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Abstract

We prove that the following problem, which is called the Positivity Problem in
the literature, is algorithmically solvable: Given a sequence (un)∞n=0 of integers
satisfying a linear second order recurrence relation, determine whether or not un is
non-negative for all n. This problem has connection to other fields of mathematics
through the theory of matrices.
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1. Introduction. In general, a (homogeneous) linear recurrence relation over
integers has the form

un = a1un−1 + a2un−2 + · · · + akun−k, (1)

where a1, a2, . . . , ak are fixed integers for n ≥ k. Such a recurrence equation
defines in a unique fashion an integer sequences (un)∞n=0 when the first k initial
terms u0, u1, . . . , uk−1 are given. A sequence (un)∞n=0 is said to be recurrent if it
is defined by a recurrence equation. The integer k in the relation (1) is called the
order of the recurrence and also of the defined recurrent sequence.

In the following we are mainly interested in second order recurrence sequences.
We shall write (1) in the form

un = aun−1 + bun−2, (2)

where a, b ∈ Z. Fibonacci numbers form probably the most well known recurrent
sequence of second order. The recurrence relation for the Fibonacci numbers is
given by un = un−1 + un−2. The initial terms are u0 = u1 = 1. Note that, in
general, we shall not assume that the coefficients in (2) are positive.

We shall consider the following problem of recurrent sequences.

Positivity Problem. Let a recurrence relation (1) be given together with the initial
terms ui for i = 0, 1, . . . , k−1. Is the defined sequence (un)∞n=0 positive, i.e., does
it hold that un ≥ 0 for all n?

We shall show that the positivity problem is algorithmically solvable for the
second order linear recurrence equations. Our solution methods are elementary
and they use only the basic properties of complex numbers.

As an example, consider the linear recurrent sequence (un)∞n=0, where

un = 9un−1 − 21un−2,

u0 = 1 and u1 = 14. The first negative member of this sequence is u17 =
−344532183345. Before that the maximum value is u15 = 17954992251.

The Positivity Problem is well known also in the theory of integer matrices,
and through matrix theory it has connections to many other fields of mathematics
(cf. [8, 9]). Indeed, it is straightforward to show that a sequence (un)∞n=1 defined
for a k × k integer matrix M a sequence (un)∞n=1 defined by

un = vMn
u

T

where v = (1, 0, . . . , 0) ∈ Z
k and u = (0, . . . , 0, 1) ∈ Z

k, is a linear recurrent
sequence of order k. Therefore if the Positivity Problem for second order recur-
rence equations can be algorithmically solved also the problem asking whether
or not, for a 2 × 2 integer matrix M all powers Mn have a non-negative right
upper corner element (Mn)1,2, can be solved. Let us mention that the above con-
nection between matrices and linear recurrent sequences works also to the other
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direction, but then the dimension of the matrix may grow. Indeed, for any linear
recurrent sequence (un)∞n=0 of order k, there exists a matrix M ∈ Z

k+1×k+1, such
that un = (Mn)1,k+1 for all n ≥ 1.

Before going into more details of this problem we mention other related ques-
tions on the elements of recurrent sequences. In the Skolem’s Problem it is re-
quired to determine whether or not a given sequence defined by (1) has a zero
term, un = 0 for some n ≥ 0. It is known, and highly nontrivial to prove, that
the Skolem’s Problem is algorithmically solvable for sequences of order 5 or less;
see [5]. It is also known that if Positivity Problem is algorithmically solvable in
general (i.e., for all orders k ≥ 1), then also the Skolem’s Problem is solvable in
the general case (see [7], p. 129). Indeed, this follows by the fact that if (un)∞n=0

is linear recurrent sequence, then so is (u2
n−1)∞n=0 (for the details of the construc-

tion of (u2
n − 1)∞n=0 see also [3]). On the other hand, it is algorithmically solvable

for recurrence equations of any order whether or not they produce infinitely many
zeroes; see [1].

Let us also mention another old problem which remains open for 2× 2 integer
matrices. In the Mortality Problem a finite set M1,M2, . . . ,Mk of 2 × 2 integer
matrices is given, and one is to determine whether or not Mi1Mi2 . . . Min = 0 for
some product of these matrices. It is not known whether this problem is algorith-
mically solvable; see [10]. If we increase the size of the matrices by one to 3 × 3
integer matrices then the problem becomes unsolvable; see e.g. [4].

2. Preliminaries. For a complex number α we use the representation α =
|α| eiθ, where θ ∈ [0, 2π) is the phase of α.

We begin with some basic facts about roots of unity. An rth root of unity, for
r ∈ N, is a complex number ζ satisfying ζr = 1. The smallest positive r such that
ζr = 1 is called the order of ζ and it is denoted by r = ord(ζ). Evidently |ζ| = 1
for the roots of unity, and the number of rth roots of unity is exactly r. An rth root
of unity is called primitive if ζk 6= 1 for each 1 ≤ k < r, i.e., if its order is r. All
rth roots of unity are obtained as powers of a primitive root of unity. It is always
possible to choose ζr = e

2πi
r as a primitive rth root of unity. For any primitive rth

root of unity ζr, it is easy to see that ζk
r is primitive if and only if gcd(r, k) = 1.

The rth cyclotomic polynomial is defined as

φr(x) =
r−1
∏

k=0
gcd(k,r)=1

(x − ζk
r ).

Clearly φr has all the primitive rth roots of unity as zeros. It can be shown also
that φr(x) ∈ Z[x], and that φr(x) is an irreducible polynomial. It follows that
deg(φr) = ϕ(r), where ϕ(r) is the Euler’s function. Furthermore,

xr − 1 =
∏

s|r
φs(x),
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since every rth root of unity is a primitive sth root of unity for exactly one positive
divisor s of r. Indeed, every rth root of unity has a minimal polynomial φs(x) for
some s, and the degree of the minimal polynomial is ϕ(s).

For a given real number x, we use notation bxc = max{n ∈ N | n ≤ x}.
Inequalities x − 1 < bxc ≤ x are immediate. Moreover, we denote by {x} =
x − bxc its fractional part. Clearly, 0 ≤ {x} < 1 for all real numbers x.

We use the following well known result in our proof. In fact, Weyl’s Crite-
rion (cf. [2]) implies easily that the fractional parts of any irrational number are
equidistributed in [0, 1].

Lemma 1. For any irrational number α, the set M = {{nα} | n ∈ N} is dense
in the interval [0, 1].

Proof. Since α is irrational, fractional parts {nα} are distinct for distinct n, and
consequently the set M is infinite.

Given any k, divide the interval [0, 1] into k subintervals [0, 1
k
], [ 1

k
, 2

k
], . . .,

[k−1
k

, 1], and consider the k + 1 first fractional parts {0 · α}, {1 · α} . . ., {k · α}.
By the pigeon hole principle, there exists a subinterval including two of them, say
{k1α} and {k2α}, where 0 ≤ k1 < k2 ≤ k. Hence |{k1α} − {k2α}| < 1

k
and

(k2 − k1)α = bk2αc − bk1αc + {k2α} − {k1α}.

If {k1α} < {k2α}, then {(k2 − k1)α} = {k2α}− {k1α} < 1
k
. It follows straight-

forwardly that each interval [ 1
k
, 2

k
], . . ., [k−1

k
, 1] contains a fractional part of a mul-

tiple of (k2 − k1)α.
On the other hand, if {k1α} > {k2α}, then

(k2 − k1)α = bk2αc − bk1αc − 1 + 1 + {k2α} − {k1α}

has fractional part 1+{k2α}−{k1α} ∈ (1− 1
k
, 1). Since {n(1−α)} = 1−{nα},

each interval [0, 1
k
] [ 1

k
, 2

k
], . . ., [k−1

k
, 1] contains some {nα}. The claim follows,

since k is arbitrary.

3. Solution of linear recurrent sequence. Assume that (un)∞n=0 is a recurrent
sequence defined by the linear recurrence relation

un = aun−1 + bun−2. (3)

Then the polynomial
p(x) = x2 − ax − b (4)

is called the characteristic polynomial of (un)∞n=0. The roots of p(x) are called
the characteristic roots of (un)∞n=0.

The following theorem is based on the well known result in combinatorics
stating the form of the solutions of a linear recurrence relations for any order; cf.
[6], Thm. 3.1.1, p. 23. We state it only for the second order case, where the roots
are simple.
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Theorem 1. Let un = aun−1+bun−2 be a linear recurrent sequence with a, b 6= 0,
and let p(x) = x2 −ax− b be its characteristic polynomial. Let also D = a2 +4b
be the discriminant of p(x).

1. If D > 0, then un = Aλn
1 + Bλn

2 , where λ1 6= λ2 are real roots of p(x),
A = u1−u0λ2√

D
, and B = u0λ1−u1√

D
.

2. If D = 0, then un = (A + Bn)λn, where λ = a
2

is a double root of p(x),
A = u0, and B = 2u1−u0a

a

3. If D < 0, then un = Aλn + Aλ
n
, where λ and λ are the complex roots of

p(x), and A is as in Case 1.

Proof. To determine A and B in Case 1, we note that the pair of equations

{

u0 = A + B
u1 = Aλ1 + Bλ2

can be solved by Cramer’s rule, since the determinant −
√

D of the system is
nonzero. The solutions are as in the statement. It is then a simple task to show by
induction on n that the claimed solution indeed satisfies the recurrence. The same
conclusion holds for Case 3, where in addition we notice that B = A, since in this
case

√
D is a pure imaginary number.

In Case 2 we have b = −a2

4
and the pair of equations becomes

{

u0 = A
u1 = Aλ + Bλ

Now that a 6= 0, the determinant, now λ, is again nonzero and Cramer’s rule
applies. The solutions of the system are as stated, and it is again easy to verify
that the recurrence relation is satisfied.

The expression of un in the three cases of Theorem 1 is usually called the
solution of the (un)∞n=0. Note that the roots are nonzero, since b 6= 0.

4. Solving the Positivity. We begin with the easiest cases not covered by The-
orem 1, and which, actually, refer to Positivity Problem of a first order recurrent
equations. Indeed, the Positivity Problem can be solved for first order recurrent
sequences in a trivial way, since then un = anu0 for any n ≥ 0, and (un)∞n=0 is
positive if and only if a ≥ 0 and u0 ≥ 0.

Lemma 2. If a = 0 or b = 0 in (3), then the Positivity Problem can be solved.

Proof. Assume first that b = 0. Then the sequence consists of u0 and un = an−1u1

for n ≥ 1.
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If a = 0, then un = bun−2, and we can divide (un)∞n=0 into two sequences,
namely

un =

{

bmu0, if n = 2m,

bmu1, if n = 2m + 1.

In both cases solvability follows from the case of first order recurrence equations.

We then study the cases of Theorem 1 separately. In Case 1 the asymptotic
behaviour of the sequence (un)∞n=0 is essentially determined by the root which has
maximum absolute value.

Lemma 3. Assume that, for all n ≥ 0, un = Aλn
1 + Bλn

2 , where λ1 6= λ2 are
real and nonzero, and A,B ∈ R. Then the Positivity Problem of (un)∞n=0 can be
solved.

Proof. Note first that λ1 6= −λ2, since the equality would imply a = λ1−λ2 = 0.
This implies also that |λ1| 6= |λ2|. Assume that |λ1| > |λ2|. Now

un = λn
1 (A + B

(λ2

λ1

)n
),

where |λ2

λ1
| < 1. Note that if A = B = 0, then the positivity of the sequence is

trivial. Therefore, assume that this is not the case. We have two cases according
to the sign of λ1.

If λ1 < 0, then un ≥ 0 if and only if the sign of

A + B
(λ2

λ1

)n
(5)

is equal to the sign of λn
1 or zero. Necessarily λ2 > 0 and B 6= 0. Since (λ2

λ1
)n

tends to zero as n grows, there can be only one zero in (5), and the sign of (5) can
change only if A = 0. Since λ2

λ1
< 0, necessarily B > 0. Therefore, in this case,

the sequence (un)∞n=0 is positive if and only if λ2 > 0, A = 0 and B > 0.
If λ1 > 0, then the sequence (un)∞n=0 is positive, if

A + B
(λ2

λ1

)n ≥ 0 (6)

for all n ≥ 0. If B = 0, then (un)∞n=0 is positive when A ≥ 0; otherwise (6) is
equivalent to

(λ2

λ1

)n ≥ −A

B
(7)

for all n ≥ 0. We have two cases according to whether λ2 > 0 or not. First, if
λ2 > 0, then (7) is satisfied if and only if −A

B
≤ 0, since (λ2

λ1
)n tends to zero. In the

second case we have λ2 < 0, again (λ2

λ1
)n tends to zero, but now the sign changes.

Now it is easy to see that (un)∞n=0 is positive, i.e., (7) holds for all n ≥ 0 if and
only if (7) holds for n = 1. Indeed, in this case ( λ2

λ1
)n ≥ (λ2

λ1
) for all n ≥ 0.

Clearly, each of the above cases provide a method for determining positivity
of the sequence (un)∞n=0.
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Next we consider the Positivity Problem for Case 2 of Theorem 1.

Lemma 4. Assume that un = (A + Bn)λn for all n ≥ 0. Then the Positivity
Problem of the sequence (un)∞n=0 can be solved.

Proof. Note first that the sign of A + Bn can change only once when n grows.
Therefore, if λ < 0, then (un)∞n=0 cannot be positive. On the other hand, if λ > 0,
then (un)∞n=0 is positive if and only if A + Bn ≥ 0 for all n ≥ 0, which is
equivalent to the condition n ≥ −A

B
, and thus to the condition −A

B
≤ 0, whenever

B 6= 0. If B = 0, then the positivity is equivalent to A ≥ 0.

What is left is the case of two complex roots, i.e., Case 3. Assume that

un = Aλn + Aλ
n
,

for all n ≥ 0, and let λ = |λ|eiθ and A = |A|eiφ for some θ, φ ∈ [0, 2π). We can
now write

un = |A| eiφ(|λ| eiθ)n + |A| e−iφ(|λ| e−iθ)n

= |A| |λ|n (ei(φ+nθ) + e−i(φ+nθ))

= 2 |A| |λ|n cos(φ + nθ),

(8)

where θ and φ are the phases of λ and A as above. It is clear that we need to study
the sign of cos(φ + nθ) in order to solve the Positivity Problem.

Lemma 5. If eiθ is not a root of unity, then the set {cos(φ + nθ) | n ∈ N} is
dense in [−1, 1]. In particular, if eiθ in (8) is not a root of unity, then (un)∞n=0 is
not positive.

Proof. Since eiθ is not a root of unity, we have θ = 2πθ1, where θ1 is irrational.
It follows that the numbers nθ = 2πnθ1 (mod 2π) are dense in [0, 2π], which
implies that their translations φ+2πnθ1 (mod 2π) are dense in [φ, φ+2π]. Now
since the cosine function is a continuous bijection from [φ, φ + 2π) onto [−1, 1],
it maps a dense set into a dense set.

On the other hand, for in the case where eiθ is a root of unity we have a positive
answer.

Lemma 6. Let eiθ in (8) be a root of unity. Then the Positivity Problem of (un)∞n=0

can be solved.

Proof. Since eiθ is a root of unity, we have θ = 2π r
s

with r ∈ Z and s = ord(eiθ),
and then cos(φ + (n + s)θ) = cos(φ + nθ + 2rπ) = cos(φ + nθ). This is to
say that the sequence un/ |λ|n has period s, and the positivity of the sequence
members can be determined by computing the first s terms of the sequence.
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In the present case, Case 3, we still need to describe how to check whether eiθ

is a root of unity or not, and how to find its order. It is obvious by the definition that
eiθ is a root of unity if and only if e2iθ is so. Indeed, either ord(eiθ) = ord(e2iθ) or
ord(eiθ) = 2 ord(e2iθ).

We will describe a method how to determine if e2iθ is a root of unity. Notice
that since now D = a2 +4b < 0, necessarily b < 0. Moreover, because x2 −ax−
b = (x − λ)(x − λ), it is easy to see that a = λ + λ, |λ|2 = −b. By squaring the
first relation we learn that a2 = |λ|2 (e2iθ + 2 + e−2iθ), which together with the
second equality and by multiplying the equation by e2iθ gives

be4iθ + (a2 + 2b)e2iθ + b = 0,

which shows that p(x) = x2 + a2+2b
b

x + 1 has e2iθ as a root. In fact, p(x) is
the minimal polynomial of e2iθ, since otherwise e2iθ would be of degree 1 (and
hence real), which would imply that also λ2 is real. But this would mean that
either λ ∈ R or λ ∈ iR. The first case is impossible, since we assumed that we
have Case 3 of Theorem 1, and the second case would imply that a = 0, which is
against the assumption of Theorem 1.

Lemma 7. e2iθ is a root of unity if and only if one of the following conditions
holds:

1. a2 = −b, in which case, e2iθ has order 3.

2. a2 = −2b, in which case, e2iθ has order 4.

3. a2 = −3b, in which case, e2iθ has order 6.

Proof. Assume that e2iθ is a root of unity of order s. Since e2iθ is an algebraic
number of degree 2, we have that ϕ(s) = 2. Clearly, ϕ(n) ≥ π(n−1), where π(i)
is the number of primes p such that p ≤ i. Now π(n − 1) > 2 whenever n > 6.
Therefore, the only candidates for s are 3, 4, and 6, for which ϕ(3) = ϕ(4) =
ϕ(6) = 2.

The minimal polynomial of e2iθ gives

(e2iθ)2 = −a2 + 2b

b
e2iθ − 1, (9)

which, when multiplied by e2iθ, shows that

(e2iθ)3 =
((a2 + 2b

b

)2

− 1
)

e2iθ +
a2 + 2b

b
(10)

Since e2iθ /∈ R, this expression equals to 1 if and only if a2+2b
b

= 1, which is
equivalent to a2 = −b.

The order of e2iθ is 4 if and only if (e2iθ)2 = −1. By (9) this happens if and
only if a2+2b

b
= 0, which is equivalent to a2 = −2b.

The order of e2iθ is 6 if and only if (e2iθ)3 = −1. By (10) this happens if and
only if a2+2b

b
= −1, which is equivalent to a2 = −3b.
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Note that it follows from Lemma 7 that if eiθ is a root of unity, then it has order
3, 4, 6, 8 or 12.

Corollary 1. If un = Aλn + Aλ
n
, for all n ≥ 0, then the Positivity Problem of

(un)∞n=0 can be solved.

Proof. According to Lemma 7, it can be checked whether e2iθ, and also eiθ, is a
root of unity, and then the order can be found by checking the possible orders.
After that, the Positivity Problem is solved using the proof of Lemma 6.

From Lemmas 2, 3, 4 and Corollary 1 follows

Theorem 2. The Positivity Problem is algorithmically solvable for the second
order linear recurrent sequences.
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Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 952-12-1541-0
ISSN 1239-1891


