
Ville Lukkarila

A Mathematica-package for algebraic
braid groups

TUCS Technical Report
No 689, May 2005

A Mathematica-package for algebraic
braid groups

Ville Lukkarila
vinilu@utu.fi

TUCS Technical Report

No 689, May 2005

Contents

1 Preliminaries 1
1.1 Definitions . 1

1.1.1 The intuitive definition 1
1.1.2 Topological definitions 1
1.1.3 The algebraic braid group 1
1.1.4 Properties . 2

1.2 The word problem . 3
1.2.1 Permutations . 4
1.2.2 The left canonical form 4
1.2.3 The mixed canonical form and the right canonical form . . 5

1.3 The conjugacy problem . 5
1.3.1 The Summit set . 6
1.3.2 The super summit set . 6
1.3.3 The ultra summit set . 6

1.4 Linear representations . 7
1.4.1 The Burau representation 7
1.4.2 The Lawrence-Krammer representation 8

2 The package AlgebraicBraids 8
2.1 About the package . 8
2.2 The word problem . 9

2.2.1 Basic word operations 9
2.2.2 Permutation operations 10
2.2.3 Braid operations . 10
2.2.4 Lattice operations . 11

2.3 The conjugacy problem . 12
2.3.1 The super summit set . 12
2.3.2 The ultra summit set . 12

2.4 Linear representations . 12
2.4.1 The Burau representation 12
2.4.2 The Lawrence-Krammer representation 13

2.5 Specific Mathematica-functions 13
2.5.1 Plotting braid diagrams 13
2.5.2 Using the ArtinBraid-head 14

2.6 Some examples . 15

Bibliography 17

Index 20

iv

Abstract

This technical report briefly describes the contents of the ’official’ version of
the Mathematica-package which was originally written during the preparation of
author’s thesis [31]. The thesis concentrated mainly on the treatment of the fun-
damental algebraic and algorithmic theory of the so-called Artin’s braid group and
on the recent years’ attempts to use braids in public-key cryptographic protocols.
This report is — in a way — an abstract of a part of the thesis [31].

Since there are many rigorous introductory texts for the theory of braids with
heavy use of algebraic topology, this report does not repeat the exact mathematical
definitions. Instead, this report contains simplified definitions and tries to offer a
brief introduction for people with little background in topology and combinatorial
group theory. However, some knowledge of basic algebra (groups, equivalence,
etc.) is required.

Birman’s classic book [6] is a good source for people hoping for a more rigor-
ous treatment of the subject. However, the book [6] requires basic combinatorial
group theory [32] and homotopy theory [26] as preliminary knowledge.

A continuously updated cryptographical bibliography on braid groups can be
found on Helger Lipmaa’s homepage at http://www.cs.ut.ee/~helger/.
A widely used C++ library for braids can be found at [10].

Keywords: Braid group, Conjugacy problem, Cryptography, Mathematica, Word
problem

TUCS Laboratory
Discrete Mathematics for Information Technology

http://www.cs.ut.ee/char 126elax helger/

1

1 Preliminaries

1.1 Definitions

1.1.1 The intuitive definition

A geometric braid can be defined as a finite family of parametrized continuous
curves located between two (predefined) parallel planes in the space R

3. The
curves are not allowed to intersect and they start on a predefined set of distinct
points, the starting points, on the first plane and end on a similar set of points, the
ending points, on the second plane. The curves can either be defined only between
the planes or to have constant values beyond the space between the planes. It can
be assumed that the starting points and the ending points are indexed 1, 2, The
curves can be called strings. A braid with n strings is called an n-braid.

The multiplication of two braids can be defined as attaching (and properly
shrinking) a string of the first braid ending at the (ending) point i to the string
of the second braid starting at the (starting) point i.

Two geometric braids are called equivalent, if the first one can be continuously
deformed into the second one without any strings intersecting one another or in-
tersecting the planes in any other points than the starting and ending points. This
equivalence corresponds to the topological notion of isotopy.

Considering these equivalence classes, it can be shown that there is a mul-
tiplicative inverse for every braid and this construction gives us the Artin braid
group, denoted by Bn. An element of an Artin braid group Bn, i.e. an equivalence
class of geometric n-braids, is simply called a braid.

1.1.2 Topological definitions

There are two non-trivial topological definitions for the braid group. The first defi-
nition is that the braids correspond to homotopy classes of homeomorphisms of the
n-punctured disc which fix the border of the disc and permute the puncture points
[2]. The braid group is exactly the homotopy group (i.e. mapping class group) of
the punctured sphere Dn with a fixed border.

The second definition gives the braid group Bn as the fundamental group (i.e.
Poincaré group) of the set of sets {a1, a2, . . . , an} ⊂ R

2 with the base point
{(1, 0), (2, 0), . . . , (n, 0)} [20].

1.1.3 The algebraic braid group

It seems to be mathematical folklore that the free group of n generators is the
fundamental group of n-punctured sphere. It can be proved that the braid group is
isomorphic to a certain subgroup of the automorphisms of the free group [9, 13,
32]. Using that result it can be shown that the braid group Bn has the algebraic
presentation

Bn =

〈

σ1, . . . , σn−1
σiσj = σjσi, when |i− j| ≥ 2,

σiσi+1σi = σi+1σiσi+1, when i = 1, . . . , n− 2.

〉

. (1.1)

The correspondence of braids as homotopy classes of surface homeomorphisms
and the free group automorphisms is illustrated in figure 1.

2 1 PRELIMINARIES

Figure 1: Braids acting on the free group

The generator σi can be considered as the action of intertwining strings num-
ber i and i + 1. Therefore the defining relations can be understood as physical
rules, determining how the strings can be moved, twisted, stretched, etc. without
the strings intersecting each other. If the braids are represented as figures, braid
diagrams, the generators are drawn as in figure 2.

Figure 2: Generator σi and the inverse generator σi
−1.

Using the interpretation of figure 2, the half-twist ∆5 (defined in eq. (1.2) on p. 4)
of group B5 can be depicted as in figure 3.

1

2

3

4

5

Figure 3: Half-twist ∆5.

The first one of the defining relations in (1.1) is called the far commutativity rela-
tion and the second one is the braid relation. The defining relations can be repre-
sented graphically as in figures 4 and 5.

1.1.4 Properties

The braid group is well-studied. For example:

• it is biautomatic (so the word problem is solvable in quadratic time with
respect to the word length) [19],

• it is torsion-free (i.e. it has no non-trivial elements of finite order) [20, 17,
14, 16],

• it has a lattice structure [19],

1.2 The word problem 3

=

Figure 4: σiσj = σjσi, iff |i− j| ≥ 2.

=

Figure 5: σiσi+1σi = σi+1σiσi+1.

• it is linear (i.e. isomorphic to some matrix group) [3, 5, 29]

• it has a total ordering, which is invariant under multiplication from the left
[14, 15],

• recognizing a shortest word representative of a braid is a co-NP-complete
problem [34] and

• braid theory is one approach to the problems of knot theory.

1.2 The word problem

When are two elements of the same semigroup equal? More specifically, if we are
given two products of generators (or words over the set generator symbols) of the
given (semi)group, are they equal? This problem, known as the word problem is
known to be undecidable for groups (and hence also for semigroups in general).
For a better account on the word problem, see [25].

The first solution to the word problem for braids was given by E. Artin him-
self [2]. For a given braid he defined a normal form known as the combed braid.
His solution was exponential in terms of time. The second solution was given by
Garside [23]. Garside’s solution was to enumerate all the equivalent braids and
represent them as numbers in base n. This approach was exponential as well.

The first polynomial-time solutions were given by Thurston [19] and Elrifai
and Morton [18]. An even faster algorithm was given by Birman, Ko and Lee but
for a different presentation of the braid group, known as the band presentation or
BKL-presentation [7].

Different approaches for the word problem were used in articles [15, 22, 35].
The algorithm by Wiest seems to be quite efficient in finding a shortest represen-
tative for the given braid. This problem in general is known to be co-NP-complete
[34].

4 1 PRELIMINARIES

1.2.1 Permutations

It is generally known that the symmetric group Sn is generated by transpositions
τi = (i i + 1) and it has defining relations

τiτj = τjτi, when |i− j| ≥ 2,

τiτi+1τi = τi+1τiτi+1, when i = 1, . . . , n− 2,

τ2
i = 1, when i = 1, . . . , n− 1.

Hence, by the Homomorphic Principle, the symmetric group Sn is isomorphic to
the quotient group Bn/

〈

σi
2|i = 1, . . . , n− 1

〉

of the braid group Bn. The homo-
morphic image of a braid in the symmetric group is called an induced permutation.
If the word length of the braid (or a word length of some of its equivalent represen-
tatives) equals the minimum word length of the induced permutation, the braid is
called a permutation braid. If the braid contains no inverse generators, it is called
a positive permutation braid. An equivalent definition for a permutation would be
to require that every two strings cross at most once in the braid.

The word W ∈ Sn is a left factor of the word U ∈ Sn, if there exists a word
V ∈ Sn so that U = WV and |U | = |W |+|V |. This is also denoted by W ≤Sn

L U .
A right factor W can be defined in a similar way and it is denoted by W ≤Sn

R U .
These relations extend to the braid group almost directly.

Denote by B+
n the monoid of positive braids (braids that can be represented as

words without inverse generators). We write W ≤L U , if we have U = WV for
some braid word V ∈ B+

n , and W ≤R U , if U = V W for some braid word V ∈
B+

n . We also write W ≤ U if U = V1WV2 for some positive braids V1, V2 ∈ B+
n .

Given two braids U and V , the greatest element W , for which equations W ≤L

U and W ≤L V hold, is called the left meet. It is denoted by W = U ∧L V .
Similarly the right meet can be defined using relation ≤R and it is denoted by
U ∧R V . The least element for which equations U ≤L W and V ≤L W hold, is
called the left join. It is denoted by U ∨L V . Again, the right join U ∨R V can be
defined in a similar way. A meet is also known as the greatest common divisor and
join is known as the least common multiple. If meet and join operations (according
to some relation) are defined in the given set, then the set is called a lattice (or a
lattice-ordered set).

With respect to these previous relations, the greatest element in the set of all
positive permutation braids is the half-twist ∆n, defined recursively by

∆n = σ1σ2 · · · σn−1∆n−1. (1.2)

The induced permutation Ωn of ∆n (defined by Ωn : i 7→ n − i) is likewise the
greatest element in the permutation group with respect to earlier relations. Hence
it is quite obvious, that a natural way to handle braids is to consider them as a
sequence of permutations.

1.2.2 The left canonical form

The most frequently mentioned normal form for a braid word W in terms of gen-
erators σ1, . . . , σn−1 is the left canonical form [18] or left greedy form [19]

W = ∆m
n A1A2 · · ·Ak, (1.3)

1.3 The conjugacy problem 5

where words Ai are permutation braids fulfilling the left-weightedness condition

σi ≤L Ai+1 =⇒ σi ≤R Ai. (1.4)

If condition (1.4) holds for some braids A and B, then the product AB
is left-weighted. For the given braid W we define infimum inf W =
max

{

i ∈ Z ∆i ≤W
}

and supremum supW = min
{

i ∈ Z W ≤ ∆i
}

. Inte-
ger value `Can (W) = supW − inf W is known as the canonical length of braid
W . With respect to eq. (1.3), it can be shown that `Can (W) = k, inf W = m and
supW = m + k [18].

It can be shown that representation (1.3) is unique and can be constructed in
quadratic time with respect to the word length and in almost linear time with respect
to the number of generators [18, 19]. Using the starting sets

S(W) =
{

i W = σiW
′,W ′ ∈ B

+
n

}

and finishing sets
F(W) =

{

i W = W ′σi,W
′ ∈ B

+
n

}

defined for positive braids W in [18], condition (1.4) can be expressed as F(Ai) ⊇
S(Ai+1). A nice property of left-weightedness is that S(A1) = S(A1A2 · · ·) for
any left-weighted sequence A1, A2, . . . of permutation braids.

1.2.3 The mixed canonical form and the right canonical form

There are also other normal forms for braid words. One of them is the right canoci-
cal form (or right greedy form)

W = A1A2 · · ·Ak∆
m
n , (1.5)

defined in the book [19]. In eq. (1.5) words Ai are again permutation braids, but
now holding the right-weightedness condition F(Ai) ⊆ S(Ai+1).

Yet another normal form is the mixed canonical form [19] (or Thurston normal
form)

W = U−1V. (1.6)

In mixed canonical form (1.6) both braids U and V are positive, in the left canon-
ical form and they fulfill condition S(U) ∩ S(V) = ∅. The mixed canonical form
gives the shortest word representative of form U−1V . However, this is not the
shortest word representative in general.

1.3 The conjugacy problem

The conjugacy problem is stated generally as follows: Given two elements x and y
of a semigroup S, determine whether there exists an element u of S such that

xu = uy (1.7)

as elements of S. In the case of S being a group, equation (1.7) is usually rewritten
in the form of x = uyu−1 or y = u−1xu. The search version or computational
version of the conjugacy problem, the conjugacy search problem, asks to find an

6 1 PRELIMINARIES

element u, for which equation (1.7) holds when elements x and y are given. This
element u is called simply a conjugator.

The conjugacy problem is a generalization of the word problem. If the conju-
gacy problem could be solved, so could the word problem by choosing u = 1S .

The conjugacy problem of braids is related to the notorious equivalence prob-
lem of knots and links. If two braids are conjugate, their closures are equivalent
as links (or knots). Unfortunately, the converse does not hold. There are differ-
ent definitions for equivalence depending on whether braids are considered only as
elements of a group or as parts of links (and knots).

1.3.1 The Summit set

Garside was the first person to show that the conjugacy problem of braids is solv-
able [23, 6]. The solution is based on the algorithmic construction of a set, known
as the summit set. The summit set contains all the conjugates with maximal infi-
mum of the given braid. Garside showed that two braids are conjugates if and only
if their summit sets are equivalent.

The nice property of the summit set (as with super- and ultra summit set) is
that to generate all the elements of the set, only a small number of conjugators is
needed. More specifically, all the elements of the super summit set can be found by
conjugating existing elements with permutation braids. This result is known as the
convexity theorem [23, 18, 7, 21, 24]. Furthermore, the task of finding just some
element of the summit set can be solved with a quadratic amount of normal form
conversions [8].

The maximal infimum within the conjugacy class (and summit set) is called
summit exponent (according to Garside) or summit infimum.

1.3.2 The super summit set

The super summit set (defined by Elrifai and Morton [18] and later by Birman, Ko
and Lee [7]) is a small subset of the summit set. The super summit set consists
of those braids which have the minimal supremum among all the braids within
the summit set. The minimal supremum within conjugacy class is called summit
supremum.

It can be shown that the summit infimum and summit supremum can be si-
multaneously achieved within the conjugates, so the super summit set is the set of
those conjugates that achieve both the summit infimum and the summit supremum.
Again, it can be shown that two braids are conjugates to each other if and only if
their super summit sets intersect (and hence are also equal).

It is conjectured that the size of the super summit set is polynomial with respect
to the word length (in Artin’s presentation or in band presentation) of a braid [8].
However, it has not been proved so far.

1.3.3 The ultra summit set

An even smaller subset of the summit set is the ultra summit set [24]. It con-
tains exactly those elements W of the super summit set for which c

k(W) = W

1.4 Linear representations 7

for some k > 0. Mapping c(·) is the so-called cycling defined as c : W 7→
(τ−m(A1))

−1W τ−m(A1) using the notation from equation (1.3).
The difference in size with respect to the super summit set is noticeable. For

example, the super summit set of braid

∆−2
4 (σ2σ3σ1) (σ3σ1) (σ3σ1) (σ1σ2σ3σ2) (σ2σ3σ2σ1) (σ3) (σ3σ2)

contains 110 elements, but the ultra summit set contains only 14 elements. For
more dramatic figures, please refer to section 5 of Gebhardt’s article [24].

1.4 Linear representations

There are many linear representations for the braid group. However, in this report
we consider only two of them, namely the Burau representation and the Lawrence-
Krammer representation.

1.4.1 The Burau representation

The Burau representation is defined as mapping ρB : Bn → GLn(Z[t, t−1])

σi 7→

Ii−1 0 0 0

0 1− t t 0

0 1 0 0

0 0 0 In−i−1

.

The Burau representation can be reduced to an (n− 1)-representation ρrB : Bn →
GLn−1(Z[t, t−1]),

σi 7→

Ii−2 0 0 0 0

0 1 0 0 0

0 t −t 1 0

0 0 0 1 0

0 0 0 0 In−2−i

known as the reduced Burau representation [6].
The Burau representation is not faithful (i.e. the image of the group with respect

to the mapping is not isomorphic to the group itself). It also seems that there is no
deterministic algorithm which would return some preimage of the given Burau
matrix. However, there are a few heuristic algorithms to calculate a preimage with
empirically high success rate. Although the Burau representation is not faithful,
it has a lower order than the Lawrence-Krammer representation. This makes it
slightly more popular in the linear-algebraic cryptanalytic attacks against the braid
group cryptosystems [27, 30]. The question whether the Burau representation is
faithful for n = 4 is still without an answer. It is faihtful for n = 3 [6, 31] and
unfaithful for values n ≥ 5 [4, 6].

There is also the colored Burau representation [33] which is used in the
AAFG1 key agreement protocol [1]. However, it will not be represented it here.

8 2 THE PACKAGE ALGEBRAICBRAIDS

1.4.2 The Lawrence-Krammer representation

The Lawrence-Krammer representation (also known as the Lawrence-Krammer-
Bigelow representation) is a special case of the Lawrence representation. The
Lawrence-Krammer representation is defined as the linear mapping ρK : Bn →
GLn(n−1)/2 (V), where V = Z[t±1, q±1]. If we assume that the module V has
base {xi,j 1 ≤ i < j ≤ n}, ρK(σk) acts as follows [29]:

ρK(σk)xi,j =

tq2xk,k+1, i = k, j = k + 1,

(1− q)xi,k + qxi,k+1, j = k, i < k,

xi,k + tqk−i+1(q − 1)xk,k+1, j = k + 1, i < k,

tq(q − 1)xk,k+1 + qxk+1,j, i = k, k + 1 < j,

xk,j + (1− q)xk+1,j, i = k + 1, k + 1 < j,

xi,j, i < j < k or k + 1 < i < j and

xi,j + tqk−i(q − 1)2xk,k+1, i < k < k + i < j.

The Lawrence-Krammer representation is known to be faithful and hence the braid
group is linear [5, 29]. A cryptanalytic attack by Cheon and Jun [12] uses the
Lawrence-Krammer representation to defeat both the old braid group public-key
cryptosystem [28] and the new one [11].

2 The package AlgebraicBraids

2.1 About the package

A large part of the algorithms contained in this package can be found from articles
[18, 21, 24, 11]. Some functions are natural implementations of the results given
in book [19].

The braids are handled in five different forms in the package. These represen-
tation forms are a word, left canonical form, mixed canonical form, right canonical
form, and a specifically created list structure for Mathematica.

Words are simply represented as lists of integers, where a positive integer i
corresponds to generator symbol σi and a negative integer −i corresponds the
inverse generator σi

−1. Left canonical form for a braid is represented as a list
{i, A1, A2, ...Al}, where i is the infimum and Ak are permutations representing the
canonical factors. Mixed canonical form U−V is represented as a two-element list
{U, V } of corresponding expressions for the left canonical forms. Right canonical
form is represented as a list {A1, A2, ..., Al, i}, where Ak are again the canonical
factors and i is the infimum. A more general way to express an arbitrary braid is to
represent it as a three-element expression ArtinBraid[n,t,r]. Here element
n is the braid index (number of the strings), element r is an expression represent-
ing the braid in some form, and element t tells which (normal) form is used for
expression r.

All the algorithms are implemented mainly for the left canonical form only.
Instead of implementing same algorithms for all the normal forms, the package
contains conversion methods between different normal forms. Some algorithms
are not implemented for all the normal forms to emphasize the increase of the

2.2 The word problem 9

time complexity caused by non-optimal normal form. For example, no algorithm
FinishingSetLCF is contained in the package, because it is inconvenient to
search the finishing set for a given braid in left canonical form, since the braid
should be converted to the right canonical form first.

The functions operating with different normal forms or groups are distin-
guished by the suffixes in their names. For example, LeftMeetLCF calculates
the left meet for the given sequence for braids in left canonical form, whereas
LeftMeetPermutationdoes the same for the permutations of the Combina-
torica-package. Likewise functions ProductLCF, ProductPermutation
and ProductBraid calculate the product for left canonical forms, permutations
and ArtinBraid-structures, respectively.

For brevity, in the following subsections similar functions are gathered under
the same headline. If there are functions FunctionLCF, FunctionMCF and
FunctionRCF, their descriptions are under headline Function[L,M,R]CF.

In this report and package the multiplication and the mapping direction of per-
mutations are defined to be from right to left. That is, the permutations act as
mappings from the left. This convention is different from the one in the article of
Elrifai and Mortin [18] but the same as in the works of Thurston [19] and Krammer
[29]. The braid strings are numbered from the left, but the strings are colored form
the right [33].

The package described in this report can be found at the publication database
of Turku Center for Computer Science at

www.tucs.fi

along with this report.

2.2 The word problem

2.2.1 Basic word operations

BraidAsWordQ BraidAsWordQ[W] returns True, if expression W can represent a braid
word. Otherwise it returns False.

PositiveBraidAsWordQ PositiveBraidAsWordQ[W] outputs True, if expression W

can represent a positive braid word. Otherwise it returns False.

FreelyReducedWord FreelyReducedWord[W] returns a freely reduced word equivalent
to word W .

Delta Delta[n] returns element ∆n as a word.

WordToPermutation WordToPermutation[W,n] converts the given word W to a per-
mutation in the set Sn according to the mapping i 7→ (|i| |i| + 1), where i is an integer
representing a generator.

WordTo[L,M,R]CF WordToLCF[W,n] converts the given braid word W into its left canon-
ical representation in group Bn. WordToMCF[W,n] and WordToRCF[W,n] do the
same for mixed and right canonical forms, respectively.

ProductWord ProductWord[W1,W2,...] returns the concatenation of words W1,W2,. . . .

InverseWord InverseWord[W] returns the formal inverse word W−1 of the given word W .

ReverseWord ReverseWord[W] returns the word reverse W R of the given word W .

NegationWord Given a word W , NegationWord[W] returns the word negation (word
(WR)−1).

file:www.tucs.fi

10 2 THE PACKAGE ALGEBRAICBRAIDS

HalfTwistWord Given a braid word W , HalfTwistWord[W,n] returns element τ (W) =
∆−1

n W∆n.

InducedPermutationWord This function outputs the same result as WordToPermutation.

2.2.2 Permutation operations

Transposition Transposition[i,n] returns transposition (i i + 1) ∈ Sn.

Omega Omega[n] returns the induced permutation of the half-twist ∆n.

PermutationToWord PermutationToWord[P] return a word representation for the given
permutation P in terms of generator cycles (i i + 1).

PermutationTo[L,M,R]CF Assuming that the given permutation P represents a positive per-
mutation braid, PermutationToLCF[P] converts it to a left canonical form.

HalfTwistPermutation HalfTwistPermutation[P] conjugates the given permutation
P by element Ωn.

ProductPermutation ProductPermutation[P1,P2,...] returns the product of per-
mutations P1,P2,. . . .

SolveConjugatorPermutation If permutations P and Q are conjugates,
SolveConjugatorPermutation[P,Q] returns the permutation X for which
equation Q = X−1PX holds. This is only an implementation of the “first year
studies”-algorithm.

FinishingSetPermutation Assuming that the given permutation P represents a positive per-
mutation braid, FinishingSetPermutation[P] returns the finishing set for permuta-
tion braid P .

StartingSetPermutation Assuming that the given permutation P represents a positive per-
mutation braid, StartingSetPermutation[P] returns the starting set for permutation
braid P .

LeftWeightedQ Assuming that the given permutations P1,P2,. . . represent positive permutation
braids, LeftWeightedQ[P1,P2,...] returns True iff the given sequence is left-
weighted.

RightWeightedQ Assuming that the given permutations P1,P2,. . . represent positive permuta-
tion braids, RightWeightedQ[P1,P2,...] returns True iff the given sequence is
right-weighted.

PermutationLength PermutationLength[P] returns the minimal length for the given
permutation P with respect to generators (i i + 1), i = 1, . . . , n − 1. This equals the cardi-
nality of the minimal relation whose transitive closure equals the given permutation [19].

PermutationBraidQ PermutationBraidQ[B] returns True, iff the given word B repre-
sents a permutation braid, that is, the word length of word B equals the word length of the
induced permutation.

HalfPermutationPairsQ Given a set of integer pairs considered as relation,
HalfPermutationPairsQ[S] returns True iff the transitive closure of S is a
half-permutation [29].

PermutationPairsQ Given a set of integer pairs considered as relation,
PermutationPairsQ[S] returns True iff the transitive closure of S is a permu-
tation [19, 29].

MaximalPermutation MaximalPermutation[H] returns the maximal permutation (con-
sidered as a relation) contained within the given half-permutation H [29].

2.2.3 Braid operations

BraidIn[L,M,R]CFQ BraidInLCFQ[B] returns True iff B is a left canonical form for
some braid. BraidInMCFQ[B] and BraidInRCFQ[B] do the same for mixed and right
canonical forms.

2.2 The word problem 11

PositiveBraidIn[L,M,R]CFQ PositiveBraidInLCFQ[B] returns True iff B is a left
canonical form for some positive braid.

[L,M,R]CFToWord LCFToWord[B,n] converts the given left canonical form to a word over
the generators of Bn. MCFToWord[B,n] and RCFToWord[B,n] do the same for mixed
and right canonical form.

[L,M,R]CFTo[L,M,R]CF These functions convert one representation form to another.

Infimum[L,R]CF InfimumLCF[B] returns the infimum of braid B.

Supremum[L,R]CF SupremumLCF[B] returns the supremum of braid B.

CanonicalLength[L,R]CF CanonicalLengthLCF[B] returns the canonical length of
braid B.

LeftmostFactorLCF Assuming that braid W = A1A2 · · ·Ak ∈ B
+
n is written in its left canon-

ical form LeftmostFactorLCF[B,n] returns factor A1.

RightmostFactorRCF Assuming that braid W = A1A2 · · ·Ak ∈ B
+
n is written in its right

canonical form RightmostFactorRCF[B,n] returns factor Ak.

StartingSetLCF StartingLCF[B,n] returns the starting set of braid W ∈ B
+
n .

FinishingSetRCF FinishingRCF[B,n] returns the finishing set of braid W ∈ B
+
n .

Product[L,M,R]CF ProductLCF[W1,W2,...] returns the product of braids W1,W2,. . . .

Inverse[L,M,R]CF ProductLCF[B] returns the inverse W−1 of braid B.

Reverse[L,M,R]CF ReverseLCF[B] returns the word reverse BR of the given braid.

Negation[L,M,R]CF ReverseLCF[B] returns the negation BR−1
of the given braid.

HalfTwist[L,M,R]CF HalfTwistLCF[B] returns element τ(B) = ∆−1B∆.

InducedPermutation[L,M,R]CF InducedPermutationLCF[B] returns the induced
permutation of braid B.

2.2.4 Lattice operations

The algorithms for computing meet and join can be found in Epstein’s book [19]
and article [11]. The meet and join for braids are computed using the mixed canon-
ical form as described by Thurston [19].

IsLeftFactorPermutation IsLeftFactorPermutation[P,Q] returns True iff
P ≥Sn

L Q.

IsRightFactorPermutation IsRightFactorPermutation[P,Q] returns True iff
P ≥Sn

R Q.

IsLeftFactor[L,M,R]CF IsLeftFactorLCF[A,B] returns True iff A ≥L B.

IsRightFactor[L,M,R]CF IsRightFactorLCF[A,B] returns True iff A ≥R B.

LeftMeetPermutation LeftMeetPermutation[P1,P2,...] returns the left meet
∧Sn

L i=1,...
Pi.

RightMeetPermutation RightMeetPermutation[P1,P2,...] returns the right meet
∧Sn

R i=1,...
Pi.

LeftJoinPermutation LeftJoinPermutation[P1,P2,...] returns the left join
∨Sn

L i=1,...
Pi.

RightJoinPermutation RightJoinPermutation[P1,P2,...] returns the right join
∨Sn

R i=1,...
Pi.

LeftMeet[L,M,R]CF LeftMeetLCF[B1,B2,...] returns the left meet
∧

Li=1,...
Bi.

RightMeet[L,M,R]CF RightMeetLCF[B1,B2,...] returns the right meet
∧

Ri=1,...
Bi.

LeftJoin[L,M,R]CF LeftJoinLCF[B1,B2,...] returns the left join
∨

Li=1,...
Bi.

RightJoin[L,M,R]CF RightJoinLCF[B1,B2,...] returns the right join
∨

Ri=1,...
Bi.

12 2 THE PACKAGE ALGEBRAICBRAIDS

2.3 The conjugacy problem

The algorithm for computing the super summit set is due to Franco and Gonzalez-
Meneses [21]. For debugging purposes the ”trivial” version of the algorithm (i.e.
the original method of Elrifai and Morton using all permutation braids as con-
jugators) is contained in the private part of the package. Also the methods for
computing elements rx and ρx [21] are in the private context.

2.3.1 The super summit set

SummitForm[L,M,R]CFQ SummitFormLCFQ[B] returns True iff braid B belongs to its
own summit set.

FindSummitForm[L,M,R]CF FindSummitFormLCF[B] returns some element in the sum-
mit set of braid B.

SuperSummitForm[L,M,R]CFQ SuperSummitFormLCFQ[B] returns True iff braid B

belongs to its own super summit set.

FindSuperSummitForm[L,M,R]CF FindSuperSummitFormLCF[B] returns some ele-
ment in the super summit set of braid B.

SuperSummitSet[L,M,R]CF SuperSummitSetLCF[B] returns the super summit set of
braid B.

2.3.2 The ultra summit set

The ultra summit set is computed according to Gebhardt [24]. The subalgorithms
for elements ui, πy(s) and px(s) and sets Cy and Fx(u) [24] are located in the
private context.

UltraSummitForm[L,M,R]CFQ UltraSummitFormLCFQ[B] returns True iff braid B

belongs to its own ultra summit set.

FindUltraSummitForm[L,M,R]CF FindUltraSummitFormLCF[B] returns some ele-
ment in the ultra summit set of braid B.

UltraSummitSet[L,M,R]CF UltraSummitSetLCF[B] returns the ultra summit set of
braid B.

2.4 Linear representations

2.4.1 The Burau representation

The Burau representation is defined as in Birman’s book [6]. A heuristic algorithm
for the preimage of a Burau matrix was written following the the article of Hughes
[27]. The colored Burau matrices were defined following the article of Morton
[33]. A variant of the colored Burau representation was used in the key extractor
algorithm of the AAFG1 key generation algorithm [1].

Burau Burau[W,n,t] takes a braid word on n strings and outputs the corresponding n × n

Burau matrix with variable t.

InvertBurauH InvertBurauH[M,t,l] tries to find heuristically a preimage for the given
Burau matrix M with variable t. If an unreduced braid word with word length less than l

cannot be found as preimage, the method returns $Failed.

ReducedBurau ReducedBurau[W,n,t] takes a braid word W on n strings and outputs the
corresponding (n − 1) × (n − 1) reduced Burau matrix with variable t.

ColoredBurau ColoredBurau[W,n,t] takes a braid word W on n strings and outputs the
(n− 1)× (n− 1) colored Burau matrix with variable t[[i]] corresponding the ith string. The
output follows the definition of Morton [33].

2.5 Specific Mathematica-functions 13

2.4.2 The Lawrence-Krammer representation

The preimage algorithm given by Cheon and Jun [12] contained a few errors and
ambiquities, so the following algorithm was given in [31]:

ALGORITHM 2.1 (ρK
−1(M)).

Input: Krammer’s matrix ρK(W) ∈ GLm

(

Z[t±1, q±1]
)

Output: Preimage of ρK(W) in left canonical form.

dt ← order of variable t in matrix ρK(W)
ρK(W)← ρK(∆)−dt ρK(W)
`← degree of variable t in matrix ρK(W) −1
for k = 1, . . . , `

v← ρK(W) · (1)1×m

A← {(i, j) (v, xi,j) ∈ tR[t]}
Ak ← GB(A)
ρK(W)← ρK(Ak)−1 ρK(W)

return ∆dtA1 · · ·A`

The article [12] lacked the proof of the algorithm. However, lemmas 3.2, 4.3,
4.5 and theorem 6.2 of Krammer’s article [29] give the needed argument. The
notation used above follows Krammer’s article.

Krammer Krammer[W,n,t,q] returns the Lawrence-Krammer matrix for the given braid word
W with n strings. The head of argument t should be Symbol and q should fulfill condition
0 < q < 1 if q is numeric.

InvertKrammer Given a Lawrence-Krammer matrix M , InvertKrammer[M,t,q] returns
the preimage of M . Argument t must be a symbol and q should fulfill condition 0 < q < 1
if q is numeric.

Methods for handling half-permutations and the set A [29, 12] are in the private
context of the package.

2.5 Specific Mathematica-functions

2.5.1 Plotting braid diagrams

BraidDiagramPlot BraidDiagramPlot[W,n,c,opts] draws the braid diagram of braid
word W with n strings. Color c[[i]] is used for the string ip[[i]] where ip is the inverse permu-
tation of the induced permutation of W . In other words, the strings are colored in the order of
their end points. Expression opts is passed as options to Graphics-function after removing
options for BraidDiagramPlot. BraidDiagramPlot returns a Graphics-object.

BraidDiagramPlot3D BraidDiagramPlot3D[W,n,c,r,opts] draws a three-
dimensional braid diagram of braid word W with n tube-like strings with radius r. Coloring
and options are handled like with BraidDiagramPlot. BraidDiagramPlot3D
returns a Graphics3D-object.

There are optional arguments for both BraidDiagramPlot and Braid-
DiagramPlot3D that have not been documented here. To access those explana-
tions, use Options-command and ::usage-prefix.

14 2 THE PACKAGE ALGEBRAICBRAIDS

2.5.2 Using the ArtinBraid-head

In the package expressions with head ArtinBraid and three elements are
used to express an arbitrary braid object. The form of a valid braid object is
ArtinBraid[n,t,r], where n is the braid index (number of strings), r is a
representation of the braid (word, mixed canonical sequence etc.) and element t
tells what type of element r is.

The benefits of using ArtinBraid-objects are purely cosmetic. Functions
Format and TeXForm have been overridden for head ArtinBraid, so Math-
ematica outputs clear braid word expressions instead of just lists. Also, Math-
ematica operations ArtinBraid[...]*ArtinBraid[...] and Artin-
Braid[...]ˆi_Integer have been defined in the obvious way.

ArtinBraidQ ArtinBraidQ[obj] returns True iff the given object obj with property
Head[obj]==ArtinBraid is really a valid braid object.

PositiveArtinBraidQ This method returns True, iff the given braid is positive.

ConstructBraidFromWord ConstructBraidFromWord[W,n] constructs an Artin-
Braid-object from word W with braid index n.;

ConstructBraidFrom[L,M,R]CF ConstructBraidFromLCF[f,n] constructs an
ArtinBraid-object from left canonical form f with braid index n.

ToWord,ToLCF,ToMCF,ToRCF ToWord[B] converts an ArtinBraid-expression B into a
word. Functions ToLCF,ToMCF and ToRCF do the same for left, mixed and right canonical
forms.

ProductBraid ProductBraid[B1,B2,...] returns the product of expressions B1,

InverseBraid, ReverseBraid and NegationBraid ProductBraid[B] returns
the inverse braid of ArtinBraid-expression B. ReverseBraid[B] returns the word
reverse braid of expression B. NegationBraid[B] returns the negation of expression
B.

InducedPermutation and HalfTwist InducedPermutation[B] returns the in-
duced permutation and HalfTwist[B] returns element τ (B) of the input braid expression
B.

LeftmostFactor and RightmostFactor LeftmostFactor[B] returns the leftmost
factor and RightmostFactor[B] returns the rightmost factor of the ArtinBraid-
expression B.

StartingSet and FinishingSet StartingSet[B] returns the starting set and
FinishingSet[B] returns the finishing set of ArtinBraid-expression B.

LeftMeet, RightMeet, LeftJoin and RightJoin Commands
LeftMeet[B1,B2,...], RightMeet[B1,B2,...], LeftJoin[B1,B2,...]
and RightJoin[B1,B2,...] return the meets with respect to orders ≤L and ≤R and
joins with respect to orders ≤L and ≤R, respectively.

Infimum, Supremum and CanonicalLength Infimum[B], Supremum[B] and
CanonicalLength[B] return infimum, supremum and canonical length, respectively,
for the given braid B.

SuperSummitSet and UltraSummitSet SuperSummitSet[B] returns the super sum-
mit set and UltraSummitSet[B] returns the ultra summit set of the given braid B.

2.6 Some examples 15

2.6 Some examples

The inverse braid

An inverse braid can be calculated as follows:
W = 81, 2, 1, -3, -3, 1<;
lcf = WordToLCF@W, 5D;
InverseLCF @lcfD
B = ConstructBraidFromLCF @lcf, 5D;
B^H-1L
The output is8-2, 85, 4, 3, 1, 2<, 83, 2, 4, 5, 1<, 82, 1, 3, 4, 5<, 82, 3, 4, 1, 5<<
D5

-2 HΣ2 Σ1 Σ3 Σ2 Σ1 Σ4 Σ3 Σ2 Σ1L HΣ1 Σ2 Σ3 Σ4 Σ1L HΣ1L HΣ1 Σ2 Σ3L
The ultra summit set

Assume that we wish to calculate the left canonical form and the ultra summit set
of braid σ1σ3

−1σ3
−1σ2σ3σ4

−1 ∈ B
+
5 . Then we type the following:

W = 81, -3, -3, 2, 3, -4<;
lcf = WordToLCF@w, 5D
UltraSummitSetLCF @lcfD
After that we get the following output:8-2, 85, 3, 4, 2, 1<, 81, 5, 4, 2, 3<, 83, 4, 5, 1, 2<<88-1, 81, 5, 4, 2, 3<, 83, 4, 1, 5, 2<<, 8-1, 83, 4, 2, 1, 5<, 84, 1, 5, 2, 3<<,8-1, 83, 4, 2, 5, 1<, 83, 1, 4, 5, 2<<, 8-1, 83, 5, 1, 4, 2<, 85, 1, 2, 3, 4<<,8-1, 84, 1, 5, 3, 2<, 81, 4, 5, 2, 3<<, 8-1, 84, 2, 5, 1, 3<, 82, 3, 4, 5, 1<<,8-1, 84, 2, 5, 3, 1<, 81, 5, 2, 3, 4<<, 8-1, 84, 3, 1, 5, 2<, 83, 4, 1, 2, 5<<,8-1, 85, 1, 4, 2, 3<, 84, 1, 2, 5, 3<<, 8-1, 85, 3, 1, 4, 2<, 82, 3, 4, 1, 5<<<
Output contains first the left canonical form of the given braid word W as a se-
quence of an integer representing the infimum and three permutations representing
the remaining non-maximal permutation braid factors. Likewise the resulting set
from UltraSummitSetLCF-function contains braids as sequences of an integer
and two permutations.

Using the properties of Mathematica and typing

A = ConstructBraidFromLCF @lcf, 5D
ToMCF@AD
ToRCF@AD
UltraSummitSet @AD
we get the following output:

D5
-2 HΣ1 Σ2 Σ1 Σ3 Σ2 Σ4 Σ3 Σ2 Σ1L HΣ3 Σ2 Σ4 Σ3 Σ2L HΣ2 Σ1 Σ3 Σ2 Σ4 Σ3LHHΣ1 Σ2 Σ3 Σ4 Σ3L HΣ3LL-1 HΣ2 Σ1 Σ3 Σ2 Σ4 Σ3LHΣ1 Σ2 Σ3L HΣ1 Σ2 Σ3 Σ2 Σ1 Σ4 Σ3 Σ2L HΣ1 Σ2 Σ1 Σ3 Σ2 Σ4 Σ3 Σ2 Σ1L D5

-2

8D5
-1 HΣ3 Σ2 Σ4 Σ3 Σ2L HΣ2 Σ3 Σ1 Σ4 Σ2L, D5

-1 HΣ1 Σ2 Σ1 Σ3 Σ2L HΣ3 Σ2 Σ4 Σ3 Σ1L,
D5

-1 HΣ1 Σ2 Σ3 Σ1 Σ4 Σ2L HΣ2 Σ3 Σ4 Σ1L, D5
-1 HΣ2 Σ3 Σ1 Σ4 Σ3 Σ2L HΣ4 Σ3 Σ2 Σ1L,

D5
-1 HΣ2 Σ3 Σ2 Σ4 Σ3 Σ1L HΣ3 Σ2 Σ4 Σ3L, D5

-1 HΣ1 Σ3 Σ2 Σ4 Σ3 Σ1L HΣ1 Σ2 Σ3 Σ4L,
D5

-1 HΣ1 Σ2 Σ3 Σ2 Σ4 Σ3 Σ1L HΣ4 Σ3 Σ2L, D5
-1 HΣ2 Σ3 Σ1 Σ4 Σ2 Σ1L HΣ2 Σ1 Σ3 Σ2L,

D5
-1 HΣ3 Σ2 Σ4 Σ3 Σ2 Σ1L HΣ3 Σ4 Σ2 Σ1L, D5

-1 HΣ2 Σ3 Σ1 Σ4 Σ3 Σ2 Σ1L HΣ1 Σ2 Σ3L<
The difference between the first and the second input was that at first we op-

16 2 THE PACKAGE ALGEBRAICBRAIDS

erated with standard list expressions representing left canonical forms. At the
second input we first constructed an ArtinBraid-expression and then applied
algorithms to that expression.

The Burau representation

The following lines show how the Burau matrix and its preimage can be calculated.

n = 4;

W = 8-3, 2, 1, -3, 2, 2, 1, 1, 1, -2, -3, 2, 3<;
bm = Burau@W, n, tD;
MatrixForm @bmD
W2 = InvertBurauH @bm, t, 20D;
WordToLCF@W, nD
WordToLCF@W2, nDi
k
jjjjjjjjjjjjjjj

1 - t + t3 - t4 + t5 t - 2 t2 + t3 2 t2 - 3 t3 + 2 t4 - t5 t3 - t4

1 - 2 t + 2 t2 - 2 t3 + t4 1 -1 + 2 t - 2 t2 + 2 t3 - t4 0

-2 + 1����
t

+ 2 t - t2 -1 - 1������
t2

+ 2����
t

4 + 1������
t2

- 3����
t

- 3 t + t2 t

-5 - 1������
t2

+ 4����
t

+ 4 t - 2 t2 -1 + 1������
t3

- 3������
t2

+ 3����
t

8 - 1������
t3

+ 4������
t2

- 7����
t

- 5 t + 2 t2 -1 + t

y
{
zzzzzzzzzzzzzzz

8-3, 84, 3, 1, 2<, 83, 2, 4, 1<, 82, 4, 3, 1<,83, 1, 4, 2<, 82, 4, 3, 1<, 81, 3, 2, 4<, 83, 1, 2, 4<<8-3, 84, 3, 1, 2<, 83, 2, 4, 1<, 82, 4, 3, 1<,83, 1, 4, 2<, 82, 4, 3, 1<, 81, 3, 2, 4<, 83, 1, 2, 4<<
The Lawrence-Krammer representation

The next lines show the input and the output for calculating and inverting a
Krammer matrix. The preimage is returned directly in its left canonical form.

n = 4;

W = 81, -2, -3<;
WordToLCF@W, nD
km = Krammer@W, n, t, qD;
MatrixForm @kmD
InvertKrammer @km, t, qD8-1, 82, 1, 4, 3<, 84, 1, 2, 3<<
i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

-q t + q2 t -q t + q2 t t����
q

- q t + q2 t 0 0 0

1 - q 0 -1 - 1������
q2

+ 2����
q

0 1���������
q3 t

1���������
q4 t

- 1���������
q3 t

0 1 - q 2 - 1����
q

- q 0 0 1���������
q3 t

1 - q + q2 0 -2 - 1������
q2

+ 2����
q

+ q 0 1���������
q3 t

- 1���������
q2 t

1���������
q4 t

- 2���������
q3 t

+ 1���������
q2 t

0 1 - q + q2 2 - 1����
q

- 2 q + q2 0 0 1���������
q3 t

- 1���������
q2 t

0 0 0 1 1 - 1����
q

0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
8-1, 82, 1, 4, 3<, 84, 1, 2, 3<<
BraidDiagramPlot

By typing the following lines, we get figure 6:
W = 81, 2, 1, -3, -3, 1<;
g = BraidDiagramPlot @W, 4, 8Hue@0.2D, Hue@0.4D, Hue@0.6D, Hue@0.8D<D;
Show@g, PlotRange ® All, Prolog ® 8AbsoluteThickness @2D<D;

Figure 6: BraidDiagramPlot-picture for list {1,2,1,-3,-3,1}.

BraidDiagramPlot3D

By typing the following lines, we get a similar figure as with BraidDiagram-
Plot:
W = 81, 2, 1, -3, -3, 1<;
g = BraidDiagramPlot3D @W, 4,8Hue@0.2D, Hue@0.4D, Hue@0.6D, Hue@0.8D<, 0.1, Edges ® NullD;
Show@g, PlotRange ® All, ViewPoint ® 80.000, 0.000, 4.880<, Boxed ® FalseD;

Figure 7: BraidDiagramPlot3D-picture for list {1,2,1,-3,-3,1}.

A final word

About the package This package is far from being finished. There are many
topics (better inversion algorithm for Burau representation, braid classification,
root extraction, Gassner representation, Birman-Wenzl and Iwahori-Hecke alge-
bras, knot invariants, etc.) in braid theory that have not (yet) been implemented in
this package.

Acknowledgements I would like to thank professor J. Kari and assistant pro-
fessor A. Renvall for useful discussions and advices.

17

References

[1] I. Anshel, M. Anshel, B. Fisher, and D. Golfeld. New key agreement proto-
cols in braid group cryptography. In D. Naccache, editor, Topics in Cryptol-
ogy, volume 2020 of LNCS, pages 13–27. Springer-Verlag, 2001. 7, 12

[2] E. Artin. Theory of braids. Annals of Mathematics, 48(1):101–126, 1947. 1,
3

[3] S. Bachmuth. Braid groups are linear groups. Advances in Mathematics,
121:50–61, 1996. 3

[4] S. J. Bigelow. The Burau representation of the braid group Bn is not faithful
for n = 5,. Geometry and Topology, 3:397–404, 1999. 7

[5] S. J. Bigelow. Braid groups are linear. Journal of American Mathematical
Society, 14(2):471–486, 2001. 3, 8

[6] J. S. Birman. Braids, Links and Mapping Class Groups, volume 82 of An-
nals of Mathematics Studies. Princeton University Press, 1975. Errata:
http://www.math.columbia.edu/~jb/. 0, 6, 7, 12

[7] J. S. Birman, K. H. Ko, and S. J. Lee. A new approach to the word and
conjugacy problems in the braid groups. Advances in Mathematics, 139:322–
353, 1998. 3, 6

[8] J. S. Birman, K. H. Ko, and S. J. Lee. The infimum, supremum and geodesic
length of a braid conjugacy class. Advances in Mathematics, 164:41–56,
2001. http://www.arxiv.org/math.GT/0003125. 6

[9] F. Bohnenblust. The algebraical braid group. Annals of Mathematics,
48(1):126–136, 1947. 1

[10] J. C. Cha. CBraid: a C++ library for computation in braid groups.
http://knot.kaist.ac.kr/~jccha/cbraid/, 2003. 0

[11] J. C. Cha, K. H. Ko, S. J. Lee, J. W. Han, and J. H. Cheon. An efficient im-
plementation of braid groups. In C. Boyd, editor, ASIACRYPT 2001, volume
2248 of LNCS, pages 144–156. Springer-Verlag, 2001. 8, 11

[12] J. H. Cheon and B. Jun. A polynomial time algorithm for the braid Diffie-
Hellman conjugacy problem. In D. Boneh, editor, CRYPTO 2003, volume
2729 of LNCS, pages 212–225. Springer-Verlag, 2003. 8, 13

[13] W. Chow. On the algebraical braid group. Annals of Mathematics, 49(2):654–
658, 1948. 1

[14] P. Dehorney. Braid groups and left distributive operations. Transactions of
the American mathematical society, 345:115–151, 1994. 2, 3

[15] P. Dehorney. A fast method for comparing braids. Advances in Mathematics,
125:200–235, 1997. 3

18

http://www.math.columbia.edu/char 126elax jb/
http://www.arxiv.org/math.GT/0003125
http://knot.kaist.ac.kr/char 126elax jccha/cbraid/

[16] P. Dehorney. The group of fractions of a torsion free lcm monoid is torsion
free. Journal of Algebra, 281:303–305, 2004. (formerly a preprint with title
’Addendum to "Gaussian groups are torsion free"’). 2

[17] J. L. Dyer. The algebraic braid groups are torsion-free: an algebraic proof.
Mathematische Zeitschrift, 172:157–160, 1980. 2

[18] E. A. Elrifai and H. R. Morton. Algorithms for positive braids.
Quart. J. Math. Oxford, 45:479–497, 1994. 3, 4, 5, 6, 8, 9

[19] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and
W. P. Thurston. Word Processing in Groups. Jones and Bartlett publishers,
1992. 2, 3, 4, 5, 8, 9, 10, 11

[20] R. Fox and L. Neuwirth. The braid groups. Mathematica Scandinavica,
10:119–126, 1962. 1, 2

[21] N. Franco and J. González-Meneses. Conjugacy problem for braid
groups and garside groups. Journal of Algebra, 266:112–132, 2003.
http://www.arxiv.org/math.GT/0112310/. 6, 8, 12

[22] D. Garber, S. Kaplan, and M. Teicher. A new algorithm for solving the word
problem in braid groups. Advances in Mathematics, 167:142–159, 2002. 3

[23] F. A. Garside. The braid groups and other groups. Quart. J. Math. Oxford,
20:235–254, 1969. 3, 6

[24] V. Gebhardt. A new approach to the conjugacy problem in garside groups.
2003. http://www.arxiv.org/math.GT/0306199/. 6, 7, 8, 12

[25] T. Harju and J. Karhumäki. Morphisms. In G. Rozenberg and A. Salomaa,
editors, Word, Language, Grammar, volume 1 of Handbook of Formal Lan-
guages, chapter 7, pages 439–510. Springer-Verlag, 1997. 3

[26] S.-T. Hu. Homotopy Theory, volume 8 of Pure and applied mathematics.
Academic Press, 1959. 0

[27] J. Hughes. A linear algebraic attack on the AAFG1 braid group cryptosys-
tem. In ACISP 2002, volume 2384 of LNCS, pages 176–189. Springer-Verlag,
2002. 7, 12

[28] K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J.-S. Kang, and C. Park. New
public-key cryptosystem using braid groups. In Proceedings of Crypto 2000,
volume 1880 of LNCS, pages 166–183. Springer-Verlag, 2000. 8

[29] D. Krammer. Braid groups are linear. Annals of Mathematics, 155:131–156,
2002. 3, 8, 9, 10, 13

[30] S. J. Lee and E. Lee. Potential weaknesses of the commutator key agreement
protocol. In Eurocrypt 2002, volume 2332 of LNCS, pages 14–28. Springer-
Verlag, 2002. 7

19

http://www.arxiv.org/math.GT/0112310/
http://www.arxiv.org/math.GT/0306199/

[31] V. Lukkarila. Palmikkoryhmistä kryptografiassa / On braid groups in cryp-
tography. Master’s thesis, University of Turku, 2004. (in Finnish only). 0, 7,
13

[32] W. Magnus, A. Karrass, and D. Solitar. Combinatorial Group Theory, vol-
ume 13 of Pure and applied mathematics. John Wiley & Sons, Inc., 1966. 0,
1

[33] H. R. Morton. The multivariable Alexander polynomial for a
closed braid. In Funchal, editor, Low-dimensional topology, volume
233 of Contemp. Math., pages 167–172. Amer. Math. Soc., 1999.
http://www.arxiv.org/math.GT/9803138/. 7, 9, 12

[34] M. S. Paterson and A. A. Razborov. The set of minimal braids is co-NP-
complete. Journal of Algorithms, 12:393–408, 1991. 3

[35] B. Wiest. An algorithm for the word problem in braid groups. 2002.
http://www.arxiv.org/math.GT/0211169/. 3

20

http://www.arxiv.org/math.GT/9803138/
http://www.arxiv.org/math.GT/0211169/

Index

A, 13
Cy, 12
Fx(u), 12
Sn, 4
Bn, 1
B+

n , 4
∆n, 2, 4
F(W), 5
∨

L, 11
∨Sn

L , 11
∨Sn

R , 11
∨

R, 11
∧

L, 11
∧Sn

L , 11
∧Sn

R , 11
∧

R, 11
Ωn, 4
S(W), 5
σi, 2
ρB, 7
c(W), 7
τ(B), 11
∨L, 4
∨R, 4
ρK, 8
≤L, 4, 11
≤Sn

L , 4, 11
≤Sn

R , 4, 11
≤R, 4, 11
∧L, 4
∧R, 4
πy(s), 12
ρx, 12
ρrB, 7
n-braid, 1
px(s), 12
rx, 12
ui, 12
ArtinBraid, 8, 14

braid, 1
combed, 3
geometric, 1

equivalence of, 1

multiplication of, 1
inverse, 15
positive, 4

braid diagram, 2
plotting, 13

canonical length, 5
conjugacy problem, 5
conjugator, 6
convexity theorem, 6
cycling, 7

ending point, 1
exponent, 6

finishing set, 5
function

BraidAsWordQ, 9
BraidDiagramPlot3D, 13, 17
BraidDiagramPlot, 13, 17
BraidInLCFQ, 10
BraidInMCFQ, 10
BraidInRCFQ, 10
Burau, 12
CanonicalLengthLCF, 11
CanonicalLengthRCF, 11
CanonicalLength, 14
ColoreBurau, 12
FindSummitFormLCF, 12
FindSummitFormMCF, 12
FindSummitFormRCF, 12
FindSuperSummitFormLCF, 12
FindSuperSummitFormMCF, 12
FindSuperSummitFormRCF, 12
FindUltraSummitFormLCF, 12
FindUltraSummitFormMCF, 12
FindUltraSummitFormRCF, 12
FinishingSetPermutation,

10
FinishingSetRCF, 11
Format, 14
FreelyReducedWord, 9
HalfPermutationPairsQ, 10
HalfTwistLCF, 11
HalfTwistMCF, 11

21

HalfTwistPermutation, 10
HalfTwistRCF, 11
HalfTwistWord, 10
InducedPermutationLCF, 11
InducedPermutationMCF, 11
InducedPermutationRCF, 11
InducedPermutationWord, 10
InfimumLCF, 11
InfimumRCF, 11
Infimum, 14
InverseLCF, 11
InverseMCF, 11
InverseRCF, 11
InverseWord, 9
InvertBurauH, 12
InvertKrammer, 13
IsLeftFactorLCF, 11
IsLeftFactorMCF, 11
IsLeftFactorRCF, 11
IsRightFactorLCF, 11
IsRightFactorMCF, 11
IsRightFactorRCF, 11
Krammer, 13
LCFToMCF, 11
LCFToRCF, 11
LCFToWord, 11
LeftJoinLCF, 11
LeftJoinPermutation, 11
LeftMeetLCF, 11
LeftMeetMCF, 11
LeftMeetPermutation, 11
LeftMeetRCF, 11
LeftWeightedQ, 10
LeftmostFactorLCF, 11
LefttJoinMCF, 11
LefttJoinRCF, 11
MCFToLCF, 11
MCFToRCF, 11
MCFToWord, 11
MaximalPermutation, 10
NegationLCF, 11
NegationMCF, 11
NegationRCF, 11
NegationWord, 9
Omega, 10
PermutationBraidQ, 10
PermutationLength, 10

PermutationPairsQ, 10
PermutationToLCF, 10
PermutationToMCF, 10
PermutationToRCF, 10
PermutationToWord, 10
PositiveBraidAsWOrdQ, 9
PositiveBraidInLCFQ, 11
PositiveBraidInMCFQ, 11
PositiveBraidInRCFQ, 11
ProductLCF, 11
ProductMCF, 11
ProductPermutation, 10
ProductRCF, 11
ProductWord, 9
RCFToLCF, 11
RCFToMCF, 11
RCFToWord, 11
ReducedBurau, 12
ReverseLCF, 11
ReverseMCF, 11
ReverseRCF, 11
ReverseWord, 9
RightJoinLCF, 11
RightJoinMCF, 11
RightJoinPermutation, 11
RightJoinRCF, 11
RightMeetLCF, 11
RightMeetMCF, 11
RightMeetPermutation, 11
RightMeetRCF, 11
RightWeightedQ, 10
RightmostFactorRCF, 11
SolveConjugatorPermuta-

tion, 10
StartingSetLCF, 11
StartingSetPermutation, 10
SummitFormLCFQ, 12
SummitFormMCFQ, 12
SummitFormRCFQ, 12
SuperSummitFormLCFQ, 12
SuperSummitFormMCFQ, 12
SuperSummitFormRCFQ, 12
SuperSummitSetLCF, 12
SuperSummitSetMCF, 12
SuperSummitSetRCF, 12
SupremumLCF, 11
SupremumRCF, 11

22

Supremum, 14
TeXForm, 14
Transposition, 10
UltraSummitFormLCFQ, 12
UltraSummitFormMCFQ, 12
UltraSummitFormRCFQ, 12
UltraSummitSetLCF, 12
UltraSummitSetMCF, 12
UltraSummitSetRCF, 12
WordToLCF, 9
WordToMCF, 9
WordToPermutation, 9
WordToRCF, 9

greatest common divisor, see meet
group

fundamental, 1
homotopy, 1
mapping class, see homotopy
Poincaré, see fundamental

half-twist, 4, 10
Homomorphic Principle, 4

induced permutation, 4
infimum, 5
isotopy, 1

join, 11
left, 4
right, 4

lattice, 4
lattice-ordered set, see lattice
least common multiple, see join
left canonical form, 4
left factor, 4
left greedy form, see left canonical form
left-weighted product, 5
left-weightedness condition, 5

meet, 11
left, 4
right, 4

mixed canonical form, 5

permutation
as a mapping, 9
multiplication of, 9

permutation braid, 4
positive, 4

presentation
band, 3
BKL-, 3

problem
conjugacy, 5–7
word, 3–5

representation
Burau, 7, 7, 16

colored, 7
reduced, 7

faithful, 7
Lawrence, 8
Lawrence-Krammer, 7, 8, 16
Lawrence-Krammer-Bigelow, see

Lawrence-Krammer
right canonical form, 5
right factor, 4
right greedy form, see right canonical

form
right-weightedness condition, 5

set
summit, 6
super summit, 6
ultra summit, 6, 15

starting point, 1
starting set, 5
string, 1
summit infimum, 6
summit supremum, 6
supremum, 5

Thurston normal form, see mixed canoni-
cal form

transposition, 10

23

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology
• Department of Mathematical Sciences

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 952-12-1555-0
ISSN 1239-1891

	Preliminaries
	Definitions
	The intuitive definition
	Topological definitions
	The algebraic braid group
	Properties

	The word problem
	Permutations
	The left canonical form
	The mixed canonical form and the right canonical form

	The conjugacy problem
	The Summit set
	The super summit set
	The ultra summit set

	Linear representations
	The Burau representation
	The Lawrence-Krammer representation

	The package AlgebraicBraids
	About the package
	The word problem
	Basic word operations
	Permutation operations
	Braid operations
	Lattice operations

	The conjugacy problem
	The super summit set
	The ultra summit set

	Linear representations
	The Burau representation
	The Lawrence-Krammer representation

	Specific Mathematica-functions
	Plotting braid diagrams
	Using the ArtinBraid-head

	Some examples

	Bibliography
	Index

