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Abstract

In this paper we analyze the implications of three different factors (poggs-

ing method, data distribution and training mechanism) on the classification per-
formance of artificial neural networks (ANN). We use three premssicg ap-
proaches: no preprocessing, normalization and division by the maximsoiuad
values. We study the implications of input data distributions by using five datase
with different distributions: the real data, uniform, normal, logistic and Lepla
distributions. We test two training mechanisms: one belonging to the gradient-
descent techniques, improved by a retraining procedure (RT), ancdthie is a
genetic algorithm (GA), which is based on the principles of natural evolulibe
results show statistically significant influences of all individual and contbiae-

tors on both training and testing performances. A major difference with ogher
lated studies is the fact that for both training mechanisms we train the network
using as starting solution the one obtained when constructing the netwdik arc
tecture. In other words we use a hybrid approach by refining a preyiobtained
solution. We found that when the starting solution has relatively low acguaaes
(80-90%) GA clearly outperformed the retraining procedure, while tHeréifice

was smaller to zero when the starting solution had relatively high accurtey ra
(95-98%). As reported in other studies we found little to no evidence ckoreer
operator influence on the GA performance.

Keywords: Artificial Neural Networks, Genetic Algorithms, preprocessing method,
data distribution, training mechanism
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1 Introduction

Predictive data mining has two different aims: (1) the uncovering of hidden
lationships and patterns in the data, and (2) the construction of usabletjored
models (Zuparet al. 2001). One type of prediction model is represented by clas-
sification models or models for predicting the relative positions of newly ebder
cases against what is known. Financial performance classificatithepns con-
cern many business players: from investors to decision makers, freitans to
auditors. They are all interested in the financial performance of the compaat

are its strengths and weaknesses, and how the decision processicindneed

so that poor financial performance or, worse, bankruptcy, is asoidsually, the
classification problem literature emphasizes binary classification, alsorkaew
two-group discriminant analysis problems, which is a simpler case of the-class
fication problem. In the case of binary classifications everything is seeladk b
and white (e. g.: A model which implements a binary classifier would just show
a bankruptcy or a non-bankruptcy situation giving no detailed informatimuta

the real problems of the company). Greater information would be obtained fr
the classification models if one particular business sector would be divigedri
than two financial performance classes (and it would be easier to arlhé/zem-
panies placed in these classes). This study introduces an artificial netwark
trained using genetic algorithms (GA-based ANN) to help solve the multi-class
classification problem. The predictive performance of the GA-based AlINbe
compared to a retraining-based ANN which is a new way of training an ANfgdba

on its past training experience and weights reduction. The two differainirig
mechanisms have something in common, which is the ANN architecture. A new
empirical method to determine the proper ANN architecture is introduced. More-
over, the study investigates the influence of data distributions and pessing
approach on the predictive performances of the models.

The paper is organized as follows. In the second section we review thee liter
ture on classification models emphasizing ANN-based models for classification
Next, we introduce our model for assessing companies’ financial ipeaftce.
Research questions and derived hypotheses are formulated in sectrornThe
datasets used are presented in section five. In the sixth section, we shexper-
iments’ results, and finally, the conclusions and directions for futurearesere
discussed.

2 Literature review

The problem of financial performance classification has been tacklee ilitei
ature for nearly 40 years. The taxonomy of classification models is bas#teo
algorithm solution being used (Pendharkar, 2002). Firsttistical techniques
have been deployed: univariate statistics for prediction of failures intedl by
Beaver (1966), multivariate analysis in Altman (1968), linear discriminaat-an
ysis (LDA) introduced by Fisher (1936) who firstly applied it on Andersaris
data set (Anderson, 1935), multivariate discriminant analysis (MDA)miEtkr
(1972), Jones (1987), probit and logit models - Hamer (1983), 2av(j1985),



Rudolpheret al. (1999) and recursive partitioning algorithm (RPA) in Frydman
et al. (1985). The next step in solving the classification problem was the estab-
lishment ofinduction techniques Some of the most popular such techniques are:
CART (Breimanet al,, 1984), ID3-C4.5-C5.0 (Quinlan, 1993a; Quinlan, 1993b).
In (Costeaet al,, 2002; Costea and Eklund, 2003) the authors applied and com-
pared two of the above classifiers: multinomial logistic regression and Qisnlan
C5.0 decision tree. The two classifiers performed similarly in terms of acgcurac
rates and outperformed SOM (Kohonen, 1997) classification. Amongraedial
application areas afieural networks in the early 80s, the financial performance
classification problem was not an exception. ANNs were extensivetyinsman-

cial applications, the emphasis being on bankruptcy prediction. A commsiiee
study on ANNSs for failure prediction can be found in O’Leary (1998)euthor
investigates fifteen related papers for a number of characteristics: datetvas
used, what types of ANN models, what software, what kind of networkitec-

ture, etc. Table 1 presents a sample of studies with their results which campare
different classification techniques.

Table 1. Sample of pattern classification studies

N

1°2)

1%

Authors Tasks Techniques Results
Maraiset | Modelling Probit, RPA RPA is not significantly better
al. (1984) | commercial especially when data do not i
bank loan clude nominal variables
classifications
Schtzeet al. | Document rout-| Relevance feed: Complex learning algorithm
(1995) ing problem back, LDA, Lo-| (LDA, logistic regression
gistic regression] ANN) outperformed weak
ANN learning algorithm (relevanc
feedback)
Jengetal. | Prediction of| Fuzzy Inductive| Induction systems achieve be
(1997) bankruptcy, Learning Algo-| ter results than LDA. FILM
biomedical rithm  (FILM), | slightly outperforms ID3
ID3, LDA
Backet al. | Prediction of| LDA, Logit, | ANN outperformed the other }
(1996, bankruptcy ANN methods in terms of accuracy
1997)

Koskivaara (2004) summarizes the ANN literature relevant to auditing-prob
lems. She concludes that the main auditing application areas of ANNs ark as fo
lows: material error, going concern, financial distress, control ridessment,
management fraud, and audit fee which are all, in our opinion, particassscof
classification problems. In other words, in these applications ANNs weze, us
mainly, as classifiers. Going concern and financial distress can beletetsto be
particular cases of bankruptcy prediction.



Costea and Eklund (2004) compared three classifiers for financfarpemnce
classification of telecom companies and found that the ANN performed similarly
in terms of accuracy rates against statistical and induction techniques.

Coakley and Brown (2000) classified ANN applications in finance by tha-pa
metric model used, the output type of the model and the research questions.

Another technique to learn the connection weights for an ANN correspmnd
the evolutionary approach and is represented by genetic algorithms. The litera-
ture in this area is relatively rich: Schaffet al. (1992) listed 250 references that
combined ANNs and genetic algorithms. GAs are used in the majority of these
papers for solving the following problems: to find the proper architecturéhie
ANN, reduce the input space to the relevant variables, and as an &lterway
of learning the connection weights. One paper that uses GAs to solve thedas
forementioned problems is Sexton and Sikander (2001). The GA wad foure
an appropriate alternative to gradient-descent-like algorithms for trairéngah
networks and, at the same time, the GA could identify relevant input variables
the data set.

Many authors (e.g. Schaffer, 1994) found that GA-based ANNgm@iras com-
petitive as their gradient-descent-like counterparts. Sesttah (1998) argued that
this difference has nothing to do with the GA's ability to perform the task, ditar
with the way it is implemented. The candidate solutions (the ANN weights) were
encoded as binary strings which is both unnecessary and unben@ieiéd, 1991
and Michalewicz, 1992) when the ANN has a complex structure. The tegpden
toward using non-binary (real) values for encoding the weights. Rehdh(2002)
studied the application of a non-binary GA for learning the connection weigfh
an ANN under various structural design and data distributions, findirtgathdi-
tive noise, size and data distribution characteristics play an important role in th
learning, reability and predictive ability of ANNSs.

In this study we compare two different ANN training mechanisms for pattern
classification: one based on the traditional gradient-descent trainingthige
(RT-based ANN) and another one based on natural selection andiendlGA-
based ANN). We also propose an empirical procedure to determine theakNN
chitecture which is kept fix for both training mechanisms. We reveal clasfses
financial performance for the companies in the telecommunication sectar base
profitability, liquidity, solvency and efficiency financial ratios. These a#ite sug-
gested in Lehtinen’s (1996) study of the reliability and validity of financitibsa
in international comparisons.

3 Financial performance classification models

In this section we present our two approaches for financial perforenelassifi-
cations. Firstly, we describe the empirical procedure for determining the ANN
architecture. Then, we present the two ANN training mechanisms. Theigene
classification model based on neural approaches is depicted in Figure 1.

Usually, when constructing classification models, the first step is to separate
the data into trainingTR) and test TS sets. We are concerned with decisions
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INPUT DATA

Data Preprocessing

{

Determine the ANN Architecture

v

ANN Training & Testing

OUTPUT MODEL

Figure 1: ANN generic classification model

regarding preprocessing of the data (what method of standardizatian method

of removing the outliers, if any). In case the class variable is missing, asrin ou
case, a clustering method could be applied to build this variable. The setsgnd s
consists of selecting the proper ANN architecture. This step is concevitled
determining the proper number of hidden layers, and the right numbeucdmein
each hidden layer. Also, here we decide how the class variable shootititied.

In other words, how many neurons are necessary on the output lasepresent
the class variable? The last step, ANN training, consists of specific tapkesding

on the training mechanism used.

3.1 Data Preprocessing

Next, we present the steps undertaken to create the training and tesirsibts f
classification models, which we generically call data preprocessing steps:

1. In order to ease the training and to avoid the algorithms placing too much
emphasis on extreme values, we removed far outliers and outliers from the
data. This has been done by calculating the quartiles for each variable. If
we denote witH the lower quartile, withm the median and witli the upper
quartile of variable, then the far outliersf§), outliers ) and anomalies)
for that variable belong to the following intervals:

fo € (—o0,l —3d) U (u+ 3d,+00)
o€l —3d,1—1.5d) U (u+1.5d,u+3d]
a€[l—15d,l—d)U(u+d,u+ 1.5d

whered = u - | is the distance from the upper quartile to the lower. Once we
have detected the far outliers and the outliers of each variable we have two



alternatives: to discard a sample that has at least one outlier value oipto kee
it by taking the peak(s) off. We chose the later alternative.

2. Regarding standardization three approaches were undertakenvasnto
keep the data un-standardized (“no preprocessing”), the secatbwer-
malize data to zero mean and unit standard deviation (“normalization”) and
the third was to divide the data by the maximum of absolute values (“maxi-
mum of absolute values”).

3. A clustering technique was applied to build the class variable. We hade use
the fuzzy C-means clustering algorithm (Bezdek, 1984) to build the clusters
and, consequently, the class variable. The number of clusters is a parame
of our models. It was set to 7 as this was the proper number of classes
reported in our previous studies (Costea and Eklund, 2003).

4. In order to allow the ANN to equally learn the patterns within each cluster
we chose an equal number of observations for each cluster.

5. Finally, we split the data into aproximately 90% for training and the remain-
der for testing.

As was described above, we reduce as much as possible the subjectoetgin
mining the class variable by applying directly FCM clustering algorithm. (Alcaraz
and Costea, 2004) compared a modified version of FCM algorithm with normal
FCM and SOM clustering. The modified FCM algorithm outperformed both the
normal FCM and the SOM with respect to pattern classification. In this stody, n
mal FCM was chosen for practical implementation reasons. We createddbr e
financial ratio a linguistic variable that can help us in characterizing the chuste
Linguistic variables are quantitative fuzzy variables whose states arg fuzm-
bers that represent linguistic terms (Klir and Yuan, 1995). Alcaraz avste@
(2004) model the seven financial ratios with the help of seven linguistichlasa
using five linguistic termsvery low(VL), low (L), averaggA), high (H), very high
(VH). Table 2 shows the characterization of the seven clusters for #héstecom
dataset without preprocessing the data (first preprocessing ahjproa

We considered that one linguistic term characterizes one cluster if itseise
more thard0 %out of total number of observations for that cluster. It seems that
Receivables Turnover does not have any discriminatory power ansiaggcept
for one cluster. By comparing the clusters we can easily label them as dpabalgy
bad, worst, etc. depending on their linguistic terms.

3.2 Empirical procedure for determining the ANN architecture

Once the data is ready to be trained, we need to perform one more prelirsiegry

to find a suitable architecture for the ANN. Choosing the number of hiddemday
and the number of neurons in each hidden layer is not a straight-fotasikdThe
choices of these numbers depend on input-output function complexityadNasd
Matei, 2003). It is well known that neural networks are very sensiédgarding

the dimensionality of the dataset. In general, a good model is obtained when we
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Table 2: Characterization of Clustérs

OM |ROTA| ROE |CurrentEto C| IC |Rec. T| Order
Cluster1 VL | VL |VL&L - A&H |VL&L - Bad
Cluster2 A A | A&H - A A - |Average
Cluster 3VL&L | VL | VL - |VL&L | L - Worst
Cluster4 H H VH VL A A A Good
Cluster5 A A | A&H H H VH - Good
Clusterg§ L L A L L L - Bad
Cluster 1 VH VH H VH VH VH - Best

®Alcaraz and Costea (2004)

have 10 times more training samples than the number of weights. We performed a
number of experiments for ANN architectures with one and two hidden layers to
see what the appropriate number of hidden layers is. Almost in everyaras&N

with two hidden layers performed better in terms of training mean square @feor

did not take into consideration three hidden layer cases due to the nunizesesf

per weights ratio-restriction.

We used the sigmoid and linear activation functions for the hidden and out-
put layers, respectively. Regarding the training algorithms, they fall inbonbain
categories: heuristic techniques (momentum, variable learning rate) andiniume
cal optimization techniques (conjugate gradient, Levenberg-Marquavdtjous
comparative studies, on different problems, were initiated in order tolesttabe
optimal algorithm (Demuth and Beale, 2001; Nastac and Koskivaara)2883&
general conclusion, it is difficult to know which training algorithm will progithe
best (fastest) result for a given problem. A smart choice depends oy paaam-
eters of the ANN involved, the data set, the error goal, and whether therketw
is being used for pattern recognition (classification) or function apprdioma
Statistically speaking, it seems that numerical optimization techniques present n
merous advantages. Analyzing the algorithms that fall into this class, wevebise
that the Scaled Conjugate Gradient (SCG) algorithm (Moller, 1993) pesfavell
over a wide variety of problems, including the experimental dataset pgesken
this paper. Even if SCG is not the fastest algorithm (as LevenbergMedtjin
some situations), the great advantage is that this technique works vergrefii
for networks with a large number of weights. The SCG is something of a cempro
mise: it does not require large computational memory, and yet, it still has@ goo
convergence and is very robust. Furthermore, we always apply thyeséapping
method yalidation stop during the training process, in order to avoid the over-
fitting phenomenon. And it is well known that for early stopping, one must be
careful not to use an algorithm that converges too rapidly. The SCGlisuited
for the validation stop method.



In our experiments we have kept all parameters of the ANN constant étre le
ing algorithm - Scale Conjugate Gradient, the performance goal of thdfidgss
the maximum number of epochs), except the numbers of neurons in thenhidde
layers (N Hy, N H>).

The procedure used to determine the proper value¥ fd; and N H, consists
of iteratively performing the following experiment:

e Randomly split the training seR) into two parts: one for the effective
training (TR@ and the other for validatiorMAL). In order to avoid the over-
fitting phenomenon we have applied the early stopping methaliiation
stop during the training process.

e Train the network for different values ¥ H; and N H,. For each com-
bination of N H; and N Hy, we performed 4 random initializations of the
weights. N H, and N H, take values in the vicinity of the geometric mean
(Basheer and Hajmeer, 2000) of the number of inpNd)(and outputs
(N O), respectively.

VNI-NO—-2<NH; <VNI-NO+2

E.g.NI=7,NO =7= NH;,NHy = 5,9 . In this case, in total 5*5*4
=100 trainings are performed for each experiment.

e Save the best ANN architecture in terms of mean square error of the training
set M SErgr.) with the supplementary conditiond/ SEy 41, < (6/5) *
M S Erg.. This supplementary condition was imposed so that the validation
error is not too far from the training error, thus, avoiding over-fittingtfe
test set.

We ran 3 experiments like the one described above (3*100 = 300 trainiogs)
determine the proper values fdrH; and N H,. See the flowchart of the procedure
in the Appendix.

Regarding the number of output neurons, we have two alternatives agien
plying ANNs for pattern classification. The first alternative, which is the tmos
commonly used, is to have as many output neurons as the number of clEsses.
second alternative is to have just one neuron in the output layer, whichakel
the different classes as values. We chose the first approach intordiéow the
network to better disseminate the input space.

After we performed the 3 experiments we obtained the best ANN architecture
and the set of final weights (the solution) that corresponds to this archigedtu
the next two sections we will present two training mechanisms usesfitethis
solution.

3.3 RT-based ANN training

Once we determine the ANN architecture (with the corresponding set ohtggig
the next step is to train the network. The first training mechanism is a retraining
based ANN (Nastac and Costea, 2004), briefly described next:



e Start with a network with an initial set of weights from the previous step
(Determining ANN architecture) as the reference network;

e Runanumber of. experiments to improve the ANN classification accuracy.
After each experiment we save the best set of weights (the solution) in terms
of classification accuracy. Each experiment consists of:

— Reduction of the weights of the current best network with successive
values of scaling factoy (v =0.1,0.2, ...,0.9).

x Retrain the ANN with the new weights and obtain 9 accuracy rates.

— Choose the best network from the above 9 experiments in terms of
classification accuracy.

— Compare the accuracy rate of the current network with that obtained
in the previous step and save the best one for the next experiment as
current the best network.

Depending on the splitting of the training s&R) in the effective training set
(TR and validation set\(AL) we have 3 types of retraining mechanisms: one
whereTReand VAL are common for all the experiments, another whHEReand
VAL are different for each experiment, but the same for all 9 reduction wgigh
trainings (second step of the experiment), and finally, whi&eandVAL are dis-
tinct for each training. We have 4 types of accuracy rates: trainingracguate
(ACRrR.), validation accuracy rated(C' Ry 41), total training (effective training
+ validation) accuracy rateA(C' Ryr) and test accuracy ratedC Rpg). Corre-
spondingly, we calculate 4 mean square errosS Ergre, MSEy a1, MSETR,
and M SErg. In total 5 experiments were conducted resulting in 5*9 = 45 new
trainings for each type of retraining mechanism.

3.4 GA-based ANN training

The second ANN training mechanism useddéinethe solution is based on the
principle of natural evolution. A population of solutions is provided, anéhiiial-
ization, selection and reproduction mechanisms, near-optimal solutioresated.

Unlike the traditional gradient-descent training mechanisms, GA-based ANN
training starts with a population of solutions. A solution is the set of ANN weights
after training represented as a vector. All solutions (chromosomes) temijih
each other to enter the new population. They are evaluated based onebigveb
function.

3.4.1 Initialization and fithess evaluation

The population size is set 1S = 20. Several authors suggested that this value is
good enough for any grade of problem complexity (Dorsey and Magé5). The

first chromosome of the population is the set of weights obtained when deilggmin
the ANN architecture. The other 19 chromosomes are generated by tréneing
ANN with the previously obtained architecture. Afterwards, the first geien of

the algorithm may begin. The number of generations is related with the empirical
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formula suggested in Ankenbrandt (1991). The number of generdtioasnon-
binary GA without mutation is given by the formul&,.,, = In[(n — 1)?]/In(r)
wheren is the population size and is the average fithess of candidates with a
particular gene value over the average fitness of all other candidates.

Each chromosome is evaluated using the accuracy rate for the training set
(ACRrR).

3.4.2 Selection

Firstly, the elitism technique is applied in the sense that the Nggt. chromo-
somes in terms ofAC Ry are inserted into the new population. The rest of
the chromosome2( — N.;;;.) are selected based on the probability of selection

20
(roulette wheeprocedure) for each chromosom@:= ACRrr,/ > ACRrp,

The higher the probability?; for a chromosome is, the hig;her its chance of
being drawn into the new population. This procedure tries to simulate thegsroce
of natural selection or survival of the fittest.

Next, 80% (probability of crossover. = 0.8 ) of the chromosomes obtained
previously are randomly selected for mating.

3.4.3 Reproduction

The selected chromosomes are randomly paired and recombined to praduce
solutions. There are two reproduction operatamssoverand mutation With
the first the mates are recombined and new born solutions inherit informedion f
both parents. With the second operator new parts of the search spaaglored
and, consequently, we expect that new information is introduced into {n&aso
tion. In this study we have applied four types of crossover: arithmeticpoird,
multi-point and uniform crossover. Let us denote witithe length of the chromo-
somes and withP;, and P, two parent-chromosomes:

P =g11,912, ..., 911
Py = go1,922,...,92L

One-point crossover
For each pair of chromosomes we generate a random intég&rec {1, L}. The
two new born children are constructed as follows:

C1=911,912, -, 91X, 92, X 41, - - - » 92L
Co = 921,922+ - - -1 92X, 1, X+1, - - - » J1L

Multi-point crossover

We split the chromosomes im parts ¢ < 5). We generate randomly the num-
ber of splitting points:. Then,n distinct random numbersX(, Xo, ..., X,) are
generated withX; € {1, L} andX; < Xs < ... < X,,. The two children are:

C1 = g11, 912, - - - y91X1,92, X1+15 -+, 92X5, 91, Xo+15- - -5 91X3592,X3+15- - -
02 = 0§21,922,- - - 792X1791,X1+17 s 7ng2592,x2+17 ... 792X37917I3+15 “ee
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Arithmetic crossover
Firstly, we split the parent-chromosomessinparts as we did for multi-point
crossover. The children’ genes are convex combinations of thetpagemes.

ax g+ (1 —a) * gy, i=1,X1
Oy = (I-a)*xgiitaxgy, i=X1+1,X
a*gu—i—(l—a)*ggi, i:X2+1,X3
(1 — ) * g1 + o * g2, i=1,X;
Oy — axgy+ (1 —a)xgey, i=X1+1,X
(1—0[)*912‘4-0(*921‘7 1=Xo+1, X3

wherea € [0, 1] is a random number and is generated for each chromosome-pair.

Uniform crossover
For each pair of genes of the parent-chromosomes we generate arandtber
a € [0,1]. If a < 0.5 the gene of the first parent goes to the first child and the gene
of the second parent goes to the second child. Otherwise, the genegeased.

The children-chromosomes aaddedto the population. The size of the pop-
ulation becomes?S’ > PS. Next we apply the mutation operator for all the
chromosomes iS’. We used only uniform mutation.

Uniform mutation

The probability of mutation is set t6,,, = 0.01 which means that approximately

1% of the genes will mutate for each chromosome. A [0, 1] is generated

for each gene of each chromosome and iK P,,, the new gene is randomly
generated within the variable domain. Otherwise, the gene remains the same. If
at least one gene is changed then the new chromosome is added to theigopula
obtainingPS” > PS’ > PS.

The final step in constructing the new population is to reduce it in size to 20 chr
mosomes. We select fro?S” the best 20 chromosomes in terms A€ Rrr
satisfying the condition that one chromosome can have no morerthanim du-
plicates. We use the mutation operator to generate more chromosomes in the case
that the number of best chromosomes which satisfy the above conditiontisdess

20.

As a summary, excluding the crossover, the parameters of our GA models ar
as follows: number of generation&/{.,,), number of elite chromosomes/{;;.),
maximum number of splitting pointsr{ax_split), probability of crossoverit.),
probability of mutation £,,), and maximum number of duplicates for the chromo-
somes fnax_lim).

4 Research questions and derived hypotheses

The main advantages of neural approaches for classification overatfigamnal
ones are: ANNs are free of any distributional assumptions, are saivapprox-

10



imators, no problems with intercorrelated data, and they provide a mappiog fun
tion from the input to the outputs without any a priori knowledge about thetfan

form (function approximation capability). The most popular ANN learnindntec
nigue in the literature is back-propagation (BP), which is “an approximatpest
descendent algorithm”(Hagaat al., 1996) for feedforward neural networks. BP
has several limitations, the most important one being its scalability: as the size
of the training problem increases, the training time increases non-lineanhd{P
harkar and Roger, 2004). When the basic BP is applied to a practiddeprpthe
training may take a relatively long time (Hagehal,, 1996). Among other limi-
tations: the difficulty of the training data itself, handling the outliers, and redluc
power of generalization due to large solution space. The cause for tHen#s-

tion could be the fact that the BP algorithm is likely to quickly get stuck in a local
optimum, which means that the algorithm depends strongly on the initial starting
values. As we described in section 3.2 many techniques have been gudpos
decrease the learning time of BP and to ignore shallow local minimum. SCG was
used for ANN training throughout this study.

The difference between BP/BP-variants and GA-based ANN training tech
nigues is that BPs start from one solution and try to improve it based on some
error minimization technique, while GAs start with a population of solutions and
through some initialization, reproduction and recombination methods tries to reac
an optimal or near-optimal (heuristic) solution. GAs are known as hill climb-
ing techniques, a capability that arises from the convex combinagigthietic
crossover operatgrof two parents on the opposite sides of a hill. Moreover, the
possible risk of reaching a local optimum is avoided by the GA since it creates
new solutions by altering some elements of the existing omesation operatay,
hence, widening the search space.

In this study we analyze the implications of three different factors (prepro
cessing method, data distribution and training mechanism) and their combinations
on the classification performance of neural networks. We use threeogessing
approaches: no preprocessing, normalization and division with the maxabum
solute values. We study the implications of input data distributions by using five
datasets with different distributions: the real data, uniform, normal, logistic a
Laplace distributions. We test two training mechanisms: one based on a tradition
gradient-descent technique improved by a retraining procedure dRd the other
on genetic algorithms (GA). Moreover, we analyze the influence of thesoxer
operator on the predictive performance of genetic algorithms.

We compared our research questions with what was previously reportiss
literature (e.g.: Pendharkar and Rodger, 2004). However ther@are isnportant
differences in the assumptions in our study compared with the others:

e The main difference is that here GA and gradient descent methodssartous
refinethe classification accuracy of an already obtained ANN-based solution
for the classification problem. Both the GA and the RT-based ANNSs start
from a solution provided when determining the ANN architecture and they
try to refineit. All other studies compared GA and gradient-descent methods
starting from random solutions. We expect that the GA-based ANN will
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outperform the RT-based ANN in refining what the ANN already learned
due to the GA's better searching capabilities.

e The second main difference is the type of the classification problem itself.
Here we are interested in separating the input space into more than 2 parts
(e.g. 7 financial performance classes) providing more insights in the data.

e We are interested if the preprocessing approach and the distribution of the
data have any impact on the classifiers’ predictive performances.

e Here non-parametric statistical tests are used to validate the hypotheses.
Only t-tests or ANOVA were used in the other studies, but no evidence-of sa
isfaction of the assumptions was provided. We performed a 3-way ANOVA
to strengthen the results of the non-parametric tests.

e Also four different crossover operators are used in order to finetlér this
operator has an influence on the GA's predictive performance. Welintso
one crossover operator - multi-point crossover - that was not founther
similar studies.

The first difference has an impact on all the hypotheses that we formual#tes
study since, here, there is a different problem. The GA and RT-babisAmM-
prove an already existing solution and do not construct it from scratobir be-
havior depends on how that solution was obtained (using what kind of ahetho

The main hypothesis of our paper is formulated as follows:

H1. The GA-based ANN will outperform the RT-based ANN both in train-
ing and testing on refining the solution obtained when determining theANN
architecture.

Additional hypotheses:

H2. The Crossover operator will have an influence on GA-based Aalrig
and testing performances.

H3. Data preprocessing will have an influence on both RT and GA-bakidd
training and testing performances.

H4. Data distribution will have an influence on both RT and GA-based ANN
training and testing performances.

5 Datasets

Telecommunications sector dataset.We used financial data about worldwide
telecom companies. There are 88 companies structured in five group&2US
Europe except Scandinavian companies (20), Asia (20), Scandi(¥aand
Canada (6). The time span is 1995-2001. For each company and foyeac
seven financial ratios were collected with the Internet as the primaryesolinese
ratios are suggested in Lehtinen’s (1996) study of financial ratios’hitiaand
validity in international comparisons. The ratios measure four differgrecis of
companies’ financial performance: profitability - 3 ratios (operating margtarn
on total assets, and return on equity), liquidity - 1 ratio (current ratio rectias-
sets / current liabilities), solvency - 2 ratios (equity to capital, interestrege,
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and efficiency - 1 ratio (receivables turnover) (Karlsson, 2002)otal the dataset
consists of 651 rows taken from companies’ financial statements in thaiabnn
reports: 88 companies * 7 years = 616 rows. 35 more rows were obtaittethe
averages for the five groups (5 groups * 7 years = 35 rows). O6bbfrows 21
were discarded due to lack of data for calculating some ratios resulting iala fin
dataset of 630 rows.

Fictive datasets.In order to test the impact of data distribution on the predictive
performances of the classifiers we generated four datasets with difftistribu-
tions: uniform, normal, logistic and Laplace distributions. We estimated the distri-
butions’ parameters using the means and variances of the telecom datiaset r

6 Experiments

In all our experiments we applied the following methodological steps:

1. For the RT-based ANN we repeated the procedure (described secidn
3.3) 30 times, obtaining 4 vectors (30 elements in size) of different accu-
racy rates for each retraining mechanism type: a vector of effectiire tra
ing accuracy ratesRT .V EC_ACRrg.), a vector of validation accuracy
rates RT_V EC_ACRy 41), a vector of total training (effective training +
validation) accuracy rateRI’_'V EC_ACRrg) and a vector of test accu-
racy rates RT_V EC_ACRypg). Correspondingly, we obtained 4 vectors
with the mean square error®T VEC _MSErge, RT VEC_MSEy ar,
RT VEC_MSErgr, andRT_VEC_MSErs.

2. For the GA-based ANN we applied the procedure (described in subse
tion 3.4) 10 times for each type of crossover (one-point - GAO, multi-point
- GAM, arithmetic - GAA, and uniform - GAU). The other GA parame-
ters used were as followsNy., = 1000, Nejjre = 3, max_split = 5,
P. = 0.8, P, = 0.01 andmaz_lim = 1. We obtained 2 vectors (10
elements in size) for each type of crossover operator. a vector of train-
ing accuracy rates{A_V EC_AC Rrgr) and a vector of test accuracy rates
(GA_VEC_ACR7rg) and, correspondingly, 2 vectors with mean square er-
rors:GA_-VEC_MSErgr, andGA_.VEC_MSFErgs.

3. We used statistical tests to compare the vectors of the two training mecha-
nisms in order to validate our hypotheses.

The following experiments differ in two perspectives: the hypothesis tlegtttly
to validate and/or the type of statistical test used (non-parametric vs. ga@me

Experiment 1. In the first experiment we try to validate the first hypothesis us-
ing non-parametric tests (Siegel and Castellan, 1988). We used theataaéd
(the original telecom data) without preprocessing the data (first prepsing ap-
proach). After we separated the data in training (90%) and test (108%)se
generated the ANN architecture. Then, in order to refine our solutiomppked

the two training mechanisms (RT-based ANN and GA-based ANN). We applied
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the methodological steps described above and we compared statistically the re
sults’ vectors of both training mechanisms in order to validate our first hggah
(Tables 3 and 4). We used Mann-Whitney-Wilcoxon and Kolmogorov-Smirn
non-parametric tests to avoid the assumptions of the parametric tests.

Table 3: Technique influence on training

GAO | GAO | GAO | GAM | GAM | GAM | GAA | GAA | GAA | GAU | GAU | GAU

RT1 RT2 RT3 RT1 RT2 RT3 RT1 RT2 RT3 RT1 RT2 RT3
Mann-Whitney U 10.000 | 30.000 | 20.000 | 10.000 | 30.000 | 20.000 | 10.000 | 29.500 | 20.000 | 10.000 | 28.500 | 20.000
Wilcoxon W 475.000| 495.000| 485.000 475.000| 495.000 485.000| 475.000| 494.500| 485.000 475.000| 493.500| 485.000
z (5.628) | (4.555) | (5.069) | (5.582) | (4.521) | (5.029) | (5.573) | (4.534) | (5.022) | (5.581) | (4.578) | (5.029)
Asymp. Sig. (2-| .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
tailed)
Exact Sig. [2*(1-| .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000
tailed Sig.)]
Kolmogorov- 2.647 2.465 2.556 2.647 2.465 2.556 2.647 2.465 2.556 2.647 2.465 2.556
Smirnov Z
Asymp. Sig. (2-| .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000
tailed)

Table 4: Technique influence on testing

GAO | GAO | GAO | GAM | GAM | GAM | GAA | GAA | GAA | GAU | GAU | GAU

RT1 RT2 RT3 RT1 RT2 RT3 RT1 RT2 RT3 RT1 RT2 RT3
Mann-Whitney U 39.000 | 57.000 | 48.000 | 24.500 | 43.500 | 34.000 | 52.500 | 69.500 | 62.000 | 23.500 | 41.500 | 33.000
Wilcoxon W 504.000| 522.000| 513.000| 489.500| 508.500| 499.000| 517.500| 534.500| 527.000| 488.500| 506.500| 498.000
A (4.777) | (3.716) | (4.219) | (5.205) | (4.139) | (4.648) | (4.369) | (3.313) | (3.766) | (5.231) | (4.207) | (4.676)
Asymp. Sig. (2-| .000 .000 .000 .000 .000 .000 .000 .001 .000 .000 .000 .000
tailed)
Exact Sig. [2*(1-| .000 | .003 | .001 | .000 | .000 | .000 | .001 | .010 | .005 | .000 | .000 | .000
tailed Sig.)]
Kolmogorov- 2.100 1.917 2.008 2.373 2.191 2.282 1.826 1.643 1.734 2.373 2.191 2.282
Smirnov Z
Asymp. Sig. (2-| .000 .001 .001 .000 .000 .000 .003 .009 .005 .000 .000 .000

tailed)

As Table 4 shows (all significance coefficients = .000) all the pairs afi-acc
racy rates vectors are statistically different. The direction of the difteréngiven
by the statistics calculated. Mann-Whitn&y statistic corresponds to the better
group in the sense that it represents the smaller number of cases with teigker
between groups. The Wilcoxdi statistic is simply the smaller of the two rank
sums displayed for each group in the rank table. The Kolmogorov-Smizriest
statistic is a function of the combined sample size and the largest absolute differ
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ence between the two cumulative distribution functions of the two groupssezon
quently, by analyzing both the calculated statistics and rank table we camaeter
the direction of the difference between the groups. For this particulaariement
the rank table shows that the accuracy rates are always higher in thefcas-
based ANN training than for RT-based ANN, thus, validating first hypsithe
As for training, GA-based ANN training models performed better than gn&die

descent-like models in testing for all possible GA-RT technique-technigubieo

nations.

Experiment 2. Here we try to validate our second hypothesis that crossover oper-
ator has influence on both training and testing performances using mamdgiaic
tests (Table 5). As for the first experiment we used the real datasebritiieal

telecom data) without preprocessing the data (first preprocessingeagby.

Table 5: The influence of crossover operator on training and testing

tailed)

GAO | GAO | GAO | GAM | GAM | GAA | GAO | GAO | GAO | GAM | GAM | GAA
GAM | GAA | GAU | GAA | GAU | GAU | GAM | GAA | GAU | GAA | GAU | GAU
TR TR TR TR TR TR TS TS TS TS TS TS
Mann-Whitney U 35.000 | 40.000 | 45.000 | 45.000 | 32.000 | 36.500 | 45.000 | 47.000 | 41.000 | 49.000 | 45.500 | 44.500
Wilcoxon W 90.000 | 95.000 | 100.000| 100.000| 87.000 | 91.500 | 100.000| 102.000| 96.000 | 104.000| 100.500| 99.500
Z (1.826) | (1.082) | (.608) | (.445) | (1.679) | (1.201) | (.610) | (.269) | (976) | (094) | (548) | (.491)
Asymp. Sig. (2-| .068 | .279 | 543 | .656 | .093 | .230 | .542 | .788 | .329 | .925 | .584 | .624
tailed)
Exact Sig. [2*(1-| .280 | .481 | .739 | .739 | .190 | .315 | .739 | .853 | .529 | 971 | .739 | .684
tailed Sig.)]
Kolmogorov- 671 671 447 224 447 447 224 447 224 447 224 447
Smirnov Z
Asymp. Sig. (2-| .759 | .759 | .998 | 1.000| .988 | .988 | 1.000| .988 | 1.000| .988 | 1.000| .988

We found a very weak support: two pair-vectors differ significantly kval

of significance of 0.1.GAO vs. GAM andGAM vs. GAU, both in the case

of training phase. Also, we found no evidence to differentiate betweeththe
retraining mechanisms.

Experiment 3. Our third experiment validates third hypothesis using non-parametric
tests. We preprocessed the real data using normalization and comparesiilte

with those obtained for un-preprocessed data (Table 6). For eachreatioh of
the 2 preprocessing approaches and the 7 training techniques (4 sed-BaIN
and 3 RT-based ANN) we calculated means for training and testing agaatas.

The preprocessing method had an impact on the both training mechanisms’
performances. However, we found greater impact on the perfornfant@ining
(U statistic = 0.000) than for testing/(= 6.000). Also, there is greater confidence
on the results obtained for training (level of significance = 0.002) thate&img

(level of significance = 0.02). Nevertheless, we obtained higher acguates
when we preprocessed the data using normalization than the case whsedyeou
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Table 6: Preprocessing method influence

PR1-PR2 (TR)| PR1-PR2 (TS)
Mann-Whitney U .000 6.000
Wilcoxon W 28.000 34.000
Z (3.130) (2.380)
Asymp. Sig. (2-tailed) .002 .017
Exact Sig. [2*(1-tailed Sig.)] .001 .017
Kolmogorov-Smirnov Z 1.871 1.604
Asymp. Sig. (2-tailed) .002 .012

PR1 —“no preprocessing” PR2 — “normalization”

preprocessing for both training and testing.

Experiment 4. To test our fourth hypothesis we applied the methodology on the
fictive datasets and compare the results with those for the real data. lln7Tale
present the accuracy rates for training and testing samples. For thisnegpewe
used no preprocessing of data. We calculated the means of accuexyeaators

for each technique-distribution combination.

Table 7: Accuracy rates for distribution pairs’ comparison (no pregssiog)

REAL UNIF | NORM | LOG LAP REAL UNIF NORM | LOG LAP

GAO 93.02 | 95.84 | 96.39 | 94.82 | 90.09 | 85.24 | 88.57 | 89.46 | 81.19 | 80.41

GAM 92.86 | 95.84 | 96.60 | 94.99 | 90.00 | 8548 | 87.86 | 89.64 | 81.43 | 81.02

GAA 92.92 | 95.78 | 96.49 | 94.80 | 90.16 85.48 | 88.93 | 90.00 | 81.43 | 81.22

GAU 93.30 | 95.76 | 96.43 | 94.82 | 90.19 8595 | 88.75 | 89.82 | 81.19 | 81.02

RT1 92.22 94.92 95.48 92.70 88.12 83.49 89.11 89.46 79.92 78.10

RT2 92.43 95.04 95.45 92.70 88.06 83.97 88.57 89.52 79.92 77.76

RT3 92.41 94.84 95.52 92.53 88.06 83.81 89.05 89.52 79.29 77.89

We applied the non-parametric tests to check the validity of our fourth hypoth-
esis (Tables 8 and 9). The hypothesis is strongly supported both foingand
testing cases. There is a statistical difference in performance betwedista#
bution pairs, except three: real-logistic and uniform-normal pairs in tke c&
training and logistic-Laplace pair in the case of testing. The performanee ofd
the distributions fit our expectations; the best accuracy rates were ethfainnor-
mally distributed data, followed by data distributed uniformly. The third best per
formances were achieved for the real dataset which overcame logidtlcagtace
distributions in this order.
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Table 8: Distribution influence on training

REAL | REAL | REAL | REAL UNIF UNIF UNIF | NORM | NORM | LOG
UNIF | NORM | LOG LAP NORM | LOG LAP LOG LAP LAP

Mann-Whitney U .000 .000 12.000 .000 12.000 2.000 .000 .000 .000 .000
Wilcoxon W 28.000 28.000 40.000 28.000 40.000 30.000 28.000 28.000 28.000 28.000
z (3.134) (3.130) (1.599) (3.134) (1.599) (2.881) (3.137) (3.134) (3.134) (3.137)

Asymp. Sig. (2-| .002 .002 .110 .002 110 .004 .002 .002 .002 .002
tailed)

Exact Sig. [2*(1- .001 .001 .128 .001 128 .002 .001 .001 .001 .001
tailed Sig.)]

Kolmogorov- 1.871 1.871 1.069 1.871 1.069 1.604 1.871 1.871 1.871 1.871
Smirnov Z

Asymp. Sig. (2- .002 .002 .203 .002 .203 .012 .002 .002 .002 .002
tailed)

Table 9: Distribution influence on testing

REAL | REAL | REAL | REAL UNIF UNIF UNIF | NORM | NORM | LOG
UNIF | NORM | LOG LAP NORM | LOG LAP LOG LAP LAP

Mann-Whitney U .000 .000 .000 .000 .000 .000 .000 .000 .000 14.000
Wilcoxon W 28.000 28.000 28.000 28.000 28.000 28.000 28.000 28.000 28.000 42.000
z (3.134) (3.137) (3.144) (3.134) (3.134) (3.141) (3.130) (3.144) (3.134) (1.346)

Asymp. Sig. (2-| .002 .002 .002 .002 .002 .002 .002 .002 .002 178
tailed)

Exact Sig. [2*(1- .001 .001 .001 .001 .001 .001 .001 .001 .001 .209
tailed Sig.)]

Kolmogorov- 1.871 1.871 1.871 1.871 1.871 1.871 1.871 1.871 1.871 802
Smirnov Z

Asymp. Sig. (2- .002 .002 .002 .002 .002 .002 .002 .002 .002 541
tailed)
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Experiment 5. In the first 4 experiments, when we validate our hypotheses, we re-
lied exclusively on non-parametric tests. We argued that the parametri¢litessts
t-test, univariateANOV A etc.) require the analyzed vectors to satisfy different
assumptions. For instance when applyid/ OV A analysis one should check
the following assumptions: observations are independent, the sample data ha
normal distribution, and scores in different groups have homogeneuianues.

The first assumption is satisfied since all other factors besides prepiogedis-
tribution and training mechanism that could influence the classifiers’ pe&ioces

are fixed. For the second assumption we argue #TdDV A is robust against
normality assumptions if the sample size is large. Regarding the third assump-
tion, SPSS (the software that we used) incorporates the case when the variances
between groups are assumed to be non-equal.

In order to give more strength to our results we finally performed a 3-way
ANOYV A analysis having as grouping variables: the technique usddX, GAM,
GAA, GAU, RTy, RT;,, and RT3), the preprocessing metho® R, - “no pre-
processing”,PRs - “normalization”, PR3 - “dividing the variables by the max-
imum absolute values”), the data distributicRfAL, UNIF, NORM, LOG,
and LAP). With the third preprocessing method we obtained values between -1
and +1. We used the vectors’ means to fill in our accuracy rates datéesTHD
and 11 include the data we used to perform 3-wdyOV A.

Table 10: Accuracy rates for training

TECHNIQUE

PREPROC DISTRIB GA RT

GAO | GAM | GAA | GAU RT1 RT2 RT3

REAL 93.02 | 92.86 | 92.92 | 93.30 | 92.22 | 92.43 | 92.41
UNIF 95.84 | 95.84 | 95.78 | 95.76 | 94.92 | 95.04 | 94.84
Un-preprocessed NORM 96.39 | 96.60 | 96.49 | 96.43 | 95.48 | 95.45 | 95.52
LOG 94.82 | 94.99 | 94.80 | 94.82 | 92.70 | 92.70 | 92.53
LAP 90.09 | 90.00 | 90.16 | 90.19 | 88.12 | 88.06 | 88.06
REAL 99.43 | 99.49 | 99.46 | 99.33 | 99.11 | 99.10 | 99.08
UNIF 99.79 | 99.81 | 99.79 | 99.79 | 99.80 | 99.80 | 99.80
Normalization NORM 97.90 | 97.90 | 97.90 | 97.90 | 98.07 | 98.03 | 97.97
LOG 99.11 | 99.06 | 98.98 | 98.98 | 98.95| 98.98 | 98.96
LAP 98.08 | 98.13 | 98.01 | 98.10 | 98.02 | 98.01 | 98.06
REAL 99.68 | 99.68 | 99.68 | 99.68 | 99.69 | 99.69 | 99.69

Max of UNIF 97.79 | 97.77 | 97.73 | 97.84 | 97.77 | 97.77 | 97.89
Absolute NORM 96.91 | 97.00 | 97.02 | 97.02 | 96.93 | 96.90 | 96.91
Values LOG 96.50 | 96.52 | 96.52 | 96.52 | 96.68 | 96.59 | 96.60

LAP 95.64 | 95.83 | 95.76 | 95.81 | 95.26 | 95.47 | 95.23

Next, the results of 3-wayl NOV A for both training and test accuracy rates
are shown in Tables 12 and 13.
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Table 11: Accuracy rates for testing

TECHNIQUE
PREPROC DISTRIB GA RT
GAO | GAM | GAA | GAU RT1 RT2 RT3
REAL 85.24 | 85.48 | 85.48 | 85.95| 83.49 | 83.97 | 93.81
UNIF 88.57 | 87.86 | 88.93 | 88.75 | 89.11 | 88.57 | 89.05
Un-preprocessed NORM 89.46 | 89.64 | 90.00 | 89.82 | 89.46 | 89.52 | 89.52
LOG 81.19 | 81.43 | 81.43| 81.19 | 79.92 | 79.92 | 79.29
LAP 80.41 | 81.02 | 81.22 | 81.02 | 78.10 | 77.76 | 77.89
REAL 85.71 | 86.19 | 85.71 | 85.71 | 85.79 | 85.63 | 85.79
UNIF 92.86 | 93.04 | 92.86 | 92.86 | 92.86 | 92.86 | 92.92
Normalization NORM 96.43 | 96.43 | 96.43 | 96.43 | 96.49 | 96.19 | 96.43
LOG 88.10 | 88.10 | 88.10 | 88.10 | 88.10 | 88.25 | 88.25
LAP 92.25| 9245 | 91.84 | 92.25| 91.36 | 91.50 | 91.56
REAL 97.62 | 97.62 | 97.62 | 97.62 | 97.54 | 97.70 | 97.62
Max of UNIF 95.00 | 95.36 | 95.71 | 95.36 | 96.31 | 96.43 | 96.07
Absolute NORM 93.21 | 93.57 | 93.93 | 93.57 | 92.86 | 93.15 | 93.27
Values LOG 88.10 | 88.10 | 87.86 | 88.10 | 88.25 | 88.10 | 88.25
LAP 88.37 | 89.18 | 88.98 | 89.59 | 89.86 | 89.93 | 89.86
Table 12: 3-way ANOVA for training
Source Type lll Sum of | df Mean F Sig. Partial Eta
Squares Square Squared
Model 979340.512 30 | 32644.684 6322228.263 .000 1.000
PREPROC 540.706 2 270.353 | 52358.680 | .000 .999
DISTRIB 148.280 4 37.070 7179.276 | .000 .997
TECHNIQ 6.396 1 6.396 1238.708 | .000 .943
PREPROC * DISTRIB 138.900 8 17.362 3362.559 | .000 .997
PREPROC * TECHNIQ 9.486 2 4.743 918.554 .000 .961
DISTRIB * TECHNIQ 1.426 4 .356 69.036 .000 .786
PREPROC * DISTRIB * 2.574 8 .322 62.310 .000 .869
TECHNIQ
Error .387 75 .005
Total 979340.899 105
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Table 13: 3-way ANOVA for testing

Source Type lll Sum of | df Mean F Sig. Partial Eta
Squares Square Squared
Model 844172.942 | 30 | 28139.09| 506683.910 .000 1.000
PREPROC 1296.821 2 648.411 | 11675.541| .000 .997
DISTRIB 904.441 4 226.110 | 4071.431 | .000 .995
TECHNIQ 3.537 1 3.537 63.695 .000 459
PREPROC * DISTRIB 605.016 8 75.627 1361.771 | .000 .993
PREPROC * TECHNIQ 10.714 2 5.357 96.461 .000 720
DISTRIB * TECHNIQ 5.432 4 1.358 24.454 .000 .566
PREPROC * DISTRIB * 10.002 8 1.250 22.511 .000 .706
TECHNIQ
Error 4.165 75 .056
Total 844177.107 | 105

As the tables show all the factors are statistically significant. In other words
they have an individual and combined influence on both training and tesifgrp
mances. The last columpdrtial eta squareyireports the “practical” significance
of each term, based upon the ratio of the variation (sum of squares)radeddor
by the term, to the sum of the variation accounted for by the term and the varia-
tion left to error. Larger values gfartial eta squaredndicate a greater amount of
variation accounted for by the model term, to a maximum of 1. Here the individua
factors and their combinations, while statistically significant, have greattedfe
classifier accuracy.

In the next 3 tables we present the pairs’ comparison for the trainingrperf
mances. The third hypothesiBl3) is validated (Table 14) and “normalization”
is the best preprocessing approach, followed by “maximum absolutesVand
“no preprocessing” in this order. Concerning the fourth hypothé# the best
performance was obtained when data weoemally distributed (Table 15). The
next best distribution was that of the real data, followed by uniform, logésiit
Laplace. Our main hypothesibl{) is satisfied (Table 16), GA performing better
than RT inrefiningthe solution. However, the difference between accuracy rates is
not as obvious as it was for the "real” data from experiment 1. This iagxgble
since in later case (only "real” data) the starting solution has relatively l@u-ac
racy rates (80-90%) and it could have been easily improved while in thisriexp
ment (centralized data) we have some starting solutions with high accutasy ra
(95-98%) that would be hard to improve whatever would be the training mecha
nism used taefinethem. We find no evidence for our second hypothdas (all
crossover operators achieving comparable results.

In the case of pairs’ comparisons for testing performances we enca@usite-
ilar result. All the mean differences are statistically significant. Only the arfler
best performers has slightly changed: “maximum of absolute valuestrialza-
tion” - “no preprocessing” for the “preprocessing” factor, uniformormal - real -
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Table 14: Pairs’ comparison for “preprocessing” factor

95% Confidence

Interval for

Difference
() PREPROC| (J) PREPROG Mean Std. Error| Sig. Lower Upper
Difference (I-J) Bound Bound
1 2 (5.438)(*) .017 .000| (5.473) (5.404)
3 (3.933)(%) .017 .000| (3.967) (3.898)
2 1 5.438(*) .017 .000| 5.404 5.473
3 1.506(*) .017 .000| 1.471 1.540
3 1 3.933(%) .017 .000| 3.898 3.967
2 (1.506)(*) .017 .000| (1.540) (1.471)

1-“no preprocessing”, 2-“normalization”, 3-“maximum of absolute vaiue
(*) The mean difference is significant at the .05 level.

Laplace - logistic for the “distribution” factor. Once again, our main hypsithés
satisfied, GA performing better on test data as well.

7 Conclusions

In this study, we applied two different training mechanisms of an ANKefme

an initial solution for a classification problem. The initial solution (the ANN set
of weights) was obtained when determining the ANN architecture, which ejats k
fixed in the refining process for both training mechanisms. An empiricaleproc
dure to determine the proper ANN architecture was introduced. The twanigain
mechanisms are: a gradient-descent-like mechanism improved by a retaioing
cedure (RT) and a natural-evolution-based mechanism known as galgetithm
(GA). Depending on where the training and validation sets are generatbdwe
three RT-based training mechanisms and depending on the crossoraonopsed
we have four GA-based training mechanisms. Our main hypothesis stat€that
performs better than RT-based mechanism in refining the solution and iglgtron
supported by our experiments.

The other three hypotheses concern different factors that carahaaéluence
on the performance of the two training mechanisms: the crossover opéhator
preprocessing method of the data, and the distribution of the dataset. Wédou
weak support for the crossover influence, and very strong stifggdghe other two
factors in both training and testing cases. As we have shown, this studfeiedif
from the other studies that use genetic algorithms to train neural networksafr
least four points of view. The most important difference is that here bathirig
mechanisms are used fefinethe solution obtained previously when constructing
the ANN architecture.

We found that when the starting solution has relatively low accuracy réfes (
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Table 15: Pairs’ comparison for “distribution” factor

95% Confidence
Interval for
Difference
(I) DISTRIB | (J) DISTRIB Mean Std. Error| Sig. | Lower Upper
Difference (I-J) Bound Bound
1 2 (.439)(*) .022 .000| (.483) (.394)
3 .251(%) .022 .000 .206 .296
4 T75(%) .022 .000 .730 .819
5 2.984(*) .022 .000| 2.939 3.3028
2 1 A439(%) .022 .000 .394 483
3 .690(* .022 .000 .645 734
4 1.213(%) .022 .000| 1.169 1.258
5 3.422(%) .022 .000| 3.378 3.467
3 1 (.251)(*) .022 .000| (.296) (.206)
2 (.690) () .022 .000| (.734) (.645)
4 524(*) .022 .000 479 .568
5 2.733(*) .022 .000| 2.688 2.777
4 1 (.775)(%) .022 .000| (.819) (.730)
2 (1.213)(%) .022 .000| (1.258) (1.169)
3 (.524)(* .022 .000| (.568) (.479)
5 2.209(%) .022 .000| 2.164 2.254
5 1 (2.984)(%) .022 .000| (3.028) (2.939)
2 (3.422)(%) .022 .000| (3.467) (3.378)
3 (2.733)(%) .022 .000| (2.777) (2.688)
4 (2.209) (%) .022 .000| (2.254) (2.164)

1-REAL, 2-NORM, 3-UNIF, 4-LOG, 5-LAP
(*) The mean difference is significant at the .05 level.

Table 16: Pairs’ comparison for “technique” factor

959% Confidence

Interval for
Difference
() TECHNIQ | (J) TECHNIQ Mean Std. Error| Sig. | Lower Upper
Difference (I-J) Bound Bound
1 2 499(%) .014 .000 471 527
2 1 (.499) (%) .014 .000| (.527) (.471)
1-GA, 2-RT

(*) The mean difference is significant at the .05 level.

22




90%) GA outperformed the RT mechanism, while the difference was smaller to
zero when the starting solution had relatively high accuracy rates (%5-98his

can be considered a normal result since we do not expect great iempeows start-

ing from an already very good solution. Itis interesting to check in the éugtud-

ies whether these hybrid approaches overcome the classical oneséthavere

the weights of the ANN are randomly initialized).

In our experiments RT was 10 times faster than GA. Therefore, when the time
is a critical factor, RT can be taken into consideration as long as there isjoo ma
difference between the performances of these two approaches.

In our prediction models the number of financial performance classadisse
We can easily change this parameter to simulate the binary classification problem
allowing us precise and detailed comparisons with other related studies.
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A Appendix

Input: TR, TS sets

Error = Infinity

Split TR set into
TRe and VAL sets

No_of trains <=4

Initialize ANN

Train ANN

NH,++ L
Calculate errors:

MSEze; MSE 4z,
MSEz, MSEzg

NH,++

MSE, < Error
AND MSE 4.
< (6/5)*MSErz.

Save architecture

Error = MSEz.
|
v No_of trains++
STOP

Figure 2: Flowchart of the empirical procedure to determine ANN architectu
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