
Johanna Tuominen | Juha Plosila

Formal Energy Estimation Framework

TUCS Technical Report
No 696, June 2005

Formal Energy Estimation Framework

Johanna Tuominen
Turku Centre for Computer Science
Lemminkäisenkatu 14 A, 20520 Turku, Finland
joeltu@utu.fi

Juha Plosila
University of Turku, Dept. of Information Technology
Lemminkäisenkatu 14-18 A, 20520 Turku, Finland
juplos@utu.fi

TUCS Technical Report

No 696, June 2005

Abstract

Conventionally, the correctness of functional and non-functional properties of
hardware components is ensured during the design process bysimulation. Fur-
thermore, different description languages are needed during the design process.
By adopting the Action Systems, we are able to use the same formalism from
specification down to implementation. In this paper, we introduce a formal en-
ergy estimation framework for hardware components. Moreover, we demonstrate
the formal energy estimation by using example system descriptions.

Keywords: Action Systems, energy consumption, formalism

TUCS Laboratory
Communication Systems

1 Introduction

Formal methods provides an environment to design, analyze,and verify digital
hardware with the benefits of rigorous mathematical basis. In this study, the Ac-
tion Systems formalism is applied [1]. It is a framework for specification and
correctness preserving development of concurrent systemsand it is based on an
extended version of Dijkstra’s language of guarded commands [9]. Development
of the action system is done in a stepwise manner within the refinement calculus
[2]. The specification of a hardware system is transformed into an implementa-
tion using correctness preserving transformations. In conventional Action Sys-
tems, only the logical correctness of the system is verified,while non-functional
properties, like time, power and area, are not validated. The Action Systems for-
malism has been proved to be suitable for designing both synchronous [14], and
asynchronous [13] systems.

In this study, we introduce a framework for energy estimation within the Ac-
tion Systems context. By adopting this framework, we are able to formally ana-
lyze the energy consumption of the hardware system, using precise mathematical
calculations, during the development phases from the specification down to im-
plementation. In this paper, we define a formal model for energy estimation, that
is applicable for both synchronous and asynchronous systems. The functionality
of the model is illustrated using example system specifications.

Overview of the paper. We proceed as follows. In Section 2, we shortly de-
scribe the properties of the Action Systems formalism. Section 3 concentrates on
the semantics of the energy consumption modeling. The formal energy consump-
tion model is presented in Section 4. Section 5 shows, how theformal model is
applied into example systems. Finally, in Section 6, we drawsome conclusions.

2 Action Systems

The Action Systems formalism is a state-based formalism for concurrent sys-
tem specification and correctness-preserving development[2, 4]. Based on an
extended version of the guarded command language of Dijkstra [9]. It has the
Refinement Calculus as the mathematical basis for disciplined derivation [3].

2.1 Actions

An action A is defined (for example) by

A ::= abort (abortion, non − termination)
| skip (empty statement)
| A1[] ... [] An (non − deterministic choice)
| x := e ((multiple) assignement)
| g → A (guarded command)

1

whereAi, i = 0, ..., n, are actions;x is a variable or a list of variables;x0

is a value(s) of the variable(s);e is an expression or a list of expressions; g is a
predicate.

Semantics of actions. Action is considered to be atomic, which means that
only the initial and final states are observed by the system. Thus, when selected
for execution, the action is completed without any interference from other actions.
Atomic actions may be represented by simple assignments or by more complex
action compositions, such as the atomic sequence.

The actions are defined using weakest precondition for predicate transformers
[9]. For instance, the correctness of an actionA with respect to predicatesP and
Q (precondition and postcondition) is denoted by:

{P}A{Q} = P ⇒ wp(A, Q)

Herewp(A, Q) is the weakest precondition for the actionA to establish the
postconditionQ. Theguard gA of an actionA is defined bygA = ¬wp(A, false).
An action is enabled when its guard evaluates totrue, otherwise disabled.

Quantified Composition of actions is defined by[•1 ≤ i ≤ n : Ai]=̂A1... •
... • An, where the bullet• denotes any of the composition operators, andn is a
number of actions(n ∈ N).

2.2 Action System

An action system has a form:

sys Name(g) [par]
|[
type t
const c
var v
actions A
init “initialization of the variables g and v“
exec
do “composition of actions A′′ od
]|

Three different parts can be identified from the action system description:
interface, declarations, anditeration.

The interface part specifies global variablesg, that is, variables that are visible
outside the action system. In other words, global variablesare accessible by other
action systems. If an action system does not have any interface variables, it is
a closed action system otherwise it is anopen action system. The declaration
part consists of type(t), variable(v), constant(c), and action(A) declarations.
Furthermore, type definitions and initializations are described in the declaration
part. Using the items introduced in the interface and declarative parts the operation
of the system is described in the iteration section;in thedo − od loop.

2

The operation of an action system is started by initialization in which the vari-
ables are set to predefined values. Actions are selected for execution based on the
composition operators and the enabledness of the actions. The operation is con-
tinued until there are no actions to enable, which temporarily aborts the system.
Thus, the operation continues if some action enables it.

Parallel Action SystemsThe parallel behavior of the actions is defined by the
non-deterministic choice. Thus, this requires that the twoactions can be enabled
simultaneously and that they do not have any read-write conflicts. In other words,
an action does not read variables onto which another action writes. Consider two
Action SystemsA andB, the parallel composition of the systems, denotedA || B
is:

sys A || B (gAn
∪ gBn

)
|[
var lAn

∪ lBn

actions An, Bn

init gAn
, gBn

, lAn
, lBn

= gAn
0, gBn

0, lAn
0, lBn

0
exec
do An [] Bn od
]|

Thus, the parallel composition combines the global variables as setgAn
∪ gBn

while keeps the local variables distinct:lAn
∩ lBn

= ∅.

3 Towards a Formal Energy Consumption Model

The design flow for the formal energy estimation framework isintroduced in this
section. At first, we describe the energy consumption of the CMOS gate shortly.
Then, we concentrate on switching activity estimation by using the Muller C el-
ement as an example [7]. Finally, we introduce an overview ofthe design flow,
which lays the foundation for the formal energy consumptionmodel.

3.1 Energy

The amount of energy dissipated by the CMOS logic gate each time its output
changes is roughly equal to the change in energy stored in thegate’s output ca-
pacitance. Thus, the well known formula for energy consumption is:

E =
∑

gates

1

2
· Cgateload · V

2

dd · n (1)

where then stands for a switching activity estimate or the number of gate
switches during a discrete time period.

3

3.2 Switching Activity Estimation - C Element

A C element is a commonly used asynchronous circuit component [7] (originally
described in the pioneer work of David Muller). The component produces ’1’
as an output if all of its inputs are ’1’, and produces an output of ’0’ when all
of its inputs are ’0’. For all other input combinations, the component holds its
previous value. The state diagram and graphical symbol of two input C element
is illustrated in Figure 1.

v
0
0
1
1

0

0
1

1

0

1

v
v

C

yx

y

v

x

Figure 1: Muller C-element

The operation of the C element can be described using Action Systems for-
malism, for instance, as follows:

sys C (x, y, v : bool)
|[
actions C1 : x ∧ y → v := T

C2 : ¬x ∧ ¬y → v := F
C3 : ¬x ∧ y ∨ x ∧ ¬y → v := v

init x, y, v = F
exec
do C1 []C2 []C3 od
]|

To estimate the energy consumption of the C element, we definethat the time
periodT of which the switching activity is captured, is discrete. Moreover, the
time periodT can be divided into sub periods:t, t + 1, ..., t + l. Thel is defined
as an unit delay between consecutive transitions. The timet is the first time when
there is change either from ’0’ to ’1’ or ’1’ to ’0’, and thet + 1 describes the
second transition, and so on. The timet + l is granted for the last transition under
estimation, and(t+ l ∈ N). This timing estimation model is a simplification from
the unit delay model presented in [10].

By adopting the timing definition above, we assume that the C element is
executed as follows:

...x ∧ y,¬x ∧ ¬y,¬x ∧ y...

Since, the system description is quite straightforward we can define the switch-
ing activityn, as shown in Figure 5.

4

x

y

v

time

Figure 2: Transitions of C element during time period T

Consider the execution sequence, shown in Figure 5, we can define the order
of the transitions by:

...(x, y,¬v, t), (x, y, v, t + 1), (¬x,¬y, v, t + 2), (¬x,¬y,¬v, t + 3),
(¬x, y,¬v, t + 4), (¬x,¬y,¬v, t + 5)...

Thus, at timet, the inputsx andy have a transition from ’0’ to ’1’. Next, at
time t + 1 the outputv is set to ’1’ etc.

3.2.1 Signal Transition Graph (STG)

STGs are a particular type of labeled Petri Nets, where the transitions are associ-
ated with the changes in the values of binary variables [6]. These variables can
for instance be associated with wires, when modeling interfaces between blocks,
or with input, output, and internal signals of a control circuit.

A timing diagram, shown for instance in Figure 5, specifies the events of a
behavior and their causality. An STG is a formal model for this type of specifica-
tions [6]. In its simplest form, an STG can be considered as a causality graph in
which each node represents an event and each arc a causality relation. Moreover,
an STG can model all possible dynamic behaviors of the system. This is the role
of the tokens held by some of the causality arcs. Anevent is enabled when it has
at least one token on each input arc. The enabled event canfire, which means
that the event occurs. Thus, when the event fires, the token isremoved from each
input arc of the event, and put on each output arc. In other words, firing of a event
produces the enabling of another event. In the specificationrepresent the initial
state of the system.

As an example, we re-define the possible transitions of the Muller C element
by using STG [6]. The Actions Systems description of the C element is presented

5

in the previous subsection, the timing diagram is shown in Figure 5, and the cor-
responding STG presentation is shown in Figure 3. Rising andfalling transitions
of a signal are represented by the suffixes+ and−, respectively.

�
�
�
� �

�
�
�

+
v

+
y

+
x

v
−

−
y

−
x

Figure 3: STG specification of the Muller C element

From the STG, not only we can see all possible transitions of the action system
C, but also the potential parallel transitions. For instance, from Figure 3, we can
notice that the parallel input transitions from ’0’ to ’1’ results ’1’ as an output.
This assumption leads to a worst-case energy estimate for the C-element.

3.2.2 Petri Nets

Petri Nets have an abstract view of the events and states in the system, with-
out considering their binary encoding. They are a promisingtool for describing
and studying systems, that are characterized as being concurrent, asynchronous,
distributed, parallel, non-deterministic, and/or stochastic [12]. The dynamic and
concurrent behavior of the systems are modeled by using tokens. An example
transformation from Action Systems description to the Petri Net description is
shown in the case study presented in next section.

3.3 Estimation Flow

In conclusion, we can define an energy estimation flow from thetopics discussed
in this section, shown in Figure 4. The formal energy model isspecified according
to the design flow presented.

At first, we define a time domainT, which is represented using positive real
numbers(T ∈ R+). The time domain is assumed to be continuous(∀t1, ∃t2, (t1 >
t2) [8]. For the energy estimation, we define a discrete time period Td, which
is part of the time domainT, (Td ∈ T). Thus, we describe the periodTd by:
< t, t+1, ..., t+ l >, where thel is called as a unit delay between two consecutive
transitions, and (t, l ∈ R+). The periodTd is therefore defined to be continuous:
]t, t+1, ..., t+ l]. The time values< t, t+1, ..., t+ l > are called as time stamps,
and the purpose of these stamps is to determine the order of transitions in the

6

Petri Nets /
Signal Transition Graph

Energy Estimate

Switching Activity

Time stamps
Execution sequence

Action Systems
Description

Figure 4: Energy estimation flow for Action Systems

system. Thus, the first transition(s) have time stampt, the second one(s) have
time stampt + 1, etc. Thet + l is granted for the last transition under the time
periodTd. Notice that, parallel transition share the same time stampvalue. This
timing model is a simplification from the unit delay model presented in [10].

Consider an arbitrary actionA. For the given execution sequence, we define
the switching activity per time stamp by using Petri nets1 [6]. Signal transition
graphs (STG) were also considered, but they use is restricted to systems that are
modeled by using boolean variables. Of course, we can apply the STG descrip-
tion to model some subsystem or communication channel from alarger entity.
According to the time stamp, we generate a transition table,where the rows are
indexed by the time stamps and the columns are indexed by the the input / output
signals of the system. Thus, the input / output signals meansthe global variables
of the system in this context. The time stamps in transition table are in increasing
order (tsi ≤ tsi + 1). The transition table is used as a parameter for the energy
estimation action.

After we have defined the switching activity for the actionA at time period
Td, we can estimate the energy consumption. At first, we define the energy con-
sumption per time stamp, for instance at timet:

1The reader is assumed to be familiar with the basic semanticsof the Petri net.

7

EA(t) =
1

2
· V 2

dd · CA · nA (2)

where theCA is the total node capacitance of the actionA, n is the transition
count of the actionA at time t. In a similar manner we can define the energy
consumption at timet + 1 by taking the transition countnA at timet + 1, etc.

The energy values per time stamps are added together, and as aresult we have
the energy estimateEA(Td) for the time periodTd.

EA(Td) = EA(t) + EA(t + 1) + ... + EA(t + l) =

n∑

l=0

EA(t + l), (n ∈ N) (3)

4 Formal Framework for Energy Consumption Es-
timation

At first we define the functionality of the energy update action by using pseudo
language description. This description is used as a guideline to the definition of
the formal energy model.

4.1 The Energy Estimation Procedure

The energy estimate is calculated under discrete time period (Td ∈ T), which is
divided into sub periods, denoted astime stamps: ((t, t +1, ..., t+ l) ∈ Td). The
first transition in input / output signals of the system is granted by the time stamp
t, the second transition is granted by the time stampt + 1, and so on. The granted
time stamps are collected into a time stamp vectorts. Thus, the transition count
needed for the energy estimation is calculated by monitoring the switching activity
of the input/output signals of the system under investigation. Therefore, we define
a transition table, where the rows are indexed by the time stamps ts[i] and the
columns are indexed by the input / output signals. For a givenexecution sequence,
the transition table can be read from the systems STG description. The estimation
procedure receives two parameters: time stamp vectorts and the transition table
trt.

For the switching activity calculation, we define two variables of typevector,
previous state,pstate, and current state,cstate. At the initialization phase the
previous state variable is set to zero. The initial value of current state vector is
read from the first row of the transition table.

Energy Estimation Procedure:

variables

ts[i] (action specific time stamp)

8

ct (current time stamp under evaluation)
cstate[j] (system specific current state vector)
pstate[j] (system specific previous state vector)
s[i] (the difference between transitions in previous stateand current state)
n(i) (the total transition count of the system during discrete time periodT)
nos (number of signals in the system)

– 1
init

cs = t;
nos = signal count;
j=0;
k=0;

for j ≤ nosdo
pstate[j] = 0;
s[j] = 0;
j = j + 1 endfor

– 2
for every action A(i)do

j,k=0,0;
if ts[l] = ct then

tr(ts[l], j);
for k ≤ nosdo

s[k] = cstate[k] - pstate[k];
k= k + 1;

endfor
else

– 3

ct = ct + 1;
n[l] = n[l]+(

∑nos

t=1
s[t]);

pstate[] = cstate[];
l=l+1;

endif
endfor

– 4
procedure tr(ts[l], j)

for j ≤ nos;do
cstate[j] = transitionTable[ct, j];
j=j+1;

endfor
endprocedure

9

The current time stamp variablect is initialized to t, which is the first time
value of the periodTd when transition occurs (1). Thus, the current time stamp is
then compared with the system specific time stampsts[i] (2). If the time stamps
are equal, we calculate the transition count by comparing the current state variable
cstate to the previous state variablepstate. The result is stored into the result vec-
tor s[i]. Transition activity for the energy estimation is then calculated by adding
the states ’1’ together from the result vectors[i] (3). After that, the current time
variablect is increased by one, and the current state at timet becomes previous
state at timet + 1. The value of the new current state is read from the transition
table using the proceduretr (4). Finally, we can calculate the energy estimate
according to the equations 2 and 3.

4.2 Formal model for energy consumption

According to the pseudo language description of the energy estimation procedure,
we define a formal model for the energy estimation.

4.2.1 Behavior

Behavior of an action system is a sequences of states with two components [4]:
s =< (l1, g1), (l2, g2), ... >, whereli and gi (i ∈ N) are the states of the lo-
cal and global variables, respectively. We can define the behavior of the actions
with the energy estimation property as a sequencee : e =< (l1, g1, ts1, tc1),
(l2, g2, ts2, tc2), ... >, where thetsi denotes the time when there was a change
in state,tsi ≤ tsi+1. The variabletci describes the transitions at timetsi. Thus
we introduced two new variables into the sequences. These variables carry the
information related to timing and switching activity.

A trace, a sequence of observable states, in the Action Systems is formed by
removing all the local variables from the states in the sequences, and then re-
moving all the consecutive states that are identical, called stuttering states [4].
A trace is formed using the same procedure except that the time and energy vari-
ables, which are local variables, are not removed. Therefore, from the time stamps
tsi, we can form a trace that describes the transition activity of the system during
during that time. Moreover, we can illustrate the development in the energy con-
sumption per eachtime stamp.

4.2.2 Formal model for the energy estimation procedure

Consider an action systemA with the followingdo − od-loop:

do [[] 1 ≤ i ≤ n : Ai] //Eu od

whereAi has a form

Ai = Ai,p []Ai,t []Ai,c

10

whereAi,p performs aprocedure call, Ai,t calculates thetransition count,
andAi,c is acount action. The actions are defined by:

Ai,p : ¬bi ∧ gA → tri(tsi[l]); bi := T ;
Ai,t : bi ∧ gA → bi, ni, l := F, |(

∑nos

k=1
cstatei[k]) − (

∑nos

k=1
pstatei[k])|, l + 1

Ai,c : ¬bi ∧ ¬gA → ct, pstatei, l, := ct + 1, cstatei, l + 1,

wherei is the number of actions,i∈N. The guardgA is defined by:gA =̂ ct =
ts[l]∧ l ≤ n, which is used, together with the boolean variablebi, to sequence the
operation of the actions into three parts. The guard is settrue at the initialization
phase, where the current time variablect is set tot. Moreover, the index variable
l is set to0, which reads the first value from the time stamp vector, and returns the
valuet. The second condition is alsotrue at the initialization phase, and becomes
false when the last celln − 1 time stamp vectorts is read. Thus, it is an end
constraint.

The state variables: current statecstate, and the previous statepstate are
defined as of type vector. The length of the vector depends on the system specific
constantnos that describes the number of signals in the system under evaluation,
thus the length isnos.

The energy estimation procedure receives two parameters: the transition table
trt and the time stamp vectorts. The transition table is defined by:trt[0..n −
1][0..m − 1], where(n, m ∈ N). The transition tabletrt is read by the action
Ap through a procedure calltr, which returns the new value of the current state
variablecstate. Thus, the proceduretr is defined by:

proc tr(ts[l]) : (cstate := trt[ts[l], 1..nos − 1])

We define that the rows of the transition tabletrt are indexed by the time
stampsts[l], and the columns are indexed from0 to nos − 1. Notice that the first
value of the column is the time stamp, and therefore we exclude it from the state
variable (cstate). The guards in the Action Systems description are embeddedin
the transition table for the energy estimation model.

At the initialization phase, the guardgA is set totrue, and the boolean variable
is set tofalse. The actionAp performs the procedure call, which returns the new
value of the current state variablecstate. Notice that, this value is read from
the transition table, which is defined according to the givenexecution sequence.
Moreover, it sets the boolean variablebi to true. When both; the guardgA and
the variablebi evaluates totrue, the transition countn per time stampts[l] is
calculated (by actionAt). For instance, assuming that the current time stamp is
t+1, then the transition count is calculated by comparing the current state at time
t + 1 to the previous state at timet. The result is then stored into the transition
count variablen. Then thecount action (Ac) increases the current time variable
ct by the amount of unit delay. The operation of these three actions(Ap, At, Ac) is

11

repeated until there is no new time stamp values in the time stamp vectorts, thus
the guardgA becomesfalse.

The actionEu is defined as anupdate action. It counts the energy estimate
according to the transition countn.

Eu=̂[[]1 ≤ i ≤ n : Ee,i = Ek,i · ni]

whereEk,i = 1

2
Ci · V

2
dd andi is the number of actions, (n ≥ 1 ∧ n ∈ N).

In order to prevent complex descriptions, we define a shorthand notation for
the energy update action:

[[] 1 ≤ i ≤ n : Ai[tsi, trti]]=̂[[] 1 ≤ i ≤ n : (Ap,i [] At,i [] Ac,i //Eu)]

wheretsi is the time stamp vector and thetrti is the transition table of the
given Action SystemAi.

Composition of Action Systems with energy estimation property. Consider
two actionsAn andBn with the energy estimation property. These two actions
have distinct local variables,lAn

∩ lBn
= ∅, and the global variables are a set,

gAn
∪ gBn

. We require that the initialization of the global variablesgAn
∪ gBn

in the systemsA andB are consistent with each other, and therefore the initial
values are equivalent in the systems.

The functionality of the two parallel systems is specified bythe actionsAn[tsAn
, trtAn

]
andBn[tsBn

, trtBn
], respectively. The parallel composition ofA andB is:

sys A||B (gAn
∪ gBn

)
|[var lAn

∪ lBn
: natural

init gAn
, lAn

, gBn
, lBn

:= gAn
0, lAn

0, gBn
0, lBn

0
exec
do An[tsAn

, trtAn
][]Bn[tsBn

, trtBn
] od

]|

whereAn[tsAn
, trtAn

] andBn[tsBn
, trtBn

] is according to definition:(Ap [] At[] Ac)
[](Bp [] Bt[] Bc)//Eu. Notice that the composition of the actions systems combines
the state spaces of the constituent action systems, merges the update actionsEu

by unifying the local energy and time variables.

5 Component Modeling

In this section, the functionality of the formal energy estimation model is illus-
trated. At first, we use the the formal energy model to the Muller C element,
which was discussed in Section 3. Then, we consider case whenthe example
system is an asynchronous Action System. Furthermore, the same system is de-
scribed synchronously. Finally, the results are compared.

12

5.1 C element

The action system description of the C element is shown in Section 3. Next, we
include the energy estimation action into the the system specification.

sys C (x, y, v : bool)[tsc, trtc] |[
constnos : 3
actions C1 : x ∧ y → v := T

C2 : ¬x ∧ ¬y → v := F
C3 : ¬x ∧ y ∨ x ∧ ¬y → v := v

init x, y, v, tsc0 = F, F, F, t
exec
do C1[tsc, trtc] []C2[tsc, trtc] []C3[tsc, trtc] od
]|

where the constantnos is the number of signals in the system. Thus, in this
Action System, the value of the constantnos is three. Moreover, the system re-
ceives the time stamp vectorts and the transition tabletrt as parameter. The
iteration part by definition is:

C1 []C2 []C3 =̂(C1p [] C1t [] C1c)
(C2p [] C2t [] C2c)
(C3p [] C3t [] C3c) //Eu

Lets assume the following execution sequence:

...(x ∧ y), (¬x ∧ ¬y), (x ∧ ¬y)...

For the given execution sequence, we define the order of the events according
to the STG presented in Section 3.

...(x, y,¬v, t), (x, y, v, t + 1), (¬x,¬y, v, t + 2), (¬x,¬y,¬v, t + 3), (x,¬y,¬v, t + 4)...

At time t the signalsx, andy have transition from ’0’ to ’1’, and at timet + 1
the output signalv of the C element has transition from ’0’ to ’1’, and so on. For
the energy estimation procedure, we define a transition table for each time stamp,
which is shown in Table 1.

Table 1: Transition tabletrtc
Time stamp (ts[i]) x y v

init. 0 0 0
t 1 1 0

t+1 1 1 1
t+2 0 0 1
t+3 0 0 0
t+4 1 0 0

By re-writing the execution sequence:

13

...C1, C1p, C1t, C1c, Eu,
C1, C1p, C1t, C1c, Eu,
C2, C2p, C2t, C2c, Eu,
C2, C2p, C2t, C2c, Eu,
C3, C3p, C3t, C3c, Eu...

At first, the action C1 is enabled followed by the energy estimate actions
(C1p, C1t, C1c, Eu). Then, at timet + 1 the outputv is set to ’1’, and therefore
the same sequence (C1p, C1t, C1c, Eu) is repeated. The energy estimate action
compares the previous state vector to the current state vector, pstate = [1, 1, 0]
and thecstate = [1, 1, 1]. Therefore, it calculates the transition count at timet+1
to be one(n[i] = 1). Next, the actionC1 is disabled and the actionC2 is enabled.
Again the transition count calculation is two phase procedure, just as it was with
the actionC1. Finally, theC2 is disabled and the action actionC3 is enabled.

The observable behavior of the C element is illustrated in trace, which is
formed by collecting the states of the global variables and the state of the energy
variable.

trC = (¬x,¬y,¬v, 0)
(x, y,¬v, 2Ek)
(x, y, v, 2Ek + Ek)
(¬x,¬y, v, 3Ek + 2Ek)
(¬x,¬y,¬v, 5Ek + Ek)
(x,¬y,¬v, 6Ek + Ek)

The graphical representation of the trace is shown in Figure5, where theEk =
1

2
· V 2

dd · Cc. The capacitanceCc is the total node capacitance of the C element.

t+4

time

a) b) c) d) e)

a) 2E

b) 2E + E

c) 3E + 2E

d) 5E + E

e) 6E + E

k

k

k

k

k

k

k

k

k

t+3t t+1 t+2

Figure 5: Transition diagram from the tracetrc

The energy consumption estimate is then calculated according to the equations
2 and 3. For simplicity, we use theEk notation for the technology dependent
parameters, and therefore the total energy consumption estimate for the systemC
at time periodT is:

14

Ec[T] = 2Ek + Ek + 2Ek + Ek + Ek ≈ 7Ek

We can approximate the energy estimate to beEc(T) ≈ 7Ek, because we
are estimating the power consumption of an one C element gate. Notice that, if
there were larger system description under investigation,The node capacitance
per action may vary significantly. Therefore, the capacitances should be counted
separately for each action before the addition operation.

5.2 Asynchronous computation

Consider the systemSAsync below:

sys SAsync (dv, rw, din, dout, v : bool, bvec, bvec, bvec)
|[
type bvec : (0, ..., n − 1)
init dv, rw, v, din, dout := F, T, ”00”, ”00”, ”00”
actions S1 : dv ∧ rw → v, rw := f(din), F

S2 : dv ∧ ¬rw → dout, rw, dv := v, T, F
exec
do S1 [] S2 od
]|

where the actionS1 is a write action, and the actionS2 is a read action. Thus,
the actionS1 evaluates the value of the functionf according to the value of the
inputdin. The new value of the functionf is then stored into the register variable
v. The actionS2 reads the register variablev and transfers the value to the output
dout.

The data valid signaldv is settrue to notify the system that there is new data
to process. In other words, it operates as an request signal from the environment.
After the read / write cycle is completed the data valid signal is set tofalse, which
will notify to the environment that the system is in idle state and ready to process
new data.

The input and output data signalsdin, dout are defined as of type binary vector
bvec. The length of the vector is defined by:(0, ..., n− 1), where(n ∈ N). In this
example, then = 1, and the following values are applied to the input signaldin =
”01”, ”11”. Furthermore, to capture the transition activity of the vector signals
properly, we model them as a separate signal, i.e. the input signaldin is modeled
asdin1, anddin0. Therefore, the number of signals is eight (nos = 8). Thus, the
action system description of the systemSAsync with the energy estimation property
is:

15

sys SAsync (dv, rw, din, dout, v : bool, bool, bvec, bvec, bvec)[tsA, trtA]
|[
const nos : 8
type bvec : (0, ..., n − 1)
init dv, rw, v, din, dout := F, T, ”00”, ”00”, ”00”
actions S1 : dv ∧ rw → v, rw := f(din), F

S2 : dv ∧ ¬rw → dout, rw, dv := v, T, F
exec
do S1[tsA, trtA] [] S2[tsA, trtA] od
]|

The iteration part by definition is:

S1 [] S2 =̂ (S1p [] S1t [] S1c)
(S2p [] S2t [] S2c) //Eu

dvt

rwf

dvt

rwt

rwt

dvf

OV

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

Figure 6: Petri net description from the systemtAsync

The transition table for the systemSAsync is generated according to the Petri
net description, shown in Figure 6. The read / write signal isset totrue (rwt) at
the initial state, and when the data valid signal is set totrue by the environment
(dvt), the eventv becomestrue. In other words, the evaluated input data is written
into the register. Similarly, when the read / write (rwf) variable becomesfalse,
the output event becomestrue. Then, the system returns to the initial state, and
waits until the request signal (data valid) becomestrue again. The transition table
is shown in Table 2.

Thus, the execution sequence is:

...S1, S1p, S1t, S1c, Eu,
S1, S1p, S1t, S1c, Eu,
S2, S2p, S2t, S2c, Eu,
S2, S2p, S2t, S2c, Eu,
S1, S1p, S1t, S1c, Eu,
S1, S1p, S1t, S1c, Eu,
S2, S2p, S2t, S2c, Eu,
S2, S2p, S2t, S2c, Eu...

The tracetrAsync for the systemSAsync is then illustrated below:

16

Table 2: Transition tabletrtA for systemSAsync

Time stamp (ts[i]) dv rw v1 v0 din1 din0 dout1 dout0
init. 0 1 0 0 0 0 0 0

t 1 1 0 0 0 1 0 0
t+1 1 1 0 1 0 1 0 0
t+2 1 0 0 1 0 1 0 1
t+3 0 1 0 1 0 1 0 1
t+4 1 1 0 1 1 1 0 1
t+5 1 1 1 1 1 1 0 1
t+6 1 0 1 1 1 1 1 1
t+7 0 1 1 1 1 1 1 1

trAsync = (¬dv, rw,¬v1 ,¬v0,¬din1,¬din0,¬dout1,¬dout0, 0),
(dv, rw,¬v1,¬v0,¬din1, din0,¬dout1,¬dout0, 2Ek),
(dv, rw,¬v1 , v0,¬din1, din0,¬dout1,¬dout0, 2Ek + Ek),
(dv,¬rw,¬v1 , v0,¬din1, din0,¬dout1, dout0, 3Ek + 2Ek),
(¬dv, rw,¬v1 , v0,¬din1, din0,¬dout1, dout0, 5Ek + 2Ek),
(dv, rw,¬v1 , v0, din1, din0,¬dout1, dout0, 7Ek + 2Ek),
(dv, rw, v1 , v0, din1, din0,¬dout1, dout0, 9Ek + Ek),
(dv,¬rw, v1 , v0, din1, din0, dout1, dout0, 10Ek + 2Ek),
(¬dv, rw, v1 , v0, din1, din0, dout1, dout0, 12Ek + 2Ek),

The graphical representation of the tracetrAsync is shown in Figure 7. For
simplicity, we use the shorthand notationEk = 1

2
· V 2

dd · Ci. TheCi is denoted as
the node capacitance of actioni.

The energy estimate of the systemSAsync is:

E(Td) = 2Ek + Ek + 2Ek + 2Ek + 2Ek + Ek + 2Ek + 2Ek ≈ 14Ek

At this phase we do not apply any capacitance model for the gates, and there-
fore the approximation shown above roughly estimates the total power consump-
tion of the systemSAsync during time periodTd. However, when the technology
related parameters(C, V 2

dd) are adopted, the value of theEk is calculated sepa-
rately for each time stamp, and then added together.

5.3 Clocked computation

In a synchronous design, the clock is used to sequence the operation of the system.
The clock is defined by the actionClk (for instance):

Clk =̂ ¬clk → clk := T [] clk → clk := F

17

t+2t+1t

v(1)

v(0)

t+3

h)g)

t+7

f)e)d)c)b)a)

rw

dv

time

t+6

din(0)

din(1)

dout(0)

dout(1)

t+5t+4

k

k

k

k

k

k

k

k

k

k

k

h) 13E + 2E

g) 11E + 2E

f) 10E + E

e) 8E + 2E

d) 6E + 2E

c) 4E + 2E

b) 3E + E

a) 3E

k

k

k

k

Figure 7: Transition diagram from the tracetAsync

The asynchronous composition of the systemSAsync is re-written as a syn-
chronous system description, denoted bySSync. It has three actions:S1 is a write
action,S2 is a read and store action, and the last actionClk is the clock defini-
tion. In other words, the operation of the actionsS1 andS2 is sequenced by the
clock signal. The synchronous systemSSync with the energy estimation property
is shown below:

sys SSync (din, dout, clk, v, : bvec, bvec, bool, bvec)[tsS, trtS]
|[
constnos : 8
type bvec : 0, ..., n − 1
init rw, clk, din, dout, v := F, F, ”00”, ”00”, ”00”
actions S1 : clk ∧ ¬rw → v, rw := f(din), T

S2 : ¬clk ∧ rw → dout, rw : v, F
Clk : ¬clk → clk := T [] clk → clk := F

exec
do (S1[tsS , trtS] [] S2[tsS, trtS]) //Clk[tsS , trtS] od
]|

The iteration part by definition is:

(S1 [] S2) // Clk =̂ ((S1p [] S1t [] S1c),
(S2p [] S2t [] S2c)),
(Clkp [] Clkt [] Clkc)//Eu

18

In this case study, the constantnos is eight (nos = 8), and the signals of
type binary vectorbvec are modeled separately as one bit signals. To compare the
results with the asynchronous case study, we use the same input data sequence:
”01”, ”11”. The operation of the system is quite similar with the asynchronous
implementation, except that the data valid signal is replaced by the clock signal.
Therefore, we do not present the Petri net description here.The transition table
for the synchronous systemSsync is illustrated in Table 3.

Table 3: Transition tabletrtS for systemSSync

Time stamp (ts[i]) rw clk v1 v0 din1 din0 dout1 dout0
init. 0 0 0 0 0 0 0 0

t 0 1 0 1 0 1 0 0
t+1 1 0 0 1 1 1 0 1
t+2 0 1 1 1 1 1 0 1
t+3 1 0 1 1 1 1 1 1
t+4 0 1 1 1 1 1 1 1
t+5 0 0 1 1 1 1 1 1

The results from the energy estimation action are shown in the tracetrSync:

trSync = (¬rw,¬clk,¬v1,¬v0,¬din1,¬din0,¬dout1,¬dout0, 0),
(¬rw, clk,¬v1, v0,¬din1, din0,¬dout1,¬dout0, 3Ek),
(rw,¬clk,¬v1, v0, din1, din0,¬dout1, dout0, 3Ek + 4Ek),
(¬rw, clk, v1, v0, din1, din0,¬dout1, dout0, 7Ek + 3Ek),
(rw,¬clk, v1, v0, din1, din0, dout1, dout0, 11Ek + 3Ek),
(¬rw, clk, v1, v0, din1, din0, dout1, dout0, 14Ek + 2Ek),
(¬rw,¬clk, v1, v0, din1, din0, dout1, dout0, 16Ek + Ek)

The graphical representation of the tracetSync is shown in Figure 8.
The total energy consumption estimate at time periodTd is defined:

E(Td) = 3Ek + 4Ek + 3Ek + 3Ek + 2Ek + Ek ≈ 16Ek

where theEk = 1

2
· V 2

dd · Ci. TheCi is denoted as the node capacitance of
actioni. Again, we approximate the total energy consumption, sinceat this phase,
we do apply any technology related parameters nor capacitance models.

5.4 Comparison

The operation of example system is described by using both synchronous and
asynchronous design approaches. The example system evaluates the value of the
function f according to the input value. Stores the result into the register and
outputs it. We estimated the energy consumption during two read / write cycles
by using the following input sequence”01”, ”11”.

19

b) c) d)

dout(1)

dout(0)

din(1)

din(0)

v(1)

v(0)

rw

clk

a)

k

k

k

k

kk

k

k

k

k

k

f) 15E + E

e) 13E + 2E

d) 10E + 3E

c) 7E + 3E

b) 3E + 4E

a) 3E

f)e)

t+5t+4t+3t+2t+1t

Figure 8: Transition diagram from the tracetSync

The asynchronous system, denoted bySAsync, is estimated at time periodTd.
The time period consist of seven time stamps,Td = < t, t + 1, ..., t + 7 >. Thus,
the energy consumption estimate is:E(Td) = 2Ek + Ek + 2Ek + 2Ek + 2Ek +
Ek + 2Ek + 2Ek ≈ 14Ek, where theEk is noted by:1

2
· C · V 2

dd.
Similar analysis is carried out with the synchronous system, noted asSSync,

under the time periodTd. The time period consists of five time stamps,Td =<
t, t + 1, ..., t + 5 >. Thus, as a result we have an energy consumption estimate of
E(Td) = 3Ek + 4Ek + 3Ek + 3Ek + 2Ek + Ek ≈ 16Ek.

The asynchronous system needed two time stamps more to calculate the two
read / write cycles than its synchronous counterpart. However, since we do not
use the actual delays between transition nor do we know the clock frequency, we
cannot assume that the other one would be significantly faster than the other. Thus,
at this level of abstraction, the calculation speed makes nosignificant difference
between the designs in terms of performance.

The energy consumption is smaller in the asynchronous system than it is in
the synchronous one. In this case study, we assumed that the two read / write
cycles are consecutive. However, we could assume that thereis an arbitrary long
idle period between the two cycles. Thus, the asynchronous system have natural
support for the power down mode, in other words, if there is nodata to process, the
system is in idle state. On the contrary to the synchronous system, where at least
the flip-flops and clock distribution network consumes energy at each clock cycle

20

whether they are involved in the useful system function or not. Thus, this increases
the energy consumption in the synchronous system, while theenergy consumption
of the asynchronous system remains the same. Another clock related issue is that
in the synchronous system the simultaneous switching activity per time stamp is
higher. This increases the amount of switching noise in the system [11].

6 Conclusions and Future Work

In this paper, we introduced a formal energy estimation framework for the Action
Systems formalism. By adopting this framework, we are able to formally analyze
the energy consumption of the hardware system from the specification down to the
implementation. The energy estimation is carried out during discrete time period
Td, which is divided into time stamps. These time stamps are used to define the
order of the transitions in the system. The transitions per time stamps are defined
according to the Petri net (or STG) description of the system, and stored into
the transition table. Thus, the energy estimation action calculates the switching
activity estimate per time stamp. Finally, the energy consumption per time stamp
is calculated. Notice that, the total energy of the time period Td is the sum of
the energy consumption values per time stamp. To illustratethe functionality of
the formal energy estimation framework, we implemented a simple action system
structure by using both synchronous and asynchronous design approaches. Then,
the results of the energy estimation were compared.

Future Work : The experiences of this study revealed the possibilities of the
defined Action System property. The next step is to take the existing framework
into deeper abstraction level, that is to the gate level. In other words, to include
the technology dependent parameters and the node capacitance model into the
formal model. Then we are able to compare the accuracy of the formal model
with the existing estimation methods. Moreover, the purpose is to upgrade the
energy estimation model to the power estimation model by applying the existing
timing model for the Action Systems, noted as Timed Actions [15], into the energy
estimation framework. Furthermore, it would be interesting to use Timed Actions
in the energy estimation model as well.

References

[1] R. J. R. Back.On the Correctness of Refinement Steps in Program Develop-
ment, Ph.D Thesis, university of Helsinki, 1978.

[2] R. J. R. Back and K. Sere.From Modular Systems to Action Systems, in Proc.
of Formal Methods Europe’ 94, Spain, October 1994. Lecture notes on com-
puter science, Springer-Verlag.

[3] R. J. Back and J. von Wrigth.Refinement Calculus: A Systematic Introduc-
tion, Springer-Verlag, April 1998.

21

[4] R. J. Back and J. von Wrigth.Trace Refinement of Action Systems, in Interna-
tional Conference on Concurrency Theory, pp. 367-384, 1994.

[5] P. A. Beerel, K. Y. Yun, S. M. Nowick and P-C. Yeh.Estimation and Bounding
of Energy Consumption in Burst-Mode Control Circuits, in Proc. of the 1995
IEEE/ACM international conference on Computer-aided design 2nd edition.

[6] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.
Logic Synthesis of Asynchronous Controllers and Interfaces, Springer-Verlag,
2002.

[7] A. Davis, and S. M. Nowick.Asynchronous Circuit Design: Motivation,
Backround, & Methods, in G. Birtwistle, and A. Davis, Editors, Asyn-
chronous Digital Circuit Design, Springer, 1995.

[8] J. Davies, and S. Schneider.A Brief History of Timed CSP, Theoretical Com-
puter Science, 138(2):243-271, February 1995.

[9] E. W. Dijkstra. A Discipline of Programming, Prentice-Hall International,
1976.

[10] A. Ghosh, S. Devadas, K. Keutzer, and J. White.Estimation of Aver-
age Switching Activity in Combinational and Sequential Circuits, in Proc.
ACM/IEEE 29th Design Automation Conference, June 1992, pp.253-259.

[11] P. Liljeberg, J Tuominen, S. Tuuna, J Plosila, and J. Isoaho. Self-Timed
Methodology and Techniques for Noise Reduction in NoC Interconnects,
Chapter 11 in Interconnect-Centric Design for Advanced SoCand NoC,
Kluwer Academic Publishers, Boston, July 2004, pp. 285-313, ISBN 1-4020-
7835-8.

[12] T. Murata.Petri Nets: Properties, Analysis and Applications, in Proc. of the
IEEE, vol 77. no. 4, April 1989, pp. 541-580.

[13] J. Plosila.Self-Timed Circuit Design - The Action Systems Approach, Ph.D
Thesis, University of Turku, 1999.

[14] T. Seceleanu.Systematic Design of Synchronous Digital Circuits, Ph.D The-
sis, Turku Centre of Computer Science, 2001.

[15] T. Westerlund, and J. Plosila.Formal Timing Model for Hardware Compo-
nents, in Proc. 22nd Norchip Conference, November 2004, Oslo, Norway, pp.
293-296.

22

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 952-12-1578-X
ISSN 1239-1891

