvency - 2 ratios (equity to capital, interest coverage),
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and efficiency - 1 ratio (receivables turnover) (Karlsson, 2002). In total the dataset
consists of 651 rows taken from companies’ financial statements in their annual
reports: 88 companies * 7 years = 616 rows. 35 more rows were obtained with the
averages for the five groups (5 groups * 7 years = 35 rows). Out of651 rows 21
were discarded due to lack of data for calculating some ratios resulting in a final
dataset of 630 rows.

Fictive datasets.In order to test the impact of data distribution on the predictive
performances of the classifiers we generated four datasets with different distribu-
tions: uniform, normal, logistic and Laplace distributions. We estimated the distri-
butions’ parameters using the means and variances of the telecom dataset ratios.

6 Experiments

In all our experiments we applied the following methodological steps:

1. For the RT-based ANN we repeated the procedure (described in subsection
3.3) 30 times, obtaining 4 vectors (30 elements in size) of different accu-
racy rates for each retraining mechanism type: a vector of effective train-
ing accuracy rates (RT V EC ACRTRe), a vector of validation accuracy
rates (RT V EC ACRV AL), a vector of total training (effective training +
validation) accuracy rate (RT V EC ACRTR) and a vector of test accu-
racy rates (RT V EC ACRTS). Correspondingly, we obtained 4 vectors
with the mean square errors:RT V EC MSETRe, RT V EC MSEV AL,
RT V EC MSETR, andRT V EC MSETS .

2. For the GA-based ANN we applied the procedure (described in subsec-
tion 3.4) 10 times for each type of crossover (one-point - GAO, multi-point
- GAM, arithmetic - GAA, and uniform - GAU). The other GA parame-
ters used were as follows:Ngen = 1000, Nelite = 3, max split = 5,
Pc = 0.8, Pm = 0.01 and max lim = 1. We obtained 2 vectors (10
elements in size) for each type of crossover operator: a vector of train-
ing accuracy rates (GA V EC ACRTR) and a vector of test accuracy rates
(GA V EC ACRTS) and, correspondingly, 2 vectors with mean square er-
rors:GA V EC MSETR, andGA V EC MSETS .

3. We used statistical tests to compare the vectors of the two training mecha-
nisms in order to validate our hypotheses.

The following experiments differ in two perspectives: the hypothesis that they try
to validate and/or the type of statistical test used (non-parametric vs. parametric).

Experiment 1. In the first experiment we try to validate the first hypothesis us-
ing non-parametric tests (Siegel and Castellan, 1988). We used the real dataset
(the original telecom data) without preprocessing the data (first preprocessing ap-
proach). After we separated the data in training (90%) and test (10%) sets, we
generated the ANN architecture. Then, in order to refine our solution, weapplied
the two training mechanisms (RT-based ANN and GA-based ANN). We applied
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the methodological steps described above and we compared statistically the re-
sults’ vectors of both training mechanisms in order to validate our first hypothesis
(Tables 3 and 4). We used Mann-Whitney-Wilcoxon and Kolmogorov-Smirnov
non-parametric tests to avoid the assumptions of the parametric tests.

Table 3: Technique influence on training

GAO
RT1

GAO
RT2

GAO
RT3

GAM
RT1

GAM
RT2

GAM
RT3

GAA
RT1

GAA
RT2

GAA
RT3

GAU
RT1

GAU
RT2

GAU
RT3

Mann-Whitney U 10.000 30.000 20.000 10.000 30.000 20.000 10.000 29.500 20.000 10.000 28.500 20.000

Wilcoxon W 475.000 495.000 485.000 475.000 495.000 485.000 475.000 494.500 485.000 475.000 493.500 485.000

Z (5.628) (4.555) (5.069) (5.582) (4.521) (5.029) (5.573) (4.534) (5.022) (5.581) (4.578) (5.029)

Asymp. Sig. (2-
tailed)

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Exact Sig. [2*(1-
tailed Sig.)]

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Kolmogorov-
Smirnov Z

2.647 2.465 2.556 2.647 2.465 2.556 2.647 2.465 2.556 2.647 2.465 2.556

Asymp. Sig. (2-
tailed)

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 4: Technique influence on testing

GAO
RT1

GAO
RT2

GAO
RT3

GAM
RT1

GAM
RT2

GAM
RT3

GAA
RT1

GAA
RT2

GAA
RT3

GAU
RT1

GAU
RT2

GAU
RT3

Mann-Whitney U 39.000 57.000 48.000 24.500 43.500 34.000 52.500 69.500 62.000 23.500 41.500 33.000

Wilcoxon W 504.000 522.000 513.000 489.500 508.500 499.000 517.500 534.500 527.000 488.500 506.500 498.000

Z (4.777) (3.716) (4.219) (5.205) (4.139) (4.648) (4.369) (3.313) (3.766) (5.231) (4.207) (4.676)

Asymp. Sig. (2-
tailed)

.000 .000 .000 .000 .000 .000 .000 .001 .000 .000 .000 .000

Exact Sig. [2*(1-
tailed Sig.)]

.000 .003 .001 .000 .000 .000 .001 .010 .005 .000 .000 .000

Kolmogorov-
Smirnov Z

2.100 1.917 2.008 2.373 2.191 2.282 1.826 1.643 1.734 2.373 2.191 2.282

Asymp. Sig. (2-
tailed)

.000 .001 .001 .000 .000 .000 .003 .009 .005 .000 .000 .000

As Table 4 shows (all significance coefficients = .000) all the pairs of accu-
racy rates vectors are statistically different. The direction of the difference is given
by the statistics calculated. Mann-WhitneyU statistic corresponds to the better
group in the sense that it represents the smaller number of cases with higherranks
between groups. The WilcoxonW statistic is simply the smaller of the two rank
sums displayed for each group in the rank table. The Kolmogorov-SmirnovZ test
statistic is a function of the combined sample size and the largest absolute differ-
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ence between the two cumulative distribution functions of the two groups. Conse-
quently, by analyzing both the calculated statistics and rank table we can determine
the direction of the difference between the groups. For this particular experiment
the rank table shows that the accuracy rates are always higher in the case of GA-
based ANN training than for RT-based ANN, thus, validating first hypothesis.

As for training, GA-based ANN training models performed better than gradient-
descent-like models in testing for all possible GA-RT technique-technique combi-
nations.

Experiment 2. Here we try to validate our second hypothesis that crossover oper-
ator has influence on both training and testing performances using non-parametric
tests (Table 5). As for the first experiment we used the real dataset (theoriginal
telecom data) without preprocessing the data (first preprocessing approach).

Table 5: The influence of crossover operator on training and testing

GAO
GAM
TR

GAO
GAA
TR

GAO
GAU
TR

GAM
GAA
TR

GAM
GAU
TR

GAA
GAU
TR

GAO
GAM
TS

GAO
GAA
TS

GAO
GAU
TS

GAM
GAA
TS

GAM
GAU
TS

GAA
GAU
TS

Mann-Whitney U 35.000 40.000 45.000 45.000 32.000 36.500 45.000 47.000 41.000 49.000 45.500 44.500

Wilcoxon W 90.000 95.000 100.000 100.000 87.000 91.500 100.000 102.000 96.000 104.000 100.500 99.500

Z (1.826) (1.082) (.608) (.445) (1.679) (1.201) (.610) (.269) (.976) (.094) (.548) (.491)

Asymp. Sig. (2-
tailed)

.068 .279 .543 .656 .093 .230 .542 .788 .329 .925 .584 .624

Exact Sig. [2*(1-
tailed Sig.)]

.280 .481 .739 .739 .190 .315 .739 .853 .529 .971 .739 .684

Kolmogorov-
Smirnov Z

.671 .671 .447 .224 .447 .447 .224 .447 .224 .447 .224 .447

Asymp. Sig. (2-
tailed)

.759 .759 .998 1.000 .988 .988 1.000 .988 1.000 .988 1.000 .988

We found a very weak support: two pair-vectors differ significantly at alevel
of significance of 0.1:GAO vs. GAM andGAM vs. GAU , both in the case
of training phase. Also, we found no evidence to differentiate between thethree
retraining mechanisms.

Experiment 3. Our third experiment validates third hypothesis using non-parametric
tests. We preprocessed the real data using normalization and compared theresults
with those obtained for un-preprocessed data (Table 6). For each combination of
the 2 preprocessing approaches and the 7 training techniques (4 GA-based ANN
and 3 RT-based ANN) we calculated means for training and testing accuracy rates.

The preprocessing method had an impact on the both training mechanisms’
performances. However, we found greater impact on the performancefor training
(U statistic = 0.000) than for testing (U = 6.000). Also, there is greater confidence
on the results obtained for training (level of significance = 0.002) than fortesting
(level of significance = 0.02). Nevertheless, we obtained higher accuracy rates
when we preprocessed the data using normalization than the case when we used no
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Table 6: Preprocessing method influence

PR1-PR2 (TR) PR1-PR2 (TS)

Mann-Whitney U .000 6.000

Wilcoxon W 28.000 34.000

Z (3.130) (2.380)

Asymp. Sig. (2-tailed) .002 .017

Exact Sig. [2*(1-tailed Sig.)] .001 .017

Kolmogorov-Smirnov Z 1.871 1.604

Asymp. Sig. (2-tailed) .002 .012

PR1 – “no preprocessing” PR2 – “normalization”

preprocessing for both training and testing.

Experiment 4. To test our fourth hypothesis we applied the methodology on the
fictive datasets and compare the results with those for the real data. In Table 7 we
present the accuracy rates for training and testing samples. For this experiment we
used no preprocessing of data. We calculated the means of accuracy rates vectors
for each technique-distribution combination.

Table 7: Accuracy rates for distribution pairs’ comparison (no preprocessing)

REAL
TR

UNIF
TR

NORM
TR

LOG
TR

LAP
TR

REAL
TS

UNIF
TS

NORM
TS

LOG
TS

LAP
TS

GAO 93.02 95.84 96.39 94.82 90.09 85.24 88.57 89.46 81.19 80.41

GAM 92.86 95.84 96.60 94.99 90.00 85.48 87.86 89.64 81.43 81.02

GAA 92.92 95.78 96.49 94.80 90.16 85.48 88.93 90.00 81.43 81.22

GAU 93.30 95.76 96.43 94.82 90.19 85.95 88.75 89.82 81.19 81.02

RT1 92.22 94.92 95.48 92.70 88.12 83.49 89.11 89.46 79.92 78.10

RT2 92.43 95.04 95.45 92.70 88.06 83.97 88.57 89.52 79.92 77.76

RT3 92.41 94.84 95.52 92.53 88.06 83.81 89.05 89.52 79.29 77.89

We applied the non-parametric tests to check the validity of our fourth hypoth-
esis (Tables 8 and 9). The hypothesis is strongly supported both for training and
testing cases. There is a statistical difference in performance between alldistri-
bution pairs, except three: real-logistic and uniform-normal pairs in the case of
training and logistic-Laplace pair in the case of testing. The performance order of
the distributions fit our expectations; the best accuracy rates were obtained for nor-
mally distributed data, followed by data distributed uniformly. The third best per-
formances were achieved for the real dataset which overcame logistic and Laplace
distributions in this order.
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Table 8: Distribution influence on training

REAL
UNIF

REAL
NORM

REAL
LOG

REAL
LAP

UNIF
NORM

UNIF
LOG

UNIF
LAP

NORM
LOG

NORM
LAP

LOG
LAP

Mann-Whitney U .000 .000 12.000 .000 12.000 2.000 .000 .000 .000 .000

Wilcoxon W 28.000 28.000 40.000 28.000 40.000 30.000 28.000 28.000 28.000 28.000

Z (3.134) (3.130) (1.599) (3.134) (1.599) (2.881) (3.137) (3.134) (3.134) (3.137)

Asymp. Sig. (2-
tailed)

.002 .002 .110 .002 .110 .004 .002 .002 .002 .002

Exact Sig. [2*(1-
tailed Sig.)]

.001 .001 .128 .001 .128 .002 .001 .001 .001 .001

Kolmogorov-
Smirnov Z

1.871 1.871 1.069 1.871 1.069 1.604 1.871 1.871 1.871 1.871

Asymp. Sig. (2-
tailed)

.002 .002 .203 .002 .203 .012 .002 .002 .002 .002

Table 9: Distribution influence on testing

REAL
UNIF

REAL
NORM

REAL
LOG

REAL
LAP

UNIF
NORM

UNIF
LOG

UNIF
LAP

NORM
LOG

NORM
LAP

LOG
LAP

Mann-Whitney U .000 .000 .000 .000 .000 .000 .000 .000 .000 14.000

Wilcoxon W 28.000 28.000 28.000 28.000 28.000 28.000 28.000 28.000 28.000 42.000

Z (3.134) (3.137) (3.144) (3.134) (3.134) (3.141) (3.130) (3.144) (3.134) (1.346)

Asymp. Sig. (2-
tailed)

.002 .002 .002 .002 .002 .002 .002 .002 .002 .178

Exact Sig. [2*(1-
tailed Sig.)]

.001 .001 .001 .001 .001 .001 .001 .001 .001 .209

Kolmogorov-
Smirnov Z

1.871 1.871 1.871 1.871 1.871 1.871 1.871 1.871 1.871 .802

Asymp. Sig. (2-
tailed)

.002 .002 .002 .002 .002 .002 .002 .002 .002 .541
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Experiment 5. In the first 4 experiments, when we validate our hypotheses, we re-
lied exclusively on non-parametric tests. We argued that the parametric tests(like
t-test, univariateANOV A etc.) require the analyzed vectors to satisfy different
assumptions. For instance when applyingANOV A analysis one should check
the following assumptions: observations are independent, the sample data have a
normal distribution, and scores in different groups have homogeneous variances.
The first assumption is satisfied since all other factors besides preprocessing, dis-
tribution and training mechanism that could influence the classifiers’ performances
are fixed. For the second assumption we argue thatANOV A is robust against
normality assumptions if the sample size is large. Regarding the third assump-
tion, SPSS (the software that we used) incorporates the case when the variances
between groups are assumed to be non-equal.

In order to give more strength to our results we finally performed a 3-way
ANOV A analysis having as grouping variables: the technique used (GAO, GAM ,
GAA, GAU , RT1, RT2, andRT3), the preprocessing method (PR1 - “no pre-
processing”,PR2 - “normalization”, PR3 - “dividing the variables by the max-
imum absolute values”), the data distribution (REAL, UNIF , NORM , LOG,
andLAP ). With the third preprocessing method we obtained values between -1
and +1. We used the vectors’ means to fill in our accuracy rates data. Tables 10
and 11 include the data we used to perform 3-wayANOV A.

Table 10: Accuracy rates for training

TECHNIQUE

PREPROC DISTRIB GA RT

GAO GAM GAA GAU RT1 RT2 RT3

REAL 93.02 92.86 92.92 93.30 92.22 92.43 92.41

UNIF 95.84 95.84 95.78 95.76 94.92 95.04 94.84

Un-preprocessed NORM 96.39 96.60 96.49 96.43 95.48 95.45 95.52

LOG 94.82 94.99 94.80 94.82 92.70 92.70 92.53

LAP 90.09 90.00 90.16 90.19 88.12 88.06 88.06

REAL 99.43 99.49 99.46 99.33 99.11 99.10 99.08

UNIF 99.79 99.81 99.79 99.79 99.80 99.80 99.80

Normalization NORM 97.90 97.90 97.90 97.90 98.07 98.03 97.97

LOG 99.11 99.06 98.98 98.98 98.95 98.98 98.96

LAP 98.08 98.13 98.01 98.10 98.02 98.01 98.06

REAL 99.68 99.68 99.68 99.68 99.69 99.69 99.69

Max of UNIF 97.79 97.77 97.73 97.84 97.77 97.77 97.89

Absolute NORM 96.91 97.00 97.02 97.02 96.93 96.90 96.91

Values LOG 96.50 96.52 96.52 96.52 96.68 96.59 96.60

LAP 95.64 95.83 95.76 95.81 95.26 95.47 95.23

Next, the results of 3-wayANOV A for both training and test accuracy rates
are shown in Tables 12 and 13.
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Table 11: Accuracy rates for testing

TECHNIQUE

PREPROC DISTRIB GA RT

GAO GAM GAA GAU RT1 RT2 RT3

REAL 85.24 85.48 85.48 85.95 83.49 83.97 93.81

UNIF 88.57 87.86 88.93 88.75 89.11 88.57 89.05

Un-preprocessed NORM 89.46 89.64 90.00 89.82 89.46 89.52 89.52

LOG 81.19 81.43 81.43 81.19 79.92 79.92 79.29

LAP 80.41 81.02 81.22 81.02 78.10 77.76 77.89

REAL 85.71 86.19 85.71 85.71 85.79 85.63 85.79

UNIF 92.86 93.04 92.86 92.86 92.86 92.86 92.92

Normalization NORM 96.43 96.43 96.43 96.43 96.49 96.19 96.43

LOG 88.10 88.10 88.10 88.10 88.10 88.25 88.25

LAP 92.25 92.45 91.84 92.25 91.36 91.50 91.56

REAL 97.62 97.62 97.62 97.62 97.54 97.70 97.62

Max of UNIF 95.00 95.36 95.71 95.36 96.31 96.43 96.07

Absolute NORM 93.21 93.57 93.93 93.57 92.86 93.15 93.27

Values LOG 88.10 88.10 87.86 88.10 88.25 88.10 88.25

LAP 88.37 89.18 88.98 89.59 89.86 89.93 89.86

Table 12: 3-way ANOVA for training

Source Type III Sum of
Squares

df Mean
Square

F Sig. Partial Eta
Squared

Model 979340.512 30 32644.684 6322228.263 .000 1.000

PREPROC 540.706 2 270.353 52358.680 .000 .999

DISTRIB 148.280 4 37.070 7179.276 .000 .997

TECHNIQ 6.396 1 6.396 1238.708 .000 .943

PREPROC * DISTRIB 138.900 8 17.362 3362.559 .000 .997

PREPROC * TECHNIQ 9.486 2 4.743 918.554 .000 .961

DISTRIB * TECHNIQ 1.426 4 .356 69.036 .000 .786

PREPROC * DISTRIB *
TECHNIQ

2.574 8 .322 62.310 .000 .869

Error .387 75 .005

Total 979340.899 105
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Table 13: 3-way ANOVA for testing

Source Type III Sum of
Squares

df Mean
Square

F Sig. Partial Eta
Squared

Model 844172.942 30 28139.09 506683.910 .000 1.000

PREPROC 1296.821 2 648.411 11675.541 .000 .997

DISTRIB 904.441 4 226.110 4071.431 .000 .995

TECHNIQ 3.537 1 3.537 63.695 .000 .459

PREPROC * DISTRIB 605.016 8 75.627 1361.771 .000 .993

PREPROC * TECHNIQ 10.714 2 5.357 96.461 .000 .720

DISTRIB * TECHNIQ 5.432 4 1.358 24.454 .000 .566

PREPROC * DISTRIB *
TECHNIQ

10.002 8 1.250 22.511 .000 .706

Error 4.165 75 .056

Total 844177.107 105

As the tables show all the factors are statistically significant. In other words
they have an individual and combined influence on both training and testing perfor-
mances. The last column (partial eta squared) reports the “practical” significance
of each term, based upon the ratio of the variation (sum of squares) accounted for
by the term, to the sum of the variation accounted for by the term and the varia-
tion left to error. Larger values ofpartial eta squaredindicate a greater amount of
variation accounted for by the model term, to a maximum of 1. Here the individual
factors and their combinations, while statistically significant, have great effect on
classifier accuracy.

In the next 3 tables we present the pairs’ comparison for the training perfor-
mances. The third hypothesis (H3) is validated (Table 14) and “normalization”
is the best preprocessing approach, followed by “maximum absolute values” and
“no preprocessing” in this order. Concerning the fourth hypothesis (H4) the best
performance was obtained when data werenormally distributed (Table 15). The
next best distribution was that of the real data, followed by uniform, logisticand
Laplace. Our main hypothesis (H1) is satisfied (Table 16), GA performing better
than RT inrefiningthe solution. However, the difference between accuracy rates is
not as obvious as it was for the ”real” data from experiment 1. This is explainable
since in later case (only ”real” data) the starting solution has relatively low accu-
racy rates (80-90%) and it could have been easily improved while in this experi-
ment (centralized data) we have some starting solutions with high accuracy rates
(95-98%) that would be hard to improve whatever would be the training mecha-
nism used torefinethem. We find no evidence for our second hypothesis (H2), all
crossover operators achieving comparable results.

In the case of pairs’ comparisons for testing performances we encounter a sim-
ilar result. All the mean differences are statistically significant. Only the orderof
best performers has slightly changed: “maximum of absolute values” - “normaliza-
tion” - “no preprocessing” for the “preprocessing” factor, uniform- normal - real -
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Table 14: Pairs’ comparison for “preprocessing” factor

95% Confidence
Interval for
Difference

(I) PREPROC (J) PREPROC Mean
Difference (I-J)

Std. Error Sig. Lower
Bound

Upper
Bound

1 2 (5.438)(∗) .017 .000 (5.473) (5.404)
3 (3.933)(∗) .017 .000 (3.967) (3.898)

2 1 5.438(∗) .017 .000 5.404 5.473
3 1.506(∗) .017 .000 1.471 1.540

3 1 3.933(∗) .017 .000 3.898 3.967
2 (1.506)(∗) .017 .000 (1.540) (1.471)

1-“no preprocessing”, 2-“normalization”, 3-“maximum of absolute values”
(∗) The mean difference is significant at the .05 level.

Laplace - logistic for the “distribution” factor. Once again, our main hypothesis is
satisfied, GA performing better on test data as well.

7 Conclusions

In this study, we applied two different training mechanisms of an ANN torefine
an initial solution for a classification problem. The initial solution (the ANN set
of weights) was obtained when determining the ANN architecture, which was kept
fixed in the refining process for both training mechanisms. An empirical proce-
dure to determine the proper ANN architecture was introduced. The two training
mechanisms are: a gradient-descent-like mechanism improved by a retrainingpro-
cedure (RT) and a natural-evolution-based mechanism known as geneticalgorithm
(GA). Depending on where the training and validation sets are generated we have
three RT-based training mechanisms and depending on the crossover operator used
we have four GA-based training mechanisms. Our main hypothesis states thatGA
performs better than RT-based mechanism in refining the solution and is strongly
supported by our experiments.

The other three hypotheses concern different factors that can havean influence
on the performance of the two training mechanisms: the crossover operator, the
preprocessing method of the data, and the distribution of the dataset. We found a
weak support for the crossover influence, and very strong support for the other two
factors in both training and testing cases. As we have shown, this study is different
from the other studies that use genetic algorithms to train neural networks from at
least four points of view. The most important difference is that here both training
mechanisms are used torefinethe solution obtained previously when constructing
the ANN architecture.

We found that when the starting solution has relatively low accuracy rates (80-
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Table 15: Pairs’ comparison for “distribution” factor

95% Confidence
Interval for
Difference

(I) DISTRIB (J) DISTRIB Mean
Difference (I-J)

Std. Error Sig. Lower
Bound

Upper
Bound

1 2 (.439)(∗) .022 .000 (.483) (.394)
3 .251(∗) .022 .000 .206 .296
4 .775(∗) .022 .000 .730 .819
5 2.984(∗) .022 .000 2.939 3.3028

2 1 .439(∗) .022 .000 .394 .483
3 .690(∗) .022 .000 .645 .734
4 1.213(∗) .022 .000 1.169 1.258
5 3.422(∗) .022 .000 3.378 3.467

3 1 (.251)(∗) .022 .000 (.296) (.206)
2 (.690)(∗) .022 .000 (.734) (.645)
4 .524(∗) .022 .000 .479 .568
5 2.733(∗) .022 .000 2.688 2.777

4 1 (.775)(∗) .022 .000 (.819) (.730)
2 (1.213)(∗) .022 .000 (1.258) (1.169)
3 (.524)(∗) .022 .000 (.568) (.479)
5 2.209(∗) .022 .000 2.164 2.254

5 1 (2.984)(∗) .022 .000 (3.028) (2.939)
2 (3.422)(∗) .022 .000 (3.467) (3.378)
3 (2.733)(∗) .022 .000 (2.777) (2.688)
4 (2.209)(∗) .022 .000 (2.254) (2.164)

1-REAL, 2-NORM, 3-UNIF, 4-LOG, 5-LAP
(∗) The mean difference is significant at the .05 level.

Table 16: Pairs’ comparison for “technique” factor

95% Confidence
Interval for
Difference

(I) TECHNIQ (J) TECHNIQ Mean
Difference (I-J)

Std. Error Sig. Lower
Bound

Upper
Bound

1 2 .499(∗) .014 .000 .471 .527
2 1 (.499)(∗) .014 .000 (.527) (.471)

1-GA, 2-RT
(∗) The mean difference is significant at the .05 level.
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90%) GA outperformed the RT mechanism, while the difference was smaller to
zero when the starting solution had relatively high accuracy rates (95-98%). This
can be considered a normal result since we do not expect great improvements start-
ing from an already very good solution. It is interesting to check in the future stud-
ies whether these hybrid approaches overcome the classical ones (the ones were
the weights of the ANN are randomly initialized).

In our experiments RT was 10 times faster than GA. Therefore, when the time
is a critical factor, RT can be taken into consideration as long as there is no major
difference between the performances of these two approaches.

In our prediction models the number of financial performance classes is set to 7.
We can easily change this parameter to simulate the binary classification problem
allowing us precise and detailed comparisons with other related studies.
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A Appendix

Error = Infinity

Exp <= 3

Exp = 1

Split TR set into

TRe and VAL sets

NH1 = 5

NH1 <= 9

NH2 = 5

NH2 <= 9

Initialize ANN

No_of_trains = 1

No_of_trains <= 4

Train ANN

Calculate errors:

MSETRe, MSEVAL,

MSETR, MSETS

MSETRe < Error

AND MSEVAL

< (6/5)*MSETRe

Save architecture

Error = MSETRe

Input: TR, TS sets

No_of_trains++

NH2++

NH1++

Exp++

STOP

START

Figure 2: Flowchart of the empirical procedure to determine ANN architecture
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