Dubravka Ili¢ | Elena Troubitsyna

Formal Development of
Software for Tolerating
Transient Faults

TurkU CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 694, Jun 2005

<7
7
¥ rucs

Formal Development of Software for
Tolerating Transient Faults

Dubravka Ili¢

Elena Troubitsyna
Abo Akademi University, Department of Computer Science
Lemminkaisenkatu 14A, FIN - 20520 Turku, Finland

TUCS Technical Report
No 694, Jun 2005

Abstract

Transient faults constitute a wide-spread class of faults that appear for some time during
system operation and might disappear and reappear later. They are very common in
control systems. However, by appearing even for a short time, they might result in
dangerous system error. Hence designing mechanisms for tolerating transient faults is
an acute issue especially in the development of safety-critical control systems. In this
paper we propose a formal approach to specifying software-based mechanisms for
tolerating transient faults in the B Method. We focus on deriving a general specification
and development pattern which can be applied in the development of various control
systems. We illustrate an application of the proposed patterns by an example from
avionics software product line.

Keywords: fault tolerance, transient faults, B Method, refinement

TUCS Laboratory
Distributed Systems Design

1. Introduction

Nowadays software-intensive control systems are in heart of many safety-critical
applications. To guarantee dependability [4] of such systems we should ensure that
software is not only fault free but also is able to cope with faults of other system
components. In this paper we focus on designing controllers able to withstand transient
physical faults of the system components. Transient faults are temporal defects within
the system [11]. They frequently occur in hardware functioning. The design of
mechanisms for tolerating temporal faults is inherently complex. On the one hand side,
controlling software (further referred to as controller) should not over-react to an
1solated transient fault. On the other side, it should ensure that even isolated transient
faults are not propagated or if the fault persists, appropriate recovery actions are
initiated.

In the design of complex control systems, fault tolerance mechanisms constitute a
large part of the controller and are often perceived as separate subsystems dedicated to
fault tolerance. In avionics, such subsystem is traditionally called Failure Management
System (further referred to as FMS). The major role of FMS is to mask faulty readings
obtained from sensors and hereby provide the controller with the correct information
about system state using which it executes the required control functions. Design of the
FMS is particularly difficult since often requirements changes are introduced at the late
development cycle. These changes are unavoidable since many requirements result from
empirical performance studies executed under failure conditions. To overcome this
difficulty we propose a formal pattern for specifying and developing FMS. The
proposed pattern can be used in the product line development.

Obviously correctness of FMS is essential for ensuring dependability of the overall
system. Formal methods are traditionally used for reasoning about software correctness.
In this paper we demonstrate how to develop the FMS by stepwise refinement in the B
Method [5, 12]. The B Method is a formal framework for the development of
dependable systems correct by construction. AtelierB [1] — the tool, supporting the
method, provides a high degree of automation of the verification process, which
facilitates a better acceptance of the method in the industrial practice. The approach
proposed in this paper is validated by a case study from avionics industry conducted
within EU project RODIN [9].

The paper is structured as follows: in Section 2 we describe FMS by presenting its
structure, behaviour and the mechanism for error detection as well as giving the
graphical representation of the FMS pattern. In the Section 3 we demonstrate the
process of development of FMS from an abstract specification of FMS in our formal
modelling framework — the B Method — till the refined specification close to
implementation. Section 4 presents an example of the FMS pattern instantiation. In
Section 5 we conclude our work.

2. Failure Management System

2.1 Structure and behaviour

Failure Management System (FMS) [2] is a part of the embedded control system as
shown on Figure 1.

rq—l FMS [« Sensors [¢—

Controller

P Actuators

Figure 1. Place of the FMS in an embedded control system

As an input FMS takes sensor readings. The outputs from the FMS are fed into the
controller. The role of FMS is to detect erroneous inputs and prevent their propagation
into controller. Hence the main purpose of FMS is to supply the controller of the system
with fault free inputs from the system environment. We assume that initially the system
operates in the Normal mode, i.e., is error free. The operating cycle starts with obtaining
sensor readings as the inputs of FMS. FMS applies certain detection mechanism on
inputs. As a result of this detection inputs are categorized as: fault free or faulty.
Depending on this result, FMS takes certain remedial action. The remedial actions can
be classified as: healthy, temporary or confirmation actions. They determine the
behaviour of the FMS. This classification is adopted according to [9].

In Figure 2 we illustrate the behaviour of FMS over certain input.

Input_Ok Input_Syspected
Input Suspected

put_Confirmed

Input_ Ok

Figure 2. Specification of the FMS behaviour

Healthy action. When the FMS operates in Normal mode and detects that incoming
input is fault free, the input is forwarded unchanged to the controller and FMS continues
the operating cycle by accepting another input from the environment.

Temporary action. However, when the FMS operates in Normal mode and detects the
first faulty input, it marks the status of that input as suspected and changes the operating
mode from Normal to Recover (Figure 2). In the Recover mode FMS starts to count the
number of faulty inputs. In this mode the input can get recovered during a certain
number of operating cycles. Since the aim of the FMS is to give fault free output even
when the input is faulty, the output of FMS while operating in Recover mode is the last

good value of the input obtained before entering the mode Recover. Once a temporary
action is triggered, it will keep the system in the mode Recover as long as the status of
the input coming from the environment is suspected. The counting mechanism
determines whether the input gets recovered. If this is the case, the system changes its
mode from Recover to Normal and healthy action is triggered again.

Confirmation. When the system operates in the mode Recover, the counting
mechanism triggers confirmation action if the input fails to recover. Input is then
confirmed failed and the system changes the operating mode to Freeze.

Next we describe error detection mechanism in details.

2.2 Error detection

The detection mechanism is the most important part of the FMS. Its role is to determine
whether the input is faulty or fault free. We propose the architecture of the detection
mechanism as shown in Figure 3. It is built out of series of tests Test/

-wherei, M, N eNandi=1, 2, ..., M+n and N=M+n.

Complex tests Complex tests
Simple tests with level of with level of
complexity 1 complexity N
3\ 3\ 3

Testl TestM+1

>

TestK+1

TestK TestL TestM+n

J J J
The order of test execution

Figure 3. Detection mechanism architecture

Detection in FMS starts with applying the tests in the order defined by its
architecture. For each input we define tests required to detect whether that particular
input is faulty. We differentiate between different kinds of tests. The basic category is a
simple test. An input signal may pass through several simple tests. They can be applied
in any order. When triggered, simple test runs solely based on the input reading from
the sensor. After the test is executed, it should be marked as passed for the current input
and some other test may be triggered.

The second test category is complex test with level of complexity 1. The execution of
this kind of test depends on the execution of several simple tests. Input may go through
several complex tests of this level. Tests are executed in random order. However, in
order to perform complex tests over some input, the system should first execute all
required simple tests for that particular complex test as given in Figure 3.

In general, there might be N test categories, where the last test category is the
complex test with level of complexity N. The execution of this kind of test depends not

only on the previous execution of simple tests, but also on the execution of the complex
tests with level of complexity N-1. If input requires several tests of this kind they are
executed in random order, but all the tests required for their execution should be passed
in previous detection steps.

This means that detection itself operates in stages, first executing all simple tests
associated with the certain input. Afterwards, all complex tests associated with the
current input are executed in ascending complexity levels as shown in Figure 3.

The described detection template holds for different kinds of inputs. Sensors in the
system are measuring the values of certain physical processes and they can provide
continuous value readings to the FMS or can be used to display some binary conditions.
Hence, inputs to the FMS can be described as analogue or boolean. For both, detection
template holds in general, but different tests are applied on each of them.

2.3 FMS pattern

Described FMS actions (Figure 2) and detection template (Figure 3) constitute the
generic FMS structure and behaviour pattern shown on Figure 4. The figure shows the
flow of the detection decisions and effect of remedial actions after inputs are received
from the system environment. Notice that three main FMS states (Normal, Recover and
Freeze) now include details about input status. The additional component — counting
mechanism — enables tolerance of the transient faults. It takes the system into the
Normal mode after the input has recovered, leaves it in the Recover mode if the input is
still suspected or freezes the system if the input failed to recover.

The given pattern can be applied in the controlling software product line [3] for
creating a collection of similar control systems with the mechanism for fault tolerance
of transient faults.

: .
|

Input isfault free | Input isfault free ggju\t/:u
!
|

]
1
‘
]
1
T] O
Healthy actio ' P |
unt faul :
Healthy actionl:_.;—.'_ Tnputs > |
—t---- input valug) € - — - —- — -1t
put valy : | Temporary action: !
1
[}

||

|
-3 Input issuspected . —i -

Confirmation action '

Freeze |

Input isconfirmed failed -

Figure 4. FMS pattern

Before presenting the formal pattern for handling fault tolerance in FMS, according
to the Figure 4, we give the short introduction to the B Method.

4

3. Formal system development

3.1 Formal modelling in the B Method

In this paper we have chosen the B Method [5, 12] as our formal modelling framework.
The B Method is an approach for the industrial development of correct software. The
method has been successfully used in the development of several complex real-life
applications [8]. The tool support available for B provides us with the assistance for the
entire development process. For instance, Atelier B [1], one of the tools supporting the
B Method, has facilities for automatic verification and code generation as well as
documentation, project management and prototyping. The high degree of automation in
verifying correctness improves scalability of B, speeds up development and, also,
requires less mathematical training from the users.

In B a specification is represented by a module or a set of modules, called Abstract
Machines. The common pseudo-programming notation, called Abstract Machine
Notation (AMN), is used to construct and formally verify them. An abstract machine
encapsulates a state and operations of the specification and has the following general
form:

MACHINE name
SETS Set
VARIABLES '
INITIALISATION Init
INVARIANT I
OPERATIONS Op

Each machine is uniquely identified by its name. The state variables of the machine
are declared in the VARIABLES clause and initialized in the INITIALISATION clause. The
variables in B are strongly typed by constraining predicates of INVARIANT clause. The
constraining predicates are conjoint by conjunction (denoted as &). All types in B are
represented by non-empty sets and hence set membership (denoted as :) expresses
typing constraint for a variable, e.g., X:TYPE. Local types can be introduced by
enumerating the elements of the type, e.g., TYPE = {elementl, element2,...} in the SETS
clause. The operations of the machine are defined in OPERATIONS clause. The
operations are atomic meaning that, once an operation is chosen, its execution will run
until completion without interference.

In this paper we adopt event-based approach to system modelling [6]. The events are
specified as the guarded operations SELECT cond THEN body END. Here cond is a state
predicate, and body is a B statement describing how state variables are affected by the
operation. If cond is satisfied, the behaviour of the guarded operation corresponds to the
execution of its body. If cond is false at the current state then the operation is disabled,
i.e., cannot be executed. Event-based modelling is especially suitable for describing
reactive systems. Then SELECT operation describes the reaction of the system when
particular event occurs.

We use the following B statements to describe the computation in operations:

Statement Informal meaning
X:i=e Assignment
X, y:=el, e2 Multiple assignment

IF P THEN S1 ELSE S2 END If P is true then execute S1, otherwise

S2

S1;S2 Sequential composition

S1 || S2 Parallel execution of S1 and S2
Nondeterministic assignment — assigns

XaT variable X arbitrary value from given
set T

B also provides structuring mechanisms for modularization which allows us to
express machines as compositions of other machines. For instance, we use SEES clause.
When in the specification of machine M1 we have a clause M1 SEES M2, where M2 is
another machine, then the sets, constants and the state of M2 are available to M1 for use
in its own initializations and within preconditions and bodies of operations. This allows
us to define sets and constants separately from the main machine.

The development methodology adopted by B is based on stepwise refinement [10].
Refinement can be seen as a process of gradual incorporation of implementation details
into the system specification. The result of a refinement step in B is a machine called
REFINEMENT. Its structure coincides with the structure of the abstract machine.
However, refined machine should contain an additional clause REFINES which defines
the machine refined by the current specification. Besides definitions of variable types,
the invariant of the refinement machine should contain the refinement relation. This is a
predicate which describes the connection between state spaces of more abstract and
refined machines.

To ensure correctness we should verify that initialization and each operation preserve
the invariant. Verification can be completely automatic or user-assisted. In the former
case, the tool generates the required proof obligations and discards them without user’s
help. In the later case, the user proves certain proof obligations in the interactive mode.

Next we demonstrate how to formally specify failure management system described
in the previous section.

3.2 FMS specification pattern

Control systems are usually cyclic, i.e., their behaviour is essentially an interleaving
between the environment stimuli and controller reaction on these stimuli. The controller
reaction depends on whether the FMS has detected error in the obtained input. Hence, it
is natural to consider the behaviour of FMS in the context of the overall system. The
FMS gets certain inputs from the environment, applies specific detection mechanisms
and depending on the detection results produces output to the controller or freezes the
whole system. In absence of errors the output from the FMS is the actual input to the

controller. However, if error is detected the FMS should try to tolerate it and still
produce the fault free output or to stop the system without producing any output at all.

The abstract specification pattern given in Figure 6 is obtained following the
informal FMS description represented graphically in Figure 4. The FMS machine reads
sets and constants defined in the machine Global and hence this machine is mentioned in
the SEES clause of the FMS machine. The variables declared in the FMS machine define
its state. The variable FMS_State defines the phases of control cycle execution. Its
values are as follows: env — obtaining inputs from the environment, det — detecting
erroneous inputs, act — changing the system operating mode, rcv — recovering of the
faulty input, out — supplying the output of the FMS to the controller, stop — freezing the
system.

The variable FMS_State models the evolution of system behaviour in the operating
cycle. At the end of the operating cycle the system finally reaches either the terminating
(freezing) state or producing fault free output. Then the operating cycle starts again.
Hence, the behaviour of the FMS can be described as in Figure 5.

_>| Getting inputs fom the sensors |

| Detecting errors |

System action
upon detection
v !

Healthy action Temporary action Confirmation

B

Figure 5. Behaviour of the FMS

Next cycle

Since the controller relies only on the input from the FMS, we should guarantee that
it obtains the fault free output from the FMS. Our safety invariant expresses this:
whenever the input is confirmed failed, the FMS output is not produced (i.e.,
Input_Status=confirmed => FMS_State=stop) and, whenever the input is confirmed ok,
the output should have the same value as input or be different if the input is suspected
(i.e., (Input_Status=ok => Output=Input) & (Input_Status=suspected =>
Output/=Input)).

In our abstract specification the input values produced by the environment are
modelled nondeterministically. After getting the inputs, FMS detects whether they are
faulty. This is modelled in the Detection operation of the FMS machine as a
nondeterministic assignment of some boolean value (TRUE or FALSE) to the variable
modelling input state (i.e., Input_Error :: BOOL). After the input state is detected, FMS
triggers the healthy action if the input is fault free. If the input is faulty, FMS initiates

temporary action, i.e., error recovery. Error recovery is modelled by introducing the two
counters: ¢C and num.

At the beginning of the operating cycle, both counters are set to zero and their values
are changed only while the system is in the mode Recover. The first counter cc is used
for accumulating inputs in error. While the system is in the mode Recover, each time
when the obtained input is found faulty, the system sets as the output the last good value
of the input and the counter cc is incremented by some given value xx. However if the

input is fault free, the cc is decremented by the given value yy.

MACHINE
FMS
SEES
Global
VARIABLES
Input, Input_Error, Input_Status, FMS_State, Flag, cc, num
INVARIANT
Input : T_INPUT & [*actual input to the
FMS*/
Input_Error : BOOL & /[*variable modelling
input state*/
Input_Status : I_STATUS & /*variable modelling
input status

during recovering*/
FMS_State : STATES & /*variable modelling
system state*/

Flag:FLAGS & /*variable modelling
system substates*/
cc : NAT & /*cc and num are
counters*/
num : NAT & <safety invariant>
INITIALISATION

Input::T_INPUT || Input_Error:=FALSE ||
Input_Status:=ok ||

Flag:=Normal || FMS_State:=env || cc:=0 || num:=0

OPERATIONS
Environment=
SELECT FMS_State=env
THEN
Input::T_INPUT || FMS_State:=det
END;

Detection=
SELECT FMS_State=det
THEN
Input_Error :: BOOL || FMS_State:=act
END;

Action=
SELECT
FMS_State=act & Input_Error=FALSE &
Flag=Normal
THEN
Input_Status: =ok || FMS_State:=out
WHEN

FMS_State=act & Input_Error=TRUE & Flag=Normal

THEN
Flag:=Recover || cc:=cc+xx || num:=num+1 ||
FMS_State:=rcv

WHEN
FMS_State=act & Input_Error=FALSE &
Flag=Recover

THEN
cc:=cc-yy || num:=num+1 || FMS_State:=rcv
WHEN
FMS_State=act & Input_Error=TRUE &
Flag=Recover
THEN
cc:=cc+xx || num:=num+1 || FMS_State: =rcv
END;

Recovering=
SELECT FMS_State=rcv & Flag=Recover &
(num>=Limit or cc>=zz)
THEN
Input_Status:=confirmed || FMS_State: =stop
WHEN
FMS_State=rcv & Flag=Recover &
num<Limit & cc=0
THEN
Input_Status:=ok || FMS_State: =out
WHEN
FMS_State=rcv & Flag=Recover &
num<Limit & cc/=0 & cc<zz
THEN
Input_Status:=suspected || FMS_State:=out
END;

Return=
SELECT FMS_State=out & Flag=Normal &
Input_Status=ok
THEN
<Execute healthy action> || FMS_State:=env
WHEN
FMS_State=out & Flag=Recover &
Input_Status=suspected
THEN
< Execute temporary action> || FMS_State:=env
WHEN

FMS_State=out & Flag=Recover & Input_Status=ok

THEN

Flag:=Normal || < Execute healthy action> ||
num:=0 ||

FMS_State:=env

END;

Stopping=
SELECT FMS_State=stop
THEN
skip
END
END

Figure 6. Excerpt from the abstract FMS specification pattern

Each operating cycle sets some values for the counter cc either by decrementing or
incrementing it. If at one point the value of the cc exceeds some predefined limit zz the
counting stops and the system confirms the input failure by terminating the system
operation and freezing the system. Since each faulty input increments the value of cc

and each fault free input decrements it, eventually the counter cC is set to zero. This is
possible if the FMS starts receiving fault free inputs. If cc reaches zero the input is
considered recovered and the system returns to the Normal mode initializing cc to zero
and making it thus ready for the next recovering cycle.

The way cc reaches zero or exceeds the limit zz is determined via setting the
parameters XX, Yy and zz. These parameters are set by observing the real performance of
the failure. By setting the value of xx higher then the value of yy, the counter cc is going
to yield the limit zz faster. However, such a specification is insufficient for guaranteeing
termination of recovery. Observe that the input may vary in such a way that the counter
cc is practically oscillating between some values but never reaching the limit zz or zero.
Hence, we introduce the second counter num which is counting each recovering cycle.
When some allowed limit for num is exceeded the recovery terminates and if cc is
different than zero the input is confirmed failed.

Although our initial specification of FMS shown in Figure 6 is very abstract it
anyway completely describes the intended behaviour of the FMS. However it leaves the
mechanism of detecting errors in input underspecified. Next, we demonstrate how to
obtain the detailed specification of error detection in the refinement process.

3.3 FMS refinement pattern - refining error detection in
FMS

We aim at considering multiple sensors detecting the signal from the environment. Our
first refinement step is data refinement which replaces the variable Input modelling one
input reading with the variable InputN which models the sequence of input readings
from N sensors as shown on Figure 9.

After refining the data structure as described, we continue the development by
refining the nondeterministic assignment of values to the variable Input_Error in the
Detection operation of the abstract machine. In the abstract machine we have specified
that the input can be either faulty or fault free. As a result of data refinement, we
introduce the variable Input_ErrorN which models the detection result for each input
reading from N sensors, instead of previously defined variable Input_Error modelling
only the detection result of one sensor input.

Detection results in Input_ErrorN are determined by running the detection tests. The
expression Run: seq(T_INPUTS)<->TESTS in the machine Global defines which tests
are required for detecting particular erroneous inputs. Since we observe homogeneous
multiple sensors measuring the same physical process from the environment, for each of
N sensor readings the same series of tests has to be applied.

Hence, the tests are defined for InputN sequence in general as shown in Figure 7a)
and not for particular sensor readings. However, the pattern for heterogeneous multiple
sensors can easily be adapted from the one presented here. This can be achieved by
defining tests for each one of the N sensor readings separately, as shown in Figure 7b).

12 3 N 1.2 3 N

o LT 1] (T[]
\) LR v
Test1| | Test3 Test4
TESTS | Testl | Test2 | ---| TestN | TESTS
Test2| | Test2| | Testd
TestN| | TestK| Test]
a) b)

Figure 7. Defining tests for homogeneous and heterogeneous multiple sensors

The application of test follows the rules given in Section 2.2 and in the order defined
by Figure 3. For each input reading in the sequence InputN, we apply test as follows
from the definition of Run given in the machine Global.

The Detection operation starts by running first all simple tests and recording their
results in the variable Result. The predicate Test/ : ran({InputN}<|Cond), which is a
conjunct of the condition of the Detection operation, restricts the test execution only on
the test defined for the particular sensor reading.

The purpose of the simple test is to detect anomalies in the input reading solely based
on the signal coming from the environment. However, sometimes it is useful to combine
results of several simple tests to search for anomalies in the input reading. To achieve
this we use complex test. When all simple tests are executed over one input reading, one
of the complex tests is triggered. Regardless on how many simple or complex tests are
executed, one of them has to set the final status value for the particular input reading as
shown on Figure 8.

Input_ErrorN

TTT 1]

1 2 3 N

Figure 8. Process of setting the status values for N sensor inputs

When all the input readings from N sensors are detected and classified as fault free or
failed, the single output should be given to the system controller. Hence, we apply some
complex test to determine if the incoming input to the FMS is faulty or not. The
decision is made based on the value of the variable Input_ErrorN.

After the status of the input is detected, FMS makes a decision how to proceed with
handling it, i.e., which action to apply as specified in the abstract machine. The
refinement relation for this step is as follows:

10

(Input_Error=TRUE =>
(card(Input_ErrorN|>{TRUE}) > card(Input_ErrorN|>{FALSE})))

The above relation expresses the fact that if the state of the abstract variable Input_Error
is TRUE (the input is faulty), then in the refining variable Input_ErrorN the number of
fault free inputs is smaller then the number of faulty inputs.

To produce the final output, FMS calculates the median value of all fault free inputs
and passes it as the output from the FMS.

REFINEMENT WHEN
FMSR1 FMS_State=det & InputN/=[] &
REFINES Test2:ran({InputN}<|Cond) & Passed(Test2)=FALSE
FMS THEN
SEES Result(Test2) :: BOOL ||
Global Passed(Test2):=TRUE ||
VARIABLES FMS_State:=det
InputN, Input_Error, WHEN
Result,
Input_ErrorN, THEN
FMS_State,
cc, num, WHEN
Passed FMS_State=det & InputN/=[] &
TestK:ran({InputN}<|Cond) & Passed(TestK)=FALSE
INVARIANT THEN
InputN : seq(T_INPUT) & /*N sensor input Result(TestK) :: BOOL ||
reading*/ Passed(TestK):=TRUE ||
Input_Error : BOOL & FMS_State:=det
Result : TESTS - BOOL & /*test results*/ WHEN
Input_ErrorN : seq(BOOL) & /*faulty status for
N sensor inputs*/ THEN
FMS_State : STATES &
cC : NAT & num : NAT & WHEN
Passed : TESTS - BOOL & /*variables for modelling FMS_State=det & InputN/=[] &
test application*/ TestN:ran({InputN}<|Cond) & TestN:dom(ComlexTest) &
<safety and gluing invariants> Passed(ComplexTest(TestN)(1))=TRUE &
INITIALISATION Passed(ComplexTest(TestN)(2))=TRUE &
InputN := [] || Input_Error := FALSE ||
Result := TESTS*{TRUE} || Passed(ComplexTest(TestN)(size(ComplexTest(TestN
Input_ErrorN :=[] ||))=TRUE
FMS_State :=env || THEN
cc:=0 || num:=0 || <Execute the complex test — TestN to determine the
Passed := TESTS*{FALSE} values of N sensor readings in Input_ErrorN> ||
OPERATIONS Passed: =TESTS*{FALSE} ||
FMS State:=det
<Obtaining the input from the environment> WHEN
FMS_State=det & InputN =[]
Detection= THEN
SELECT <Vote the input status based on the values in
FMS_State=det & InputN/=[] & Input_ErrorN and calculate the output to
Testl:ran({InputN}<|Cond) & Passed(Test1)=FALSE controller> ||
ITHEN FMS_State:=act
Result(Test1)::BOOL || END;
Passed(Test1):=TRUE || <System action upon detection>
FMS_State: =det END

Figure 9. Excerpt from FMS refinement pattern

In Figure 9 we give the excerpt from the FMS refinement pattern with introduced
error detection mechanism. Observe that the SELECT statement in the Detection
operation of the FMSR1 machine allows us to model random test execution when more
than one branch of the SELECT statement is enabled.

Next we will validate our approach on a case study.

11

4. Case study - an example

The proposed FMS refinement pattern gives the template for the instantiation of a
domain-specific reliable FMS. We validate our approach by an example from the
avionics industry — mechanism for tolerating transient faults of multiple temperature
sensors. These analogue sensors measure the temperature of the aircraft engine and their
values range between -200 and 2000°F. There are five temperature sensors obtaining the
input for the Engine FMS. Hence we set the value of the constant SeqSize in the
machine Global (given in the Appendix) to 5 for this particular example.

REFINEMENT
Instance
REFINES
FMS

OPERATIONS
<obtaining the input from the environment>

Detection=
SELECT
FMS_State=det & InputN /=[] &
Testl:ran({InputN}<|Cond) &
Passed(Test1)=FALSE
THEN IF
(first(InputN)>=Low_Bound-Delta) &
(first(InputN)<=Upp_Bound+Delta)
THEN
Result(Test1):=FALSE
ELSE
Result(Test1):=TRUE
END ||
Passed(Test1):=TRUE ||
FMS_State: =det
WHEN
FMS_State=det & InputN /=[] &
Test2:ran({InputN}<|Cond) &
Passed(Test2)=FALSE
THEN IF
first(Previous)>=first(InputN)
THEN
IF
(first(Previous)-first(InputN))
>Allowed_difference
THEN
Result(Test2): =TRUE
ELSE
Result(Test2):=FALSE
END
ELSIF
first(Previous)<first(InputN)
THEN IF
(first(InputN)-first(Previous))
>Allowed_difference

THEN
Result(Test2):=TRUE
ELSE
Result(Test2):=FALSE
END
END ||
Passed(Test2):=TRUE ||
FMS_State: =det
WHEN
FMS_State=det & & InputN /=[] &
Test3:ran({InputN}<|Cond) & Test3:dom(ComplexTest) &
Passed(ComplexTest(Test3)(1))=TRUE &
Passed(ComplexTest(Test3)(2))=TRUE
THEN
IF
Result(Testl)= Result(Test2) &
Result(Test1)=TRUE
THEN
Input_ErrorN:=Input_ErrorN <- TRUE ||
ELSE
Input_ErrorN:=Input_ErrorN <- FALSE
END ||
InputN:=tail(InputN) ||
Previous: =tail(Previous) ||
Passed: =TESTS*{FALSE} ||
FMS_State:=det
WHEN
FMS_State=det & InputN = []
THEN
IF
card(Input_ErrorN| >{FALSE})>
card(Input_ErrorN| >{TRUE})
THEN
Input_Error:=FALSE ||
<Calculate median of fault free inputs
as the output value>
ELSE
Input_Error:=TRUE
END ||
FMS_State:=act
END;
<system action upon detection>
END

Figure 10. Excerpt from an instance of FMS pattern

The detection of this kind of input implies the application of two simple tests: the
magnitude test and the rate test. In the magnitude test the input is compared against
some predefined limit (bound). If the limit is exceeded then it is considered to be faulty.
The rate test is detecting incorrect input while comparing the change of the input
readings in consecutive cycles. Namely, the current value of the input is compared
against the previous input value and if some predefined limit is exceeded, the input is

12

considered faulty. The excerpt from the resulting machine implementing described tests
is shown in Figure 10. The full specification is given in the Appendix.

It is obvious that both tests have a certain preconfigurations expressed through the
predefined limits which allow dynamic test changes as appropriate. These limits are
defined as constants in the Global machine.

If the input passes the magnitude test, the value of the variable Result(Test1) is set to
FALSE, otherwise to TRUE (i.e., the test on this input failed). Similarly, if the input
passes the rate test, the value of the temporary variable Result(Test2) is set to FALSE,
otherwise to TRUE.

Testl

Testl
= o

T
T
F

~
;ﬂ. N
AN \\\ Input_ErrorN
N
~ ~ N
SR
T W
. S K Redund Input_Error
s N edundancy
>, 2 <>
Test2 L2 NJ test F
¥

InputN

7 N

4 -,
g ’7
-, -,
-, -,
4 -,
) -,
-,
-,
4
‘

]

191
YIZANNN

]

Figure 11. Introducing error detection

The input is fault free if none of these tests fail. Hence we define the status of the input
as the disjunction of Result(Testl) and Result(Test2) and set the variable Input_ErrorN
accordingly. The error detection for multiple sensors (InputN) implies first the
application of magnitude and rate tests. When they are passed, the complex test is
applied. Usually complex test is a redundancy test. We consider N sensor readings,
where N is an odd number (in our example 5). The status of each one of the N sensor
inputs is recorded in the variable Input_ErrorN. The redundancy test performs majority
voting. If the majority of values of Input_ErrorN sequence is TRUE, then the whole input
is considered failed, otherwise it is fault free. As presented on the Figure 11,
redundancy test takes the detected multiple inputs (Input_ErrorN) and based on their
values (TRUE or FALSE) votes for the input status (Input_Error). After the input status is
finally detected, FMS proceeds with the corresponding remedial actions, as specified in
the refinement pattern described previously.

13

5. Conclusion

This paper proposes a formal pattern for specifying and refining a part of the safety-
critical control system — the Failure Management System. We demonstrated how to
ensure that safety requirement — confinement of faulty inputs — stays preserved in the
entire development process.

We derived a general specification of the error detection mechanism which defines
the appropriate tests run on the obtained inputs. Our approach considers inputs obtained
from the homogeneous multiple sensors. However we showed that it can be adapted for
handling inputs from heterogeneous multiple sensors as well.

The proposed error detection mechanism is based on the execution of series of
predefined tests suitable for managing both analogue and boolean inputs. The tests
execution is defined by the layered detection mechanism architecture in such a way that
enables tackling the input anomalies more efficiently.

Laibinis and Troubitsyna have proposed a formal approach to model-driven
development of fault tolerant control systems in B [7]. However, they did not consider
transient faults. Since we consider this type of faults our approach is an extension of the
pattern they proposed.

Development of FMS in UML has been undertaken by Johnson et. al [2]. They
focused on reusability and portability of FMS modelled using UML in combination
with formal methods. The error detection mechanism we proposed is based on a specific
test architecture which combined with the counting mechanism builds the core of our
approach to tolerating the transient faults.

We showed how to instantiate the proposed pattern in a realistic case study. We
verified the instantiation with the automatic tool support used for the pattern
development — Atelier B. The tool support has significantly simplified the development
process and increased our confidence in the correctness of the obtained results. Around
95% of all proof obligations have been proved automatically by the tool. The rest has
been proved using the interactive prover. We believe that the availability of the tool
supporting formal specification and verification can facilitate acceptance of our
approach in industry.

As a future work it would be interesting to implement more sophisticated conditions
for test execution, since now all the required tests are explicitly predefined for each
input.

14

References

[1]
2]

[3]
[4]
[3]
[6]
[7]

[8]

[9]

[10]

[11]
[12]

ClearSy, Aix-en-Provence, France. Atelier B - User Manual, Version 3.6, 2003

I. Johnson, C. Snook, A. Edmunds and M. Butler. “Rigorous development of
reusable, domain-specific components, for complex applications”, In
Proceedings of 3rd International Workshop on Critical Systems Development
with UML, pages pp. 115-129, Lisbon, 2004

J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach, Addison-Wesley, 2000

J.-C. Laprie, Dependability: Basic Concepts and Terminology, Springer-Verlag,
Vienna, 1991

J.-R. Abrial, The B Book: Assigning Programs to Meanings, Cambridge
University Press, 1996

J. R. Abrial. Event Driven Sequential Program Construction, 2001.
http://www.atelierb.societe.com/ressources/articles/seq.pdf

L. Laibinis and E. Troubitsyna. “Refinement of fault tolerant control systems in
B”, In ComputerSafety, Reliability, and Security - Proceedings of SAFECOMP
2004 Lecture Notes in Computer Science, Num: 3219, Page(s): 254-268,
Springer-Verlag, Sep, 2004

MATISSE Handbook for Correct Systems Construction. EU-project MATISSE:
Methodologie and Technologies for Industrial Strength Systems Engineering,
IST-199-11345, 2003.

http://www.esil.univ-mrs.fr/~spc/matisse/Handbook

RODIN - Rigorous Open Development Environment for Complex Systems,
Project Number: IST 2004-511599

http://rodin-b-sharp.sourceforge.net

R. J. Back and J. von Wright, Refinement Calculus: A Systematic Introduction.
Springer-Verlag, 1998

Storey N. Safety-critical computer systems. Addison-Wesley, 1996

S. Schneider, The B Method. An introduction, Palgrave, 2001

15

Appendix

B development of the FMS system

MACHINE Global

SETS STATES = {env, det, act, out, rcv, stop, det_red};
I_STATUS = {ok, suspected, confirmed};
FLAGS = {Normal, Recover};
TESTS={Test1, Test2, Test3}

ABSTRACT_CONSTANTS

T_INPUT, Limit, xx, yy, zz, Low_Bound, Upp_Bound,
Delta, Allowed_difference, SeqgSize, Cond, ComplexTest

PROPERTIES
T_INPUT <: NAT & O:T_INPUT &
Inn.(nn:NAT => nn<2147483645) &
SeqSize:NAT &
lee.(ee:seq(T_INPUT) => size(ee)=SeqSize) &

Limit : NAT &
XX =2 &
yy=1&
zz=8&

Low_Bound : NAT &

Upp_Bound : NAT &

Delta : NAT &

Low_Bound < Upp_Bound &
Allowed_difference : NAT &

Cond : seq(T_INPUT) <-> TESTS &
ComplexTest : TESTS --> iseq(TESTS)

END

16

MACHINE FMS

SEES Global
VARIABLES
Input, Input_Status, Input_Error,
LastGood,
Output,
FMS_State,
cc,num,
Flag
INVARIANT
Input : T_INPUT & Input_Status : I_STATUS &
Input_Error : BOOL &
LastGood : T_INPUT &
Output : T_INPUT &
FMS_State : STATES &
cc : NAT & num : NAT &
Flag : FLAGS &
/* Safety invariants. */
(Input_Status=confirmed => FMS_State=stop) &
(Input_Status=ok=>(cc=0 & hum=0 & Output=Input)) &
(Input_Status=suspected => Output/=Input)
INITIALISATION
Input :: T_INPUT || Input_Status := ok ||
Input_Error := FALSE ||
LastGood := Input ||
Output := Input ||
FMS_State := env ||
cc:=0 || num:=0 ||
Flag := Normal
OPERATIONS

Environment=
SELECT
FMS_State=env

THEN

Input::T_INPUT || FMS_State:=det
END;
Detection=
SELECT

FMS_State=det
THEN

Input_Error::BOOL || FMS_State:=act
END;

17

Action=
SELECT

FMS_State=act & Input_Error=FALSE & Flag=Normal
THEN

Input_Status:=ok ||

FMS_State:=out
WHEN

FMS_State=act & Input_Error=TRUE & Flag=Normal
THEN

Flag:=Recover ||

cc:=cc+xx ||

num:=num+1 ||

FMS_State:=rcv
WHEN

FMS_State=act & Input_Error=FALSE & Flag=Recover
THEN

cc:=cc-yy ||

num:=num-+1 ||

FMS_State:=rcv
WHEN

FMS_State=act & Input_Error=TRUE & Flag=Recover
THEN

cc:=cc+xx ||

num:=num+1 ||

FMS_State:=rcv
END;

Recovering=
SELECT
FMS_State=rcv & Flag=Recover &
(num>=Limit or cc>=zz)
THEN
Input_Status:=confirmed ||
FMS_State:=stop
WHEN
FMS_State=rcv & Flag=Recover & num<Limit & cc=0
THEN
Input_Status:=ok ||
FMS_State:=out
WHEN
FMS_State=rcv & Flag=Recover &
num<Limit & cc/=0 & cc<zz
THEN
Input_Status:=suspected ||
FMS_State:=out
END;

18

Return=
SELECT
FMS_State=out & Flag=Normal & Input_Status=o0k
THEN
LastGood:=Input ||
Output:=Input ||
FMS_State:=env
WHEN
FMS_State=out & Flag=Recover &
Input_Status=suspected
THEN
Output:=LastGood ||
FMS_State:=env
WHEN
FMS_State=out & Flag=Recover & Input_Status=o0k

THEN
LastGood:=Input ||
Output:=Input ||
Flag:=Normal ||
num:=0 ||
FMS_State:=env

END;

Stopping=

SELECT
FMS_State=stop

THEN
skip

END

END

19

REFINEMENT Instance

REFINES

SEES

FMS

Global

ABSTRACT_VARIABLES

Input, InputN,

Input_Status, Input_Error,
Result, Input_ErrorN,
LastGood, Previous, Current,
Output,

FMS_State,

cc, num,

Flag,

Passed,

sum, counter

INVARIANT
Input : T_INPUT & InputN : seq(T_INPUT) &
Input_Status : I_STATUS & Input_Error : BOOL &
Result : TESTS - BOOL & Input_ErrorN : seq(BOOL) &
LastGood : T_INPUT & Previous : seq(T_INPUT) &
Current : seq(T_INPUT) &
Output : T_INPUT &
FMS_State : STATES &
cc : NAT & num : NAT &
Flag : FLAGS &
Passed : TESTS - BOOL &
sum:NAT & counter:NAT &
/* Safety invariants. */
(Input_Status=confirmed => FMS_State=stop) &
(Input_Status=ok=>(cc=0 & num=0 & Output=Input)) &
(Input_Status=suspected => Output/=Input) &
(Input_Error=TRUE =>(card(Input_ErrorN|>{TRUE?})
>card(Input_ErrorN|>{FALSE}))) &
(Output=LastGood=>
Input_Error=TRUE & Input_Status/=suspected)
INITIALISATION

Input := 0 || InputN :=[] ||

Input_Status := ok || Input_Error := FALSE ||

Result := TESTS*{TRUE} || Input_ErrorN := [] ||
LastGood := Input || Previous:=[] || Current:=InputN ||
Output := Input ||

FMS_State := env ||

cc:=0 || num:=0 ||

Flag := Normal ||

20

Passed := TESTS*{FALSE?} ||
sum:=0 || counter:=0

OPERATIONS

Environment=

SELECT
FMS_State=env & Flag=Normal

THEN
Previous:=Current;
InputN::seq(T_INPUT);
Current:=InputN;
FMS_State:=det

END;

Detection=
SELECT
FMS_State=det & InputN /=[] &
Testl:ran({InputN}<|Cond) &
Passed(Testl)=FALSE
THEN
IF
(first(InputN)>=Low_Bound-Delta) &
(first(InputN)<=Upp_Bound+Delta)
THEN
Result(Testl):=FALSE
ELSE
Result(Testl):=TRUE
END |[]
Passed(Test1):=TRUE ||
FMS_State:=det
WHEN
FMS_State=det & InputN /=[] &
Test2:ran({InputN}<|Cond) &
Passed(Test2)=FALSE

THEN
IF
first(Previous)> =first(InputN)
THEN IF
(first(Previous)-first(InputN))>Allowed_difference
THEN
Result(Test2):=TRUE
ELSE
Result(Test2):=FALSE
END
ELSIF
first(Previous) <first(InputN)
THEN IF
(first(InputN)-first(Previous))>Allowed_difference
THEN
Result(Test2):=TRUE
ELSE

21

Result(Test2):=FALSE
END
END ||
Passed(Test2):=TRUE ||
FMS_State:=det
WHEN
FMS_State=det & Test3:ran({InputN}<|Cond) &
Test3:dom(ComplexTest) &
Passed(ComplexTest(Test3)(1))=TRUE &
Passed(ComplexTest(Test3)(2))=TRUE
THEN
IF
Result(Testl)=Result(Test2) & Result(Test1l)=TRUE
THEN
Input_ErrorN:=Input_ErrorN <- TRUE ||
sum:=sum-+first(InputN) ||
counter:=counter+1
ELSE
Input_ErrorN:=Input_ErrorN <- FALSE
END ||
InputN:=tail(InputN) ||
Previous:=tail(Previous) ||
Passed:=TESTS*{FALSE} ||
FMS_State:=det
WHEN
FMS_State=det & InputN = []

THEN
IF
card(Input_ErrorN|>{FALSE})>
card(Input_ErrorN|>{TRUE})
THEN
Input_Error:=FALSE ||
Input:=sum/counter
ELSE
Input_Error:=TRUE
END ||
sum:=0 ||
counter:=0 ||
FMS_State:=act
END;
Action=
SELECT
FMS_State=act & Input_Error=FALSE & Flag=Normal
THEN

Input_Status:=ok ||

FMS_State:=out
WHEN

FMS_State=act & Input_Error=TRUE & Flag=Normal
THEN

Flag:=Recover ||

cc:=cc+xx ||

22

WHEN

THEN

WHEN

THEN

END;

num:=num+1 ||
FMS_State:=rcv

FMS_State=act & Input_Error=FALSE & Flag=Recover
cc:=cc-yy ||

num:=num+1 ||

FMS_State:=rcv

FMS_State=act & Input_Error=TRUE & Flag=Recover
cc:=cc+xx ||

num:=num+1 ||
FMS_State:=rcv

Recovering=
SELECT

THEN

WHEN

THEN

WHEN

THEN

END;

FMS_State=rcv & Flag=Recover &
(num>=Limit or cc>=zz)

Input_Status:=confirmed ||
FMS_State:=stop

FMS_State=rcv & Flag=Recover & hum<Limit & cc=0

Input_Status:=ok ||
FMS_State:=out

FMS_State=rcv & Flag=Recover &
num<Limit & cc/=0 & cc<zz

Input_Status: =suspected ||
FMS_State:=out

Return=
SELECT

THEN

WHEN

THEN

WHEN

THEN

FMS_State=out & Flag=Normal & Input_Status=o0k
LastGood:=Input ||

Output:=Input ||

FMS_State:=env

FMS_State=out & Flag=Recover & Input_Status=suspected

Output:=LastGood ||
FMS_State:=env

FMS_State=out & Flag=Recover & Input_Status=o0k

LastGood:=Input ||

23

END

Output:=Input ||

Flag:=Normal ||

num:=0 ||

FMS_State:=env
END;

Stopping=
SELECT
FMS_State=stop
THEN
skip
END

24

TURKU

CENTRE for

COMPUTER
SCIENCE

Lemminkaisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

)

M ,// University of Turku
— ¢ Department of Information Technology
N .

7] “\\ e Department of Mathematics

Abo Akademi University
¢ Department of Computer Science
e Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
¢ Institute of Information Systems Sciences

ISBN 952-12-1573-9
ISSN 1239-1891

