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Abstract

We give a survey of Skolem’s problem for linear recurrence sequences. We cover
the known decidable cases for recurrence depths of at most 4, and give detailed

proofs for these cases. Moreover, we shall prove that the problem is decidable for
linear recurrences of depth 5.
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1 Introduction

1.1 Historical Background

Solutions to combinatorial problems often appear as sequences of numbers. These
sequences are sometimes defined by some relations, wherghtledement of
the sequence can be counted by using the precedent elements of the sequence.
Here we shall consider such sequences arising from linear recurrence relations. A
sequenceu,, ), (or just(u,) or u,, for short) is dinear recurrent sequencéf
it satisfies

Up = Ap_1Up_1 + - .+ Q1Up_g11 + AoUp_k (1)

for all n > k with fixed a; € Z coefficients forj = 0,...,k — 1. We say that
the relation (1) is dinear recurrence relatiorof depth(or degre¢ k. Note that
we may assume that in (1), we havg # 0, sinceag = 0 would imply that the
sequence satisfies a shorter linear recurrence.

The k first elementsug, uy, ..., ux_; Of the linear recurrent sequence,,)
in (1) are called thenitial conditions If the initial conditions are given, every
element of the sequence is uniquely determined by the recurrence (1).

Example 1.1. One of the most well known linear recurrence equations is that for
the Fibonacci numberst,, = F,,_; + F,,_, for n > 2 with the initial conditions
arefy=F =1.

In this article we are interested in the followiSdolem’s problem

Problem SKoOLEM: Given a linear recurrent sequenge), that is,
the linear recurrence relation and the initial conditions, determine
whether or not there exists> 0 such thatu; = 0.

We shall give a detailed survey of Skolem’s problem covering the known (al-
gorithmically) decidable cases, and, moreover, we shall prove that the problem is
decidable for linear recurrences of depth 5. Also, we shall study the connections
of Skolem’s problem to some other problems in mathematics.

Let us use the following notation, for an integer sequengg, let

Z(up) = {i € N| u; = 0}

be theset of zeroes ofu,,). The starting point of the problem about zeros in re-
currence sequences was in 1934 when Skolem [29] provedZthat) is union

of finitely many periodic sets and a finite set. In his paper Skolem psatic
techniques to prove the result. In theydaf Skolem’s paper, algorithmic decid-
ability issues were not yet as relevant as they are today. The result of Skolem

LIn the literature Skolem’s problem is sometimes referred tBiast’s problem The usage of
the name of Norwegian mathematician Thoralf Skolem comes from the history as we shall see,
but the usage of French mathematician Charles Pisot’s name is not known by the authors.
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was later proved also by Mahler [17] and Lech [23]. In Section 3 , we shall give
the proof given by Hansel [13]. The result of Skolem is very strong, and, indeed,
from Hansel's proof it follows that it is decidable whether or not a given linear
recurrent sequende,,) has infiniteZ(u,,) or not. This was originally proved by
Berstel and Mignotte in [5]. We give the decidability proof in Section 3. We also
mention that it is decidable whether or not the 8ét.,,) has a finite complement

or Z(u,) = N, see [28].

Previously it has been shown that Skolem’s problem is decidable for linear
recurrent sequence of depth at most 4. The case of depth one is trivial, but for
the depth two, the problem is already challenging. There is an old folklore proof
for the case of depth 2, see [11]. In 1985 Vereshchagin [31] proved that Skolem’s
problem is decidable for sequences of depths 3 and 4. Vereshchagin’s proof uses
results of Baker [1] and of van der Poorten [25] for linear logarithms. Here we
shall prove that Skolem’s problem is decidable also when the depth of the linear
recurrence relation is 5. On the way, we give new proofs for the cases where the
depths are 2, 3, and 4. For these proofs, we use the same ideas as Vereshchagin:
we study thesolutionsof the sequence, i.e., we study the problem whenithe
element of the sequence is deduced from the sum

Zpi(nm (2)

wherep;’s are polynomials, and;’s are complex numbers, called tbkaracter-
istic roots We prove that there is an effective upper bouvid deduced from
the form (2) such that ifi; = 0 for some i, then there exists < M such that
alsou; = 0. This upper bound is found using Baker’s result [2] for logarithms.
Mignotte, Shorey and Tijdeman [22] proved in 1984 that Skolem’s problem is
decidable for the depths 3 and 4, when the recurrence is nonsingular, i.e., in (2)
Ai/Aj is not a root of unity for any # j. Actually, Vereshchagin proved that any
sequence can be reduced (or divided) to a finite set of nonsingular sequences, and
we shall use this property in our proof also.

Algorithmic undecidability is close to Skolem’s problem. As we shall see in
Lemma 1.1, Skolem’s problem can be equivalently stated in the following terms
of matrices:

Given ak x k integer matrix)/, determine whether or not for some
powern > 0, the elemen{M™),;, = 0.

The decidability results proved here yidltgat the matrix form is decidable
for matrices with dimensiok < 5. If we consider the problem where instead
of one matrix we have a semigrowpgenerated by: integer matrices, then it is
undecidable whether there exigis € S such that the right upper corner df is
zero. Indeed, this problem is undecidable for semigroups generated by3segen
integer matrices. This follows by the proof of R.W. Floyd in [18], since the Post
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Correspondence Problem is undecidable for instancé&sleiters, see [19] (see

also [14]). On the other hand, this problem is undecidable for two matrices of di-

mension at least 24, see [8]. Therefore, when finding decidable cases of Skolem’s

problem, we are exploring the borderline between decidability and undecidability.
There are also other important undecidable problem in the theory of integer

matrices, of which we like to mention a few. L&tbe a finitely generated semi-

groups oft x k integer matrices. For example, for> 3 it is undecidable whether

or not the zero matrix is ity for & > 3 [24] (see also [12]), and whether or not

the semigroupd is free [16] (see also [7]). Recently it was proved that it is unde-

cidable fork > 5, whether or not a fixed diagonal matrix is.$26].

1.2 Equivalent Formulations of the Problem

Recall from the introduction that Skolem’s problem was stated as follows: Given
a linear recurrence,, (overZ), does there exist amsuch that.,, = 0?
The following lemma gives some equivalent representations for the problem.

Lemma 1.1. For an integer sequenae,, u1, us, . . ., the following are equivalent:
1. Sequence, is a linear recurrent sequence.
2. Forn >1,u, = (M")y, whereM € Z*** for somek.
3. Forn > 1, u, = vM"w”, wherev, w € Z* and M € Z*** for somek.

Proof. Implication (1) = (2): Assume that a sequeneg is given by first
fixing uy, ..., ux_1, and forn > k defined by recurrence

Up = Af—1Up—1 F ... + Q1UR—41 + AUp—k-

Let
Qp_1 1 0 0
M, = aa 0 ... 1 0 )
ap 0 ... 01
a O 0 0
Itis easy to see that for eaeh> 0, u,, = vMPw’, wherev = (ug_1, ..., u1, up),

andw = (0,...,0,1). We denot® = (0,0,...,0) and define 4k +1) x (k+1)-

matrix M by
_ UA41
v=(or )

M= (0 ’UM)
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and, furthermore, that

n 0 oM} 0 n
(M )1,k+1:(10)(0T ]\41711 )(wT>=’UM w! =u,

whenevemn > 1.
Implication (2) = (3) follows directly from(A/*);, = (1,0)M"(0,1)7.
Implication (3) = (1): Letp(z) = 2* — ap_12" ! — ... — a12 — ag be
the characteristic polynomial of matrix/. According to the Cayley-Hamilton
theorem [10]
MF = ap MY+ o M+ al,

and consequently/™ = a,_ M" ' + ...+ a, M 4 ag MR for anyn > k.
It follows that

oM "w” = ap_ oM w? + .+ oM T + apu MR
which is to say that
Up = Ag—1Up—1 F ... + Q1Up—f+1 + QOUp—k;, (4)

so (4) is the desired recurrence. O

2 Mathematical Tools

In this section we give the mathematical tools needed for the construction of the
algorithms presented in the later sections. We shall give an introduction to the
theory of algebraic numbers, but first we would like to motivate the reader.

Let us consider a linear recurrent sequengaatisfying the relation,

Up = A—1Up—1 + *** + QoUp—k-
Thecharacteristic polynomials the polynomial
p(r) = b — a2 — ap_p2" P — o — i — ag. (5)

Theroots\, Ay, ..., A\x(€ C) of the characteristic polynomial are called tiear-
acteristic roots Note that, since, # 0, \; # 0 for all .

We prove in Proposition 2.11, that the sequengecan besolvedusing the
characteristic roots, that is,

Up = p1(M)AT 4+ ...+ pr(n) A7,

where)\; are distinct roots of(x) andp;(n)’s are polynomials which can be effec-
tively found. Here, the characteristic roots are algebraic numbers. Our algorithm
uses this solved form af,,, and the properties of the characteristic roots.
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2.1 Algebraic Numbers

We now present the notions on algebraic numbers necessary in the continuation.
For a more comprehensive representation on algebraic number theory, we refer to
[10]. By analgebraic numbemwe mean a (complex) number which is algebraic
over the field of rational numbers. It is a well-known fact that all algebraic num-
bers form a field. Theninimal polynomiabf an algebraic numbet is a monic
polynomialp(z) € Q|z] of the least possible degree havings a zero. It is
the least common multiple of the nominators of the coefficienis(of, we call
polynomialcp(z) € Z[x] thedefining polynomiabf «. The defining polynomial
is clearly unique. If the defining polynomial af is monic, or equivalently, if
the minimal polynomial ofx is in Z[z], then« is analgebraic integer Alge-
braic integers form an integral domaifhe definition implies directly that for
each algebraic number there is a representatian = %, where(3 is an alge-
braic integer andn € Z. Moreover, the minimal polynomial gf andm can be
found algorithmically when the minimal polynomial ef is given. The degree
of the minimal polynomial is called théegreeof o and denoted byleg(«). If
p(x) = paxd+. ..+ pix+po is the defining polynomial of,, we define théeight
of o as

H(a) = max{|pa|,. ... |p1[,[pol}-

Trivially any root (i.e, a solution of equation™ = «) of an algebraic number
is again algebraic, and if” = «, thendeg(5) < ndeg(«). Thus, taking the root
can increase the degree, but all the powers bklong to the field generated by
a, which implies thatleg(a™) < deg(«) for eachn € N.

When introducing algebraic numbers we always assume that they are embed-
ded inC, and we fix an embedding in the following way: we say thdéacription
of an algebraic number is a quadruplép(z), £, n, p), wherep(z) is the defining
polynomial ofa, and¢, n, andp are rational numbers whicsatisfy the following:
the circle of radiug centered a§ + in containsw but no other zeros gf(x).

It may be useful to refer to thesultin [21] to notice that if(x) is the defining
polynomial of an algebraic numberwith d = deg(«) and H = H(«), then for
any rootsw; # «a; of p(z), we have

la; — aj] > r\/é_
d—= Hd-1
Therefore we will additionally rguire that in the description of an algebraic num-
ber,p should always be chosen smaller than a quarter of the above quantity (6). It
is then possible to distinguish between all the roots of the minimal polynomial. It
is clear that given a description, arbitrarily precise approximations with ra-
tional real and imaginary parts can be effectively computed by using for example
Newton’s method [9, p. 145]. It is also evident that, given the descriptions of
and 3, the descriptions oft + 3, a3*!, andnth roots ¢ € {2,3,...}) of a can
be found algorithmically. In fact, it is plain how to find good approximations of
a+ 3, a3+, and the roots, and for the minimal polynomials of sums and products,

(6)
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one can use the resultant method, see [9, p. 157]. Moreover, it is easy to see that
deg(a + ) anddeg(a/3) both are at mosteg(a) deg(/3).

If « is an algebraic number andz) its minimal polynomial, then the roots
a; = a, ..., aq Of p(x) are called th€Galois) conjugatesf a. Notice that since
p(z) is a minimal polynomial (and hence irreducible), numbers. .., a4 are
necessarily distinct. Ifv is not a real number, then tlemplex conjugater of
a is always among the (Galois) conjugates. It follows thatis an algebraic
number, and moreover that thdsolute valudalso called thenodulu3 |«| of «
is an algebraic number, singe|* = oa.

If «is an algebraic number of degréanda; = «, .. ., ay the conjugates of
«, then there are exactly embeddings, . .., o4 from field Q(«) into C, each
defined a%; (1) = «; [10].

Remark 2.1. It is also quite easy to see that eachis a continuous mapping:
0;(01) and o;(32) become arbitrarily close to each other,|ji#; — ;| is chosen
small enough. Notice also thatdfis not a real number, then fiel@(«) is dense

in C, sincel and« are then linearly independent ovB;, and thus it is possible to
have arbitrarily precise approximations, of anyz € C of formz, = a,, + b,q,
wherea,, b, € Q. It follows also that we can extend the mappingo whole

C uniquely. Moreover, if3 is an algebraic number, it is possible to compute
arbitrarily precise approximations af; (/) even thought ¢ Q(«).

For each complex numberthere is a representatien= ||, whered €
[0, 27) is called thephaseof a. If « is algebraic, then so ig|, and consequently
¢ is an algebraic number as well.

Proposition 2.2. Given descriptiongp; (), &1, m, p1) and (pa(z), &2, 12, pa) Of
algebraic numbers: and 5 respectively, the following questions are decidable:

1. a=p?
2. |a| > |8|?

Proof. For deciding equality, ip;(x) # ps(z), then certainlyx # 3. If pi(x) =
po(x) but|&y + iny — (& + in2)| > min{py, po }, thena # 3, otherwisen = 3.
For the second question, it is possible to find descriptions for fadtand| 3|,
and then to first decide whether| = |5|. If |a| # |3], we can find arbitrarily
precise approximations for both| and| 5| to decide whethely| > |5]. O

Letr € N. An rth root of unityis a (complex) numbef satisfying(” = 1.
A root of unity is clearly an algebraic number. The smallest positigach that
(" = 1is called theorder of ¢ and denoted as = ord(¢). Evidently|(| = 1 for
the roots of unity, and the number ath roots of unity is exactly:. An rth root
of unity is calledprimitive if ¢* # 1 for eachl < k < r, i.e., if its order isr. All
rth roots of unity are obtained as powers of a primitive root of unity. It is possible
always to choose, = e asa primitiverth root of unity. For any primitive.th
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root of unity ¢, it is easy to see thaf® is primitive if and only ifged(r, k) = 1.
Therth cyclotomic polynomialk defined as

r—1

or(x) = [] (=-¢H. (7)

Clearly ¢, has all the primitive-th roots of unities as zeros. It can be shown also
that ¢,.(x) € Z[z], and thaty,(z) is an irreducible polynomial. It follows that
deg(¢,) = ¢(r), whereyp(r) is theEuler’s function The cyclotomic polynomials
¢-(z) can be constructed algorithmically.

Proposition 2.3. Given a description of an algebraic number it is decidable
whethera is a root of unity. Ifo is a root of unity, therrd(a) can be algorithmi-
cally found.

Proof. We show that ifx is a root of unity, then there is a computable numhéer
such thabrd(a) < M. The claim follows, since one can construct representations
for all numbersy, o2, . . ., o™ and check if one of those numbers equals.to

Letd = deg(«). If « is a primitiverth root of unity, thenv is a zero ofp,.(x),
which has degreé = ¢(r). On the other hand, it is known [27] that for> 3,

2.
oo loglogr + o0637 (8)
(1)

wherey = 0.5772156649 . . . is theEuler's constant Forr > 3, the right hand
side of (8) can be estimated to get

loglogr’

r

< 283 loglogr, (9)

(r)
which implies thatd = ¢(r) > g, It therefore suffices to takel =
max({r | 7283107"glogr < d} U{3}). O

As analgebraic number fieldve understand a finite extension @f It is
a well-known fact that each number field is a simple extensionf Q, which
means thaf' can be represented &= Q(«). Moreover, if representations of
algebraic numbersaq, ..., «, are given, it is possible to find algorithmically a
representation ofv such thatQ(«) contains all the numbers;, ..., o, [9]. If
p(z) is a polynomial, theplitting fieldof p(x) is the smallest field wheng =) can
be decomposed into linear factors.

Remark 2.4. Throughout the rest of Section 2, we assume, unless explicitly other-
wise stated, that an algebraic number fiéglds chosen such that all the occurring
algebraic numbers and their conjugates belongrtoand that the field? is nor-

mal, meaning that" is a splitting field of some polynomial @[z|, or equivalently

that every irreducible polynomial (ové€)) which has a zero i, splits into linear
factors overF'. If F} = Q(«y) is a number field, then it is possible to find algo-
rithmically an algebraic numbedt such thatF’ = Q(«) is a normal extension of

Q containingF? [10].



If o is an element of ando; : FF — C are the embeddings df into C, we
define thenormof o as
N(a) =[] oi(@).

It is an easy consequence of the definition tNatv) € Q, N(af) = N(a)N(3),
and thatV (1) = 1 always. It follows thatV : F'* — Q* is a group morphism. By
the definition, it is also clear tha{ («) can be algorithmically computed for each
a e F.

2.2 ldeals

One of the most interesting and fruitful pantthe theory of algebraic numbers
concerns the ideals of the ring of the algebraic integers of a given algebraic number
field. We refer to [10] for the results and notions mentioned in this section.

The algebraic integers contained in an algebraic number filokm a ring,
called thering of integersof field F'. Let us denote this ring b§. It is known
that all the ideals o are finitely generated. It andB are ideals o), then new
idealsAB and A + B can be defined as

AB={ab|lac A,be B}, A+B={a+b|lacAbec B}

It is rather straightforward to show that the ideals form a commutative ring, where
O serves as a unit element afidl} as a zero element. If we denote the principal
ideal generated by € O by [a], we can also writ&) = [1], {0} = [0]. Itis easy
to see that mapping — [«] is @ morphism from the multiplicative group 61
into the multiplicative group of the ideals. The notion of divisibility among the
ideals is easy to formulate3 | A if and only if A = BC for some ideal’. We
say thatP # [0], [1] is aprimeideal if A | P implies either thatd = [1]or A = P.

The ideal theory has been developed mainly because the factorization in ring
O is not necessarily unique, whereas fieadamental theorem of ideal theory
states the following:

Theorem 2.5. Each ideal not equal td0} of ring O can be represented as a
product of prime ideals. The representation is unique if the order of the prime
ideals is ignored.

Now we can fix a prime ideaP and define thevaluationvp : O \ {0} —
N U {0} as follows: Ifa # 0 and

[a] = P/*-.... P* (10)
is the representation of idefl| as a product of prime ideals, we define

[ ki, if P=Pin(10)
“P<O‘>—{o, it P¢{P,...,DP).

Moreover, we define symbolically-(0) = oo. The definition ofvp can be
extended to whole number field by noticing that alw&/sC O and that ifa
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is not an algebraic integer, then there existsrare Z such thate = «;/m,
whereq; is an algebraic integer. It is then possible to show that the definition
vp(a) = vp(ay) —vp(m) is independent of the choice af andm.

Unlike in Z, the ideals of® need not to be principal, but anyway they are fi-
nitely generated, and the representation (10) can be found algorithmically [9, pp.
179-204]. It follows that given a number < F, valuevp(«) can be found also
algorithmically. The following important issues abayt can be proven straight-
forwardly:

Proposition 2.6. Let P be a prime ideal of the ring of intege€2 of an algebraic
number fieldr'. Then, for eachy, 5 € F,

1. vp(af) = vp(a) + vp(B).
2. vp(a+ () > min{vp(a),vp(B)}.
3. Ifup(a) < wp(B), thenvp(a+ B) = vp(a).

A unit of ring O is an element that has also an inverse* € O. It is easy
to see thata;] = [ag] if and only if a3 = ya, for some unity. It follows that
if o = 2 is not an algebraic integer (but, is), the idealga;] and[m] are not
equal. Therefore, the representations (1dndfind|m| are not equal, and we get

Lemma 2.1. If « is not an algebraic integer, then there is a prime idéakuch
thatvp(a) # 0.

Such a prime ideal can also be found algorithmically [9].

A special case occurs # = Q. In ring Z all ideals are principal, and the
prime idealsP are generated by the prime numbersp I§ a prime number and
P = [p] the ideal generated by it, we denote usually = v,. Given a prime
numberp, the valuation of an integen can be then found as follows:

Up(m):{ 0, ifptm

k, if p* | m butp**t {m.

For any rational number = ™, we havev,(r) = v,(m) — v,(n) according to the
previous definition. Valuation, is called thep-adic valuation

Finally we represent the notion abrmof an ideal. LetF’ be the number field
in question and its ring of integers. For any ideal # [0], we define itsiorm
as the cardinality of the residue class ring(A) = |O/A|. It can be shown that
for eachA # [0], N(A) is finite, and thatV(AB) = N(A)N(B) for all idealsA
and B. FurthermoreN ([«]) = |N(«)| for each principal ideal], and for each
prime idealP there exist a unique prime numhee P, and thatN (P) = p/ for
some natural numbef. By the definition,NV(P) > 2 for any prime ideal, and as
a consequence we see that

N(A) = N(P[*...Pl") > N(P)" > 2%
It follows that| N («)| = N([a]) > 2v7(@) for any« # 0 and any prime ideaf.

9



Proposition 2.7. Given descriptions of algebraic numbersg € F, it is decid-
able whethery = (" for somen € Z.

Proof. Proposition 2.2 implies that it is possible to decide whetfier= 1. As-

sume first tha3| # 1. Thenlog |3| # 0 and equatiom = 3" implies|«| = |5]",
which, in turn gives that

. - loglal

log | 3]

It is possible to compute arbitrarily precise approximations of the right hand side
of (11), which allows to restrict the number of potential exponents at most
one. Then it remains to compute a representatiofor this potentialn to check
if =",

Assume then thats| = 1. According to Proposition 2.3 it is decidable whether
£ is a root of unity. If3 is a root of unity of order-, then it remains to check if

(11)

any of numbers°, 5, ..., 37! equals tax.
Next we assume that| = 1, and that3 is not a root of unity. It follows that
B¢R.

We split here into two subcases: d)s an algebraic integer, and 2)is not
an algebraic integer. It should be noted that to distinguish between 1) and 2) is an
easy task when the minimal (or defining) polynomialbak available.

In the first case, we show, following Kronecker’s argumentation, that there
exists a conjugate gf having absolute value greater than

Assume the contraryio;(3)| < 1 for each conjugate;(3) and consider set
B ={3,3% 3,...}. The minimal polynomiap, (z) of 5™ is of form

d/

pu(x) = [ [ (= = 5, (12)

i=1

wheregy, . . ., B are conjugates gf”, andd’ < deg(/3). Sinces™ is always an al-
gebraic integer, polynomials (12) belongZér|. The aforementioned conjugates
are among numbers(3") = o,;(3)", so the assumption implies that*| < 1 for
each conjugate in (12). It follows that the coefficients of (12) are bounded, and
because polynomials in (12) are#ix|, there are only finitely many polynomi-
alsp,(z). Consequently, there are only finitely many element&ofit follows
that ™ = g™ for somen < m, and thereforgg™ ™ = 1, which contradicts the
assumption that is not a root of unity.

Now we can choose a conjugate = o;(3) with |53;| > 1, and apply the
homomorphisna; (or, to be precise, its extension®) to equationy = 3" to get

As mentioned in Remark 2.1, it is possible to compute arbitrarily precise approx-
imations ofc;(«), and becausgr;(5)| > 1, we havelog |o;(3)| # 0, and we can
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restrict the number of potential exponents to at least one by computing approxi-
mations of the right hand side of

_logloi(a)]
"7 Tog |o:(B)|

precise enough.
Finally we assume that is not an algebraic integer. Then itis possible to find
efficiently a prime ideaP of the integer ring oft” such thatp(5) # 0. Thus

vp(a) = nvp(f).

Because'r(®) < |N(a)|, we have an estimation
logy [N(@)| = [vp(a)| = |nvp(B)] = |n].

Moreover, we can compute arbitrarily precise approximations @f), so an up-
per bound foiin| can be found algorithmically. O

Remark 2.8. Proposition 2.7 occurred also in [31] in a less detailed form, and in
[15] in form, wherea = ¢(3) with ¢ € Q[x].

Remark 2.9. Notice also that when constructing the algorithm of Proposition
2.7, it is not necessary to compute any valuatiopsw). The valuations were
only introduced to prove the method correct. However, it is possible to compute
the valuesp(«) algorithmically, see [9].

Similarly to Proposition 2.7 we can prove the following, a little bit more com-
plicated claim which is needed in the sequel.

Proposition 2.10. Letay, as, G4, ..., B4, andd be algebraic numbers belonging
to a number field”, which is a normal extension @J. If «;/as is not a root of
unity, then it is decidable whether equation

praf + faag™ = Baay + Baay " + 0 (13)
has a solutiom € N.

Proof. By dividing by 3; (or by 33) and taking a common factor, we can assume
that the equation (13) is in fact of form

of + By = y(ag + Bray™) + 0, (14)

where all the occurring numbers are algebraigi(if= 33 = 0 in (13), then the
situation is even simpler).

By changing the role of; anda; ' we may assume that;| > 1 and similarly
that|as| > 1. Also we can assume that;| > |as|.

11



If |oy| > |az|, we have

laa|" = Bl [ar " < ot 4 B | = |[v(ah + Baay™) + O]
< |yl fee]™ + |8l |z " + 19 (15)

Now that|a; |, [a;'| < 1 and|ay| > |asl, the above equality ceases to be valid
for n large enough. Itis possible to compute approximations of the absolute values
above, and find algorithmically a limit/ such that (15) does not hold far> M.

Assume then thdty, | = |ay|. If there is an embedding; : /' — C such that
loi(aq)] # |oi(as)|, we can apply the homomorphismto both sides of equation
(13) and conclude as above.

Assume then thdt; ()| = |o; ()| for each embedding; : ¥ — C. Now
that|o; (a1 /ae)| = 1 for each embedding;, anda; /s is not a root of unity, we
conclude, as in Proposition 2.7, that/«- is not an algebraic integer. Therefore,
there must be a prime ide&! of the integer ring of" such that p(«;) # vp(as).

By the symmetry of the roles ef; anda, we can assume thap(a;) < vp(as).
As above, we can also assume thata;), vp(az) < 0 (consequentlypp(ay),
vp(az) > 0). Analogously to (15), we have

min{nvp(ay),vp(B1) + nvp(a; ')}
= vp(y) +min{nvp(as),vp(Be) + nve(az ), vp(9)}. (16)

Now thatvp(a;) < vp(az) < 0 andwvp(a;l), ve(ay') > 0, It is clear that
there is a numbebd/ such that (16) does not holdsf > M. Moreover, number
M can be computed when values(ay), vp(az), vp(51), vp(52), vp(y) and
vp(9) are known. The prime idedt and the aforementioned values can be found
algorithmically [9]. O

2.3 Solution of Linear Recurrent Sequence
The following well-known result is fundamental in the study of linear recurrences.

Proposition 2.11. Letay, a4, .. ., ax_1, andug, u4, . . ., ux_, be fixed integers and
recurrence
Up = Qg 1Up—1 + -« + Q1 Un_py1 + QolUpp, (17)

defineu,, for eachn > k. Let also

p(z) = 2" —ap_ 12" — .. — 1w — ag
be the characteristic polynomial of the recurrence a@nthe splitting field op(z).
If
plx) = (x =)™ ... (x = \)™,

where), ..., A, € F are the distinct zeros gf(x), then there exist unique poly-
nomialsp; (z), ..., p-(z) € F[z] such thadeg(p;) < m; — 1 and
Up = p1(M)AT + ...+ pr(n) A} (18)

12



for eachn > 0. Conversely, any sequenag of form (18) (for polynomiap(z))
satisfies recurrence (17).

Here, the form (18) is usually called tkelutionof u,,. Our algorithms for the
cases of Skolem’s problem uses this solved form of the sequenddote care-
fully, that the main issue in finding a solution of a sequence are the characteristic
roots, and for the recurrent sequence of depth at least 5, this is impossible in most
cases. This is also the reason for the need of the theory of the algebraic numbers.

Note also that Proposition 2.11 can be proved using the thedoyrofl power
series Our proof here is elementary using only linear algebra and algebraic prop-
erties polynomials.

Note also that the converse part can be proved by using the partial solution
sequences of the form, = n’\?, where); is a characteristic roots and <
m; — 1, which satisfy the relation (17). The claim follows by proving that for any
sequences satisfying relation (17), dimear combination of then also satisfies
(17). We shall give here a new proof for this converse, which may be of some
reader’s interest.

Before proceeding to the proof of Proposition 2.11, we need some auxiliary
results.

Lemma2.2. Let .
-1
p(z) = 2" — Z asx®
s=0

be a polynomial having as a zero with multiplicityn > 1. Definepy(z) = p(z)
andp;.1(z) = apl(z) for eachi € {0, 1,2,...} (p,(z) stands for the derivative of
polynomialp;(z)). Then there exist polynomiajssuch that

pi(x) = (z = )" qi(x).
for eachi € {0,1,...,m — 1}. Conversely, if\ # 0 andp;(A) = 0 for each
i€{0,1,...,m— 1}, thenpy(z) = (z — \)™qo(x) for some polynomiajy(x).
Proof. We begin by showing that, for ea¢h> 1, p;(z) can be represented as

i

pi(x) = aipD(z), (19)

J=1

—

where each!”) is an integer, and!” = ¢’ = 1. The case = 1 is clear:

p1(z) = xp'(x). Assume then that (19) holds for some valué.ofhen

<

pil@) = 3¢ Ga P (@) +a7p 0 (x)
j=1
i 4 A ' i+l ' A
— Z cgz)jx]_lp(])(x) + Z cﬁlxj_lp(])(a:),
j=2

J=1

13



and consequently

pisi(z) = zp/(z) + Y _ (el + ) )adp (z) + 2 HpiHD (a),
j=2

as claimed.

The rest of the proof is based on the following well-known facis a zero of
p(z) with multiplicity m, if and only if X is a zero of\¥) () with multiplicity m —
j. The first claim of the lemma follows directly from this and from representation
(19), because themt?) (z) = (z — A\)™Ir;(z) for some polynomiat;(z).

The converse statement follows from representation (19) by using induction.
In fact, if the assumption holds fon = 1, then0 = po(\) = p(A\) and hence
(x —A) | p(z). If claim the holds for all numbers less than and ifp,,—1(A) =0

we have
—1

0 — C(m—l)/\jp(j) (/\) _ )\mflp(mfl) (/\)7

J

3

I
<)

j
which implies thap™ 1 ()\) = 0. The claim follows from this. O
Lemma 2.3. Let the notations be as in the previous lemma. Then
k—1
EAF =" s'a N
s=0

foreachi € {0,1,...,m — 1}.

Proof. By induction we see that
k—1
pi(z) = K'ak — Z s'agx®
s=0
for each: € {0,1,2,...}. By the previous lemmap;(A) = 0 for eachi €

{0,1,...,m — 1}, and the claim follows immediately. O

Lemma 2.4. Let the notations be as in the previous lemmata. Then

k

Z QS A5 =0

s=1
foreachi € {1,2,...,m — 1}.
Proof. A direct calculation gives

k k-1 i . k—1
D ap_sNTE =) Cag(k - s) A =D (-1 (;) EY agstht (20)

s=1 s=0 t=0



By the previous lemma, expression (20) can be written as
: t Z i—t tyvk __ 1.0\ k : t Z
2:@4)Q>k -kA__kA§:¢4)Q)
t=0 t=0
The latest expression equalsitvhenever € {1,2,...,m — 1}. O
Lemma 2.5. Let the notations be as before. Then

Z ap—s(n — 8)INF75 = pI\F

s=1
if j €{0,1,...,m—1}
Proof. A straightforward calculation shows that

Zak s(n—s)/A"° Z“k SZ( )njt(_s)t)\ks

t=0
J

Z( )nﬂ t Zak SIS = ik,

t=0
The last equality is dut® Lemmata 2.3and 2.4. O
The proof of Proposition 2.11We will begin with the “converse part” of the state-
ment. Let .

= Z pi(n)A
=1

where\y, .. ., A, are distinct zeros qf(z) = 2% —aj,_12* "t — ... —a;x — ap with
multiplicitiesmy, ..., m,, anddeg(p;) < m; — 1. Then, for eaclm > k,

Up — Af— 1Un1— -~ QoUn—k

sz )\ _Zak Szpz TL—S )\n . (21)

By denotinga, = —1 and

m;—1
— J
= E bij
J=0

we can write (21) as

k r
— Z s Zpl(n —s)A®
s=0 i=1

r k m;—1
= =D > > pyln—sPa NN
i=1 s=0 j=0
m;—1 k
= —Z)\nkzpzjzaksn_s)])\ks

s=0

15



According to Lemma 2.5 we have (recall that= —1)

k k
Z ap—s(n — s)INFT5 = —nd\F 4 Z ap_s(n — sy \F
s=0

= s=1
= I\ i\ =0.

Hence
Uy — A 1Upye] — -+ — AoUp—p, = 0

for eachn > k.
For the first part of the claim, we can assume without loss of generality that
ag # 0. It follows that all the numbers; are nonzero. Denote again

m;—1

pi(z) = Z Pij$j
j=0

and regarg,; as unknowns which are to be determined under conditions

un =Y pi(n)A} (22)
=1
for eachn € {0,1,...,k — 1}. If numbersp;; can be found, then the proof is

complete, since according to the “converse part”, sequepde (22) satisfies the
recurrence equation (17).
Equations (22) can be written more explicitly in form

r m;—1

Uy, = i AT, (23)
2D P’

i=1 j=0

wheren € {0,1,...,k — 1}. The determinant of system (23) is of form

1 0 .0 .. 1 0 ... 0
A A S D VD VD

N2 N LLoomeL2 a2 9\ gme1y2

A3 33 LLo3me3 a3 303 gmeiys |- (24)
A (k= DA At

We will demonstrate that the determinant (24) is nonzero, which implies that the
unknownsp;; are determined uniquely. For that purpose, we show that the rows
of (24) are linearly independent. To do this, assume that there are numbers

..., Ck—1 Such that

k—1
D al'X, =0 (25)
=0

16



foreachj € {1,2,...,r}andi € {0,1,...,m; — 1}. By denoting

k-1
r) = Z ! (26)
1=0

and definingCy(z) = C(z), Ciy1(x) = zCl(z) as in Lemma 2.2, relations (25)
can be rewritten as
Ci()‘j) =0 (27)

for eachj € {1,2,...,r}, ¢ € {0,1,...,m; — 1}. Lemma 2.2 implies then
that C'(x) is divisible by (x — A)™, ..., (x — \,.)™", which shows that either
deg(C(z)) > my +...+m, = korC(z) is identically zero. By (26) the former
option does not hold, s@'(z) is identically zero and hencg = ¢; = ... =
Cp—1 = 0. [

Note that in the case of distinct roots, the determinant (24) is a Vandermonde’s
determinant, which is known to be nonzero.

Even more information can be extracted from the proof. The following propo-
sition may be of reader’s interest.

Proposition 2.12. Determinant (24) is either ifR or in iR.

Proof. We notice first that if\ is a root of a polynomiap(z) € R, then the
multiplicity of A and the one of its complex conjugatamust coincide. In fact,
if \ is a root ofp(x), then of course so i%, and(x — \)(x — \) € R[xz] divides
p(z). Thusp(z) = (z — A)(x — N)p1(x), wherep, (z) € R, and we can apply the
argumentation t@, (x) recursively.

Let us denote the determinant (24) by It is clear that the complex conjugate
of D is obtained by taking the conjugates of all entries of (24). On the other hand,
if there is a non-real rook of p(z) (recall thatp(x) is the characteristic polyno-
mial of the recurrence in question) occurring exactlyrircolumns of (24), then
there are alsan columns of (24) which are identical to thosgefirst ones, except
that\ is replaced with\. This is becaus@ and\ have the same multiplicity. By
swapping all then columns where\ occurs with those ones whekeoccurs, we
can modify D into a form where the columns containingand \ are restored to
the positions they were i. Performing the same operation to each complex
root of p(z) we have again the original determinabt since the rows contain-
ing occurrences of the real roots are not aielcat all when taking the complex
conjugates.

If there are2r non-real roots\;,, ..., \;, and their complex conjugates, (we
assume that none of,, .. ., \; are complex conjugates to each other) with mul-
tiplicities m;,, ..., m;,, we learn that

E — (_1)m11 +"'+miTD.

Now if s = m;, + ...+ m,, is even, we havé® = D, which impliesD € R,
whereas odd means thaD = — D, and consequentlp € iR. O

17



Proposition 2.13. Let
Uy = Z pi(n)A?
=1

as in (22). If\;, = A, then alsop;,(z) = p; (z), wherep, (z) stands for
the polynomial which is obtained from, () by replacing each coefficient by its
complex conjugate.

Proof. Coefficientsp,;; can be computed by Cramer’s rule;; = D(i,5)/D,
whereD(i, j) stands for the determinant which is obtained fréhby replacing

the column(0/X\?, VXL, 2702 ... (k — 1727 in (24) by (u, uy, . . ., up_1)".

If then \;, = );,, we learn that, as in the previous proposition, that the determi-
nantD(is, j) can be obtained fromv(iy, j) by first taking the complex conjugate
of each entry ofD(iy, j) and then swapping = m;, + ... + m,;_ columns (it is
needed here that eaal is real). It follows thatD(is, j) = (—1)*D(iy, j), which
together withD = (—1)*D gives that

WD (~1)°D D Pes

24 Liner Formsof Logarithms
In the sequel we will need the follang important results by Alan Baker [1].

Theorem 2.14. Let a4, ..., o, be non-zero algebraic numbers with degrees at
mostd and heights at mosd. Furthermore, let3,, . .., 3, be algebraic numbers
with degrees at mostand heights at mosB > 2. Then, for

A:ﬁo—i-ﬁllOgOél—i—...—i—ﬁnlOgOén

we have either = 0 or |A| > B~¢, whereC is an algorithmically computable
number depending only on d, A and the branch of the logarithms chosen.

The estimate fo€ is of form C’(log A)", wherex depends only on, andC’

depends only om andd. In the case whep, = 0 andj, ..., (5, are rational
integers, the theorem holds with= C’2log 2, where
Q=1logA;-...-logA,, (28)

and the numbersl; > 4 are chosen such th&f(«;) < A; [1]. The following
strengthened, quantitative version of the above theorem can be found in [2]:

Theorem 2.15. Let the notations be as in the above (with the principal branch of
the logarithms). IfA # 0, then

|A| > (BQ)fC’QlogQ”
whereQ)' = Q/log A,, andC = (16nd)?°,

18



Remark 2.16. Recall that the height of an algebraic numhers defined as the
maximum of the absolute values of the coefficients of the defining polynomial of
However, the above theorem holds if one replaces the the height by the maximal
absolute value of the coefficients of any polynomid|in] havinga as a zero [4].

See also the improved versions of the above inequalities expressed in the terms of
logarithmic Weil height [3], as well as the-adic analogues [25].

3 Infinity of Zeros

In this section, we represent the proof of Skolem-Mahler-Lech theorem in a form
given by G. Hansel [13]. The core of the proof by Hansel is the following theorem.

Theorem 3.1. Letp > 2 be a prime number and; any sequence of integers, and

define
n n A
b, = ‘d;.
If b, = 0 for infinitely manyn, thenb,, = 0 for eachn.
Before giving the proof of Theorem 3.1, we need some lemmata and defini-

tions. In the following lemmata, we assume the prime numpher2 fixed, unless
stated otherwise.

Lemma 3.1. If pis any prime number and € Z, then

Proof. Anyway

vp(Z:L—T) = u,(p") —vp(n!) = n —vy(nl),

so it suffices to estimate,(n!). It is plain that
vp(n!) = {%J + L%J + ...
< Z4 % b= :
p P p—1
hence .
() >n- 1 = W2

n!

Definition 3.2. Given a polynomial
P(z) =ao+ a1z + ...+ a,z" € Q[z],

let
~f min{vy(a;) | j >k}, ifk<n
wi(P) = { 00, if & > n.
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Remark 3.3. Itis clear thatwy(P) < wy(P) < ... for each polynomiaP(z).

Remark 3.4. For a fixed valueP(t) (¢t € Z) we have of course

v(P(t) = wvplag+art +...a,t")
> min{v,(ap), v,(ait), ..., vy(ant™)}
> min{v,(ap), vy(ar),...,v,(a,)} = we(P).

Lemma3.2. LetP(x), Q(z) € Q[z] andny, ..., n; € Z. If

Plz)=(zx—mn1) ...  (z —ng)Q(x),
thenw (P) < wo(Q).
Proof. We show that ifP(z) = (z — n1)Q(x), thenwg,1(P) < wi(Q) for each
k. The claim follows then by applying this result recursively to polynortjét).
By writing
Q@) =q+qr+... +g2"

and

P(x)=po+px+... + poprz™ !

we have thap, 1 = ¢; — n1g;+1, which implies that

q; = Pjr1 +Mpjr2 + n%pﬂs +...+ n?ijanrla

which shows that

u() = (P +mpipa o+ 0y paga)
> min{vp(pj1), Vp(Pjva), -5 Up(Pns1) }
= wjn(P).
It follows thatwy (Q) > wi.1(P). O

Letn € N be fixed and defin®(z) € Q[z] as

R(x):Zdipix(x_1)"'j.(x_i+1). (29)

7!

[\

p—

S

Lemma 3.3. For eachk, we haveu,(R) > k

—

Proof. Itis clear thatR(z) can be written as

R(z) = Zdi%x(:ﬁ—l)-...(x—i—l—l)

= Z dz%z Z Sijﬂfj = Z Z di%sijxj7
=0

i=0 =0 i=j
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wheres;; are integers, so callestirling numbers (of the first kindY'herefore, the
coefficient ofz? in polynomial R(z) is given by

E Al .l
Z’L' 1] )
i=j

and
= p . P . P
Up(z dz‘ﬁ%‘) > %?{Up(diﬁsij)} > Tg?{vp(ﬁ)}
i=j
-2 -2
> minfi- =} > -2
i>j p—1 p—1
so it follows thatw;(R) > j - £=5. O

Proof of Theorem 3.1We show thatib,, = 0forn € {n,,...,n;}, thenu,(b,) >
k - ;j%f for eachb,. Theorem 3.1 follows, since nofwcan be chosen arbitrarily
large, and therefore, (b,,) = oo for each member of the sequerige

Choosen = max{ny, ..., n;} and recall the definition oR(z) in (29).

R(x) =Zd¢pix($_1)""'($_i+1) € Q[a].

7!

It is clear that for each < n we have
"/ A
Ao =3 ;) =3 ()=
and sinceR(z) has integer zeros,, . . ., ny,
R(z)=(z—mnq1) ...  (z —ngp)Q(x)

for some polynomiat)(z). Therefore alsa,(R(t)) > v,(Q(t)), and we can
estimate by Remark 3.4 and by the previous lemmata as follows:

0plbe) = 0(R(1)) = 0(Q() = wo(Q) > wel(R) > k- ]Yj%f
]

The following theorem is a special case of Skolem-Mahler-Lech theorem. We
will not give a general case of the proof here, but instead we refer to [13], where
it is explained how the proof extends into the most general case.

Theorem 3.5. Letw,, be a linear recurrent sequence. Then thesét,,) = {7 |
u; = 0} is a union of a finite sek’ and finitely many arithmetic progressions. That
is, Z admits representation

Z=FU(ag+NZ)U...U(a,+ NZ).

Moreover, numbersV, a4, .. ., a, can be found algorithmically.
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Remark 3.6. The “constructive part” of the above theorem means that one can
decide, given a linear recurrence, whether there are infinitely masych that
U, = 0.

Proof. Let eachu,, be given as
Up = Af—1Up—1 F ... + Q1UR—4+1 + AUp—k-

Without loss of generality we can assume that~ 0, for otherwise the sequence
u,, would satisfy a shorter recursion. Then we can define veotar &%, w € Z*,
and a matrix\/ € ZF** as in (3) such that

U, = vM"w?,

and thatdet(M) = taq # 0.

Choose then a prime numbenot dividinga, and consider the imag¥,, of
matrix M in F}** under the canonical projectidh — F,. Now thatp t ao, we
have thatlet(1/,) # 0. Moreover, the group of invertible x k-matrices ovef,
has cardinality at most*”, so it follows that there exists a numh&r < p** such
that MY = I in the group of invertible matrices ové,. Lifting the equation
M;V = I back to matrices ovef we learn that there is a numbat < p** and a
matrix M, € ZF** such that

MY =T+ pM;.

Notice that numberg and NV, as well as the matri/; can be found algorithmi-
cally.
Now, for any numbern we can writen = mN + r, where0 < r < N and see
that
M"™ =M™ = MNTM" = (I + pMy)™ M.

Then we have
Uy = vM*wT = v (I + pM)" M w?,
Le.,
U N4r = V(] +pM1)mwf,
wherew! = M"w”.
Now we can splitthe sequeneg into N different linearly recurrent sequences
u") for eachr € {0,1,..., N — 1} by setting

m

m . .
uly) =ty = o(I + pMy)"w] = Z < i )p’lelwz.

1=0

By Theorem 3.1, sequenmé? either vanishes identically or contains only finitely

many zeros. To check whethef,) vanishes identically is an easy task: it suffices
to computek first members of the sequence. The claim follows immediately.
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4 Decidable Cases

4.1 Dominant Roots

Before the main theorem of this section, we must introduce several lemmata. The
following useful reduction was mentioned in [5].

Lemma4.1. Let
Up = g 1Up—1 + -« + Q1 Up_py1 + QoUpp, (30)

be a linear recurrent sequence and

Up, = p1(N)AT + pa(n)A] + ...+ p(n) AL (31)
it representation as in (18). Sequenggcan be algorithmically reduced to a finite
number of linear recurrent sequencesy, vl ..., uly " such that); i/A; is not

a root of unity for; # j in the representation (31) for sequenaé@

Proof. If some);/); is a root of unity, let
N =lem{ord(X;/);) | i # j and);/); is a root of unity.

We can split the original sequeneg into M distinct subsequences: For each
je{0,1,...,N —1} we defineu?) = u;+,mn and notice that

u?) = tjpmy = Y pi(j +mNNTN =N pi (G mNN AN (32)
i=1 i=1

If {u1,...,p} are the distinct elements of sgxl¥, ... AV}, we can write (32)

as )
= Z qi(m)pf" (33)

If i # j, theny,;/u; is not a root of unity, sincéu;/u;)" = 1 is equivalent to
(Ai/A;)N* =1 (we choose the notations such that= \Y andu; = AY), which
implies(\;/);)¥ = 1. This contradicts the assumption that# ;.

We will yet demonstrate, that the property = \; = pi(z) = p;(z) is
preserved in this reduction. But this is very stralghtforward Assumeythat
A= = \}). Then trivially 7, = A = A candqi(z) = p;,(j +
xN)Aﬁl i+ xN))\Zk is the coefﬁuent polynomial o/le, whereas the

coefficient polynomial ofi, is;‘oil(jJr:cN))\ P, (7 +55N))\zk =g (x). O
We will also need several height estimations.

Lemma4.2. Leta be an algebraic number and denater) = ¢, 2"+ ¢, 12" +

.+ qr+ q € Zlx) and H(q) = max{|ql,|¢], -, |g|}- If ¢(a) = 0, then
there exists a (computable) numh@y depending om only such thatd (a) <
CnH(q).
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Proof. If ¢(x) is irreducible, there is an integéf such thay(z) = Cp(x), where
p(z) is the defining polynomial ofv. HenceH(q) = |C|H(«) > H(«), and
we can choos€’, = 1. If ¢(x) is not irreducible, ther(z) = p(x)r(x), where
p(z),r(z) € Zlz] andp(zx) is the defining polynomial ofe. We must show that
the coefficients cannot cancel too much when computing the produgt(x).
For this purpose, we will emploBombieri’s norm[6]: If ¢(z) is as above, then
the Bombieri's2-norm is defined as

la] = (i (7;)_1 |Qi’2>%~

1=0

Bombieri's inequality [6] states that if(x)r(z) = ¢(z), anddeg(p) = m, then

] < (")%[qy (34)

which implies that

and hence

) = (Z (1) ) < (Z (1) ) <2m. @

Sincep(z) is the defining polynomial of, there must be a coefficiept of p(z)
such that («) = |p;|. Then

b= (3 (") ) = (1) ) ca(T) @

Combining (34), (35) and (36) we see that

< (1) () 2602 (1) () 270 =2( oy 10
U

SIS
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Lemma4.3. If « is an algebraic number of degrekand heightH, and 5" = «,
thendeg(8) < nd and H () < C,, «H(a), whereC,, 4 is a (computable) number
depending om andd alone.

Proof. Letp(z) = pgz? + pg_12¢~ 1 + ... + p1x + po be the defining polynomial
of a.. Clearly polynomial

q(x) = pgz"™ + pa_12™ Y £ 4 pr” + po

has( as a root, and the first claim follows directly. The second claim follows by

Lemma 4.2, we can takg, ; = 2(@37%)' O

Lemma4.4. Letp(x) € Clx]. For each natural number, letp(n) = |p(n)| e*n.
Then there are algorithmically computable numbBrandC such thatH (e¢) <
Bn®. NumbersB andC depend only on the polynomialz). Moreover,ei®» —

e asn — oo, wheree'® is an algebraic number which can be found algorithmi-
cally.

Proof. Letp(z) = ppa™+. .. +p1z+po. First we will estimate the height pfn).

Let F' be a field containing all the coefficients pfz) and denotel = [F' : Q.

Then clearlyp(n) € F for eachn € N, which implies thatdeg(p(n)) < d for

eachn. Let H = max{H (po), ..., H(pm-1)}. Now if deg(a) < d, it is easy to
see that (na) < n?H () for eachn € N. In fact, if deg(a) = d, and

q(z) = ag,z™ + ... 4+ a1z + ag

is the defining polynomial o, then polynomial

di

@ (z) = ag,z™ + ...+ an™r + agn™ (37)

hasna as a zero. Moreover, (37) is irreducible, since otherwlisgna) < d;
which would imply that alsex = % -na has degree less thah. Therefore (37)
is the defining polynomial ofi«, and estimatiorf (na) < n®H («) follows.

As a consequence, we get thd{p;n’) < nH < n™H = H, for each
i € {0,1,...,m}. For estimating the height of the sum of two algebraic numbers,
we can use the following fact [1, p. 24]: Heg(«), deg(8) < d and H(«),
H(B) < H, then there exists a computable constant(depending onl only)
such that (o + 3), H(af) < HC'. Thus

H(pmn™ + pr_in™ 1) < H.
Similarly
H (™ + D an™ "+ pruon™ %) < (HT)S = H
and continuing this way we see that

H(p(n)) = H(pmn™ + ppan™ ' + ...+ pin+po) < Hy '
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and that

H(pn)?) < (HET)E = g7
as well as i "
H(lp(n)]?) = H(p(n)p(n)) < (H O = B
By Lemma 4.3

m+1
H(lp(n)|) < o™
where(, is a computable constant dependingdonly, anddeg(|p(n)|) < 2d.
Itis plain thatH (|p(n)|) = H(|p(n)| "), which finally implies that
H(e™) = H(lp(n)|™" - p(n)] ")
m+1

= H(lp(n)| " p(n)) < (CoH{T )@

’

whereC; depends o only. DenotingCy = CS*HET'Cs Oy = mdCyHCs,
and recalling that/, = n™¢H, we see that

H(e) < Cyn®s,

whereC, andC’; are (computable) constants that depend only on polyngrial
The latter claim is trivial, since

p(n)  pmn™ 1. Dm 1
po)] ~ )] O T iy O

and
6i¢n = p(n> — €i¢a
[p(n)]
where¢ is the phase of,, = |p..| /. Another obvious but important fact is that
foranye > 0 it is possible to find algorithmically an integéf such that

‘em _ ez'qsn‘ <e
whenevem > M. O

Lemma 4.5. If py(x), pa(z) € Clx] are both of degreel, then )
a finite limit asz — oo along the real axis, and the convergence to the limit is

ultimately monotonous. Moreover]if ()| # |p2(x)|, then i;g g = L+O(x7F),

where L, k and the coefficients belonging &@-notation can be algorithmically
found.

pl—(””)‘ tends to
p2(T

xT
xT

Proof. In this proof, we assume thate R. Then|p,(z)|> = p1(2)p,(z) € R|z]
is a polynomial of degre®d. Let the leading coefficients @f () andpy(x) bec
andc,, respectively. Then it is easy to see that the leading coefficienys (@f)|*
and|p, (z)|” are|c;|* and|e,|*, respectively, and as a consequence

IM@Q—E%M@WZﬂ@
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whereg(z) € R[z] is a nonzero polynomial of degree less tlzan

Polynomialg(x) can be constructed from polynomialg(z) andp,(z), and
when the coefficients af(z) are known, it is easy to find/; such thay(x) # 0
whenz > M. If deg(q(z)) = di < 2d, andq(z) is ultimately positive (resp.
negative), one can use standard techniques for finding corstant, > 0 such
that 1z < q(z) < Cha® (resp. —Cizh < q(z) < —Cha®), whenz >
M,. Similarly we can find positive constantg, C,, and M5 such thatCs;z%¢ <
Ip2(2)|” < Cyz®?, whenz > Ms. If now ¢(z) is ultimately positive, then

() 2 - 2

P2 (33) B C2

C1

q(x)
[pa()]*

where the remainder satisfies

Crxth < q(z) < Coxth
Caz ™ |py()|* — Caz™

for z > M = max{M,, M,, M3}. The case thag(z) is ultimately negative is
treated in the same way.
The claim follows now from the fact that

2 2

p(@)|” |a _ ( p()|  |a >< pi(z) L@ )
pa(z) C2 pa() C2 pa() C2
and that the latter factor of the product is in interi@|c, /cs| — €, 2 |¢1/ca| + €)
for anyz > M., where)l, can be found algorithmically whenis given. O
Proposition 4.1. Let
Up = Ak—1Up—1 + ... + Q1 Up—f+1 + QOUpn—k (38)
be a linear recurrent sequence and
Up, = P1(N)AT + pa(n)A] 4+ ...+ pr(n) AL (39)

it representation as in (18). Without loss of generality, we can assuméthat
|Ao| > ... > |\.|. ProblemSKOLEM is decidable if one of the following cases
hold:

Lol > [Aal-
2. Ao = A1, (M| = [Xo] > |As].
3. M| = [Aa| = [As] > [Ma] @and Ay € R, Ay = As.

Remark 4.2. It is decidable whether one of the above conditions holds. In the
continuation will also assume that the roots of the characteristic polynomial are
always enumerated such thiat;| > |X\o| > .... The proof also shows that the
above the claim holds if actually = 1 in case (1) or ifr = 2 in case (2), or if

r = 3in case (3).
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Remark 4.3. It must be emphasized that even a more general result than this
proposition has been reached in [22]. Here we get a restricted version of [22], by
using somewhat lighter mathematical machinery.

Proof. We prove only the last claim, the other ones follow easily from that. Itis
worth noticing that by Lemma 4.1, we can assume Mja; is not a root of unity,
if i £ 5.

We denote byF' the field which contains all the roofs, ..., A\, as well as
their absolute valuels\, |, . . ., |\.|. Furthermore, we assume thais normal (see
Remark 2.4) and denote= [F : Q].

By the assumption and Proposition 2.13, we can write

= pr()A} + p2(n)A§ + By(n)A; + Ra(n), (40)

whereR;(n) = ps(n)A\} + ...+ p.(n)A}, sSOR;(n)/A} tends exponentially fast
to 0 asn tends to infinity. We denote the main term By(n) = u,, — Ri(n).

We prove the claim only in the casg < 0, the case\; > 0 is even easier.
Denotel; = —)\, Ay = X, A3 = Xe™ . We write alsop, (n) = A, p2(n) =
B,en, py(n) = B,e ", whereB,, € R, ¢,, € (—x,w]. By proposition 2.13,
A, € R anyway.

To examine the leading term of (40), we write

Ro(n) = pi(n)A} + pa(n)A3 + Pa(n) X,
= Au(=N)"+ B,e"\"e™ + Be n \te ™

= \"B, (%(_1)71 4 ei(¢ntnb) 4 efi(¢n+ne)>
= NB((-1) 5+ cos(6 + nf) ).

If deg(p1) > deg(p2), then cIearIy‘

grows unrestricted whemtends to infin-

ity. Itis clearly possible to find (algorithmically) a numhéef; such tha*
whenevemn > M. For such values aot, we have

An |
2B,

(=1)" (on + n@)’ ’(—1)” — |cos(¢p, + nO)| >2—1=1,

2B
and henceRy(n)| > 2A\"B,, whenn > M,. BecauseB,, is an absolute value of a

given nonzero polynomial, we can find (algorithmically) a numbgrsuch that
B, > 1/2whenn > M,. Thus

[Ba(n)]
)\n

|un| = [Ro(n) + Ri(n)| = [Ro(n)| = [Ri(n)| = A" —[Ry(n)| = A"(1— )-

It is now possible to find (algorithmically) a numbeéf such that™l < 1
whenevem > M. Then alsau,, # 0 whenn > M.
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If deg(p;) = deg(p2), thenlim,, . ‘2%;’ is a finite number which can be

straightforwardly recovered froméHeading coefficients gf; andp,. If deg(p;) <
deg(p2), then of course the afamentioned limit equals to. If lim,, ‘2% >
1, one can find algorithmically a numbéf such that.,, # 0 whenevem > M,

as easily as in the cageg(p;) > deg(p2).

Lemma 4.5 becomes helpful lifim,, .. 2"‘?’; = 1. In this case, the conver-
gence to the limit is ultimately monotonous, and following the proof of Lemma
4.5, we can effectively find a constaht and decide wheth#%;‘ approache$

from above or from below (for. > M). In the case that the convergence happens
from above, we can utilize the proof of Lemma 4.5 to find positive constahts
C andk such that

C

=

An
2B,

whenn > M. Then

A A C
’( ) 28n+cos(¢n+n9)‘_‘23n > =
and
n] = [X"By - —| = [Ra(n)] = A (Bn.m—T),
whenn > M. If the term% vanishes, it does so at most polynomially, but the
latter term!ZL7 vanishes exponentially. It follows that one can find a number

M such thatu,, # 0 whenevem > M.
Finally we assume that eith %’; tends tol (ultimately) from below, or
that it tends to a limit less thah In both cases, we choose fitdf; such that

‘2%’;‘ < 1,if n > M;. We will extend Mignotte’s result [20] to estimate the
expression
A,
’(_1)n2Bn + cos(¢, + nQ)’ (41)

from below by using Baker’s theorem. If we can find for (41) a lower bound of
form n% for n > M, then the proof is complete, since we can argue as in the
previous case (of course numbéts”, and M must be found algorithmically).

Now that‘z,%” < 1 for eachn under consideration, we can choogg <

(—m, 7] such thatos v, = 2“7’;. In fact, the description of*¥» can be found by
using equatiore’¥n + e~ = g—z, which also shows that¥~ is an algebraic
number.

Expression (41) takes now form

|cos(¢n + nb) + (—1)" cos |, (42)
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and we treat caseseven and: odd separately. For even (42) is of form

0 0 —
|cos(pn, + nb) + cos b, | = |cos w coS w . (43)
whereas for oda, we have
0 0 —
|cos(¢y, + nb) — cost,| = |sin w sin w . (44)

We handle only the even case, (44) is even easier. In the right hand side of
(43), one of the factors is minimal, so

2

|cos(¢y, + nb) + cos iy, > ’cos w : (45)
and we may concentrate on eXpreSSionS
+ + Y, —
oS Ont 10 £ W0 7129 | _ ‘sin &n + 0 5 Yn o : (46)

It is of course possible to choose, € Z such that

nT € |—=, =|
5 +m,m € | 5 2]

Moreover, since,,, v, 0 € [—r, 7], suchm,, satisfies

- n+2 <m, < n—|—4‘
2 = - 2
In particular,m,, satisfiegm,,| < n, whenevern > 4. We will then use inequality

|sinz| > 2 |z| (valid forz € [-%, Z]) to see that

On +nb £,
COS————
2
S1n
2
2

+ mnﬂ)

2
s

1
= ity + nif £ ity + (2m,, — 1)im|. (47)
m

-+ m,T

Numbersi¢,, i6, i1, andir occurring in the latest expression are all logarithms
of algebraic numbers. To apply Baker’s theorem, we must estimate the heights of
these algebraic numbers and to find out when (47) may become zero.

By Lemma 4.4 there are constarits and C;, such thatH (¢~) < Cyn®=.
Clearly e’ belongs toF’, which shows thati(e~) < d. Itis plain thatH (¢?) is
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independent ofi, and can be estimated using equatign= \e? as in the proof of
Lemma 4.4. Moreover](e?) < 2d. Also H(e'™) = H(—1) = 1 andd(e™™) = 1.
It remains to estimate the height and the degre€‘of For that, equation

, A A
Wn — it — n 48
it et = (48)
offers a starting point. Both numbers§ and B2 belong toF’, so (48) shows that
e satisfies a quadratic equatiomer a quadratic extension @f. This implies
thatdeg(e®") < 4d. Solution of (48) is

; 1 (A A2
an_ n n

which, using [1, p. 24] and Lemma 4.3 shows that it is possible to find algorith-
mically constant€’; andCy such thatH (¢*¥~) < Cyn®s,

Before applying Baker’'s theorem we must still find out the values &br
which (47) becomes zero. Formula (47) is zero if and only if

6z¢n€n196iz¢ne(2mn—l)z7r — 17

which is implies that
<€i29)n — 6*i2(¢niwn)_ (49)

We will show how to extend Proposition 2.7 to find out all solutions of (49).
This is indeed rather straightforward: by Lemma 4.1 we can assume’that
A2/ s is not a root of unity, which implies that the power$?)™ are all distinct.

By Lemma 4.4 and construction of numbers it is clear that there are limits
e'n — e ande®r — ¢, which both are algebraic numbers that can be found
algorithmically. Moreover, for each > 0 one can algorithmically find a number
M, such thatle’r — |, [e"» — e| < e whenevem > M.

Now \eie\ = 1, so we have to apply the latter part of the proof of Proposition
2.7. Recall from the that proof, that sinﬁ@/Xg = ¢%% is not a root of unity, there
are two choices: either? is an algebraic integer or not. ¢ is an algebraic
integer, there is a (computable) isomorphism C — C such thafo;(¢*?)| > 1.
Equation (49) gives then

log |ai(e’2i(¢”iw"))‘ =nlog ‘O’i<€2i9)‘ : (50)

Now thate—2»*%=» tends to a limit, we can find all potential numberfor which
(50) holds.

If €% is not an algebraic integer, there is a prime ideaif the integer ring of
field £ for whichvp(e*?) # 0. It follows that

m}P(ezz‘e) _ vp(e—2i(¢n:l:z/}n))

and
]n] < |UP(672i(¢>nﬂ:wn)>‘ < log, ‘N((;*?i(%iwn))‘
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(recall the proof of Proposition 2.7). Again sing&»*¥=) tends to a limit, we can
find all numbers: for which (47) is zero.

Notice that (47) is zero if and only if (46) is zero. It follows that also the
versionr = 3 (1 real root and a pair of complex roots with the same absolute
value) is covered.

Hereafter we assume thatis chosen so large that (47) is not zero. We can
then use Baker's theorem by choosiBg= n (recall that/m,| < n) andA =
Dn¥, whereD andE are chosen such that > max{C,n®?, C3n“} for eachn.
Therefore

i, + nif £ ithy, + (2m, — 1)im| > n~C"loaPn)", (51)

k is a (computable) constant, and is a (computable) number that depends only
ond. Lower bound (51) is not exactly of the required foyﬁl but (51) is good
enough: by combining (42), (43), (45), (47) and (51) we see that

1
" 20" log(DnE)x !

|Ro(n)| > 2" B

whereagR; (n)| = O(N™) with |X'| < A. Itis straightforward to see that expres-
sion|Ry(n)/Ri(n)| tends taco asn — oo, and consequently one can find a limit
M such thatu,, # 0 whenn > M. O

4.2 Restricted Depths

Proposition 4.4. ProblemSKOLEM is decidable if the recurrence has depth two,
le.

Up = A1Up—1 + AoUp—2.

Proof. Let \; and\, be the roots of the characteristic polynomiét) = 22 —
ax — ag. If Ay = \o, then the case 1) of Proposition 4.1 applies\If# \,, but
|A1] = [A2], andAq, Ay € R, then necessarily, = —)\;, SO\ /Ay = —1 is aroot
of unity, and we can use the reduction of Lemma 4.1.

In the remaining case, we have = \;, which leads us to the case 2) of
Proposition 4.1. We can write

Up, = 2A1 A7 cos(¢ + nb),

where); = \e¥, andA = A,¢e'® are algebraic numbers. It remains to decide
whethercos(¢ + nf) = 0 for somen, but this is equivalent to deciding whether
e 2% = (%% for somen. This is decidable by Proposition 2.7. O

Proposition 4.5. ProblemSKkoOLEM is decidable if the recurrence has depth three,
le.

Up = A2Up—1 + A1Up—2 + AoUp—3.
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Proof. Let p(z) = 23 — axx® — a;x — ao be the characteristic polynomial of the
recurrence and,, A, and); its roots with|A\;| > |X\2| > |A3]. There are now two
possibilities: 1)p(x) has three real roots, or 2jx) has only one real root.

The first case divides into three subcases:|1d) > |\2| 1b) |\| = [A2| >
|As], and 1c) A\ | = |Ao| = |A3]. Case 1a) is a subcase of Proposition 4.1, whereas
in case 1b) we have either = \; or Ay = —\q. If Ay = Xy, we have a multiple
dominant root, again a subcase of Proposition 4X, = — Ay, then); /A, = —1
is a root of unity, and we can use the reduction of Lemma 4.1. In case 1c), we
have either a triple rook; (which is a subcase of Proposition 4.1), or a double
root. Without loss of generality, we can assume= Ay = —\3, SOA\y/A; IS a
root of unity and we can again reduce as in the proof of Proposition 4.1.

In the second case, necessadily= )3, and this is a special case of Proposi-
tion 4.1: We can write

Up, = 2A1 A" cos(¢ + nb) + C AL, (52)

where\; = Xe?? = ),, andA; € R. If |[\3] > ), then we have case 1) of
Proposition 4.1. IfA\;] < A\;, we have case 2) of the aforementioned proposition,
whereag\s;| = X is a an instance of case 3) of Proposition 4.1. O

Proposition 4.6. ProblemSKoLEM is decidable if the recurrence has depth four.

Proof. Now that the characteristic polynomial has degree four, we can divide into
three cases: the number of the real roots is eitheyor 0.

If there are four real roots, then eithene of them is dominating (which is a
special case of Proposition 4.1), br = A\, A\, = —\. But in the latter case, again
A1/ A9 is a root of unity, and we can use Lemma 4.1.

If there are exactly two real roots, one having modulus strictly greater than
the complex roots, the decision is again easy (if the other real root has the same
modulus, we can use again Lemma 4.1). On the other hand, if the real roots have
smaller absolute value than the comptoots, then we have again a special case of
Proposition 4.1. Therefore we can assume that \e?, Ay = Xe™, A\ = £,
and that \,|] < A. We can assume that, # +\3, since them\;/\, would be a
root of unity. Then|\4| < |A;] and we have again a special case of Proposition
4.1.

In the last case, there are no real roots. If one of the complex roots is a double
root, so is its conjugate, and

u, = (A+ Bn)\!+ (A+ Bn)X],

which is a special case (2) of Proposition 4.1.
Finally we consider the case that all the complex roots are disjoint. Then

Uy = AN} + AN + CAE 4+ Oy, (53)
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and if|A\;| > |\3|, we have again a special case of Proposition 4.1.
Therefore we can assume that| = |A\3] = A. In this case we can rewrite
(53) as

u, = A)\neinal + Z}\nefinal + )\neinag + 6)\11677;7102
— A(A(E) A O+ T ). (B4)

To find out if (54) is zero for some € N is a special case of Proposition 2.10, a
decidable task.
O

Proposition 4.7. ProblemSKOLEM is decidable if the recurrence has depth five.

Proof. In this case, the characteristic polynomial has degrel is possible to
havel, 3, or5 real roots.

If there are5 real roots, then either one tiiem is dominating (which is a
subcase of Proposition 4.1), or some of them have the same absolute value (which
we can exclude by Lemma 4.1).

If there are3 real roots, then there are two complex roots consisting of a pair of
complex conjugates. In this case, eitflee complex roots have greater absolute
value than the real roots (which is a subcase of Proposition 4.1), or there is a real
root which has exactly the same absolute value as the complex roots. If, in the
latter case, there are more than one real roots with the same absolute value, we
can apply Lemma 4.1. If there is exactly one real root sharing the absolute value
with the complex roots, we have again a subcase of Lemma 4.1.

In the last case, there is only one real root armdmplex roots. If the roots do
not share the same absolute value, we have one of the cases discussed before. If
one of the complex roots has multiplicity greater thathen so does its complex
conjugate, and we have a subcase of Proposition 4.1. If all the roots have the same
absolute value, then

un = AN+ By + By + DA+ DX}
= A(i)\)n+8)\n€zn91 +§)\nein01 _i_Deian)\n_i_EefmgQ
)\n(A(j:l)n+B(6i91)n+§(6i91)_n+D(6i92)n+ﬁ(6i92)_n),

We can now take separately the cases for odd and eyand use Proposition
2.10 to decide whether,, = 0 for somen. O
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