Linas Laibinis | Elena Troubitsyna |
Sari Leppanen | Johan Lilius | Qaisar A. Malik

Formal Model-Driven
Development of
Communicating Systems

TurkU CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 691, June 2005

<7
7
¥ rucs

Formal Model-Driven Development of
Communicating Systems

Linas Laibinis

Abo Akademi University, Department of Computer Science
Elena Troubitsyna

Abo Akademi University, Department of Computer Science
Sari Leppanen

Nokia Research Center, Mobile Networks Laboratory

Johan Lilius
Abo Akademi University, Department of Computer Science

Qaisar A. Malik

Abo Akademi University, Department of Computer Science

TUCS Technical Report
No 691, June 2005

Abstract

Telecommunicating systems should have a high degree of availability, i.e., high
probability of correct and timely provision of requested services. To achieve this,
correctness of software for such systems should be ensured. An application of formal
methods helps us to gain confidence in building correct software. However, to be used
in practice, the formal methods should be well integrated into existing development
process. In this paper we propose a formal model-driven approach to development of
communicating systems. Essentially our approach formalizes Lyra — a top-down
service-oriented method for development of communicating systems. Lyra is based on
transformation and decomposition of models expressed in UML2. We formalize Lyra in
the B Method by proposing a set of formal specification and refinement patterns
reflecting the essential models and transformations of Lyra. The proposed approach is
illustrated by a case study — development of the 3GPP positioning system.

Keywords: Lyra, B Method, 3GPP, Formal Methods, Model-Driven, UML

TUCS Laboratories
Distributed Systems Design laboratory
Embedded Systems laboratory

1. Introduction

Modern telecommunicating systems are usually distributed software-intensive systems
providing a large variety of services to their users. Development of software for such
systems is inherently complex and error prone. However, software failures might lead to
unavailability or incorrect provision of system services which could incur significant
financial losses. Hence it is important to guarantee correctness of software for
telecommunicating systems.

Formal methods have been traditionally used for reasoning about software
correctness. However they are yet insufficiently well integrated into current
development practice. Unlike formal methods, Unified Modelling Language (UML) [9]
has a lower degree of rigor for reasoning about software correctness but is widely
accepted in industry. UML is a general purpose modelling language and, to be used
effectively, should be tailored to the specific application domain.

Nokia Research Centre has developed a design method Lyra [7] — a UML-based
service-oriented method specific to the domain of communicating systems and
communication protocols. The design flow of Lyra is based on concepts of
decomposition and preservation of the externally observable behaviour. The system
behaviour is modularised and organized into hierarchical layers according to the
external communication and related interfaces. It allows the designers to derive the
distributed network architecture from the functional system requirements via a number
of model transformations. This approach coincides with the stepwise refinement
paradigm adopted in the B Method [1].

In this paper we propose a set of formal specification and refinement patterns
reflecting the essential models and transformations of Lyra. Our approach is based on
stepwise refinement of a formal system model in the B Method [1,12] — a formal
framework with an automatic tool support. While developing a system by refinement,
we start from an abstract specification and gradually incorporate implementation details
into it until an executable code is obtained. While formalizing Lyra, we single out a
generic concept of a communicating service component and propose patterns for
specifying and refining it. In the refinement process the service component is
decomposed into a set of service components of smaller granularity specified according
to the proposed pattern. Moreover, we demonstrate that the process of distributing
service components between different network elements can also be captured by the
notion of refinement. The proposed formal specification and development patterns
establish a background for automatic generation of formal specifications from UML
models and expressing model transformations as refinement steps. Via automation of
the UML-based Lyra design flow we aim at smooth incorporation of formal methods
into existing development practice. The proposed approach is illustrated by a case study
— development of the 3GPP positioning system.

2. Lyra: Service-Based Development of
Communicating Systems

Overview of Lyra. Lyra [7] is a model-driven and component-based design method for
the development of communicating systems and communication protocols. It has been
developed in Nokia Research Center by integrating the best practices and design
patterns established in the area of communicating systems. The method covers all
industrial specification and design phases from prestandartization to final
implementation. It has been successfully applied in large-scale UMIL2-based industrial
software development.

Lyra has four main phases: Service Specification, Service Decomposition, Service
Distribution and Service Implementation. The Service Specification phase focuses on
defining services provided by the system and their users. The goal of this phase is to
define the externally observable behaviour of the system level services via deriving
logical user interfaces. In the Service Decomposition phase the abstract model produced
at the previous stage is decomposed in a stepwise and top-down fashion into a set of
service components and logical interfaces between them. The result of this phase is the
logical architecture of the service implementations. In Service Distribution phase, the
logical architecture of services is distributed over a given platform architecture. Finally,
in Service Implementation phase the structural elements are adjusted and integrated to
the target environment, low-level implementation details are added and platform-
specific code is generated. Next we discuss Lyra in more detail with an example.

Lyra by example. We model part of a Third Generation Partnership Project (3GPP)
positioning system [14,15]. The positioning system provides positioning services to
calculate the physical location of a given user equipment (UE) in a Universal Mobile
Telecommunication System (UMTS) network. We focus on Position Calculation
Application Part (PCAP) — a part of the positioning system allowing communication in
the Radio Access Network (RAN). PCAP manages the communication between the
Radio Network Controller (RNC) and the Stand-alone Assisted Global Positioning
System Serving Mobile Location Centre (SAS) network elements. The functional
requirements for the RNC-SAS communication have been specified in [14, 15].

The Service Specification phase starts from creating a domain model of the system.
It describes the system with the included system level services and different types of
external users. Each association connecting an external user and a system level service
corresponds to a logical interface. For the system and the system level services we
define active classes, while for each type of an external user we define the
corresponding external class. The relationships between the system level services and
their users become candidates for PSAPs — Provided Service Access Points of the
system level services. The logical interfaces are attached to the classes with ports. The
domain model for the Positioning system and its service PositionCalculation is shown
in Fig.1a and PSAP of the Positioning system — I User PSAP is shown in Fig.1b. The
UML?2 interfaces I ToPositioning and I FromPostioning define the signals and signal
parameters of / user PSAP.

A valid execution order of signals on PSAP can be specified by the corresponding
use case and sequence diagrams. For the Positioning system, the use case diagram

would merely depict splitting the PositionCalculation use case into two main use cases:
successful and unsuccessful. The sequence diagrams would draft the communication in
each use case. (We omit the presentation of diagrams for brevity). Finally, we formally
describe the communication between a system level service and its user(s) in the
PSAPCommunication state machine as illustrated in Fig.1c. The positioning request
pc_req received from the user is always replied: with the signal pc cnf in case of
success, and with the signal pc fail cnf otherwise.

aUser : User
laPositioning : Positioning |_ToRosttioning | FromPositioning I /_\
<<SenvioeSpecificatior>>
.. Ide sening
<secase>> |_user Pwmmng
PositionCalcuation

Fig.1a. Domain model Fig.1b. PSAP of Positioning Fig.1c. State diagram of
System PSAP Communication

To implement its own services, the system usually uses external entities. For
instance, to provide the PositionCalculation service, the positioning system should first
request Radio Network Database (DB) for an approximate position of User Equipment
(UE). The information obtained from DB is used to contact UE and request it to emit a
radio signal. At the same time, the Reference Local Measurement Unit (ReferenceLMU)
is requested to emit a radio signal. The strengths of radio signals obtained from UFE and
ReferenceLMU are used to calculate the exact position of UE. The calculation is done
by Algorithm service provider (4/gorithm) which finally provides the user with the final
estimation of the UE location. Let us observe that services provided by the external
entities partition execution of the PositionCalculation service into the corresponding
stages. In the next phase of Lyra development — Service Decomposition — we focus on
specifying service execution according to the identified stages.

In this phase we introduce external service providers into the domain model
constructed previously, as shown in Fig.2a. The model includes the external service
providers DB, UE, ReferenceLMU and Algorithm which are then defined as external
classes. For each association between a system level service and an external class we
define a logical interface. The logical interfaces are attached to the corresponding
classes via ports called USAPs — Used Sevice Access Points as presented in Fig.2b.

To specify the required stages of service implementation, we decompose the
behaviour of the main use cases accordingly. For instance, the successful calculation of
UE position can be decomposed as shown in Fig.2c. The sequence diagrams (omitted
here) are created to model the signalling scenarios for each stage of service
implementation. Observe that the behaviour is modularised according to the related
service access points — PSAPs and USAPs. Moreover, the functional architecture is

defined in terms of service components, which encapsulate functionalities related to a
single execution stage or other logical piece of functionality.

i 3
" " ——{ 1
Architecture Diagram |_FromPositioningg LUSer active <<ServiceDecomposition>> clas

aUser : User

I_ToPositioning¥

11
- — |_FromDBHandler| |_DBHandler LUser
aPositioning : Positioning L 4 |_LMUHandler|

|_FromLMUHandler

aDirector : ServiceDirector
<<usecase>>

PositionCalculation 1_UEHandler | L AlgorithmHandler

|_FromUEHandler

|_FromAlgorithmHandler

|_ToDBHandler|
- |_ToLMUHandler

e
\ |_positioning |_positioning|
‘_meu aDB : DBHandler aLMU : LMUHandler |_FromLMU
1_ToDB ToLMU|
s o8 LMy ‘\LL‘[
DB [y
|_ToAlgorithmHandler
b8 : DB anAlgorithm : Algorithm |_ToUEHandier _ToAly
Lposttioning [positioning

anUE : UEHandler anAlgo : AlgoHandler|_FromAigorithm
anUE: UE aRefLMU : ReferenceLMU L_FromUE, |_ToAlgorithm

I_ToUE I_UE I_Algorithm
Eﬁ T 1 Algorithm

Fig. 2d. PositionCalculation functional architecture

Fig. 2a. Domain model

| ToPosttioning |_FromPositioning

|_FromDBy

ervicel
It Positioning |_FromLMU
|_ToDB b8 MU T< I_ToLMU
|_FromUE L gorit
LUE 1 Algorithm | ToAlgorithm po_req
1 ToUE =

pe_fail_cnf

ep_serving

LMU_Measurement lmu_ok]
DB_Enquiry

UE_Enquiry
Algorithm_Invocation Le_ok]

lalgo_ok]

Fig. 2b. PSAP and USAPs of Positioning

<<usecase>>
SuccessfulPositionCalculation
<<includesz

<<include
<<usecase>>
Successful_LMU_Measurement <<include;
<<usecase>>
Successful_DB_Enquiry
<<usecase>>
Successful_UE_Enquiry
<<usecase>>
Successful_Algorithm_Invocation

Fig. 2¢.Use case decomposition

@P-Pe_ok

Fig. 2e. ServiceDirector: PSAP
winoielr communication and execution control

In Fig.2d we present the architecture diagram of the Positioning system.
ServiceDirector plays two roles: it manages the execution control in the system and
handles the communication on the PSAP. The behaviour of ServiceDirector is presented
in Fig.2e. The top-most state machine specifies the communication on PSAP, while the
submachine state Serving specifies a valid execution flow of the position calculation.
The substates of Serving encapsulate the stage-specific behaviour and can be represented
as the corresponding submachines. These machines (omitted here) in their turn include
specifications of the PSAP-USAP communication.

The modular system model produced at the Service Decomposition phase allows us
to analyse various distribution models. In the next phase — Service Distribution — the
service components are distributed over a given network architecture. Signalling
protocols allow for communication between the service components in distant network
elements.

Architecture Diagram

active <<ServiceDistribution>> class Positioning

1_DB |_User

I_SASToRNC

mc : Positioning_RNC
I_UE

I_LMU

sas : Positioning_SAS MU
|_RNCTo0SAS |lupc

P
|_Algorithm |_Algorithm

Fig. 3a. Architecture of service distribution

In Fig.3a we illustrate the physical structure of the distributed positioning system.
Positioning RND and Positioning SAS represent network elements in a UMTS network.
Protocol Data Unit (PDU) interface Jupc is used in communicating between the network
elements. We map the functional architecture to the physical structure by including the
service components into the network elements. The functional architecture of the SAS
network element is illustrated in Fig.3b. The functionality of ServiceDirector specified at
the Service Decomposition phase is now decomposed and distributed over the given
network. ServiceDirector SAS handles the PDU interface towards RNC network element
and controls the execution flow of the positioning calculation process in the SAS
network element.

Finally, at the Service Implementation phase we specify how the virtual PDU
communication between entities in different network nodes is realized using the
underlying transport services. We also implement data encoding and decoding, routing
of messages and dynamic process management. The detailed discussion of this stage can
be found elsewhere [7, 14, 15].

In the next section we give a brief introduction into our formal framework — the B
Method, which we will use to formalize the development flow described above.

Architecture Diagram active <<ServiceDistribution>> class
I::II_SASToRNC Positioning_SAS

lupc

I_RNCToSAS Jlupc . . .
- aDirector : ServiceDirector_SAS

I_Algorithm I_LMU
I [}
I_FromAlgorithmHandleg I_FromLMUHandIerI
I_ToLMUHandIer'_
I_positioning
aLMU : LMUHandler |_FromLMU
I_LMU |_ToLMU
1

L_LMU

|_ToAlgorithmHandler \4
A

I_positioning

anAlgo : AlgoHandler

i |_ToAlgorithm
L_Algorithm || FromAlgorithm - oreer [|:|

I_Algorithm

Fig. 3b. Architecture of Positioning SAS

3. Modelling in the B Method

The B Method: background. The B Method [1] (further referred to as B) is an
approach for the industrial development of highly dependable software. The method has
been successfully used in the development of several complex real-life applications
[4,8]. The tool support available for B provides us with the assistance for the entire
development process. For instance, Atelier B [12], one of the tools supporting the B
Method, has facilities for automatic verification and code generation as well as
documentation, project management and prototyping. The high degree of automation in
verifying correctness improves scalability of B, speeds up development and, also,
requires less mathematical training from the users.

The development methodology adopted by B is based on stepwise refinement [1].
While developing a system by refinement, we start from an abstract formal specification
and transform it into an implementable program by a number of correctness preserving
steps, called refinements. A formal specification is a mathematical model of the required
behaviour of a (part of) system. In B a specification is represented by a set of modules,
called Abstract Machines. An abstract machine encapsulates state and operations of the
specification and as a concept is similar to a module or a package.

Each machine is uniquely identified by its name. The state variables of the machine
are declared in the VARIABLES clause and initialised in the INITIALISATION clause.

The variables in B are strongly typed by constraining predicates of the INVARIANT
clause. All types in B are represented by non-empty sets.

The operations of the machine are defined in the OPERATIONS clause. In this paper
we use Event B extension of the B Method. The operations in Event B are described as
guarded statements of the form SELECT cond THEN body END. Here cond is a state
predicate, and body is a B statement. If cond is satisfied, the behaviour of the guarded
operations corresponds to the execution of their bodies. However, if cond is false, then
the execution of the corresponding operation is suspended, i.e., the operation is in
waiting mode until cond becomes true.

B statements that we are using to describe a state change in operations have the
following syntax:

S == x:=e | IF cond THEN S1 ELSE S2 END|S1;S2 | x:T |
S1]| S2 | ANY z WHERE cond THEN S END |

The first three constructs — assignment, conditional statement and sequential
composition (used only in refinements) have the standard meaning. The remaining
constructs allow us to model nondeterministic or parallel behaviour in a specification.
Usually they are not implementable so they have to be refined (replaced) with
executable constructs at some point of program development. The detailed description
of the B statements can be found elsewhere [1].

The B method provides us with mechanisms for structuring the system architecture
by modularisation. A module is described as a machine. The modules can be composed
by means of several mechanisms providing different forms of encapsulation. For
instance, if the machine C INCLUDES the machine D then all variables and operations
of D are visible in C. However, to guarantee internal consistency (and hence
independent verification and reuse) of D, the machine C can change the variables of D
only via the operations of D. In addition, the invariant properties of D are included into
the invariant of C.

To illustrate basic principles of specifying and refining in B, next we present our
approach to formal specification of a service component.

Modelling Service Component in B. Let us remind that we have described a service
component as a coherent piece of functionality which provides its services to a service
consumer via PSAP. We used this term to refer to external service providers introduced
at the Service Decomposition phase. However, the notion of a service component can be
generalized to represent service providers at the different levels of abstraction. Indeed,
even the entire Positioning system can be seen as the service component providing the
Position Calculation service. On the other hand, peer proxies introduced at the lowest
level of abstraction can also be seen as the service components providing the physical
data transfer services. Therefore, the notion of a service component is central to the
entire Lyra development process.

A service component has two essential parts: functional and communicational. The
functional part is a “mission” of a service component, i.e., the service(s) which it is
capable of executing. The communicational part is an interface via which the service

component receives requests to execute the service and sends the results of service
execution.

MACHINE ACC
VARIABLES inp_chan, input, out_chan, output
INVARIANT

inp_chan : INPUT_DATA & input : INPUT_DATA &
out_chan : OUT_DATA & output : OUT_DATA

INITIALISATION
inp_chan, input := INPUT_NIL, INPUT_NIL ||
out_chan, output := OUT_NIL, OUT_NIL

OPERATIONS
ACM UCAM
env_req =
SELECT inp_chan = INPUT_NIL calculate =
THEN SELECT not(input = INPUT_NIL) &
inp_chan :: INPUT_DATA - {INPUT_NIL} (output = OUT_NIL)
END; THEN
cHocE
SELECT ’}?:SE{’;%?UT'_':EBT—N'L) & OUT_DATA - {OUT_NIL,OUT_FAIL}
THEN OR
input,inp_chan := inp_chan,INPUT_NIL E‘;‘“[t)plllit = OUT_FAIL
END; input := INPUT_NIL
write = END;
SELECT not(output = OUT_NIL) &
(out_chan = OUT_NIL)
THEN END
out_chan,output := output, OUT_NIL
END;
env_read =
SELECT not(out_chan = OUT_NIL)
THEN
out_chan := OUT_NIL
END

Usually execution of a service involves certain computations. We call the B
representation of this part of service component an Abstract CAlculating Machine
(ACAM). The communicational part is correspondingly called Abstract Communicating
Machine (ACM), while the entire B model of a service component is called Abstract
Communicating Component (ACC). The abstract machine ACC below presents the
proposed pattern for specifying a service component in B.

In our specification we abstract away from the details of computations required to
execute the service. Our specification of ACAM is merely a statement non-
deterministically generating results of service execution in case of success or failure.
The communication with a service component is conducted via two channels —
inp_chan and out_chan — shared between the service component and the service
consumer. While specifying a service component, we adopt a systems approach, i.e.,
model the service component together with the relevant part of its environment, the
service consumer. Namely, we model how the service consumer places requests to

execute a service in the operation env_req and reads the results of service execution in
the operation env_resp.

The operations read and write are internal to the service component. The service
component reads the requests to execute a service from inp_chan as defined in the
operation read. As a result of read execution, the request is stored into the internal data
buffer input, so it can be used by ACAM while performing the required computing.
Symmetrically the operation write models placing the results of computations performed
by ACAM into the output channel, so it can be read by the service consumer. We reserve
the abstract constant NIL to model the absence of data, i.e., the empty channels. The
operations discussed above model the ACM part of ACC.

We argue that the machine ACC can be seen as a specification pattern which can be
instantiated by supplying the details specific to a service component under construction.
For instance, the ACM part of ACC models data transfer to and from the service
component very abstractly. While developing a realistic service component, this part
can be instantiated with real data structures and corresponding protocols for transferring
them.

In the next section we demonstrate how Lyra development flow can be formalized
as refinement and decomposition of ACC.

4. Formal Service-Oriented Development

As described in Section 2, usually a service component is represented as an active class
with the PSAP attached to it via the port. The state diagram depicts signalling scenario
on PSAP including the signals from and to the external class modelling the service
consumer. Essentially these diagrams suffice to specify the service component
according to the pattern ACC proposed in Section 3. The general principle of translation
is shown in Fig.4.

MACHINE
|_ToSC I_FromsC ACC_SC
T
aSC:SC scipsﬁlﬁl— OPERAT'ONS
ACM

—» env_req
‘——//— read
env_reg > write
I env_reso

calculate

END

env_res

Fig.4. Translating UML2 model into the ACC pattern

The UML2 description of PSAP of the service component SC is translated into the
ACM part of the machine ACC_SC specifying SC according to the ACC pattern. The
ACAM part of ACC_SC instantiates the non-deterministic assignment of ACC by the

data types specific to the modelled service component. These translations formalize the
Service Specification phase of Lyra.

In the next phase of Lyra development — Service Decomposition — we decompose
the service provided by the service component into a number of stages (subservices).
The service component can execute certain subservices itself as well as request the
external service components to do it. At the Service Decomposition phase two major
transformations are performed:

- the service execution is decomposed into a number of stages (or subservices), and

- communication with the external entities executing these subservices is introduced

via USAPs.
Each transformation corresponds to a separate refinement step in our approach.

According to Lyra, the flow of the service execution is orchestrated by Service
Director (often called a Mediator). It implements the behaviour of PSAP of the service
component as specified earlier, as well as co-ordinates execution by enquiring the
required subservices from the external entities according to the defined execution flow.

Assume that the service component SC specified by the machine ACC_SC at the
Service Specification phase is providing the service S which is decomposed into the
subservices SI, S2, and S3. Moreover, let assume that the state machine of Service
Director defines the desired order of execution: first S/, then S2 and finally S3. The
UML2 representation of this is given in Fig.5, in which we also demonstrate that in B
such decomposition can be represented as a refinement of our abstract pattern ACC
instantiated to model SC.

This step focuses on refinement of the ACAM part of ACC. As in ACAM, in the
refinement of it - ACAM - the operation calculate puts the results of service execution
on the output channel. However, calculate is now preceded by the operation director,
which models Service Director orchestrating the stages of execution. We introduce the
variables S1_data, S2_data and S3_data to model the results of execution of the
corresponding stages. The operation director specifies the desired execution flow by
assigning corresponding values to the variable curr_service. In general, execution of
any stage of service can fail. In its turn, this might lead to failure of the entire service
provision. In the Appendix you can find the detailed B development of the positioning
system described in Section 2. While specifying Service Director, we abstractly model
error recovery — upon detecting an error, Service Director can retry (up to the
predefined number of attempts) to execute a certain stage of the service. However, if
error recovery fails, the service director terminates the service execution and returns the
error as the final result. The error detection is abstractly modelled by using special
evaluation functions which classify the results of the corresponding service stages into
three categories: success, a recoverable error, an unrecoverable error.

Unlike in Lyra, in our B development the Service Decomposition and Service
Distribution phases are not entirely disjoint. This is explained by the fact that the
INCLUDES structuring mechanism enforces the master-slave relationship between
components, i.e., the including machine has complete control over the included
machine. As a result, modelling of communication between two peer components is
cumbersome. However, this problem can be alleviated if the targeted service
distribution is taken into account while introducing the communication with the external
service components via USAPs.

10

<<use case>>
83

<<use case>>
81

REFINEMENT ACC_R1_SC
REFINES ACC_SC
VARIABLES

curr_service, handling_flag
INVARIANT

curr_service : {SD, S1, S2,83, CALC} &
handling_flag : BOOL & ...

INITIALISATION
curr_service, handling_flag := SD,FALSE || ...

OPERATIONS

ACM...

<<use case>>
s2

ACAM’

—»S1 = SELECT curr_service = S1

THEN handling_flag := TRUE

END;
—»S2 =
—»S3 =
env_req
director =
SELECT handling_flag = TRUE
- THEN
m IF curr_service = SD
> THEN o
curr_service := S1
env_resp ELSIF curr_service = S1
- THEN
) S1_data :: S1_DATA-{S1_NIL}
ep_serving curr_service = S2

[S1_ok]

[S2_ok]

ELSIF curr_service =S2 ...

ELSIF curr_service =S3 ...

END ||

handling_flag := FALSE
END;

calculate =
SELECT (curr_service=CALC) & ...
THEN
output,input := OUT_data,INPUT_NIL ||
curr_service := SD
END;
END

Fig.5. Service decomposition and refinement

11

To derive the pattern for translating UML2 diagrams modelling functional and
platform distributed service architecture at these two phases we should consider two
general cases:

1) the service director of SC is “centralized”, i.e., it resides on a single network
element,

2) the service director of SC is “distributed”, i.e., different parts of execution
flow are orchestrated by distinct service directors residing on different
network elements. The service directors communicate with each other while
passing the control over the corresponding parts of the flow.

In both cases the model of the service component SC with USAPs looks as shown in
Fig.6. The service distribution architecture diagram for the first case is given in Fig.7.

I_ToS _From$S
I_From$S1
|_ToS3

&[’] 1S1 - s O

I_ToS1

I_FromS2 |_FromS3
I_Ss2
|_ToS2
Fig.6. Service component with USAPs Fig.7. Architecture diagram (case 1)

It is easy to observe that the service component SC plays a role of the service
consumer for the service components SC/, SC2 and SC3. We specify the service
components SC1, SC2 and SC3 as separate machines ACC_SC1, ACC_SC2, ACC_SC3
according to the proposed pattern ACC as depicted in Fig.8. The process of translating
their UML2 models into B is similar to specifying SC at the Service Specification phase.
The ACM parts of the included machines specify their PSAPs. To ensure the match
between the corresponding USAPs of SC and PSAPs of the external service
components, we derive USAPs of SC from PSAPs of SC1, SC2 and SC3.

Besides defining separate machines to model external service components, in this
refinement step we also define the mechanisms for communicating with them. We
refine the operation director to specify communication on USAPs. Namely, we replace
non-deterministic assignments modelling stages of service execution by the
corresponding signalling scenario: at the proper point of the execution flow director
requests a desired service by writing into the input channel of the corresponding
included machine, e.g., SC1_write_ichan, and later reads the produced results from the
output channel of this machine, e.g., SC1_read_ochan. Graphically this arrangement is
depicted in Fig.9.

Modelling the case of the distributed service director is more complex. Let assume
that the execution flow of the service component SC is orchestrated by two service
directors: the ServiceDirectori, which handles the communication on PSAP of SC and
communicates with SC1, and ServiceDirector2, which orchestrates the execution of S2
and S3. The architecture diagram depicting the overall arrangement is shown in Fig.10.

12

REFINEMENT ACC_R2_SC
REFINES ACC_R1_SC
INCLUDES

ACC_SC1, ACC_SC2, ACC_SC3

ACM of acc_sc

ACAM”
director =
SELECT handling_flag = TRUE
THEN
IF curr_service = SD
THEN
curr_service = S1
ELSIF curr_service = S1
THEN
SC1_write_ichan(input);
S1_data <- SC1_read_ochan

|

MACHINE ACC_SCH1

ACM of ACC_SC1

¥ SCiread. .
¥ SChwrite...

SC1_write_ichan(SC1inp) ...

SC1out<- SC1_read_ochan...

ACAM of ACC_SC1
calculate ...

MACHINE ACC_SC2

ACM of ACC_SC2

SC2read...

ELSIF curr_service =S2 ...

ELSIF curr_service = S3 \

END ||
handling_flag := FALSE
END;

calculate =...

END

Fig.8. Refinement at Service Decomposition and Service Distribution phases

SC2write...

Ly SC2_write_ichan(SC2inp) ...

» SC2out<- SC2_read_ochan...

ACAM of ACC_SC2
calculate ...

& MACHINE ACC_SC3

SC1 acam_sci1| |SC%acam_sc2| |SC®acam_scs
ACM_SC1 ACM_SC2 ACM_SC3
SC AcAM_sc
ACC_SC

il

External service consumer

Fig.9. Architecture of formal specification

I_User
ServiceDirector1
["] _sDir1-sDir2

|_SDir1-SDir2

Fig.10. Architecture diagram (case 2)

13

The service execution proceeds according to the following scenario: via PSAP of SC
ServiceDirectorl receives the request to provide the service S. Upon this, via USAP of
SC, it requests the component SC/ to provide the service S2. After the result of S2 is
obtained, ServiceDirectorl requests Service Director2 to execute the rest of the service
and return the result back. In its turn, ServiceDirector? at first requests SC2 to provide
the service S2 and then SC3 to provide service S3. Upon receiving the result from S3, it
forwards it to ServiceDirectorl. Finally, Service Directorl returns to the service
consumer the result of the entire service S via PSAP of SC.

This complex behaviour can be captured in a number of refinement steps. At first,
we observe that ServiceDirector2 co-ordinating execution of S2 and S3 can be modelled
as a “large” service component SC2-SC3 which provides the services S2 and S3. Let us
note that the execution flow in SC2-SC3 is orchestrated by a “centralized” service
director ServiceDirector2. We use this observation in our next refinement step. Namely
we refine the B machine modelling SC by including into it the machines modelling the
service components SC/ and SC2-SC3 and introducing the required communicating
mechanisms. In our consequent refinement step we focus on decomposition of SC2-
SC3. The decomposition is performed according to the proposed scheme: we introduce
the specification of ServiceDirector2 and decompose ACAM of SC2-SC3. Finally, we
single out separate service components SC2 and SC3 as before and refine
ServiceDirector2 to model communication with them. The final architecture of formal
specification is shown in Fig.11. We omit the presentation of the detailed formal
specifications — they are again obtained by the recursive application of the proposed
specification and refinement patterns. The full B specifications (specialized for the
positioning system) can be found in the Appendix.

SC2 SC3
ACAM_SC2 ACAM_SC3
ACM_SC2 ACM_SC3

SC1 -
ACAM_SC1| [S€2-SC3cam sco-sca

ACM_SC1 ACM_SC2-SC3

SC AcAM_sC

ACC_SC

I

External service consumer

Fig.11. Architecture of formal specification (case 2)

At the consequent refinement steps we focus on particular service components and
refine them (in the way described above) until the desired level of granularity is
obtained. Once all external service components are in place, we can further decompose
their specifications by separating their ACM and ACAM parts. Such decomposition will
allow us to concentrate on the communicational parts of the respective components and

14

further refine them by introducing details of required concrete communication
protocols.

Discussion. While describing formalisation of Lyra in B, we considered the sequential
model of service execution. However, a parallel execution of services is also a valid
interpretation of the considered UML2 models. In event-based B development, which
we used, parallelism is modelled via the interleaving semantics. Observe that if some
operations are enabled simultaneously, they can be executed in any order or in parallel
provided they do not have a conflict on the variables.

Though not presented in this paper, we have succeeded in modelling parallel
execution starting from the Service Decomposition phase. At the Service Distribution
phase, in case of a “centralised” service director the parallelism is preserved. However,
in case of a “distributed” service director preserving parallelism might require
additional communication between the service directors or a part of parallelism might
be lost.

5. Conclusions

In this paper we proposed a formal approach to development of communicating
distributed systems. Our approach formalizes Lyra [7] — the UML2-based design
methodology adopted in Nokia. The formalization is done within the B Method [1,12] —
the formal framework supporting system development by stepwise refinement. We
derived the B specification and refinement patterns reflecting models and model
transformations used in the development flow of Lyra. The proposed approach
establishes a basis for automatic translation of UML2-based development of
communicating systems into the specification and refinement process in B. Hence
UML2 modelling can be seen as a syntactic sugaring of the formal development.
However, such syntactic sugaring enables a smooth integration of formal methods into
existing development practice. Since UML is widely accepted in industry we believe
that our approach has a potential for wide industrial uptake.

Lyra adopts the service-oriented style for development of communicating systems.
We presented the guidelines for deriving B specifications from corresponding UML2
models at each development stage of Lyra and validated the development by the
corresponding B refinements. The major model transformations aim at service
decomposition and distribution over the given platform. The proposed formal model of
communication between the distributed service components is generic and can be
instantiated by virtually any concrete communication protocol.

The initial formalization of Lyra has been undertaken using model checking
techniques [7]. However, because telecommunicating systems tend to be large and data
intensive this formalization was prone to the state explosion problem. Our approach
helps to overcome this limitation.

Development of distributed communicating systems has been a topic of ongoing
research over several decades. Our review of related work is confined by the
consideration of the recent research conducted within the B Method.

15

Treharne et all. [13] investigated verification of safety and liveness properties of
communicating components by combining the B Method and the process algebra CSP.
However, they do not consider service decomposition and distribution aspects of
communicating system development.

Bostrom and Walden [2] proposed a formal methodology (based on the B Method)
for developing distributed grid systems. In their approach the B language is extended
with grid-specific features. In their work, the system development is governed by B
refinement. In our approach the system development is guided by the existing
development practice, so that the refinement process is hidden behind the facade of
UML.

There is an active research going on translating UML to B [3,5,6,10,11]. Among
these, the most notable is research conducted by Snook and Butler [10] on designing the
method and the U2B tool to support the automatic translation. In our future work we are
planning to integrate our efforts with Snook and Butler to achieve the automatic
translation of Lyra into B. While doing this, we will focus specifically on translating
models and model transformations used in Lyra to automate formalisation of the entire
UML-based development process in the domain of the communicating distributed
systems. Furthermore, we are planning to further enhance the proposed approach to
address issues of fault tolerance, concurrency and integration of process algebraic
approaches to verify the dynamic properties of communication protocols between
network elements.

Acknowlegements

This work is supported by EU funded research project IST 511599 RODIN (Rigorous
Open Development Environment for Complex Systems).

References

[1] J.-R. Abrial. The B-Book. Cambridge University Press, 1996.

[2] P.Bostrom and M.Waldén. An Extension of Event B for Developing Grid
Systems, in Helen Treharne, Steve King, Martin Henson (Eds.), Proceedings of
Formal Specification and Development in 7Z and B: 4th International
Conference, Guildford, UK, April 13-15, 2005.

[3] P.Facon, R.Laleau, H.P.Nguyean, and A.Mammar. Combining UML with the B
formal method for the specification of database applications. Research report,
CEDRIC laboratory, Paris, 1999.

[4] L.Laibinis and E.Troubitsyna. Fault Tolerance in a Layered Architecture: A
General Specification Pattern in B. Proceedings of 2" International Conference
on Software Engineering and Formal Methods (SEFM 2004), Beijing, China,
September 2004. IEEE Press, pp.346-355.

[5] K.Lano, D.Clark, and K.Adroutsopoulos. UML to B: Formal Verification of
Object-Oriented Models. In E.A.Boiten, J.Derrick, G.Smith (Eds.): Integrated
Formal Methods, 4th International Conference, IFM 2004. Springer, LNCS
2999, pp. 187-206.

16

[6]

[8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

H.LeDang and J.Souquieres. Integrating UML and B specification techniques. In
proceedings of Informatik2001 Workshop on Integrating Diagrammatic and
Formal Specification Techniques, 2001.

S.Leppédnen, M.Turunen, and I.Oliver. Application Driven Methodology for
Development of Communicating Systems. FDL’04, Forum on Specification and
Design Languages. Lille, France, September 2004.

MATISSE Handbook for Correct Systems Construction. 2003.
http://www.esil.univ-mrs.fr/~spc/matisse/Handbook/

J.Rumbaugh, I.Jacobson, and G.Booch. The Unified Modelling Language
Reference Manual. Addison-Wesley, 1998.

C.Snook and M.Butler. U2B - A tool for translating UML-B models into B, in
Mermet, J., Eds. UML-B Specification for Proven Embedded Systems Design,
chapter 6. Springer, 2004.

C.Snook and M.Waldén. Use of U2B for Specifying B Action Systems (Extended
abstract). In Proceedings of RCS'02 - International workshop on Refinement of
Critical Systems: Methods, Tools and Experience, Grenoble, France, January
2002.

Steria, Aix-en-Provence, France. Atelier B, User and Reference Manuals, 2001.
Available at http://www.atelierb.societe.com/index uk.html

H.Treharne, S.Schneider, and M.Bramble. Composing Specifications Using
Communication, in D. Bert, J.P. Bowen, S. King, M. Waldén (Eds.),
Proceedings of Formal Specification and Development in Z and B: 3rd
International Conference, Turku, Finland, June 4-6, 2003.

3GPP. Technical specification 25.305: Stage 2 functional specification of UE
positioning in UTRAN. See http://www.3 gpp.org/ftp/Specs/html-
info/25305.htm

3GPP. Technical specification 25.453: UTRAN Iupc interface positioning
calculation application part (pcap) signalling. See
http://www.3 gpp.org/ftp/Specs/html-info/25453.htm

17

Appendix

MACHINE
Main

SEES
Comp_data

VARIABLES
inp_chan, input, out_chan, output

INVARIANT
inp_chan : INPUT_DATA &
input : INPUT_DATA &
out_chan : POS_DATA &
output : POS_DATA

INITIALISATION
inp_chan, input := INPUT_NIL, INPUT_NIL ||
out_chan, output := POS_NIL, POS_NIL

OPERATIONS

env_write =
SELECT inp_chan = INPUT_NIL
THEN
inp_chan :: INPUT_DATA - {INPUT_NIL}
END;

read =
SELECT not(inp_chan = INPUT_NIL) & (input = INPUT_NIL)
THEN
input,inp_chan := inp_chan,INPUT_NIL
END;

db =
SELECT not(input = INPUT_NIL)
THEN
skip
END;

ue =

SELECT not(input = INPUT_NIL)
THEN
skip
END;

Imu =
SELECT not(input = INPUT_NIL)
THEN
skip
END;

pos =

18

SELECT not(input = INPUT_NIL)
THEN

skip
END;

handle =
SELECT not(input = INPUT _NIL)
THEN
skip
END;

calculate =
SELECT not(input = INPUT_NIL) & (output = POS_NIL)
THEN
output :: POS_DATA - {POS_NIL} ||
input := INPUT_NIL
END;

write =
SELECT not(output = POS_NIL) & (out_chan = POS_NIL)
THEN
out_chan,output := output,POS_NIL
END;

env_read =
SELECT not(out_chan = POS_NIL)
THEN
out_chan := POS_NIL
END

END

19

MACHINE Comp_data

SETS
POS_DATA,; INPUT_DATA; DB_DATA; UE_DATA; LMU_DATA,
STATUS = {OK,RECOV,UNRECOQOV}

CONSTANTS
POS_NIL, POS_FAIL, INPUT_NIL, DB_FAIL, UE_FAIL, LMU_FAIL,
DB_NIL, UE_NIL, LMU_NIL, LMU_OK,

DB_Eval, UE_Eval, LMU_Eval, POS_Eval,

N_DB, N_UE, N_LMU, N_POS

PROPERTIES
POS_NIL : POS_DATA & POS_FAIL : POS_DATA & not(POS_NIL = POS_FAIL) &
INPUT_NIL : INPUT_DATA &
DB_FAIL : DB_DATA & DB_NIL : DB_DATA & not(DB_FAIL = DB_NIL) &
UE_FAIL : UE_DATA & UE_NIL : UE_DATA & not(UE_FAIL = UE_NIL) &
LMU_FAIL : LMU_DATA & LMU_NIL: LMU_DATA & not(LMU_FAIL = LMU_NIL) &
LMU_OK : LMU_DATA & not(LMU_OK = LMU_NIL) & not(LMU_OK = LMU_FAIL) &
DB_Eval: DB_DATA —> STATUS &
UE_Eval: UE_DATA —> STATUS &
LMU_Eval: LMU_DATA > STATUS &
POS_Eval: POS_DATA > STATUS &
N_DB: NAT &
N_UE: NAT &
N_LMU: NAT &
N_POS: NAT &
DB_Eval(DB_FAIL) = UNRECOV &
UE_Eval(UE_FAIL) = UNRECOV &
LMU_Eval(LMU_FAIL) = UNRECOV &
POS_Eval(POS_FAIL) = UNRECOV &
LMU_Eval(LMU_OK) = OK

END

20

REFINEMENT
SDirector

REFINES
Main

SEES
Comp_data

SETS
SERVICE = {SD,DB,UE,LMU,POS,CALC}

VARIABLES
inp_chan, input, out_chan, output, curr_service, handling_flag,
dbdata, uedata, Imudata, posdata, n_db, n_ue, n_Imu, n_pos

INVARIANT
curr_service : SERVICE &
handling_flag : BOOL &
dbdata : DB_DATA &
uedata : UE_DATA &
Imudata : LMU_DATA &
posdata : POS_DATA &
(curr_service : SERVICE-{SD} => not(input = INPUT_NIL)) &
(curr_service=CALC => posdata:POS_DATA-{POS_ NIL}) &
(curr_service=CALC => handling_flag=FALSE) &
(handling_flag=TRUE => not(input=INPUT_NIL)) &
n_db:NAT & n_db <= N_DB &
n_ue:NAT & n_ue <= N_UE &
n_Imu:NAT & n_lmu <= N_LMU &
n_pos:NAT & n_pos <= N_POS

INITIALISATION
inp_chan, input := INPUT_NIL, INPUT_NIL ||
out_chan, output := POS_NIL, POS_NIL ||
curr_service, handling_flag := SD,FALSE ||
dbdata,uedata,Imudata,posdata := DB_NIL,UE_NIL,LMU_NIL,POS_NIL ||
n_db,n_ue,n_Imu,n_pos := N_DB,N_UE,N_LMU,N_POS

OPERATIONS

env_write =
SELECT inp_chan = INPUT_NIL
THEN
inp_chan :: INPUT_DATA - {INPUT_NIL}
END;

read =
SELECT not(inp_chan = INPUT_NIL) & (input = INPUT_NIL)
THEN
input,inp_chan :=inp_chan,INPUT_NIL ||
handling_flag := TRUE ||

21

curr_service := SD
END;

db =
SELECT curr_service = DB
THEN
handling_flag := TRUE
END;

ue =
SELECT curr_service = UE
THEN
handling_flag := TRUE
END;

Imu =
SELECT curr_service = LMU
THEN
handling_flag := TRUE
END;

pos =
SELECT curr_service = POS
THEN
handling_flag := TRUE
END;

/* can be splitted into several handlers */
handle =
SELECT handling_flag = TRUE
THEN
IF curr_service = SD
THEN
curr_service := DB
ELSIF curr_service = DB
THEN
dbdata :; DB_DATA-{DB_NIL};
IF DB_Eval(dbdata) = OK
THEN
curr_service ;= UE
ELSIF DB_Eval(dbdata) = RECOV & (n_db > 0)
THEN
n_db :=n_db-1
ELSE
posdata,curr_service := POS_FAIL,CALC
END
ELSIF curr_service = UE
THEN
uedata :: UE_DATA-{UE_NIL};
IF UE_Eval(uedata) = OK
THEN
curr_service ;= LMU
ELSIF UE_Eval(uedata) = RECOV & (n_ue > 0)
THEN

22

n_ue = n_ue-1
ELSE
posdata,curr_service ;= POS_FAIL,CALC
END
ELSIF curr_service = LMU
THEN
Imudata :: LMU_DATA-{LMU_NIL};
IF LMU_Eval(Imudata) = OK
THEN
curr_service := POS
ELSIF LMU_Eval(lImudata) = RECOV & (n_lmu > 0)
THEN
n_lmu := n_Imu-1
ELSE
posdata,curr_service ;= POS_FAIL,CALC
END
ELSIF curr_service = POS
THEN
posdata :: POS_DATA-{POS_NIL};
IF POS_Eval(posdata) = OK
THEN
curr_service := CALC
ELSIF POS_Eval(posdata) = RECOV & (n_pos > 0)
THEN
n_pos = n_pos-1
ELSE
posdata,curr_service := POS_FAIL,CALC
END
END ||
handling_flag := FALSE
END;

calculate =
SELECT not(input = INPUT_NIL) & (output = POS_NIL) & (curr_service=CALC)
THEN
output,input := posdata,INPUT_NIL ||
curr_service := SD
END;

write =
SELECT not(output = POS_NIL) & (out_chan = POS_NIL)
THEN
out_chan,output := output,POS_NIL
END;

env_read =
SELECT not(out_chan = POS_NIL)
THEN
out_chan ;= POS_NIL
END

END

23

REFINEMENT
SDirectorRef

REFINES
SDirector

SEES
Comp_data

INCLUDES
DB_Comp, UE_Comp, SAS_Comp

VARIABLES
inp_chan, input, out_chan, output, curr_service, handling_flag,
dbdata, uedata, posdata, n_db, n_ue, n_Imu, n_pos

INVARIANT
curr_service : SERVICE &
handling_flag : BOOL &
dbdata : DB_DATA &
uedata : UE_DATA &
posdata : POS_DATA &
(curr_service = UE => not(dbdata=DB_NIL)) &
(curr_service = LMU => not(uedata=UE_NIL)) &
(curr_service = POS => not(uedata=UE_NIL)) &
n_db:NAT & n_db <= N_DB &
n_ue:NAT & n_ue <= N_UE &
n_Imu:NAT & n_lmu <= N_LMU &
n_pos:NAT & n_pos <= N_POS

INITIALISATION
inp_chan, input := INPUT_NIL, INPUT_NIL ||
out_chan, output := POS_NIL, POS_NIL ||
curr_service, handling_flag := SD,FALSE ||
dbdata,uedata,posdata := DB_NIL,UE_NIL,POS_NIL ||
n_db,n_ue,n_Imu,n_pos := N_DB,N_UE,N_LMU,N_POS

OPERATIONS

env_write =
SELECT inp_chan = INPUT_NIL
THEN
inp_chan :: INPUT_DATA - {INPUT_NIL}
END;

read =
SELECT not(inp_chan = INPUT_NIL) & (input = INPUT_NIL)
THEN
input,inp_chan := inp_chan,INPUT_NIL ||
handling_flag := TRUE ||
curr_service := SD
END;

24

db =
SELECT curr_service = DB & (db_inp_chan=INPUT_NIL)
THEN
db_write_ichan(input);
handling_flag := TRUE
END;

ue =
SELECT curr_service = UE & (ue_inp_chan=DB_NIL)
THEN
ue_write_ichan(dbdata);
handling_flag := TRUE
END;

Imu =
SELECT curr_service = LMU
THEN
handling_flag := TRUE
END;

pos =
SELECT curr_service = POS & (sas_inp_chan=UE_NIL)
THEN
sas_write_ichan(uedata);
handling_flag := TRUE
END;

handle =
SELECT handling_flag = TRUE &
(((curr_service = DB) & not(db_out_chan = DB_NIL)) or
((curr_service = UE) & not(ue_out_chan = UE_NIL)) or
((curr_service = POS) & not(sas_out_chan = POS_NIL)) or
(curr_service = LMU))
THEN
IF curr_service = SD
THEN
curr_service := DB
ELSIF curr_service = DB
THEN
dbdata <-- db_read_ochan,;
IF DB_Eval(dbdata) = OK
THEN
curr_service := UE
ELSIF DB_Eval(dbdata) = RECOV & (n_db > 0)
THEN

n_db := n_db-1
ELSE
posdata,curr_service := POS_FAIL,CALC
END
ELSIF curr_service = UE
THEN

uedata <-- ue_read_ochan;
IF UE_Eval(uedata) = OK
THEN

curr_service := LMU

25

ELSIF UE_Eval(uedata) = RECOV & (n_ue > 0)
THEN
n_ue :=n_ue-1
ELSE
posdata,curr_service ;= POS_FAIL,CALC
END
ELSIF curr_service = LMU
THEN
curr_service := POS
ELSIF curr_service = POS
THEN
posdata <-- sas_read_ochan;
IF POS_Eval(posdata)=UNRECOV
THEN
posdata := POS_FAIL
END;
curr_service .= CALC
END ||
handling_flag := FALSE
END;

calculate =
SELECT not(input = INPUT_NIL) & (output = POS_NIL) & (curr_service=CALC)
THEN
output,input := posdata,INPUT_NIL ||
curr_service := SD
END;

write =
SELECT not(output = POS_NIL) & (out_chan = POS_NIL)
THEN
out_chan,output := output,POS_NIL
END;

env_read =
SELECT not(out_chan = POS_NIL)
THEN
out_chan := POS_NIL
END

END

26

MACHINE
DB_Comp

SEES
Comp_data
VARIABLES
db_inp_chan, db_input, db_out_chan, db_output

INVARIANT
db_inp_chan : INPUT_DATA &
db_input : INPUT_DATA &
db_out chan: DB _DATA &
db_output : DB_DATA
INITIALISATION
db_inp_chan, db_input ;= INPUT_NIL, INPUT_NIL ||
db_out_chan, db_output := DB_NIL, DB_NIL

OPERATIONS

db_write_ichan(inp) =
PRE inp:INPUT_DATA & not(inp=INPUT_NIL) & (db_inp_chan=INPUT_NIL)
THEN
db_inp_chan :=inp
END;

db_read =
SELECT not(db_inp_chan = INPUT_NIL) & (db_input = INPUT_NIL)
THEN
db_input,db_inp_chan := db_inp_chan,INPUT_NIL
END;

db_calculate =
SELECT not(db_input = INPUT_NIL) & (db_output = DB_NIL)
THEN
CHOICE
db_output :: DB_DATA - {DB_NIL,DB_FAIL}
OR
db_output := DB_FAIL
END ||
db_input := INPUT_NIL
END;

db_write =
SELECT not(db_output = DB_NIL) & (db_out_chan = DB_NIL)
THEN
db_out_chan,db_output ;= db_output,DB_NIL
END;

db_out <--db_read_ochan =
PRE not(db_out_chan = DB_NIL)
THEN
db_out,db_out_chan := db_out_chan,DB_NIL
END
END

27

MACHINE
UE_Comp

SEES
Comp_data

VARIABLES
ue_inp_chan, ue_input, ue_out_chan, ue_output

INVARIANT
ue_inp_chan : DB_DATA &
ue_input : DB_DATA &
ue_out chan: UE_DATA &
ue_output : UE_DATA

INITIALISATION
ue_inp_chan,ue_input := DB_NIL,DB_NIL ||
ue_out_chan, ue_output := UE_NIL, UE_NIL
OPERATIONS

ue_write_ichan(inp) =
PRE inp:DB_DATA & not(inp=DB_NIL) & (ue_inp_chan=DB_NIL)
THEN
ue_inp_chan :=inp
END;

ue_read =
SELECT not(ue_inp_chan = DB_NIL) & (ue_input = DB_NIL)
THEN
ue_input,ue_inp_chan := ue_inp_chan,DB_NIL
END;

ue_calculate =
SELECT not(ue_input = DB_NIL) & (ue_output = UE_NIL)
THEN
CHOICE
ue_output :: UE_DATA - {UE_NIL,UE_FAIL}
OR
ue_output := UE_FAIL
END ||
ue_input := DB_NIL
END;

ue_write =
SELECT not(ue_output = UE_NIL) & (ue_out_chan = UE_NIL)
THEN
ue_out_chan,ue_output := ue_output,UE_NIL
END;

ue_out <-- ue_read_ochan =
PRE not(ue_out_chan = UE_NIL)
THEN
ue_out,ue_out_chan := ue_out_chan,UE_NIL
END
END

28

MACHINE
SAS2_Comp

SEES
Comp_data

SETS
SAS_SERVICE = {SAS,SAS_LMU,SAS_POS,SAS_CALC}

VARIABLES
sas_inp_chan, sas_input, sas_out_chan, sas_output,
sas_curr_service, sas_handling_flag, sas_Imudata, sas_posdata,
sas_n_Ilmu, sas_n_pos

INVARIANT
sas_inp_chan : UE_DATA &
sas_input : UE_DATA &
sas_out_chan : POS_DATA &
sas_output : POS_DATA &
sas_curr_service : SAS_SERVICE &
sas_handling_flag : BOOL &
sas_Imudata : LMU_DATA &
sas_posdata : POS_DATA &
sas_n_Imu:NAT &sas n_Imu<=N_LMU &
sas_n_pos : NAT & sas_n_pos <= N_POS &
(sas_curr_service=SAS_CALC => POS_Eval(sas_posdata):{OK,UNRECOV}) &
(not(sas_output = POS_NIL) => POS_Eval(sas_output):{OK,UNRECOV}) &
(not(sas_out_chan = POS_NIL) => POS_Eval(sas_out_chan):{OK,UNRECOV})

INITIALISATION
sas_inp_chan, sas_input := UE_NIL, UE_NIL ||
sas_out_chan, sas_output := POS_NIL, POS_NIL ||
sas_curr_service, sas_handling_flag := SAS, FALSE ||
sas_Ilmudata, sas_posdata := LMU_NIL, POS_NIL ||
sas_n_Imu, sas n_pos:=N_LMU, N POS

OPERATIONS

sas_write_ichan(inp) =
PRE inp:UE_DATA & not(inp=UE_NIL) & (sas_inp_chan=UE_NIL)
THEN
sas_inp_chan := inp
END;

sas_read =
SELECT not(sas_inp_chan = UE_NIL) & (sas_input = UE_NIL)
THEN
sas_input,sas_inp_chan := sas_inp_chan,UE_NIL ||
sas_curr_service := SAS
END;

sas_Imu =

SELECT sas_curr_service = SAS_LMU
THEN

29

sas_handling_flag := TRUE
END;

sas_pos =
SELECT sas_curr_service = SAS_POS
THEN
sas_handling_flag := TRUE
END;

sas_handle =
SELECT sas_handling_flag = TRUE
THEN
IF sas_curr_service = SAS
THEN
sas_curr_service := SAS_LMU
ELSIF sas_curr_service = SAS_LMU
THEN
ANY Imudata WHERE Imudata : LMU_DATA
THEN
sas_Imudata := Imudata ||
IF LMU_Eval(Imudata) = OK
THEN
sas_curr_service := SAS_POS
ELSIF LMU_Eval(Imudata) = RECOV & (sas_n_Imu > 0)
THEN
sas_n_Imu :=sas_n_Imu-1
ELSE
sas_posdata,sas_curr_service := POS_FAIL,SAS_CALC
END
END
ELSIF sas_curr_service = SAS_POS
THEN
ANY posdata WHERE posdata : POS_DATA
THEN
IF (POS_Eval(posdata) = RECOV) & (sas_n_pos = 0)) or
POS_Eval(posdata) = UNRECOV

THEN

sas_posdata := POS_FAIL
ELSE

sas_posdata := posdata
END

IF POS_Eval(posdata) = OK
THEN
sas_curr_service ;= SAS_CALC
ELSIF POS_Eval(posdata) = RECOV & (sas_n_pos > 0)
THEN
sas_n_pos ;= sas_n_pos-1
ELSE
sas_curr_service := SAS_CALC
END
END
END ||
sas_handling_flag := FALSE
END;

30

sas_calculate =
SELECT not(sas_input = UE_NIL) & (sas_output = POS_NIL) &
(sas_curr_service=SAS_CALC)
THEN
sas_output,sas_input := sas_posdata,UE_NIL ||
sas_curr_service := SAS
END;

sas_write =
SELECT not(sas_output = POS_NIL) & (sas_out_chan = POS_NIL)
THEN
sas_out_chan,sas_output := sas_output,POS_NIL
END;

sas_out <-- sas_read_ochan =
PRE not(sas_out_chan = POS_NIL)
THEN
sas_out,sas_out_chan := sas_out_chan,POS_NIL
END

END

31

REFINEMENT
SAS_CompRef

REFINES
SAS_Comp

SEES
Comp_data

INCLUDES
LMU_Comp, POS_Comp

VARIABLES
sas_inp_chan, sas_input, sas_out_chan, sas_output,
sas_curr_service, sas_handling_flag, sas_Imudata, sas_posdata,
sas_n_Imu, sas_n_pos

INVARIANT
sas_inp_chan : UE_DATA &
sas_input : UE_DATA &
sas_out chan: POS_DATA &
sas_output : POS_DATA &
sas_curr_service : SAS_SERVICE &
sas_handling_flag : BOOL &
sas_Imudata : LMU_DATA &
sas_posdata : POS_DATA &
sas_n_Imu : NAT &
sas_n_pos : NAT &
(sas_curr_service = SAS_LMU => not(sas_input=UE_NIL)) &
(sas_curr_service = SAS_POS => not(sas_Imudata=LMU_NIL))

INITIALISATION
sas_inp_chan, sas_input := UE_NIL, UE_NIL ||
sas_out_chan, sas_output := POS_NIL, POS_NIL ||
sas_curr_service, sas_handling_flag := SAS, FALSE ||
sas_Imudata, sas_posdata ;= LMU_NIL, POS_NIL ||
sas_n_Ilmu, sas_n_pos := N_LMU,N_POS

OPERATIONS

sas_write_ichan(inp) =
PRE inp:UE_DATA & not(inp=UE_NIL) & (sas_inp_chan=UE_NIL)
THEN
sas_inp_chan :=inp
END;

sas_read =
SELECT not(sas_inp_chan = UE_NIL) & (sas_input = UE_NIL)
THEN
sas_input,sas_inp_chan := sas_inp_chan,UE_NIL ||
sas_curr_service := SAS

32

END;

sas_Imu =
SELECT sas_curr_service = SAS_LMU & (Imu_inp_chan=UE_NIL)
THEN
Imu_write_ichan(sas_input);
sas_handling_flag := TRUE
END;

sas_pos =
SELECT sas_curr_service = SAS_POS & (pos_inp_chan=LMU_NIL)
THEN
pos_write_ichan(sas_Imudata);
sas_handling_flag := TRUE
END;

sas_handle =
SELECT sas_handling_flag = TRUE &
(((sas_curr_service = SAS_LMU) & not(Imu_out_chan=LMU_NIL)) or
((sas_curr_service = SAS_POS) & not(pos_out_chan=POS_NIL)))
THEN
IF sas_curr_service = SAS
THEN
sas_curr_service := SAS_LMU
ELSIF sas_curr_service = SAS_LMU
THEN
sas_Imudata <-- Imu_read_ochan;
IF LMU_Eval(sas_Imudata) = OK
THEN
sas_curr_service := SAS_POS
ELSIF LMU_Eval(sas_Imudata) = RECOV & (sas_n_Imu > 0)
THEN
sas_n_lmu :=sas_n_Imu-1
ELSE
sas_posdata,sas_curr_service := POS_FAIL,SAS_CALC
END
ELSIF sas_curr_service = SAS_POS
THEN
sas_posdata <-- pos_read_ochan,;
IF POS_Eval(sas_posdata) = OK
THEN
sas_curr_service := SAS_CALC
ELSIF POS_Eval(sas_posdata) = RECOV & (sas_n_pos > 0)
THEN
sas_n_pos := sas_n_pos-1

ELSE
sas_posdata,sas_curr_service := POS_FAIL,SAS_CALC
END
END ||
sas_handling_flag := FALSE
END;

sas_calculate =
SELECT not(sas_input = UE_NIL) & (sas_output = POS_NIL) &
(sas_curr_service=SAS_CALC)

33

THEN
sas_output,sas_input := sas_posdata,UE_NIL ||
sas_curr_service := SAS

END;

sas_write =
SELECT not(sas_output = POS_NIL) & (sas_out_chan = POS_NIL)
THEN
sas_out_chan,sas_output := sas_output,POS_NIL
END;

sas_out <-- sas_read_ochan =
PRE not(sas_out_chan = POS_NIL)
THEN
sas_out,sas_out _chan :=sas out chan,POS_NIL
END

END

34

MACHINE
LMU_Comp

SEES
Comp_data

VARIABLES
Imu_inp_chan, Imu_input, Imu_out_chan, Imu_output

INVARIANT
Imu_inp_chan : UE_DATA &
Imu_input : UE_DATA &
Imu_out_chan : LMU_DATA &
Imu_output : LMU_DATA

INITIALISATION
Imu_inp_chan, Imu_input := UE_NIL, UE_NIL ||
Imu_out_chan, Imu_output := LMU_NIL, LMU_NIL
OPERATIONS

Imu_write_ichan(inp) =
PRE inp:UE_DATA & not(inp=UE_NIL) & (Imu_inp_chan=UE_NIL)
THEN
Imu_inp_chan :=inp
END;
Imu_read =
SELECT not(Imu_inp_chan = UE_NIL) & (Imu_input = UE_NIL)
THEN
Imu_input,Imu_inp_chan := Imu_inp_chan,UE_NIL
END;
Imu_calculate =
SELECT not(Imu_input = UE_NIL) & (Imu_output = LMU_NIL)
THEN
CHOICE
Imu_output :: LMU_DATA - {LMU_NIL,LMU_FAIL}
OR
Imu_output := LMU_FAIL
END ||
Imu_input := UE_NIL
END;

Imu_write =
SELECT not(Imu_output = LMU_NIL) & (Imu_out_chan = LMU_NIL)
THEN
Imu_out_chan,Imu_output := Imu_output,LMU_NIL
END;

Imu_out <-- Imu_read_ochan =
PRE not(Imu_out_chan = LMU_NIL)
THEN
Imu_out,Imu_out_chan := Imu_out_chan,LMU_NIL
END
END

35

MACHINE
POS_Comp

SEES
Comp_data

VARIABLES
pos_inp_chan, pos_input, pos_out_chan, pos_output

INVARIANT
pos_inp_chan : LMU_DATA &
pos_input: LMU_DATA &
pos_out_chan : POS_DATA &
pos_output : POS_DATA

INITIALISATION
pos_inp_chan, pos_input := LMU_NIL, LMU_NIL ||
pos_out_chan, pos_output := POS_NIL, POS_NIL

OPERATIONS

pos_write_ichan(inp) =
PRE inp:LMU_DATA & not(inp=LMU_NIL) & (pos_inp_chan=LMU_NIL)
THEN
pos_inp_chan :=inp
END;
pos_read =
SELECT not(pos_inp_chan = LMU_NIL) & (pos_input = LMU_NIL)
THEN
pos_input,pos_inp_chan := pos_inp_chan,LMU_NIL
END;
pos_calculate =
SELECT not(pos_input = LMU_NIL) & (pos_output = POS_NIL)
THEN
CHOICE
pos_output :: POS_DATA - {POS_NIL,POS_FAIL}
OR
pos_output := POS_FAIL
END ||
pos_input := LMU_NIL
END;
pos_write =
SELECT not(pos_output = POS_NIL) & (pos_out_chan = POS_NIL)
THEN
pos_out_chan,pos_output := pos_output,POS_NIL
END;

pos_out <-- pos_read_ochan =
PRE not(pos_out_chan = POS_NIL)
THEN
pos_out,pos_out_chan := pos_out_chan,POS_NIL
END
END

36

TURKU

CENTRE for

COMPUTER
SCIENCE

Lemminkaisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

74

§\\ ,/é University of Turku

; g ¢ Department of Information Technology
%‘ ‘\\§ e Department of Mathematics

Abo Akademi University
¢ Department of Computer Science
e Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
¢ Institute of Information Systems Sciences

ISBN 952-12-1564-X
ISSN 1239-1891

