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Abstract

We give a survey of Skolem’s problem for linear recurrence sequences. We cover
the known decidable cases for recurrence depths of at most 4, and give detailed
proofs for these cases. Moreover, we shall prove that the problem is decidable for
linear recurrences of depth 5.
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1 Introduction

1.1 Historical Background

Solutions to combinatorial problems often appear as sequences of numbers. These
sequences are sometimes defined by some relations, where thenth element of
the sequence can be counted by using the precedent elements of the sequence.
Here we shall consider such sequences arising from linear recurrence relations. A
sequence(un)

∞
n=0 (or just(un) or un, for short) is alinear recurrent sequence, if

it satisfies
un = ak−1un−1 + . . . + a1un−k+1 + a0un−k (1)

for all n ≥ k with fixed aj ∈ Z coefficients forj = 0, . . . , k − 1. We say that
the relation (1) is alinear recurrence relationof depth(or degree) k. Note that
we may assume that in (1), we havea0 �= 0, sincea0 = 0 would imply that the
sequence satisfies a shorter linear recurrence.

The k first elementsu0, u1, . . . , uk−1 of the linear recurrent sequence(un)
in (1) are called theinitial conditions. If the initial conditions are given, every
element of the sequence is uniquely determined by the recurrence (1).

Example 1.1. One of the most well known linear recurrence equations is that for
the Fibonacci numbers:Fn = Fn−1 + Fn−2 for n ≥ 2 with the initial conditions
areF0 = F1 = 1.

In this article we are interested in the followingSkolem’s problem1:

Problem SKOLEM: Given a linear recurrent sequence(ui), that is,
the linear recurrence relation and the initial conditions, determine
whether or not there existsi ≥ 0 such thatui = 0.

We shall give a detailed survey of Skolem’s problem covering the known (al-
gorithmically) decidable cases, and, moreover, we shall prove that the problem is
decidable for linear recurrences of depth 5. Also, we shall study the connections
of Skolem’s problem to some other problems in mathematics.

Let us use the following notation, for an integer sequence(un), let

Z(un) = {i ∈ N | ui = 0}
be theset of zeroes of(un). The starting point of the problem about zeros in re-
currence sequences was in 1934 when Skolem [29] proved thatZ(un) is union
of finitely many periodic sets and a finite set. In his paper Skolem usedp-adic
techniques to prove the result. In the days of Skolem’s paper, algorithmic decid-
ability issues were not yet as relevant as they are today. The result of Skolem

1In the literature Skolem’s problem is sometimes referred to asPisot’s problem. The usage of
the name of Norwegian mathematician Thoralf Skolem comes from the history as we shall see,
but the usage of French mathematician Charles Pisot’s name is not known by the authors.
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was later proved also by Mahler [17] and Lech [23]. In Section 3 , we shall give
the proof given by Hansel [13]. The result of Skolem is very strong, and, indeed,
from Hansel’s proof it follows that it is decidable whether or not a given linear
recurrent sequence(un) has infiniteZ(un) or not. This was originally proved by
Berstel and Mignotte in [5]. We give the decidability proof in Section 3. We also
mention that it is decidable whether or not the setZ(un) has a finite complement
or Z(un) = N, see [28].

Previously it has been shown that Skolem’s problem is decidable for linear
recurrent sequence of depth at most 4. The case of depth one is trivial, but for
the depth two, the problem is already challenging. There is an old folklore proof
for the case of depth 2, see [11]. In 1985 Vereshchagin [31] proved that Skolem’s
problem is decidable for sequences of depths 3 and 4. Vereshchagin’s proof uses
results of Baker [1] and of van der Poorten [25] for linear logarithms. Here we
shall prove that Skolem’s problem is decidable also when the depth of the linear
recurrence relation is 5. On the way, we give new proofs for the cases where the
depths are 2, 3, and 4. For these proofs, we use the same ideas as Vereshchagin:
we study thesolutionsof the sequence, i.e., we study the problem when thenth
element of the sequence is deduced from the sum

r∑
i=1

pi(n)λi, (2)

wherepi’s are polynomials, andλi’s are complex numbers, called thecharacter-
istic roots. We prove that there is an effective upper boundM , deduced from
the form (2) such that ifui = 0 for some i, then there existsj ≤ M such that
alsouj = 0. This upper bound is found using Baker’s result [2] for logarithms.
Mignotte, Shorey and Tijdeman [22] proved in 1984 that Skolem’s problem is
decidable for the depths 3 and 4, when the recurrence is nonsingular, i.e., in (2)
λi/λj is not a root of unity for anyi �= j. Actually, Vereshchagin proved that any
sequence can be reduced (or divided) to a finite set of nonsingular sequences, and
we shall use this property in our proof also.

Algorithmic undecidability is close to Skolem’s problem. As we shall see in
Lemma 1.1, Skolem’s problem can be equivalently stated in the following terms
of matrices:

Given ak × k integer matrixM , determine whether or not for some
powern ≥ 0, the element(Mn)1k = 0.

The decidability results proved here yieldthat the matrix form is decidable
for matrices with dimensionk ≤ 5. If we consider the problem where instead
of one matrix we have a semigroupS generated byn integer matrices, then it is
undecidable whether there existsM ∈ S such that the right upper corner ofM is
zero. Indeed, this problem is undecidable for semigroups generated by seven3×3
integer matrices. This follows by the proof of R.W. Floyd in [18], since the Post
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Correspondence Problem is undecidable for instances of7 letters, see [19] (see
also [14]). On the other hand, this problem is undecidable for two matrices of di-
mension at least 24, see [8]. Therefore, when finding decidable cases of Skolem’s
problem, we are exploring the borderline between decidability and undecidability.

There are also other important undecidable problem in the theory of integer
matrices, of which we like to mention a few. LetS be a finitely generated semi-
groups ofk×k integer matrices. For example, fork ≥ 3 it is undecidable whether
or not the zero matrix is inS for k ≥ 3 [24] (see also [12]), and whether or not
the semigroupS is free [16] (see also [7]). Recently it was proved that it is unde-
cidable fork ≥ 5, whether or not a fixed diagonal matrix is inS [26].

1.2 Equivalent Formulations of the Problem

Recall from the introduction that Skolem’s problem was stated as follows: Given
a linear recurrenceun (overZ), does there exist ann such thatun = 0?

The following lemma gives some equivalent representations for the problem.

Lemma 1.1. For an integer sequenceu0, u1, u2, . . ., the following are equivalent:

1. Sequenceun is a linear recurrent sequence.

2. For n ≥ 1, un = (Mn)1k, whereM ∈ Zk×k for somek.

3. For n ≥ 1, un = vMnwT , wherev, w ∈ Zk andM ∈ Zk×k for somek.

Proof. Implication (1) =⇒ (2): Assume that a sequenceun is given by first
fixing u0, . . ., uk−1, and forn ≥ k defined by recurrence

un = ak−1un−1 + . . . + a1un−k+1 + a0un−k.

Let

M1 =




ak−1 1 . . . 0 0
...

...
. . .

...
...

a2 0 . . . 1 0
a1 0 . . . 0 1
a0 0 . . . 0 0


 (3)

It is easy to see that for eachn ≥ 0, un = vMn
1 wT , wherev = (uk−1, . . . , u1, u0),

andw = (0, . . . , 0, 1). We denote0 = (0, 0, . . . , 0) and define a(k+1)×(k+1)-
matrixM by

M =

(
0 vM1

0T M1

)
.

Inductively we see that

Mn =

(
0 vMn

1

0T Mn
1

)
,
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and, furthermore, that

(Mn)1,k+1 = (1 0)

(
0 vMn

1

0T Mn
1

)(
0

wT

)
= vMnwT = un

whenevern ≥ 1.
Implication (2) =⇒ (3) follows directly from(M k)1k = (1, 0)Mn(0, 1)T .
Implication (3) =⇒ (1): Let p(x) = xk − ak−1x

k−1 − . . . − a1x − a0 be
the characteristic polynomial of matrixM . According to the Cayley-Hamilton
theorem [10]

Mk = ak−1M
k−1 + . . . + a1M + a0I,

and consequentlyMn = ak−1M
n−1 + . . . + a1M

n−k+1 + a0M
n−k for anyn ≥ k.

It follows that

vMnwT = ak−1vMn−1wT + . . . + a1vMn−k+1wT + a0vMn−kwT ,

which is to say that

un = ak−1un−1 + . . . + a1un−k+1 + a0un−k, (4)

so (4) is the desired recurrence.

2 Mathematical Tools

In this section we give the mathematical tools needed for the construction of the
algorithms presented in the later sections. We shall give an introduction to the
theory of algebraic numbers, but first we would like to motivate the reader.

Let us consider a linear recurrent sequenceun satisfying the relation,

un = ak−1un−1 + · · ·+ a0un−k.

Thecharacteristic polynomialis the polynomial

p(x) = xk − ak−1x
k−1 − ak−2x

k−2 − · · · − a1x − a0. (5)

The rootsλ1, λ2, . . . , λk(∈ C) of the characteristic polynomial are called thechar-
acteristic roots. Note that, sincea0 �= 0, λi �= 0 for all i.

We prove in Proposition 2.11, that the sequenceun can besolvedusing the
characteristic roots, that is,

un = p1(n)λn
1 + . . . + pr(n)λn

r ,

whereλi are distinct roots ofp(x) andpi(n)’s are polynomials which can be effec-
tively found. Here, the characteristic roots are algebraic numbers. Our algorithm
uses this solved form ofun, and the properties of the characteristic roots.
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2.1 Algebraic Numbers

We now present the notions on algebraic numbers necessary in the continuation.
For a more comprehensive representation on algebraic number theory, we refer to
[10]. By analgebraic numberwe mean a (complex) number which is algebraic
over the field of rational numbers. It is a well-known fact that all algebraic num-
bers form a field. Theminimal polynomialof an algebraic numberα is a monic
polynomialp(x) ∈ Q[x] of the least possible degree havingα as a zero. Ifc is
the least common multiple of the nominators of the coefficients ofp(x), we call
polynomialcp(x) ∈ Z[x] thedefining polynomialof α. The defining polynomial
is clearly unique. If the defining polynomial ofα is monic, or equivalently, if
the minimal polynomial ofα is in Z[x], thenα is analgebraic integer. Alge-
braic integers form an integral domain. The definition implies directly that for
each algebraic numberα there is a representationα = β

m
, whereβ is an alge-

braic integer andm ∈ Z. Moreover, the minimal polynomial ofβ andm can be
found algorithmically when the minimal polynomial ofα is given. The degree
of the minimal polynomial is called thedegreeof α and denoted bydeg(α). If
p(x) = pdx

d + . . .+p1x+p0 is the defining polynomial ofα, we define theheight
of α as

H(α) = max{|pd| , . . . , |p1| , |p0|}.
Trivially any root (i.e, a solution of equationxn = α) of an algebraic number

is again algebraic, and ifβn = α, thendeg(β) ≤ n deg(α). Thus, taking the root
can increase the degree, but all the powers ofα belong to the field generated by
α, which implies thatdeg(αn) ≤ deg(α) for eachn ∈ N.

When introducing algebraic numbers we always assume that they are embed-
ded inC, and we fix an embedding in the following way: we say that adescription
of an algebraic numberα is a quadruple(p(x), ξ, η, ρ), wherep(x) is the defining
polynomial ofα, andξ, η, andρ are rational numbers which satisfy the following:
the circle of radiusρ centered atξ + iη containsα but no other zeros ofp(x).

It may be useful to refer to theresult in [21] to notice that ifp(x) is the defining
polynomial of an algebraic numberα with d = deg(α) andH = H(α), then for
any rootsαi �= αj of p(x), we have

|αi − αj | ≥
√

6

d
d+1
2 Hd−1

. (6)

Therefore we will additionally require that in the description of an algebraic num-
ber,ρ should always be chosen smaller than a quarter of the above quantity (6). It
is then possible to distinguish between all the roots of the minimal polynomial. It
is clear that given a description, arbitrarily precise approximations ofα with ra-
tional real and imaginary parts can be effectively computed by using for example
Newton’s method [9, p. 145]. It is also evident that, given the descriptions ofα
andβ, the descriptions ofα ± β, αβ±1, andnth roots (n ∈ {2, 3, . . .}) of α can
be found algorithmically. In fact, it is plain how to find good approximations of
a±β, αβ±1, and the roots, and for the minimal polynomials of sums and products,
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one can use the resultant method, see [9, p. 157]. Moreover, it is easy to see that
deg(α + β) anddeg(αβ) both are at mostdeg(α) deg(β).

If α is an algebraic number andp(x) its minimal polynomial, then the roots
α1 = α, . . ., αd of p(x) are called the(Galois) conjugatesof α. Notice that since
p(x) is a minimal polynomial (and hence irreducible), numbersα1, . . ., αd are
necessarily distinct. Ifα is not a real number, then thecomplex conjugateα of
α is always among the (Galois) conjugates. It follows thatαα is an algebraic
number, and moreover that theabsolute value(also called themodulus) |α| of α
is an algebraic number, since|α|2 = αα.

If α is an algebraic number of degreed andα1 = α, . . ., αd the conjugates of
α, then there are exactlyd embeddingsσ1, . . ., σd from field Q(α) into C, each
defined asσi(α1) = αi [10].

Remark 2.1. It is also quite easy to see that eachσi is a continuous mapping:
σi(β1) and σi(β2) become arbitrarily close to each other, if|β1 − β2| is chosen
small enough. Notice also that ifα is not a real number, then fieldQ(α) is dense
in C, since1 andα are then linearly independent overR, and thus it is possible to
have arbitrarily precise approximationszn of anyz ∈ C of formzn = an + bnα,
wherean, bn ∈ Q. It follows also that we can extend the mappingσi to whole
C uniquely. Moreover, ifβ is an algebraic number, it is possible to compute
arbitrarily precise approximations ofσi(β) even thoughβ /∈ Q(α).

For each complex numberα there is a representationα = |α| eiθ, whereθ ∈
[0, 2π) is called thephaseof α. If α is algebraic, then so is|α|, and consequently
eiθ is an algebraic number as well.

Proposition 2.2. Given descriptions(p1(x), ξ1, η1, ρ1) and (p2(x), ξ2, η2, ρ2) of
algebraic numbersα andβ respectively, the following questions are decidable:

1. α = β?

2. |α| > |β|?
Proof. For deciding equality, ifp1(x) �= p2(x), then certainlyα �= β. If p1(x) =
p2(x) but |ξ1 + iη1 − (ξ2 + iη2)| ≥ min{ρ1, ρ2}, thenα �= β, otherwiseα = β.

For the second question, it is possible to find descriptions for both|α| and|β|,
and then to first decide whether|α| = |β|. If |α| �= |β|, we can find arbitrarily
precise approximations for both|α| and|β| to decide whether|α| > |β|.

Let r ∈ N. An rth root of unity is a (complex) numberζ satisfyingζ r = 1.
A root of unity is clearly an algebraic number. The smallest positiver such that
ζr = 1 is called theorder of ζ and denoted asr = ord(ζ). Evidently|ζ| = 1 for
the roots of unity, and the number ofrth roots of unity is exactlyr. An rth root
of unity is calledprimitive if ζk �= 1 for each1 ≤ k < r, i.e., if its order isr. All
rth roots of unity are obtained as powers of a primitive root of unity. It is possible
always to chooseζr = e

2πi
r as a primitiverth root of unity. For any primitiverth
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root of unityζr it is easy to see thatζk
r is primitive if and only ifgcd(r, k) = 1.

Therth cyclotomic polynomialis defined as

φr(x) =

r−1∏
k=0

gcd(k,r)=1

(x − ζk
r ). (7)

Clearlyφr has all the primitiverth roots of unities as zeros. It can be shown also
that φr(x) ∈ Z[x], and thatφr(x) is an irreducible polynomial. It follows that
deg(φr) = ϕ(r), whereϕ(r) is theEuler’s function. The cyclotomic polynomials
φr(x) can be constructed algorithmically.

Proposition 2.3. Given a description of an algebraic numberα, it is decidable
whetherα is a root of unity. Ifα is a root of unity, thenord(α) can be algorithmi-
cally found.

Proof. We show that ifα is a root of unity, then there is a computable numberM
such thatord(α) ≤ M . The claim follows, since one can construct representations
for all numbersα, α2, . . ., αM and check if one of those numbers equals to1.

Let d = deg(α). If α is a primitiverth root of unity, thenα is a zero ofφr(x),
which has degreed = ϕ(r). On the other hand, it is known [27] that forr ≥ 3,

r

ϕ(r)
< eγ log log r +

2.50637

log log r
, (8)

whereγ = 0.5772156649 . . . is theEuler’s constant. For r ≥ 3, the right hand
side of (8) can be estimated to get

r

ϕ(r)
< 283 log log r, (9)

which implies thatd = ϕ(r) > r
283 log log r

. It therefore suffices to takeM =

max({r | r
283 log log r

< d} ∪ {3}).
As an algebraic number fieldwe understand a finite extension ofQ. It is

a well-known fact that each number fieldF is a simple extensionof Q, which
means thatF can be represented asF = Q(α). Moreover, if representations of
algebraic numbersα1, . . ., αr are given, it is possible to find algorithmically a
representation ofα such thatQ(α) contains all the numbersα1, . . ., αr [9]. If
p(x) is a polynomial, thesplitting fieldof p(x) is the smallest field wherep(x) can
be decomposed into linear factors.

Remark 2.4. Throughout the rest of Section 2, we assume, unless explicitly other-
wise stated, that an algebraic number fieldF is chosen such that all the occurring
algebraic numbers and their conjugates belong toF , and that the fieldF is nor-
mal, meaning thatF is a splitting field of some polynomial inQ[x], or equivalently
that every irreducible polynomial (overQ) which has a zero inF , splits into linear
factors overF . If F1 = Q(α1) is a number field, then it is possible to find algo-
rithmically an algebraic numberα such thatF = Q(α) is a normal extension of
Q containingF1 [10].
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If α is an element ofF andσi : F → C are the embeddings ofF into C, we
define thenormof α as

N(α) =
∏

σi(α).

It is an easy consequence of the definition thatN(α) ∈ Q, N(αβ) = N(α)N(β),
and thatN(1) = 1 always. It follows thatN : F ∗ → Q∗ is a group morphism. By
the definition, it is also clear thatN(α) can be algorithmically computed for each
α ∈ F .

2.2 Ideals

One of the most interesting and fruitful partin the theory of algebraic numbers
concerns the ideals of the ring of the algebraic integers of a given algebraic number
field. We refer to [10] for the results and notions mentioned in this section.

The algebraic integers contained in an algebraic number fieldF form a ring,
called thering of integersof field F . Let us denote this ring byO. It is known
that all the ideals ofO are finitely generated. IfA andB are ideals ofO, then new
idealsAB andA + B can be defined as

AB = {ab | a ∈ A, b ∈ B}, A + B = {a + b | a ∈ A, b ∈ B}.
It is rather straightforward to show that the ideals form a commutative ring, where
O serves as a unit element and{0} as a zero element. If we denote the principal
ideal generated byα ∈ O by [α], we can also writeO = [1], {0} = [0]. It is easy
to see that mappingα → [α] is a morphism from the multiplicative group ofO
into the multiplicative group of the ideals. The notion of divisibility among the
ideals is easy to formulate:B | A if and only if A = BC for some idealC. We
say thatP �= [0], [1] is aprimeideal if A | P implies either thatA = [1] or A = P .

The ideal theory has been developed mainly because the factorization in ring
O is not necessarily unique, whereas thefundamental theorem of ideal theory
states the following:

Theorem 2.5. Each ideal not equal to{0} of ring O can be represented as a
product of prime ideals. The representation is unique if the order of the prime
ideals is ignored.

Now we can fix a prime idealP and define thevaluationvP : O \ {0} →
N ∪ {0} as follows: Ifα �= 0 and

[α] = P k1
1 · . . . · P kr

r (10)

is the representation of ideal[α] as a product of prime ideals, we define

vP (α) =

{
ki, if P = Pi in (10)
0, if P /∈ {P1, . . . , Pr}.

Moreover, we define symbolicallyvP (0) = ∞. The definition ofvP can be
extended to whole number field by noticing that alwaysZ ⊆ O and that ifα
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is not an algebraic integer, then there exists anm ∈ Z such thatα = α1/m,
whereα1 is an algebraic integer. It is then possible to show that the definition
vP (α) = vP (α1) − vP (m) is independent of the choice ofα1 andm.

Unlike in Z, the ideals ofO need not to be principal, but anyway they are fi-
nitely generated, and the representation (10) can be found algorithmically [9, pp.
179–204]. It follows that given a numberα ∈ F , valuevP (α) can be found also
algorithmically. The following important issues aboutvP can be proven straight-
forwardly:

Proposition 2.6. LetP be a prime ideal of the ring of integersO of an algebraic
number fieldF . Then, for eachα, β ∈ F ,

1. vP (αβ) = vP (α) + vP (β).

2. vP (α + β) ≥ min{vP (α), vP (β)}.

3. If vP (α) < vP (β), thenvP (α + β) = vP (α).

A unit of ring O is an elementγ that has also an inverseγ−1 ∈ O. It is easy
to see that[α1] = [α2] if and only if α1 = γα2 for some unitγ. It follows that
if α = α1

m
is not an algebraic integer (butα1 is), the ideals[α1] and [m] are not

equal. Therefore, the representations (10) of[α] and[m] are not equal, and we get

Lemma 2.1. If α is not an algebraic integer, then there is a prime idealP such
thatvP (α) �= 0.

Such a prime ideal can also be found algorithmically [9].
A special case occurs ifF = Q. In ring Z all ideals are principal, and the

prime idealsP are generated by the prime numbers. Ifp is a prime number and
P = [p] the ideal generated by it, we denote usuallyvP = vp. Given a prime
numberp, the valuation of an integerm can be then found as follows:

vp(m) =

{
0, if p � m
k, if pk | m butpk+1 � m.

For any rational numberr = m
n

, we havevp(r) = vp(m) − vp(n) according to the
previous definition. Valuationvp is called thep-adic valuation.

Finally we represent the notion ofnormof an ideal. LetF be the number field
in question andO its ring of integers. For any idealA �= [0], we define itsnorm
as the cardinality of the residue class ring:N(A) = |O/A|. It can be shown that
for eachA �= [0], N(A) is finite, and thatN(AB) = N(A)N(B) for all idealsA
andB. Furthermore,N([α]) = |N(α)| for each principal ideal[α], and for each
prime idealP there exist a unique prime numberp ∈ P , and thatN(P ) = pf for
some natural numberf . By the definition,N(P ) ≥ 2 for any prime ideal, and as
a consequence we see that

N(A) = N(P k1
1 . . . P kr

k ) ≥ N(Pi)
ki ≥ 2ki.

It follows that|N(α)| = N([α]) ≥ 2vP (α) for anyα �= 0 and any prime idealP .
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Proposition 2.7. Given descriptions of algebraic numbersα, β ∈ F , it is decid-
able whetherα = βn for somen ∈ Z.

Proof. Proposition 2.2 implies that it is possible to decide whether|β| = 1. As-
sume first that|β| �= 1. Thenlog |β| �= 0 and equationα = βn implies|α| = |β|n,
which, in turn gives that

n =
log |α|
log |β| . (11)

It is possible to compute arbitrarily precise approximations of the right hand side
of (11), which allows to restrict the number of potential exponentsn to at most
one. Then it remains to compute a representationβn for this potentialn to check
if α = βn.

Assume then that|β| = 1. According to Proposition 2.3 it is decidable whether
β is a root of unity. Ifβ is a root of unity of orderr, then it remains to check if
any of numbersβ0, β1, . . ., βr−1 equals toα.

Next we assume that|β| = 1, and thatβ is not a root of unity. It follows that
β /∈ R.

We split here into two subcases: 1)β is an algebraic integer, and 2)β is not
an algebraic integer. It should be noted that to distinguish between 1) and 2) is an
easy task when the minimal (or defining) polynomial ofβ is available.

In the first case, we show, following Kronecker’s argumentation, that there
exists a conjugate ofβ having absolute value greater than1.

Assume the contrary:|σi(β)| ≤ 1 for each conjugateσi(β) and consider set
B = {β, β2, β3, . . .}. The minimal polynomialpn(x) of βn is of form

pn(x) =
d′∏

i=1

(x − βn
i ), (12)

whereβn
1 , . . ., βn

d′ are conjugates ofβn, andd′ ≤ deg(β). Sinceβn is always an al-
gebraic integer, polynomials (12) belong toZ[x]. The aforementioned conjugates
are among numbersσi(β

n) = σi(β)n, so the assumption implies that|βn
i | ≤ 1 for

each conjugate in (12). It follows that the coefficients of (12) are bounded, and
because polynomials in (12) are inZ[x], there are only finitely many polynomi-
alspn(x). Consequently, there are only finitely many elements ofB. It follows
thatβn = βm for somen < m, and thereforeβm−n = 1, which contradicts the
assumption thatβ is not a root of unity.

Now we can choose a conjugateβi = σi(β) with |βi| > 1, and apply the
homomorphismσi (or, to be precise, its extension toC) to equationα = βn to get

σi(α) = σi(β)n.

As mentioned in Remark 2.1, it is possible to compute arbitrarily precise approx-
imations ofσi(α), and because|σi(β)| > 1, we havelog |σi(β)| �= 0, and we can
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restrict the number of potential exponents to at least one by computing approxi-
mations of the right hand side of

n =
log |σi(α)|
log |σi(β)|

precise enough.
Finally we assume thatβ is not an algebraic integer. Then it is possible to find

efficiently a prime idealP of the integer ring ofF such thatvP (β) �= 0. Thus

vP (α) = nvP (β).

Because2vP (α) ≤ |N(α)|, we have an estimation

log2 |N(α)| ≥ |vP (α)| = |nvP (β)| ≥ |n| .

Moreover, we can compute arbitrarily precise approximations ofN(α), so an up-
per bound for|n| can be found algorithmically.

Remark 2.8. Proposition 2.7 occurred also in [31] in a less detailed form, and in
[15] in form, whereα = q(β) with q ∈ Q[x].

Remark 2.9. Notice also that when constructing the algorithm of Proposition
2.7, it is not necessary to compute any valuationsvP (α). The valuations were
only introduced to prove the method correct. However, it is possible to compute
the valuesvP (α) algorithmically, see [9].

Similarly to Proposition 2.7 we can prove the following, a little bit more com-
plicated claim which is needed in the sequel.

Proposition 2.10. Let α1, α2, β1, . . ., β4, andδ be algebraic numbers belonging
to a number fieldF , which is a normal extension ofQ. If α1/α2 is not a root of
unity, then it is decidable whether equation

β1α
n
1 + β2α

−n
1 = β3α

n
2 + β4α

−n
2 + δ (13)

has a solutionn ∈ N.

Proof. By dividing byβ1 (or byβ3) and taking a common factor, we can assume
that the equation (13) is in fact of form

αn
1 + β1α

−n
1 = γ(αn

2 + β2α
−n
2 ) + δ, (14)

where all the occurring numbers are algebraic (ifβ1 = β3 = 0 in (13), then the
situation is even simpler).

By changing the role ofα1 andα−1
1 we may assume that|α1| ≥ 1 and similarly

that|α2| ≥ 1. Also we can assume that|α1| ≥ |α2|.

11



If |α1| > |α2|, we have

|α1|n − |β1|
∣∣α−1

1

∣∣n ≤ ∣∣αn
1 + β1α

−n
1

∣∣ =
∣∣γ(αn

2 + β2α
−n
2 ) + δ

∣∣
≤ |γ| |α2|n + |γβ2|

∣∣α−1
2

∣∣n + |δ| . (15)

Now that
∣∣α−1

1

∣∣, ∣∣α−1
2

∣∣ ≤ 1 and|α1| > |α2|, the above equality ceases to be valid
for n large enough. It is possible to compute approximations of the absolute values
above, and find algorithmically a limitM such that (15) does not hold forn ≥ M .

Assume then that|α1| = |α2|. If there is an embeddingσi : F → C such that
|σi(α1)| �= |σi(α2)|, we can apply the homomorphismσi to both sides of equation
(13) and conclude as above.

Assume then that|σi(α1)| = |σi(α2)| for each embeddingσi : F → C. Now
that |σi(α1/α2)| = 1 for each embeddingσi, andα1/α2 is not a root of unity, we
conclude, as in Proposition 2.7, thatα1/α2 is not an algebraic integer. Therefore,
there must be a prime idealP of the integer ring ofF such thatvP (α1) �= vP (α2).
By the symmetry of the roles ofα1 andα2 we can assume thatvP (α1) < vP (α2).
As above, we can also assume thatvP (α1), vP (α2) ≤ 0 (consequently,vP (α1),
vP (α2) ≥ 0). Analogously to (15), we have

min{nvP (α1), vP (β1) + nvP (α−1
1 )}

= vP (γ) + min{nvP (α2), vP (β2) + nvP (α−1
2 ), vP (δ)}. (16)

Now that vP (α1) < vP (α2) ≤ 0 and vP (α−1
1 ), vP (α−1

2 ) ≥ 0, It is clear that
there is a numberM such that (16) does not hold ifn ≥ M . Moreover, number
M can be computed when valuesvP (α1), vP (α2), vP (β1), vP (β2), vP (γ) and
vP (δ) are known. The prime idealP and the aforementioned values can be found
algorithmically [9].

2.3 Solution of Linear Recurrent Sequence

The following well-known result is fundamental in the study of linear recurrences.

Proposition 2.11. Leta0, a1, . . ., ak−1, andu0, u1, . . ., uk−1 be fixed integers and
recurrence

un = ak−1un−1 + . . . + a1un−k+1 + a0un−k (17)

defineun for eachn ≥ k. Let also

p(x) = xk − ak−1x
k−1 − . . . − a1x − a0

be the characteristic polynomial of the recurrence andF the splitting field ofp(x).
If

p(x) = (x − λ1)
m1 · . . . · (x − λr)

mr ,

whereλ1, . . ., λr ∈ F are the distinct zeros ofp(x), then there exist unique poly-
nomialsp1(x), . . ., pr(x) ∈ F [x] such thatdeg(pi) ≤ mi − 1 and

un = p1(n)λn
1 + . . . + pr(n)λn

r (18)

12



for eachn ≥ 0. Conversely, any sequenceun of form (18) (for polynomialp(x))
satisfies recurrence (17).

Here, the form (18) is usually called thesolutionof un. Our algorithms for the
cases of Skolem’s problem uses this solved form of the sequenceun. Note care-
fully, that the main issue in finding a solution of a sequence are the characteristic
roots, and for the recurrent sequence of depth at least 5, this is impossible in most
cases. This is also the reason for the need of the theory of the algebraic numbers.

Note also that Proposition 2.11 can be proved using the theory offormal power
series. Our proof here is elementary using only linear algebra and algebraic prop-
erties polynomials.

Note also that the converse part can be proved by using the partial solution
sequences of the formvn = njλn

i , whereλi is a characteristic roots andj ≤
mi − 1, which satisfy the relation (17). The claim follows by proving that for any
sequences satisfying relation (17), anylinear combination of then also satisfies
(17). We shall give here a new proof for this converse, which may be of some
reader’s interest.

Before proceeding to the proof of Proposition 2.11, we need some auxiliary
results.

Lemma 2.2. Let

p(x) = xk −
k−1∑
s=0

asx
s

be a polynomial havingλ as a zero with multiplicitym ≥ 1. Definep0(x) = p(x)
andpi+1(x) = xp′i(x) for eachi ∈ {0, 1, 2, . . .} (p′

i(x) stands for the derivative of
polynomialpi(x)). Then there exist polynomialsqi such that

pi(x) = (x − λ)m−iqi(x).

for eachi ∈ {0, 1, . . . , m − 1}. Conversely, ifλ �= 0 and pi(λ) = 0 for each
i ∈ {0, 1, . . . , m − 1}, thenp0(x) = (x − λ)mq0(x) for some polynomialq0(x).

Proof. We begin by showing that, for eachi ≥ 1, pi(x) can be represented as

pi(x) =

i∑
j=1

c
(i)
j xjp(j)(x), (19)

where eachc(k)
j is an integer, andc(i)

1 = c
(i)
i = 1. The casei = 1 is clear:

p1(x) = xp′(x). Assume then that (19) holds for some value ofi. Then

p′i(x) =

i∑
j=1

c
(i)
j (jxj−1p(j)(x) + xjp(j+1)(x))

=
i∑

j=1

c
(i)
j jxj−1p(j)(x) +

i+1∑
j=2

c
(i)
j−1x

j−1p(j)(x),
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and consequently

pi+1(x) = xp′(x) +
i∑

j=2

(jc
(i)
j + c

(i)
j−1)x

jp(j)(x) + xi+1p(i+1)(x),

as claimed.
The rest of the proof is based on the following well-known fact:λ is a zero of

p(x) with multiplicity m, if and only ifλ is a zero ofp(j)(x) with multiplicity m−
j. The first claim of the lemma follows directly from this and from representation
(19), because thenp(j)(x) = (x − λ)m−jrj(x) for some polynomialrj(x).

The converse statement follows from representation (19) by using induction.
In fact, if the assumption holds form = 1, then0 = p0(λ) = p(λ) and hence
(x−λ) | p(x). If claim the holds for all numbers less thanm, and ifpm−1(λ) = 0
we have

0 =

m−1∑
j=0

c
(m−1)
j λjp(j)(λ) = λm−1p(m−1)(λ),

which implies thatp(m−1)(λ) = 0. The claim follows from this.

Lemma 2.3. Let the notations be as in the previous lemma. Then

kiλk =
k−1∑
s=0

siasλ
s

for eachi ∈ {0, 1, . . . , m − 1}.

Proof. By induction we see that

pi(x) = kixk −
k−1∑
s=0

siasx
s

for eachi ∈ {0, 1, 2, . . .}. By the previous lemma,pi(λ) = 0 for eachi ∈
{0, 1, . . . , m − 1}, and the claim follows immediately.

Lemma 2.4. Let the notations be as in the previous lemmata. Then

k∑
s=1

ak−ss
iλk−s = 0

for eachi ∈ {1, 2, . . . , m − 1}.

Proof. A direct calculation gives

k∑
s=1

ak−ss
iλk−s =

k−1∑
s=0

as(k − s)iλs =
i∑

t=0

(−1)t

(
i

t

)
ki−t

k−1∑
s=0

ass
tλs. (20)
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By the previous lemma, expression (20) can be written as
i∑

t=0

(−1)t

(
i

t

)
ki−t · ktλk = kiλk

i∑
t=0

(−1)t

(
i

t

)
.

The latest expression equals to0 wheneveri ∈ {1, 2, . . . , m − 1}.

Lemma 2.5. Let the notations be as before. Then
k∑

s=1

ak−s(n − s)jλk−s = njλk

if j ∈ {0, 1, . . . , m − 1}.

Proof. A straightforward calculation shows that

k∑
s=1

ak−s(n − s)jλk−s =
k∑

s=1

ak−s

j∑
t=0

(
j

t

)
nj−t(−s)tλk−s

=

j∑
t=0

(
j

t

)
nj−t(−1)t

k∑
s=1

ak−ss
tλk−s = njλk.

The last equality is dueto Lemmata 2.3 and 2.4.

The proof of Proposition 2.11.We will begin with the “converse part” of the state-
ment. Let

un =

r∑
i=1

pi(n)λn
i ,

whereλ1, . . ., λr are distinct zeros ofp(x) = xk −ak−1x
k−1− . . .−a1x−a0 with

multiplicitiesm1, . . ., mr, anddeg(pi) ≤ mi − 1. Then, for eachn ≥ k,

un − ak−1un−1 − . . . − a0un−k

=
r∑

i=1

pi(n)λn
i −

k∑
s=1

ak−s

r∑
i=1

pi(n − s)λn−s
i . (21)

By denotingak = −1 and

pi(x) =

mi−1∑
j=0

pijx
j

we can write (21) as

−
k∑

s=0

ak−s

r∑
i=1

pi(n − s)λn−s
i

= −
r∑

i=1

k∑
s=0

mi−1∑
j=0

pij(n − s)jak−sλ
n−k
i λk−s

i

= −
r∑

i=1

λn−k
i

mi−1∑
j=0

pij

k∑
s=0

ak−s(n − s)jλk−s
i .
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According to Lemma 2.5 we have (recall thatak = −1)

k∑
s=0

ak−s(n − s)jλk−s
i = −njλk

i +

k∑
s=1

ak−s(n − s)jλk−s
i

= −njλk
i + njλk

i = 0.

Hence
un − ak−1un−1 − . . . − a0un−k = 0

for eachn ≥ k.
For the first part of the claim, we can assume without loss of generality that

a0 �= 0. It follows that all the numbersλi are nonzero. Denote again

pi(x) =

mi−1∑
j=0

pijx
j

and regardpij as unknowns which are to be determined under conditions

un =
r∑

i=1

pi(n)λn
i (22)

for eachn ∈ {0, 1, . . . , k − 1}. If numberspij can be found, then the proof is
complete, since according to the “converse part”, sequenceun in (22) satisfies the
recurrence equation (17).

Equations (22) can be written more explicitly in form

un =

r∑
i=1

mi−1∑
j=0

pijn
jλn

i , (23)

wheren ∈ {0, 1, . . . , k − 1}. The determinant of system (23) is of form∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 . . . 1 0 . . . 0
λ1 λ1 . . . λ1 . . . λr λr . . . λr

λ2
1 2λ2

1 . . . 2m1−1λ2
1 . . . λ2

r 2λ2
r . . . 2mr−1λ2

r

λ3
1 3λ3

1 . . . 3m1−1λ3
1 . . . λ3

r 3λ3
r . . . 3mr−1λ3

r
...

...
. . .

...
. . .

...
...

. . .
...

λk−1
1 (k − 1)λk−1

1 λk−1
r

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (24)

We will demonstrate that the determinant (24) is nonzero, which implies that the
unknownspij are determined uniquely. For that purpose, we show that the rows
of (24) are linearly independent. To do this, assume that there are numbersc0, c1,
. . ., ck−1 such that

k−1∑
l=0

cll
iλl

j = 0 (25)
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for eachj ∈ {1, 2, . . . , r} andi ∈ {0, 1, . . . , mj − 1}. By denoting

C(x) =
k−1∑
l=0

clx
l (26)

and definingC0(x) = C(x), Ci+1(x) = xC ′
i(x) as in Lemma 2.2, relations (25)

can be rewritten as
Ci(λj) = 0 (27)

for eachj ∈ {1, 2, . . . , r}, i ∈ {0, 1, . . . , mj − 1}. Lemma 2.2 implies then
that C(x) is divisible by (x − λ1)

m1 , . . ., (x − λr)
mr , which shows that either

deg(C(x)) ≥ m1 + . . . + mr = k or C(x) is identically zero. By (26), the former
option does not hold, soC(x) is identically zero and hencec0 = c1 = . . . =
ck−1 = 0.

Note that in the case of distinct roots, the determinant (24) is a Vandermonde’s
determinant, which is known to be nonzero.

Even more information can be extracted from the proof. The following propo-
sition may be of reader’s interest.

Proposition 2.12. Determinant (24) is either inR or in iR.

Proof. We notice first that ifλ is a root of a polynomialp(x) ∈ R, then the
multiplicity of λ and the one of its complex conjugateλ must coincide. In fact,
if λ is a root ofp(x), then of course so isλ, and(x − λ)(x − λ) ∈ R[x] divides
p(x). Thusp(x) = (x − λ)(x − λ)p1(x), wherep1(x) ∈ R, and we can apply the
argumentation top1(x) recursively.

Let us denote the determinant (24) byD. It is clear that the complex conjugate
of D is obtained by taking the conjugates of all entries of (24). On the other hand,
if there is a non-real rootλ of p(x) (recall thatp(x) is the characteristic polyno-
mial of the recurrence in question) occurring exactly inm columns of (24), then
there are alsom columns of (24) which are identical to thosem first ones, except
thatλ is replaced withλ. This is becauseλ andλ have the same multiplicity. By
swapping all them columns whereλ occurs with those ones whereλ occurs, we
can modifyD into a form where the columns containingλ andλ are restored to
the positions they were inD. Performing the same operation to each complex
root of p(x) we have again the original determinantD, since the rows contain-
ing occurrences of the real roots are not affected at all when taking the complex
conjugates.

If there are2r non-real rootsλi1 , . . ., λir and their complex conjugates, (we
assume that none ofλi1, . . ., λir are complex conjugates to each other) with mul-
tiplicities mi1 , . . ., mir , we learn that

D = (−1)mi1
+...+mir D.

Now if s = mi1 + . . . + mir is even, we haveD = D, which impliesD ∈ R,
whereas odds means thatD = −D, and consequentlyD ∈ iR.
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Proposition 2.13. Let

un =
r∑

i=1

pi(n)λn
i

as in (22). Ifλi2 = λi1 , then alsopi2(x) = pi1(x), wherepi1(x) stands for
the polynomial which is obtained frompi1(x) by replacing each coefficient by its
complex conjugate.

Proof. Coefficientspij can be computed by Cramer’s rule:pij = D(i, j)/D,
whereD(i, j) stands for the determinant which is obtained fromD by replacing
the column(0jλ0

i , 1
jλ1

i , 2
jλ2

i , . . . , (k − 1)jλk−1
i )T in (24) by(u0, u1, . . . , uk−1)

T .
If then λi2 = λi1, we learn that, as in the previous proposition, that the determi-
nantD(i2, j) can be obtained fromD(i1, j) by first taking the complex conjugate
of each entry ofD(i1, j) and then swappings = mi1 + . . . + mir columns (it is
needed here that eachun is real). It follows thatD(i2, j) = (−1)sD(i1, j), which
together withD = (−1)sD gives that

pi1j =
D(i1, j)

D
=

(−1)sD(i2, j)

(−1)sD
=

D(i2, j)

D
= pi2,j.

2.4 Liner Forms of Logarithms

In the sequel we will need the following important results by Alan Baker [1].

Theorem 2.14. Let α1, . . ., αn be non-zero algebraic numbers with degrees at
mostd and heights at mostA. Furthermore, letβ0, . . ., βn be algebraic numbers
with degrees at mostd and heights at mostB ≥ 2. Then, for

Λ = β0 + β1 log α1 + . . . + βn log αn

we have eitherΛ = 0 or |Λ| > B−C , whereC is an algorithmically computable
number depending only onn, d, A and the branch of the logarithms chosen.

The estimate forC is of formC ′(log A)κ, whereκ depends only onn, andC ′

depends only onn andd. In the case whenβ0 = 0 andβ1, . . ., βn are rational
integers, the theorem holds withC = C ′Ω log Ω, where

Ω = log A1 · . . . · log An, (28)

and the numbersAi ≥ 4 are chosen such thatH(αi) ≤ Ai [1]. The following
strengthened, quantitative version of the above theorem can be found in [2]:

Theorem 2.15. Let the notations be as in the above (with the principal branch of
the logarithms). IfΛ �= 0, then

|Λ| > (BΩ)−CΩ log Ω′
,

whereΩ′ = Ω/ log An andC = (16nd)200n.
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Remark 2.16. Recall that the height of an algebraic numberα is defined as the
maximum of the absolute values of the coefficients of the defining polynomial ofα.
However, the above theorem holds if one replaces the the height by the maximal
absolute value of the coefficients of any polynomial inZ[x] havingα as a zero [4].
See also the improved versions of the above inequalities expressed in the terms of
logarithmic Weil height [3], as well as thep-adic analogues [25].

3 Infinity of Zeros

In this section, we represent the proof of Skolem-Mahler-Lech theorem in a form
given by G. Hansel [13]. The core of the proof by Hansel is the following theorem.

Theorem 3.1. Letp > 2 be a prime number anddi any sequence of integers, and
define

bn =

n∑
i=0

(
n

i

)
pidi.

If bn = 0 for infinitely manyn, thenbn = 0 for eachn.

Before giving the proof of Theorem 3.1, we need some lemmata and defini-
tions. In the following lemmata, we assume the prime numberp > 2 fixed, unless
stated otherwise.

Lemma 3.1. If p is any prime number andn ∈ Z, then

vp

(pn

n!

) ≥ n
p − 2

p − 1
.

Proof. Anyway

vp

(pn

n!

)
= vp(p

n) − vp(n!) = n − vp(n!),

so it suffices to estimatevp(n!). It is plain that

vp(n!) =
⌊n

p

⌋
+

⌊ n

p2

⌋
+ . . .

≤ n

p
+

n

p2
+ . . . =

n

p − 1
,

hence

vp

(pn

n!

) ≥ n − n

p − 1
= n

p − 2

p − 1
.

Definition 3.2. Given a polynomial

P (x) = a0 + a1x + . . . + anx
n ∈ Q[x],

let

ωk(P ) =

{
min{vp(aj) | j ≥ k}, if k ≤ n
∞, if k > n.
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Remark 3.3. It is clear thatω0(P ) ≤ ω1(P ) ≤ . . . for each polynomialP (x).

Remark 3.4. For a fixed valueP (t) (t ∈ Z) we have of course

vp(P (t)) = vp(a0 + a1t + . . . antn)

≥ min{vp(a0), vp(a1t), . . . , vp(ant
n)}

≥ min{vp(a0), vp(a1), . . . , vp(an)} = ω0(P ).

Lemma 3.2. LetP (x), Q(x) ∈ Q[x] andn1, . . ., nk ∈ Z. If

P (x) = (x − n1) · . . . · (x − nk)Q(x),

thenωk(P ) ≤ ω0(Q).

Proof. We show that ifP (x) = (x − n1)Q(x), thenωk+1(P ) ≤ ωk(Q) for each
k. The claim follows then by applying this result recursively to polynomialQ(x).
By writing

Q(x) = q0 + q1x + . . . + qnxn

and
P (x) = p0 + p1x + . . . + pn+1x

n+1

we have thatpj+1 = qj − n1qj+1, which implies that

qj = pj+1 + n1pj+2 + n2
1pj+3 + . . . + nn−j

1 pn+1,

which shows that

vp(qj) = vp(pj+1 + n1pj+2 + . . . + nn−j
1 pn+1)

≥ min{vp(pj+1), vp(pj+2), . . . , vp(pn+1)}
= ωj+1(P ).

It follows thatωk(Q) ≥ ωk+1(P ).

Let n ∈ N be fixed and defineR(x) ∈ Q[x] as

R(x) =

n∑
i=0

dip
i x(x − 1) · . . . · (x − i + 1)

i!
. (29)

Lemma 3.3. For eachk, we haveωk(R) ≥ k p−2
p−1

.

Proof. It is clear thatR(x) can be written as

R(x) =

n∑
i=0

di
pi

i!
x(x − 1) · . . . (x − i + 1)

=
n∑

i=0

di
pi

i!

i∑
j=0

sijx
j =

n∑
j=0

n∑
i=j

di
pi

i!
sijx

j ,
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wheresij are integers, so calledStirling numbers (of the first kind). Therefore, the
coefficient ofxj in polynomialR(x) is given by

n∑
i=j

di
pi

i!
sijx

j ,

and

vp(
n∑

i=j

di
pi

i!
sij) ≥ min

i≥j
{vp(di

pi

i!
sij)} ≥ min

i≥j
{vp(

pi

i!
)}

≥ min
i≥j

{i · p − 2

p − 1
} ≥ j · p − 2

p − 1
,

so it follows thatωj(R) ≥ j · p−2
p−1

.

Proof of Theorem 3.1.We show that ifbn = 0 for n ∈ {n1, . . . , nk}, thenvp(bn) ≥
k · p−2

p−1
for eachbn. Theorem 3.1 follows, since nowk can be chosen arbitrarily

large, and thereforevp(bn) = ∞ for each member of the sequencebn.
Choosen = max{n1, . . . , nk} and recall the definition ofR(x) in (29).

R(x) =
n∑

i=0

dip
i x(x − 1) · . . . · (x − i + 1)

i!
∈ Q[x].

It is clear that for eacht ≤ n we have

R(t) =
n∑

i=0

(
t

i

)
pidi =

t∑
i=0

(
t

i

)
pidi = bt,

and sinceR(x) has integer zerosn1, . . ., nk,

R(x) = (x − n1) · . . . · (x − nk)Q(x)

for some polynomialQ(x). Therefore alsovp(R(t)) ≥ vp(Q(t)), and we can
estimate by Remark 3.4 and by the previous lemmata as follows:

vp(bt) = vb(R(t)) ≥ vp(Q(t)) ≥ ω0(Q) ≥ ωk(R) ≥ k · p − 2

p − 1
.

The following theorem is a special case of Skolem-Mahler-Lech theorem. We
will not give a general case of the proof here, but instead we refer to [13], where
it is explained how the proof extends into the most general case.

Theorem 3.5. Let un be a linear recurrent sequence. Then the setZ(un) = {i |
ui = 0} is a union of a finite setF and finitely many arithmetic progressions. That
is, Z admits representation

Z = F ∪ (a1 + NZ) ∪ . . . ∪ (ar + NZ).

Moreover, numbersN , a1, . . ., ar can be found algorithmically.
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Remark 3.6. The “constructive part” of the above theorem means that one can
decide, given a linear recurrence, whether there are infinitely manyn such that
un = 0.

Proof. Let eachun be given as

un = ak−1un−1 + . . . + a1un−k+1 + a0un−k.

Without loss of generality we can assume thata0 �= 0, for otherwise the sequence
un would satisfy a shorter recursion. Then we can define vectorsv ∈ Zk, w ∈ Zk,
and a matrixM ∈ Zk×k as in (3) such that

un = vMnwT ,

and thatdet(M) = ±a0 �= 0.
Choose then a prime numberp not dividinga0 and consider the imageMp of

matrix M in Fk×k
p under the canonical projectionZ → Fp. Now thatp � a0, we

have thatdet(Mp) �= 0. Moreover, the group of invertiblek × k-matrices overFp

has cardinality at mostpk2
, so it follows that there exists a numberN ≤ pk2

such
that MN

p = I in the group of invertible matrices overFp. Lifting the equation
MN

p = I back to matrices overZ we learn that there is a numberN ≤ pk2
and a

matrixM1 ∈ Zk×k such that

MN = I + pM1.

Notice that numbersp andN , as well as the matrixM1 can be found algorithmi-
cally.

Now, for any numbern we can writen = mN + r, where0 ≤ r < N and see
that

Mn = MmN+r = MNmM r = (I + pM1)
mM r.

Then we have
un = vMkwT = v(I + pM1)

mM rwT ,

i.e.,
umN+r = v(I + pM1)

mwT
r ,

wherewT
r = M rwT .

Now we can split the sequenceun intoN different linearly recurrent sequences
u

(r)
m for eachr ∈ {0, 1, . . . , N − 1} by setting

u(r)
m = umN+r = v(I + pM1)

mwT
r =

m∑
i=0

(
m

i

)
pivM i

1w
T
r .

By Theorem 3.1, sequenceu(r)
m either vanishes identically or contains only finitely

many zeros. To check whetheru
(r)
m vanishes identically is an easy task: it suffices

to computek first members of the sequence. The claim follows immediately.
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4 Decidable Cases

4.1 Dominant Roots

Before the main theorem of this section, we must introduce several lemmata. The
following useful reduction was mentioned in [5].

Lemma 4.1. Let

un = ak−1un−1 + . . . + a1un−k+1 + a0un−k (30)

be a linear recurrent sequence and

un = p1(n)λn
1 + p2(n)λn

2 + . . . + pr(n)λn
r (31)

it representation as in (18). Sequenceun can be algorithmically reduced to a finite
number of linear recurrent sequencesu

(0)
m , u

(1)
m . . ., u

(N−1)
m such thatλi/λj is not

a root of unity fori �= j in the representation (31) for sequencesu
(i)
m .

Proof. If someλi/λj is a root of unity, let

N = lcm{ord(λi/λj) | i �= j andλi/λj is a root of unity}.
We can split the original sequenceun into M distinct subsequences: For each
j ∈ {0, 1, . . . , N − 1} we defineu(j)

m = uj+mN and notice that

u(j)
m = uj+mN =

r∑
i=1

pi(j + mN)λj+mN
i =

r∑
i=1

pi(j + mN)λj
i (λ

N
i )m (32)

If {µ1, . . . , µr′} are the distinct elements of set{λN
1 , . . . , λN

r }, we can write (32)
as

u(j)
m =

r′∑
i=1

qi(m)µm
i (33)

If i �= j, thenµi/µj is not a root of unity, since(µi/µj)
t = 1 is equivalent to

(λi/λj)
Nt = 1 (we choose the notations such thatµi = λN

i andµj = λN
j ), which

implies(λi/λj)
N = 1. This contradicts the assumption thatµi �= µj .

We will yet demonstrate, that the propertyλi = λj =⇒ pi(x) = pj(x) is
preserved in this reduction. But this is very straightforward: Assume thatµ1 =

λN
i1 = . . . = λN

ik
. Then trivially µ1 = λ

N

i1 = . . . = λ
N

ik
andq1(x) = pi1(j +

xN)λj
i1

+ . . . + pik(j + xN)λj
ik

is the coefficient polynomial ofµ1, whereas the

coefficient polynomial ofµ1 is pi1(j+xN)λ
j

i1 +. . .+pik
(j+xN)λ

j

ik
= q1(x).

We will also need several height estimations.

Lemma 4.2. Letα be an algebraic number and denoteq(x) = qnxn+qn−1x
n−1+

. . . + q1x + q0 ∈ Z[x] andH(q) = max{|q0| , |q1| , . . . , |qn|}. If q(α) = 0, then
there exists a (computable) numberCn depending onn only such thatH(α) ≤
CnH(q).
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Proof. If q(x) is irreducible, there is an integerC such thatq(x) = Cp(x), where
p(x) is the defining polynomial ofα. HenceH(q) = |C|H(α) ≥ H(α), and
we can chooseCn = 1. If q(x) is not irreducible, thenq(x) = p(x)r(x), where
p(x), r(x) ∈ Z[x] andp(x) is the defining polynomial ofα. We must show that
the coefficients cannot cancel too much when computing the productp(x)r(x).
For this purpose, we will employBombieri’s norm[6]: If q(x) is as above, then
the Bombieri’s2-norm is defined as

[q] =
( n∑

i=0

(
n

i

)−1

|qi|2
) 1

2
.

Bombieri’s inequality [6] states that ifp(x)r(x) = q(x), anddeg(p) = m, then

[p][r] ≤
(

n

m

) 1
2

[q].

Sincer(x) ∈ Z[x], we have[r] ≥ 1, and consequently

[p] ≤
(

n

m

) 1
2

[q]. (34)

It can be shown [30] that

n∑
i=0

(
n

i

)−1

=
n + 1

2n

n∑
i=0

2i

i + 1
,

which implies that
n∑

i=0

(
n

i

)−1

≤ 8

3
< 4,

and hence

[q] =
( n∑

i=0

(
n

i

)−1

|qi|2
) 1

2 ≤
( n∑

i=0

(
n

i

)−1

H(q)2
) 1

2
< 2H(q). (35)

Sincep(x) is the defining polynomial ofα, there must be a coefficientpj of p(x)
such thatH(α) = |pj|. Then

[p] =
( m∑

i=0

(
m

i

)−1

|pi|2
) 1

2 ≥
((

m

j

)−1

H(α)2
) 1

2
= H(α)

(
m

j

)− 1
2

. (36)

Combining (34), (35) and (36) we see that

H(α) ≤
(

m

j

) 1
2
(

n

m

) 1
2

2H(q) ≤
(

m

�m/2�
) 1

2
(

n

�n/2�
) 1

2

2H(q) ≤ 2

(
n

�n/2�
)

H(q).
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Lemma 4.3. If α is an algebraic number of degreed and heightH, andβn = α,
thendeg(β) ≤ nd andH(β) ≤ Cn,dH(α), whereCn,d is a (computable) number
depending onn andd alone.

Proof. Let p(x) = pdx
d + pd−1x

d−1 + . . . + p1x + p0 be the defining polynomial
of α. Clearly polynomial

q(x) = pdx
nd + pd−1x

n(d−1) + . . . + p1x
n + p0

hasβ as a root, and the first claim follows directly. The second claim follows by
Lemma 4.2, we can takeCn,d = 2

(
nd

�nd/2�
)
.

Lemma 4.4. Letp(x) ∈ C[x]. For each natural numbern, let p(n) = |p(n)| eiφn .
Then there are algorithmically computable numbersB andC such thatH(eiφn) ≤
BnC . NumbersB andC depend only on the polynomialp(x). Moreover,eiφn →
eiφ asn → ∞, whereeiφ is an algebraic number which can be found algorithmi-
cally.

Proof. Letp(x) = pmxm+. . .+p1x+p0. First we will estimate the height ofp(n).
Let F be a field containing all the coefficients ofp(x) and denoted = [F : Q].
Then clearlyp(n) ∈ F for eachn ∈ N, which implies thatdeg(p(n)) ≤ d for
eachn. Let H = max{H(p0), . . . , H(pm−1)}. Now if deg(α) ≤ d, it is easy to
see thatH(nα) ≤ ndH(α) for eachn ∈ N. In fact, if deg(α) = d1 and

q(x) = ad1x
d1 + . . . + a1x + a0

is the defining polynomial ofα, then polynomial

q1(x) = ad1x
d1 + . . . + a1n

d1−1x + a0n
d1 (37)

hasnα as a zero. Moreover, (37) is irreducible, since otherwisedeg(nα) < d1

which would imply that alsoα = 1
n
· nα has degree less thand1. Therefore (37)

is the defining polynomial ofnα, and estimationH(nα) ≤ ndH(α) follows.
As a consequence, we get thatH(pin

i) ≤ nidH ≤ nmdH = H1 for each
i ∈ {0, 1, . . . , m}. For estimating the height of the sum of two algebraic numbers,
we can use the following fact [1, p. 24]: Ifdeg(α), deg(β) ≤ d and H(α),
H(β) ≤ H, then there exists a computable constantC1 (depending ond only)
such thatH(α + β), H(αβ) ≤ HC1. Thus

H(pmnm + pm−1n
m−1) ≤ HC1

1 .

Similarly

H(pmnm + pm−1n
m−1 + pm−2n

m−2) ≤ (HC1
1 )C1 = H

C2
1

1 ,

and continuing this way we see that

H(p(n)) = H(pmnm + pm−1n
m−1 + . . . + p1n + p0) ≤ H

Cm
1

1 ,
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and that
H(p(n)2) ≤ (H

Cm
1

1 )C1 = H
Cm+1

1
1

as well as
H(|p(n)|2) = H(p(n)p(n)) ≤ (H

Cm
1

1 )C1 = H
Cm+1

1
1 .

By Lemma 4.3

H(|p(n)|) ≤ C2H
Cm+1

1
1 ,

whereC2 is a computable constant depending ond only, anddeg(|p(n)|) ≤ 2d.
It is plain thatH(|p(n)|) = H(|p(n)|−1), which finally implies that

H(eiφn) = H(|p(n)|−1 · |p(n)| eiφn)

= H(|p(n)|−1 p(n)) ≤ (C2H
Cm+1

1
1 )C3 ,

whereC3 depends ond only. DenotingC4 = CC3
2 HCm+1

1 C3 , C5 = mdCm+1
1 C3,

and recalling thatH1 = nmdH, we see that

H(eiφn) ≤ C4n
C5 ,

whereC4 andC5 are (computable) constants that depend only on polynomialp(x).
The latter claim is trivial, since

p(n)

|p(n)| =
pmnm

|p(n)| + O(
1

n
) =

pm

|p(n)/nm| + O(
1

n
),

and

eiφn =
p(n)

|p(n)| → eiφ,

whereφ is the phase ofpm = |pm| eiφ. Another obvious but important fact is that
for anyε > 0 it is possible to find algorithmically an integerM such that∣∣eiφ − eiφn

∣∣ ≤ ε

whenevern ≥ M .

Lemma 4.5. If p1(x), p2(x) ∈ C[x] are both of degreed, then
∣∣∣p1(x)
p2(x)

∣∣∣ tends to

a finite limit asx → ∞ along the real axis, and the convergence to the limit is

ultimately monotonous. Moreover, if|p1(x)| �= |p2(x)|, then
∣∣∣p1(x)
p2(x)

∣∣∣ = L±Θ(x−k),

whereL, k and the coefficients belonging toΘ-notation can be algorithmically
found.

Proof. In this proof, we assume thatx ∈ R. Then|p1(x)|2 = p1(x)p1(x) ∈ R[x]
is a polynomial of degree2d. Let the leading coefficients ofp1(x) andp2(x) bec1

andc2, respectively. Then it is easy to see that the leading coefficients of|p1(x)|2
and|p1(x)|2 are|c1|2 and|c2|2, respectively, and as a consequence

|p1(x)|2 − |c1|2
|c2|2

|p2(x)|2 = q(x),
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whereq(x) ∈ R[x] is a nonzero polynomial of degree less than2d.
Polynomialq(x) can be constructed from polynomialsp1(x) andp2(x), and

when the coefficients ofq(x) are known, it is easy to findM1 such thatq(x) �= 0
whenx ≥ M1. If deg(q(x)) = d1 < 2d, andq(x) is ultimately positive (resp.
negative), one can use standard techniques for finding constantC1, C2 > 0 such
that C1x

d1 ≤ q(x) ≤ C2x
d1 (resp. −C1x

d1 ≤ q(x) ≤ −C2x
d1), whenx ≥

M2. Similarly we can find positive constantsC3, C4, andM3 such thatC3x
2d ≤

|p2(x)|2 ≤ C4x
2d, whenx ≥ M3. If now q(x) is ultimately positive, then∣∣∣∣p1(x)

p2(x)

∣∣∣∣
2

=

∣∣∣∣c1

c2

∣∣∣∣
2

+
q(x)

|p2(x)|2 ,

where the remainder satisfies

C1x
d1

C4x2d
≤ q(x)

|p2(x)|2 ≤ C2x
d1

C3x2d

for x ≥ M = max{M1, M2, M3}. The case thatq(x) is ultimately negative is
treated in the same way.

The claim follows now from the fact that∣∣∣∣p1(x)

p2(x)

∣∣∣∣
2

−
∣∣∣∣c1

c2

∣∣∣∣
2

=
( ∣∣∣∣p1(x)

p2(x)

∣∣∣∣ −
∣∣∣∣c1

c2

∣∣∣∣ )( ∣∣∣∣p1(x)

p2(x)

∣∣∣∣ +

∣∣∣∣c1

c2

∣∣∣∣ )
and that the latter factor of the product is in interval(2 |c1/c2| − ε, 2 |c1/c2| + ε)
for anyx ≥ Mε, whereMε can be found algorithmically whenε is given.

Proposition 4.1. Let

un = ak−1un−1 + . . . + a1un−k+1 + a0un−k (38)

be a linear recurrent sequence and

un = p1(n)λn
1 + p2(n)λn

2 + . . . + pr(n)λn
r (39)

it representation as in (18). Without loss of generality, we can assume that|λ1| ≥
|λ2| ≥ . . . ≥ |λr|. ProblemSKOLEM is decidable if one of the following cases
hold:

1. |λ1| > |λ2|.
2. λ2 = λ1, |λ1| = |λ2| > |λ3|.
3. |λ1| = |λ2| = |λ3| > |λ4| andλ1 ∈ R, λ2 = λ3.

Remark 4.2. It is decidable whether one of the above conditions holds. In the
continuation will also assume that the roots of the characteristic polynomial are
always enumerated such that|λ1| ≥ |λ2| ≥ . . .. The proof also shows that the
above the claim holds if actuallyr = 1 in case (1) or ifr = 2 in case (2), or if
r = 3 in case (3).
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Remark 4.3. It must be emphasized that even a more general result than this
proposition has been reached in [22]. Here we get a restricted version of [22], by
using somewhat lighter mathematical machinery.

Proof. We prove only the last claim, the other ones follow easily from that. It is
worth noticing that by Lemma 4.1, we can assume thatλi/λj is not a root of unity,
if i �= j.

We denote byF the field which contains all the rootsλ1, . . ., λr, as well as
their absolute values|λ1|, . . ., |λr|. Furthermore, we assume thatF is normal (see
Remark 2.4) and denoted = [F : Q].

By the assumption and Proposition 2.13, we can write

un = p1(n)λn
1 + p2(n)λn

2 + p2(n)λ
n

2 + R1(n), (40)

whereR1(n) = p4(n)λn
4 + . . . + pr(n)λn

r , soR1(n)/λn
1 tends exponentially fast

to 0 asn tends to infinity. We denote the main term byR0(n) = un − R1(n).
We prove the claim only in the caseλ1 < 0, the caseλ1 > 0 is even easier.

Denoteλ1 = −λ, λ2 = λeiθ, λ3 = λe−iθ. We write alsop1(n) = An, p2(n) =
Bne

iφn , p2(n) = Bne
−iφn , whereBn ∈ R, φn ∈ (−π, π]. By proposition 2.13,

An ∈ R anyway.
To examine the leading term of (40), we write

R0(n) = p1(n)λn
1 + p2(n)λn

2 + p2(n)λ
n

2

= An(−λ)n + Bneiφnλneinθ + Bne
−iφnλne−inθ

= λnBn

(An

Bn

(−1)n + ei(φn+nθ) + e−i(φn+nθ)
)

= 2λnBn

(
(−1)n An

2Bn

+ cos(φn + nθ)
)
.

If deg(p1) > deg(p2), then clearly
∣∣∣ An

2Bn

∣∣∣ grows unrestricted whenn tends to infin-

ity. It is clearly possible to find (algorithmically) a numberM1 such that
∣∣∣ An

2Bn

∣∣∣ ≥ 2

whenevern ≥ M1. For such values ofn, we have∣∣∣∣(−1)n An

2Bn

+ cos(φn + nθ)

∣∣∣∣ ≥
∣∣∣∣(−1)n An

2Bn

∣∣∣∣ − |cos(φn + nθ)| ≥ 2 − 1 = 1,

and hence|R0(n)| ≥ 2λnBn whenn ≥ M1. BecauseBn is an absolute value of a
given nonzero polynomial, we can find (algorithmically) a numberM2 such that
Bn ≥ 1/2 whenn ≥ M2. Thus

|un| = |R0(n) + R1(n)| ≥ |R0(n)|−|R1(n)| ≥ λn−|R1(n)| = λn(1− |R1(n)|
λn

).

It is now possible to find (algorithmically) a numberM such that |R1(n)|
λn < 1

whenevern ≥ M . Then alsoun �= 0 whenn ≥ M .

28



If deg(p1) = deg(p2), then limn→∞
∣∣∣ An

2Bn

∣∣∣ is a finite number which can be

straightforwardly recovered from the leading coefficients ofp1 andp2. If deg(p1) <

deg(p2), then of course the aforementioned limit equals to0. If limn→∞
∣∣∣ An

2Bn

∣∣∣ >

1, one can find algorithmically a numberM such thatun �= 0 whenevern ≥ M ,
as easily as in the casedeg(p1) > deg(p2).

Lemma 4.5 becomes helpful iflimn→∞
∣∣∣ An

2Bn

∣∣∣ = 1. In this case, the conver-

gence to the limit is ultimately monotonous, and following the proof of Lemma

4.5, we can effectively find a constantM and decide whether
∣∣∣ An

2Bn

∣∣∣ approaches1

from above or from below (forn ≥ M). In the case that the convergence happens
from above, we can utilize the proof of Lemma 4.5 to find positive constantsM ,
C andk such that ∣∣∣∣ An

2Bn

∣∣∣∣ − 1 ≥ C

nk
,

whenn ≥ M . Then∣∣∣∣(−1)n An

2Bn
+ cos(φn + nθ)

∣∣∣∣ ≥
∣∣∣∣ An

2Bn

∣∣∣∣ − 1 ≥ C

nk

and

|un| ≥
∣∣∣∣λnBn · C

nk

∣∣∣∣ − |R1(n)| = λn
(
Bn · C

nk
− |R1(n)|

λn

)
,

whenn ≥ M . If the term CBn

nk vanishes, it does so at most polynomially, but the

latter term |R1(n)|
λn vanishes exponentially. It follows that one can find a number

M1 such thatun �= 0 whenevern ≥ M1.

Finally we assume that either
∣∣∣ An

2Bn

∣∣∣ tends to1 (ultimately) from below, or

that it tends to a limit less than1. In both cases, we choose firstM1 such that∣∣∣ An

2Bn

∣∣∣ ≤ 1, if n ≥ M1. We will extend Mignotte’s result [20] to estimate the

expression ∣∣∣∣(−1)n An

2Bn
+ cos(φn + nθ)

∣∣∣∣ (41)

from below by using Baker’s theorem. If we can find for (41) a lower bound of
form C

nk for n ≥ M , then the proof is complete, since we can argue as in the
previous case (of course numbersk, C, andM must be found algorithmically).

Now that
∣∣∣ An

2Bn

∣∣∣ ≤ 1 for eachn under consideration, we can chooseψn ∈
(−π, π] such thatcos ψn = An

2Bn
. In fact, the description ofeiψn can be found by

using equationeiψn + e−iψn = An

Bn
, which also shows thateiψn is an algebraic

number.
Expression (41) takes now form

|cos(φn + nθ) + (−1)n cos ψn| , (42)
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and we treat casesn even andn odd separately. For evenn, (42) is of form

|cos(φn + nθ) + cosψn| =

∣∣∣∣cos
φn + nθ + ψn

2

∣∣∣∣
∣∣∣∣cos

φn + nθ − ψn

2

∣∣∣∣ , (43)

whereas for oddn, we have

|cos(φn + nθ) − cos ψn| =

∣∣∣∣sin φn + nθ + ψn

2

∣∣∣∣
∣∣∣∣sin φn + nθ − ψn

2

∣∣∣∣ . (44)

We handle only the even case, (44) is even easier. In the right hand side of
(43), one of the factors is minimal, so

|cos(φn + nθ) + cos ψn| ≥
∣∣∣∣cos

φn + nθ ± ψn

2

∣∣∣∣
2

, (45)

and we may concentrate on expressions∣∣∣∣cos
φn + nθ ± ψn

2

∣∣∣∣ =

∣∣∣∣sin φn + nθ ± ψn − π

2

∣∣∣∣ . (46)

It is of course possible to choosemn ∈ Z such that

φn + nθ ± ψn − π

2
+ mnπ ∈ [−π

2
,
π

2
].

Moreover, sinceφn, ψn, θ ∈ [−π, π], suchmn satisfies

−n + 2

2
≤ mn ≤ n + 4

2
.

In particular,mn satisfies|mn| ≤ n, whenevern ≥ 4. We will then use inequality
|sin x| ≥ 2

π
|x| (valid for x ∈ [−π

2
, π

2
]) to see that∣∣∣∣cos

φn + nθ ± ψn

2

∣∣∣∣
=

∣∣∣∣sin (φn + nθ ± ψn − π

2
+ mnπ

)∣∣∣∣
≥ 2

π

∣∣∣∣φn + nθ ± ψn − π

2
+ mnπ

∣∣∣∣
=

1

π
|iφn + niθ ± iψn + (2mn − 1)iπ| . (47)

Numbersiφn, iθ, iψn, andiπ occurring in the latest expression are all logarithms
of algebraic numbers. To apply Baker’s theorem, we must estimate the heights of
these algebraic numbers and to find out when (47) may become zero.

By Lemma 4.4 there are constantsC1 andC2 such thatH(eiφn) ≤ C1n
C2 .

Clearlyeiφn belongs toF , which shows thatd(eiφn) ≤ d. It is plain thatH(eiθ) is
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independent ofn, and can be estimated using equationλ2 = λeiθ as in the proof of
Lemma 4.4. Moreover,d(eiθ) ≤ 2d. Also H(eiπ) = H(−1) = 1 andd(eiπ) = 1.

It remains to estimate the height and the degree ofeiψn . For that, equation

eiψn + e−iψn =
An

Bn
(48)

offers a starting point. Both numbersA2
n andB2

n belong toF , so (48) shows that
eiψn satisfies a quadratic equationover a quadratic extension ofF . This implies
thatdeg(eiψn) ≤ 4d. Solution of (48) is

eiψn =
1

2

(
An

Bn
±

√(An

Bn

)2 − 4

)
,

which, using [1, p. 24] and Lemma 4.3 shows that it is possible to find algorith-
mically constantsC3 andC4 such thatH(eiψn) ≤ C3n

C4 .
Before applying Baker’s theorem we must still find out the values ofn for

which (47) becomes zero. Formula (47) is zero if and only if

eiφneniθe±iψne(2mn−1)iπ = 1,

which is implies that
(ei2θ)n = e−i2(φn±ψn). (49)

We will show how to extend Proposition 2.7 to find out all solutions of (49).
This is indeed rather straightforward: by Lemma 4.1 we can assume thate2iθ =
λ2/λ2 is not a root of unity, which implies that the powers(e2iθ)n are all distinct.
By Lemma 4.4 and construction of numbersψn it is clear that there are limits
eiφn → eiφ andeiψn → eiψ, which both are algebraic numbers that can be found
algorithmically. Moreover, for eachε > 0 one can algorithmically find a number
Mε such that

∣∣eiφn − eiφ
∣∣, ∣∣eiψn − eiψ

∣∣ ≤ ε whenevern ≥ Mε.
Now

∣∣eiθ
∣∣ = 1, so we have to apply the latter part of the proof of Proposition

2.7. Recall from the that proof, that sinceλ2/λ2 = e2iθ is not a root of unity, there
are two choices: eithere2iθ is an algebraic integer or not. Ife2iθ is an algebraic
integer, there is a (computable) isomorphismσi : C → C such that

∣∣σi(e
2iθ)

∣∣ > 1.
Equation (49) gives then

log
∣∣σi(e

−2i(φn±ψn))
∣∣ = n log

∣∣σi(e
2iθ)

∣∣ . (50)

Now thate−2iφn±ψn tends to a limit, we can find all potential numbersn for which
(50) holds.

If e2iθ is not an algebraic integer, there is a prime idealP of the integer ring of
field F for whichvP (e2iθ) �= 0. It follows that

nvP (e2iθ) = vP (e−2i(φn±ψn))

and
|n| ≤ ∣∣vP (e−2i(φn±ψn))

∣∣ ≤ log2

∣∣N(e−2i(φn±ψn))
∣∣
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(recall the proof of Proposition 2.7). Again sinceei(φn±ψn) tends to a limit, we can
find all numbersn for which (47) is zero.

Notice that (47) is zero if and only if (46) is zero. It follows that also the
versionr = 3 (1 real root and a pair of complex roots with the same absolute
value) is covered.

Hereafter we assume thatn is chosen so large that (47) is not zero. We can
then use Baker’s theorem by choosingB = n (recall that|mn| ≤ n) andA =
DnE, whereD andE are chosen such thatA ≥ max{C1n

C2 , C3n
C4} for eachn.

Therefore

|iφn + niθ ± iψn + (2mn − 1)iπ| ≥ n−C′ log(DnE)κ

, (51)

κ is a (computable) constant, andC ′ is a (computable) number that depends only
on d. Lower bound (51) is not exactly of the required formC

nk , but (51) is good
enough: by combining (42), (43), (45), (47) and (51) we see that

|R0(n)| ≥ 2λnBn
1

n2C′ log(DnE)κ ,

whereas|R1(n)| = O(λ′n) with |λ′| < λ. It is straightforward to see that expres-
sion|R0(n)/R1(n)| tends to∞ asn → ∞, and consequently one can find a limit
M such thatun �= 0 whenn ≥ M .

4.2 Restricted Depths

Proposition 4.4. ProblemSKOLEM is decidable if the recurrence has depth two,
i.e.

un = a1un−1 + a0un−2.

Proof. Let λ1 andλ2 be the roots of the characteristic polynomialp(x) = x2 −
a1x − a0. If λ1 = λ2, then the case 1) of Proposition 4.1 applies. Ifλ1 �= λ2, but
|λ1| = |λ2|, andλ1, λ2 ∈ R, then necessarilyλ2 = −λ1, soλ1/λ2 = −1 is a root
of unity, and we can use the reduction of Lemma 4.1.

In the remaining case, we haveλ2 = λ1, which leads us to the case 2) of
Proposition 4.1. We can write

un = 2A1λ
n
1 cos(φ + nθ),

whereλ1 = λeiθ, andA = A1e
iφ are algebraic numbers. It remains to decide

whethercos(φ + nθ) = 0 for somen, but this is equivalent to deciding whether
e−2iφ = (e2iθ)n for somen. This is decidable by Proposition 2.7.

Proposition 4.5. ProblemSKOLEM is decidable if the recurrence has depth three,
i.e.

un = a2un−1 + a1un−2 + a0un−3.
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Proof. Let p(x) = x3 − a2x
2 − a1x − a0 be the characteristic polynomial of the

recurrence andλ1, λ2, andλ3 its roots with|λ1| ≥ |λ2| ≥ |λ3|. There are now two
possibilities: 1)p(x) has three real roots, or 2)p(x) has only one real root.

The first case divides into three subcases: 1a)|λ1| > |λ2| 1b) |λ1| = |λ2| >
|λ3|, and 1c)|λ1| = |λ2| = |λ3|. Case 1a) is a subcase of Proposition 4.1, whereas
in case 1b) we have eitherλ1 = λ2 or λ2 = −λ1. If λ1 = λ2, we have a multiple
dominant root, again a subcase of Proposition 4.1 Ifλ2 = −λ1, thenλ1/λ2 = −1
is a root of unity, and we can use the reduction of Lemma 4.1. In case 1c), we
have either a triple rootλ1 (which is a subcase of Proposition 4.1), or a double
root. Without loss of generality, we can assumeλ1 = λ2 = −λ3, soλ2/λ3 is a
root of unity and we can again reduce as in the proof of Proposition 4.1.

In the second case, necessarilyλ2 = λ3, and this is a special case of Proposi-
tion 4.1: We can write

un = 2A1λ
n cos(φ + nθ) + Cλn

3 , (52)

whereλ1 = λeiθ = λ2, andλ3 ∈ R. If |λ3| > λ, then we have case 1) of
Proposition 4.1. If|λ3| < λ1, we have case 2) of the aforementioned proposition,
whereas|λ3| = λ is a an instance of case 3) of Proposition 4.1.

Proposition 4.6. ProblemSKOLEM is decidable if the recurrence has depth four.

Proof. Now that the characteristic polynomial has degree four, we can divide into
three cases: the number of the real roots is either4, 2, or 0.

If there are four real roots, then either one of them is dominating (which is a
special case of Proposition 4.1), orλ1 = λ, λ2 = −λ. But in the latter case, again
λ1/λ2 is a root of unity, and we can use Lemma 4.1.

If there are exactly two real roots, one having modulus strictly greater than
the complex roots, the decision is again easy (if the other real root has the same
modulus, we can use again Lemma 4.1). On the other hand, if the real roots have
smaller absolute value than the complex roots, then we have again a special case of
Proposition 4.1. Therefore we can assume thatλ1 = λeiθ, λ2 = λe−iθ, λ3 = ±λ,
and that|λ4| ≤ λ. We can assume thatλ4 �= ±λ3, since thenλ3/λ4 would be a
root of unity. Then|λ4| < |λ3| and we have again a special case of Proposition
4.1.

In the last case, there are no real roots. If one of the complex roots is a double
root, so is its conjugate, and

un = (A + Bn)λn
1 + (A + Bn)λ

n

1 ,

which is a special case (2) of Proposition 4.1.
Finally we consider the case that all the complex roots are disjoint. Then

un = Aλn
1 + Aλ

n

1 + Cλn
3 + Cλ

n

3 , (53)

33



and if |λ1| > |λ3|, we have again a special case of Proposition 4.1.
Therefore we can assume that|λ1| = |λ3| = λ. In this case we can rewrite

(53) as

un = Aλneinθ1 + Aλne−inθ1 + λneinθ2 + Cλne−inθ2

= λn
(
A(eiθ1)n + A(eiθ1)−n + C(eiθ2)n + C(eiθ2)−n

)
. (54)

To find out if (54) is zero for somen ∈ N is a special case of Proposition 2.10, a
decidable task.

Proposition 4.7. ProblemSKOLEM is decidable if the recurrence has depth five.

Proof. In this case, the characteristic polynomial has degree5. It is possible to
have1, 3, or 5 real roots.

If there are5 real roots, then either one ofthem is dominating (which is a
subcase of Proposition 4.1), or some of them have the same absolute value (which
we can exclude by Lemma 4.1).

If there are3 real roots, then there are two complex roots consisting of a pair of
complex conjugates. In this case, eitherthe complex roots have greater absolute
value than the real roots (which is a subcase of Proposition 4.1), or there is a real
root which has exactly the same absolute value as the complex roots. If, in the
latter case, there are more than one real roots with the same absolute value, we
can apply Lemma 4.1. If there is exactly one real root sharing the absolute value
with the complex roots, we have again a subcase of Lemma 4.1.

In the last case, there is only one real root and4 complex roots. If the roots do
not share the same absolute value, we have one of the cases discussed before. If
one of the complex roots has multiplicity greater than1, then so does its complex
conjugate, and we have a subcase of Proposition 4.1. If all the roots have the same
absolute value, then

un = Aλn
1 + Bλ2 + Bλ

n

2 + Dλ4 + Dλ
n

4

= A(±λ)n + Bλneinθ1 + Bλneinθ1 + Deinθ2λn + De−inθ2

= λn
(
A(±1)n + B(eiθ1)n + B(eiθ1)−n + D(eiθ2)n + D(eiθ2)−n

)
.

We can now take separately the cases for odd and evenn, and use Proposition
2.10 to decide whetherun = 0 for somen.
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