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Abstract

The paper investigates inference based on quantities |w|u, the number of oc-
currences of a word u as a scattered subword of w. Parikh matrices recently
introduced are useful tools for such investigations. We introduce and study
universal languages for Parikh matrices. We also obtain results concerning the
inference from numbers |w|u to w, as well as from certain entries of a Parikh
matrix to other entries.
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1 Introduction

An aim encountered in many problems concerning words, languages and au-
tomata is to get rid of the mathematically awkward noncommutativity, at least
to some extent. In arithmetizing the theory one reduces noncommutative prop-
erties to commutative numerical ones. This is an important feature in the theory
of formal power series, [4, 11], and was emphasized in many of Alexandru Ma-
teescu’s last works, [6, 9].

The basic numerical quantity investigated in this paper is |w|u, the number
of occurrences of a word u as a scattered subword of a word w. Suppose we
know the values |w|u for some specific words u. Can we infer the word w? Or
can we infer the values |w|v for some other specific words v? These are typical
problems arising in this context.

The notion of a Parikh matrix recently introduced, [7], is the basic techni-
cal tool for investigations concerning numbers |w|u. Indeed, the numbers |w|u
appear as entries of the matrix associated morphically to a word w, for some
specific finite set U of words u. In the generalized version of a Parikh matrix,
[18], the set U can include any prechosen words.

In Section 2 we will recall the basic definitions and introduce some new
ones, notably the notion of an M-universal language. In the following section
we develop some technical tools. Section 4 consists of an investigation about
M-universal languages. Section 5 deals with both kinds of inference problems
referred to above. Also several open problems will be mentioned.

We assume that the reader is familiar with the basics of formal languages.
Whenever necessary, [11] may be consulted. As customary, we use small letters
from the beginning of the English alphabet a, b, c, d, possibly with indices, to
denote letters of our formal alphabet Σ. Words are usually denoted by small
letters from the end of the English alphabet.

2 Subword occurrences. M-ambiguity and M-

universality

The main notion studied in this paper is the number of occurrences of a word
u as a subword in a word w, in symbols, |w|u. For us the term subword means
that w, as a sequence of letters, contains u as a subsequence. More formally, we
begin with the following fundamental

Definition 1 A word u is a subword of a word w if there exist words x1, . . . , xn

and y0, . . . , yn, some of them possibly empty, such that

u = x1 . . . xn and w = y0x1y1 . . . xnyn.

The word u is a factor of w if there are words x and y such that w = xuy. If
the word x (resp. y) is empty, then u is also called a prefix (resp. suffix) of w.

Throughout this paper, we understand subwords and factors in this way. In
classical language theory, [11], our subwords are usually called ”scattered sub-
words”, whereas our factors are called ”subwords”. The notation used through-
out the article is |w|u, the number of occurrences of the word u as a subword of
the word w. Two occurrences are considered different if they differ by at least
one position of some letter. (Formally an occurrence can be viewed as a vector
of length |u| whose components indicate the positions of the different letters of
u in w.)
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Clearly, |w|u = 0 if |w| < |u|. We also make the convention that, for any w
and the empty word λ,

|w|λ = 1.

(The convention is made also in [2, 12].) In [12] the number |w|u is denoted as
a “binomial coefficient”

|w|u = (w
u ).

If w and u are words over a one-letter alphabet,

w = ai, u = aj ,

then |w|u equals the ordinary binomial coefficient: |w|u = (i
j). Our convention

concerning the empty word reduces to the fact that (i
0) = 1.

A general problem arising in this context, and important in many applica-
tions, is: How can one construct a set of numbers |w|u such that the word w
is uniquely, or “almost uniquely”, determined? For instance, the reader should
have no difficulties in proving that the word w ∈ {a, b, c}∗ is uniquely determined
by the values

|w|a = |w|b = |w|c = 3, |w|ab = |w|bc = 8.

Indeed, w = a2babcbc2. On the other hand, a word w ∈ {a, b}∗ of length 4 is not
uniquely determined by the values |w|u, |u| ≤ 2. Either one of the words abba
and baab can be chosen as w, and still the equations

|w|a = |w|b = |w|ab = |w|ba = 2, |w|aa = |w|bb = 1

are satisfied.
For handling such problems a specific tool, referred to as the Parikh matrix

was introduced in [7]. When dealing with the extended notion, [18], one has
more leeway in the choice of the words u.

The Parikh matrix is a powerful generalization of a Parikh mapping (vec-
tor) introduced in [10]. While a Parikh vector only indicates the number of
occurrences of each letter in a word, the Parikh matrix gives also information
about the mutual positions of the occurrences. The Parikh matrix mapping
uses upper triangular square matrices, with nonnegative integer entries, 1’s on
the main diagonal and 0’s below it. The set of all such triangular matrices is
denoted by M, and the subset of all matrices of dimension k ≥ 1 is denoted by
Mk.

We are now ready to give the formal definition of a Parikh matrix.

Definition 2 Let Σk = {a1, . . . , ak} be an alphabet. The Parikh matrix map-
ping, denoted Ψk, is the morphism:

Ψk : Σ∗
k → Mk+1,

defined by the following condition. Let 1 ≤ q ≤ k and Ψk(aq) = (mi,j)1≤i,j≤(k+1).
Then for each 1 ≤ i ≤ (k + 1), mi,i = 1, mq,q+1 = 1, all other elements of the
matrix Ψk(aq) being 0. Matrices of the form Ψk(w), w ∈ Σ∗

k, are referred to as
Parikh matrices.

Observe that when defining the Parikh matrix mapping we have, similarly
as when defining the Parikh vector, in mind a specific ordering of the alphabet.
The ordering will be clear from the context. If we consider letters without
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numerical indices, we assume the alphabetic ordering when numbering the rows
and columns of the matrix.

For instance, the Parikh matrix associated to the word abcbadbcdd is

Ψ4(abcbadbcdd) =













1 2 4 5 11
0 1 3 4 9
0 0 1 2 5
0 0 0 1 3
0 0 0 0 1













.

The following theorem, [7], makes this example clearer. The theorem charac-
terizes the entries of a Parikh matrix in terms of some subword occurrences |w|u.
For the alphabet Σk = {a1, . . . , ak}, we denote by ai,j the word aiai+1 . . . aj ,
where 1 ≤ i ≤ j ≤ k.

Theorem 1 Consider Σk = {a1, . . . , ak} and w ∈ Σ∗. The matrix Ψk(w) =
(mi,j)1≤i,j≤(k+1), has the following properties:

• mi,j = 0, for all 1 ≤ j < i ≤ (k + 1),

• mi,i = 1, for all 1 ≤ i ≤ (k + 1),

• mi,j+1 = |w|ai,j
, for all 1 ≤ i ≤ j ≤ k.

By the second diagonal (and similarly the third diagonal, etc.) of a matrix in
Mk+1, we mean the diagonal of length k immediately above the main diagonal.
(The diagonals from the third on are shorter than k and will be important in our
subsequent discussions.) Theorem 1 tells that the second diagonal of the Parikh
matrix of w gives the Parikh vector of w. The next diagonals give information
about the order of letters in w by indicating the numbers |w|u for certain specific
words u. Indeed, all factors of the word a1a2 . . . ak appear among the words u.
The generalized Parikh matrices, [18], give information about the numbers |w|u,
where the words u can be chosen arbitrarily. The dimension of the matrices
grows, depending on the choice of the words u. In this paper we are mainly
concerned with the notion of a Parikh matrix given by Definition 2. Thus, for
any word w over the alphabet {a, b, c}, Theorem 1 implies that

Ψ3(w) =









1 |w|a |w|ab |w|abc

0 1 |w|b |w|bc

0 0 1 |w|c
0 0 0 1









.

This paper deals with some general problems concerning the information
content of a Parikh matrix, as well as concerning languages associated to Parikh
matrices. In his last research, Alexandru Mateescu investigated problems about
the ambiguity of a matrix. (See, for instance, [6, 8, 9].) To what extent does a
matrix determine a word? Sometimes the word is uniquely determined, some-
times this is not the case. These questions have been widely investigated,
[3, 6, 7, 9, 13, 14, 15]. There is always a language, sometimes empty but always
finite, consisting of words having a given matrix as their associated Parikh ma-
trix. (The language being empty means that the given matrix is not at all a
Parikh matrix.) These considerations, as well as the ambiguity issues, lead to
many natural problems, as pointed out in [6].
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Most of the fundamental notions needed below are introduced in the follow-
ing definition. The letter “M” in the definition (“M-equivalent”, “M-ambiguous”,
etc.) can be read as matrix. However, we would prefer reading it Mateescu.

Definition 3 Let Σk and Ψk be as in Definition 2. Two words w1, w2 ∈ Σ∗
k

are termed M-equivalent, in symbols w1 ≡M w2, if Ψk(w1) = Ψk(w2). A word
w ∈ Σ∗

k is termed M-unambiguous if there is no word w′ 6= w such that w ≡M w′.
Otherwise, w is termed M-ambiguous. If w ∈ Σ∗

k is M-unambiguous (resp. M-
ambiguous), then also the Parikh matrix Ψk(w) is called unambiguous (resp.
ambiguous). The M-extension ME(L) of a language L over the alphabet Σk

consists of all words M-equivalent to some word in L:

ME(L) = {w′|w′ ≡M w, w ∈ L}.

Two languages K and L are M-equivalent in the case their M-extensions coin-
cide: ME(K) = ME(L). A language L is M-universal if ME(L) = Σ∗

k.

As shown in [9], each of the following three cases is possible for an infinite regular
language L: (i) ME(L) is regular, (ii) ME(L) is context-free but not regular,
(iii) ME(L) is not context-free.

Clearly the language Σ∗
k is M-universal but there are much smaller M-

universal languages. We will see below in Section 4 that both of the languages
a∗b∗a∗b∗a∗ and b∗a∗b∗a∗b∗ are M-universal (with respect to the alphabet {a, b}),
whereas neither one of the languages a∗b∗a∗b∗ and b∗a∗b∗a∗ is. We will also
prove that there is a remarkable difference between two-letter and three-letter
alphabets as regards M-universal languages.

The following open problem was originally posed by Mateescu. Is the M-
equivalence decidable for regular languages? In other words, given two regular
languages K and L, can we decide whether or not ME(K) = ME(L)?

The next result due to [9] (see also [3, 1]) characterizes M-unambiguous
words (and matrices) in case of a two-letter alphabet.

Theorem 2 A word in {a, b}∗ is M-ambiguous if and only if it contains disjoint
occurrences of ab and ba. A word is M-unambiguous if and only if it belongs to
the language denoted by the regular expression

a∗b∗ + b∗a∗ + a∗ba∗ + b∗ab∗ + a∗bab∗ + b∗aba∗.

We conclude this section with an example of an infinite sequence of words
βi, i ≥ 1, over the alphabet {a, b, c}, significant also in considerations of M-
universality. By definition,

βi = ab2i

cab2i−1

cab2i−2

c . . . ab20

c, i ≥ 1.

It is easy to see that

Ψ3(βi) =









1 i + 1 2i+2 − i − 3 (i − 1)2i+2 + i + 5
0 1 2i+1 − 1 i2i+1 + 1
0 0 1 i + 1
0 0 0 1









.
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3 Auxiliary results

This section contains some notions and results needed below in our consider-
ations about M-universality and interdependence of the elements in a Parikh
matrix. Most of these results can be inferred rather directly from the ones pre-
sented in the literature. However, we have modified them to suit our specific
needs.

All issues dealt with in this paper deal with the general Inference Problem:
What can be inferred from some specific numbers |w|u, both as regards the word
w itself, and as regards some other numbers |w|v? The following two problems
are special cases. The first of them was already mentioned in the preceding
section.

Word Inference Problem, WI. Considering an alphabet Σ, construct a lan-
guage U ⊆ Σ∗ such that every word w ∈ Σ∗ is uniquely determined by some
numbers |w|u, u ∈ U .

Clearly, there are trivial solutions to Problem WI, for instance, U = Σ∗. The
second of our problems deals with inferring some new numbers |w|v from given
numbers |w|u.

Number Inference Problem, NI. Given a language U and a word v, is the
number |w|v uniquely determined by the numbers |w|u, u ∈ U?

The answer is affirmative if U = {a, b, ab} and v = ba, whereas |w|abc is not
in general uniquely determined by the numbers |w|u, u ∈ {a, b, c, ab, bc}. We
will return to this question later.

¿From the point of view of Parikh matrices, Problem NI can be interpreted
as follows: Which entries of a Parikh matrix are uniquely determined by other
entries? (Having in mind the form of a Parikh matrix, we are talking here
about entries above the main diagonal.) The problem is also closely connected
with the problem of the characterization of Parikh matrices. A polynomial-time
algorithm for deciding whether a given matrix is a Parikh matrix was given in
[9], but a more compact characterization is missing. Let us now look at this
problem more closely. How can we fill in the entries of a matrix, starting with
the second diagonal, in such a way that the resulting matrix will be a Parikh
matrix?

Clearly, the second diagonal can be filled with arbitrary nonnegative integers:
the Parikh vector can be quite arbitrary. It is also not difficult to characterize
the third diagonal and, thus, the following result, [9], holds. For matrix entries
we use the notation of Theorem 1.

Lemma 1 Arbitrary nonnegative integers may appear on the second diagonal
of a Parikh matrix. Arbitrary integers mi,i+2, 1 ≤ i ≤ k − 1, satisfying the
condition

0 ≤ mi,i+2 ≤ mi,i+1mi+1,i+2

(but no others) may appear on the third diagonal of a (k+1)-dimensional Parikh
matrix.

Nothing similar is known for diagonals beginning with the fourth. However,
in special cases all entries of a Parikh matrix can be inferred from those on
the second and third diagonals. In order to quote this result from [14], we first
define the notion of a γ-property.

Consider the function γ defined by
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γ(m,n) =

{

{i|0 ≤ i ≤ mn} if m ≤ 1 or n ≤ 1,
{0, 1,mn,mn − 1} if m > 1 and n > 1.

If we use the notation from above, we can write the entries in the third diagonal
in the form mi,i+2, 1 ≤ i ≤ k − 1. We say that the corresponding entries in the
second diagonal are mi,i+1 and mi+1,i+2. Now the second and third diagonals
of a matrix in Mk+1, k ≥ 2, are said to possess the γ-property if each entry in
the third diagonal is in the set γ(m,n), where m and n are the corresponding
entries in the second diagonal.

Theorem 3 Assume that the second, as well as third diagonals, in two matrices
M1 and M2 in Mk+1, k ≥ 2, coincide and, moreover, possess the γ-property.
Then either M1 = M2, or else the matrices are not both Parikh matrices.

Theorem 3 says that if we have filled in the entries in the second and third
diagonals in such a way that they possess the γ-property, then there is exactly
one way (recall here also Lemma 1) to fill the remaining entries to make the
matrix a Parikh matrix. Theorem 3 is also a contribution to Problem NI. In
the special case of γ-property, the set of numbers |w|u, where u ranges over all
factors of length 1 and 2 of the word a1 . . . ak, determines uniquely the set of
numbers |w|v, where v ranges over all factors of the word a1 . . . ak. This holds
for an arbitrary word w.

Consider again the alphabet Σk = {a1, . . . , ak}. Assume now that k ≥ 3.
Clearly, any word w′ obtained from a word w by applying the rewriting rules

aiai+j → ai+jai, and ai+jai → aiai+j , 1 ≤ i ≤ k − 2, 2 ≤ j ≤ k − i,

is M-equivalent to w. This follows because these rules do not alter any of the
numbers |w|u, where u is a factor of the word a1 . . . ak. We say that w′ is trivially
M-equivalent to w if it results from w by a sequence of applications of these rules.
(In case of a two-letter alphabet, we have no rules of the form considered. Thus,
trivial M-equivalence reduces to equality.)

Clearly, two words w and w′ are trivially M-equivalent exactly in case the
projections of w and w′ into {ai, ai+1}

∗ coincide, for each i, 1 ≤ i ≤ k − 1.

We will only briefly describe the generalized Parikh matrix originally due
to [18]. While the Parikh matrix mapping yields the numbers |w|u, where u
is a factor of the word a1 . . . ak, the generalized mapping is similarly based on
an arbitrary word v = b1...bt, where each b is a letter. (Repetitions of letters
are allowed.) The matrices belong now to Mt+1, and the matrix corresponding
to a letter b has in its second diagonal 1’s in the positions corresponding to
the occurrences of b in v. (For instance, [18, 13, 15] contain each the formal
details.) Then, according to a result corresponding to Theorem 1, the entry
mi,1+j , 1 ≤ i ≤ j ≤ t, in the matrix corresponding to a word w equals the
number |w|bi...bj

.
For instance, choosing v = baaa, we obtain for the word w = abbabaab

Ψbaaa(abbabaab) =













1 4 8 7 2
0 1 4 6 4
0 0 1 4 6
0 0 0 1 4
0 0 0 0 1













.
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This example will be used also in Section 5 when considering the interdepen-
dence of matrix elements.

The following theorem, [8, 13, 18], is a powerful tool in establishing inter-
connections and inequalities between different numbers |w|u.

Theorem 4 Every minor in a Parikh matrix and in a generalized Parikh matrix
assumes a nonnegative integer value.

Assume that w ∈ {a, b, c, d}∗, and denote

Ψ4(w) =













1 A E H x
0 1 B F I
0 0 1 C G
0 0 0 1 D
0 0 0 0 1













.

We consider the element x in the upper right-hand corner as an unknown, and
try to express it in terms of the other elements. Considering the two- and three-
dimensional minors in the upper right-hand corner, we obtain by Theorem 4
the following result. (The result can of course be expressed also in terms of the
numbers |w|u, where each u is a factor of the word abcd.)

Lemma 2 Using the notation introduced above, the following inequalities hold
for every word w ∈ {a, b, c, d}∗, assuming that 0 < F < BC:

CEI + BGH − HI − EFG

BC − F
≤ x ≤

HI

F
.

In many instances the inequalities suffice to determine x uniquely. Since x
is always an integer, the inequalities are actually strict if the fractions are not
integers. The assumption concerning F excludes the trivial cases, where every
b precedes every c, or every c precedes every b, in w.

For a word w ∈ {a, b, c}∗, using the notation

Ψ3(w) =









1 A E x
0 1 B F
0 0 1 C
0 0 0 1









,

we obtain similarly:

Lemma 3 The following inequalities hold for every word w ∈ {a, b, c}∗, assum-
ing that B > 0:

AF + CE − ABC ≤ x ≤
EF

B
.

4 M-universality

In this section we will investigate M-universal languages (recall Definition 3)
over the alphabet Σk = {a1, . . . , ak}. It turns out that there is an essential
difference between the values k = 2 and k = 3.

We say that a M-universal language is minimal if no proper subset of it is
M-universal.
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We say that a language L is t-letter bounded, t ≥ 1, if

L ⊆ b∗1 . . . b∗t , bi ∈ Σ, for 1 ≤ i ≤ t.

A language is letter bounded if it is t-letter bounded, for some t.
Clearly, every letter bounded language is bounded in the usual sense, [11],

but bounded languages are not in general letter bounded. If L is t-letter bounded
and w ∈ L, then we meet at most t− 1 changes of letters when reading through
w (in either direction).

We begin with the following simple result.

Theorem 5 No 4-letter bounded language is M-universal with respect to the
two-letter alphabet {a, b}.

Proof. In this case every 4-letter bounded language is a subset of a∗b∗a∗b∗

or of b∗a∗b∗a∗. However, neither one of these languages contains the language

a∗b∗ + b∗a∗ + a∗ba∗ + b∗ab∗ + a∗bab∗ + b∗aba∗,

consisting of M-unambiguous words, by Theorem 2. Since clearly every M-
universal language must contain all M-unambiguous words, our theorem follows.

In contrast to this result, we will show that the following two languages are
minimal M-universal:

Ka = a∗b+ab∗a∗ ∪ a∗b∗, Kb = b∗a∗ba+b∗ ∪ a∗b∗.

Hence, the 5-letter bounded language a∗b∗a∗b∗a∗ (as well as b∗a∗b∗a∗b∗) is M-
universal.

Lemma 4 Assume that L ⊆ {a, b}∗. Then there is a unique language µa(L) ⊆
Ka M-equivalent to L.

Proof. Consider a word w ∈ L. We determine a unique word µa(w) ∈ Ka

M-equivalent to w. Finally, we define

µa(L) = {µa(w)|w ∈ L}.

If |w|a = 0, we choose µa(w) ∈ b∗. Thus, assume that |w|a ≥ 1. We denote

|w|a = m ≥ 1, |w|b = n ≥ 0, |w|ab = p ≥ 0.

By Lemma 1, we have 0 ≤ p ≤ mn. If p = mn, we choose µa(w) in a unique
way from the second term of the union Ka. (Every word in the first term of the
union contains the factor ba.) Hence, we may assume that p < mn. We may
write

p = αn + β, 0 ≤ α ≤ m − 1, 0 ≤ β ≤ n − 1.

(Observe that if n = 0, then necessarily p = 0, and we may again use the second
term of the union Ka.) We now choose

µa(w) = aαbn−βabβam−1−α ∈ Ka.

Clearly,

|µa(w)|a = m, |µa(w)|b = n, |µa(w)|ab = p,

8



as required. We still show that the chosen µa(w) is unique, that is, no other
word

x = aibjabras ∈ Ka, i, r, s ≥ 0, j ≥ 1,

satisfies these conditions. Thus, we obtain

i + s + 1 = m, j + r = n, i(j + r) + r = p,

whence
r ≤ n − 1, p = in + r, i ≤ m − 1.

Consequently,
i = α, r = β, j = n − β, s = m − 1 − α,

and we are back in the chosen word µa(w). This completes the proof of Lemma
4.

Lemma 5 Assume that L ⊆ {a, b}∗. Then there is a unique language µb(L) ⊆
Kb M-equivalent to L.

Proof. The proof is similar to that of Lemma 4. After excluding the special
cases, we obtain now

p = γm + δ, 0 ≤ γ ≤ n − 1, 0 ≤ δ ≤ m − 1,

and choose
µb(w) = bn−1−γaδbam−δbγ ∈ Kb.

Uniqueness is shown as before.

As an example, consider the word

w = a2b3a5b7a11b13a17b19a23b29,

(indicating the first primes). We obtain

µa(w) = a37b62ab9a20 and µb(w) = b25a26ba32b45.

Lemmas 4 and 5 yield immediately the following theorem. We assume that
the languages Ka and Kb, as well as the mappings µa and µb, are defined as
above.

Theorem 6 The languages Ka and Kb are minimal M-universal languages.
Moreover, two languages over a binary alphabet, L1, L2 ⊆ {a, b}∗, are M-
equivalent if and only if µa(L1) = µa(L2) (resp. µb(L1) = µb(L2)).

Theorem 6 does not yield directly any decision method for the M-equivalence
of regular languages over a binary alphabet. The language µa(L) is not neces-
sarily context-free for a regular language L. For instance,

µa((abab)+) = {anbnabnan−1| n ≥ 1}.

M-universal languages are much more complicated if the alphabet consists of
at least three letters. In fact, we do not know any minimal M-universal language
in this case. The following result indicates the complexity in comparison with
a binary alphabet.
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Theorem 7 No M-universal language over an alphabet with at least three letters
is letter bounded.

Theorem 7 is established by considering an infinite sequence of words over
the alphabet {a, b, c}. One of the letters is viewed as a boundary marker, and
it is shown that an unbounded number of occurrences of the marker, separated
by other letters, is required to generate M-equivalent words to all words in the
sequence. Such a sequence is defined, for i ≥ 2, by

δi =

i
∏

j=1

(abcri−j

), r = i2 + 1.

(Thus, δ3 = abc100abc10abc.) Then all of the i occurrences of the letter b in δi

are separated in any word M-equivalent to δi. This is seen by an induction on
i, viewing the entries |w|u as integers to the base r.

We still consider two other sequences with the “separation property”, inter-
esting also on their own right. Some words in the sequence βi considered at the
end of Section 2 possess M-equivalent words that are not trivially M-equivalent,
for instance,

β2 = ab4cab2cabc ≡M b2a2b2cb2cabc,

but the requirement concerning the separation is satisfied. A more sophisticated
example is the sequence

αi =
i

∏

j=0

(a2i−j

bc2j

), i ≥ 1.

Thus, for i = 4, we obtain

α4 = a16bca8bc2a4bc4a2bc8abc16,

and the matrix

Ψ3(α4) =









1 31 129 3216
0 1 5 129
0 0 1 31
0 0 0 1









.

In the general case, we indicate only the entries above the main diagonal:

Ψ3(αi) =







2i+1 − 1 i · 2i+1 + 1
∑⌊ i

2
⌋

j=0((j + 1)i + 1 − j2)(22i−j + 2i+j)

. . . i + 1 i · 2i+1 + 1

. . . . . . 2i+1 − 1






.

Here it is understood that if 2i − j = i + j, that is, if i is even and j = i
2 , then

the sum 22i−j + 2i+j is reduced to 2i+j . The rewriting rules

ac → ca and ca → ca

can be applied to αi to yield trivially M-equivalent words. There are also non-
trivial equivalences, for instance,

α3 = a8bca4bc2a2bc4abc8 ≡M a8ba5bc3ba2c5bc7,

but the requirement of separation is satisfied. In the following table we indicate,
for w = αi, i ≤ 5, the values |w|a = |w|c, |w|b, |w|ab = |w|bc, |w|abc, as well as
the bounds for |w|abc, resulting by Lemma 3, based on the other values of the
matrix.
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w |w|a |w|b |w|ab |w|abc bounds
α1 3 2 5 12 12,12
α2 7 3 17 92 91,96
α3 15 4 49 576 570,600
α4 31 5 129 3216 3193,3328
α5 63 6 321 16704 16632, 17173

5 Inference problems and matrix elements

We will first discuss the word inference problem, WI, described in Section 3. It
is clear that no such finite language U can exist: every finite t-tuple of numbers
|w|u fails to characterize all words of a sufficient length. This fact is well known
in the literature, [5, 2]. We present it in the form of the following lemma.

Lemma 6 Assume that U ⊆ Σ∗
k, k ≥ 2, is a set of words of a finite cardinality

i, the longest word in U being of length j. Then there is a bound t0 such that,
whenever t ≥ t0, there are different words w,w′ ∈ Σ∗

k with |w| = |w′| = t such
that |w|u = |w′|u, for every u ∈ U.

Proof. Choose t0 large enough such that the inequality

kt0 > (t0)
ij

is satisfied. Let t ≥ t0. There are kt words over Σk of length t. Clearly, a word
of length j appears at most (t

j) < tj times as a subword of a word of length t.

Hence, there are at most tj possible values for each of the numbers |w|u, u ∈ U,
and, consequently, at most (tj)i possibilities for the i-tuple of values

{|w|u|u ∈ U}.

The choice of t0 now guarantees that two different words w and w′ of length t
are assigned the same i-tuple. This proves the lemma.

A set U often considered in the literature is the t-spectrum (also called t-
deck), [2, 5, 13], consisting of all words of length ≤ t. What is the smallest
number f(t) such that two different words of length f(t) have the same t-
spectrum? No good estimates for f(t) are known, only upper bounds such
as the ones resulting from Lemma 6.

It is questionable whether a t-spectrum is at all a good choice for the set
U . A much smaller set of words of a specific form may yield the inference of
words of the same length as a considerably bigger t-spectrum. As an instance
we quote the following result from [15].

Theorem 8 Assume that w and w′ are words over the alphabet {a, b} with the
same Parikh vector (r, s) and that

|w|abi = |w′|abi , 1 ≤ i ≤ min(r, s).

Then w = w′. For any integer l, a word w of length ≤ l over the alphabet {a, b}
can be uniquely inferred from at most ⌊l/2⌋ + 2 specific values |w|u.

For instance, the values

|w|a, |w|b, |w|ab, |w|ab2 , |w|ab3

determine uniquely a word w of length ≤ 7.
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By Lemma 6, no finite set U suffices for the inference of all words. However,
by Theorem 8, the set

U = {a, b} ∪ {abi|i ≥ 1}

suffices for this purpose, as regards words over the binary alphabet. This result
can be extended to concern arbitrary alphabets by observing that two words
w,w′ ∈ Σ∗

k must be equal if their projections to each submonoid

{ai, aj}
∗, 1 ≤ i < j ≤ k,

coincide. Hence, we obtain the following conclusion.

Theorem 9 Consider the alphabet Σk = {a1, . . . , ak}, k ≥ 2, and define

U = {ak} ∪ {aia
ν
j |1 ≤ i < j ≤ k, ν ≥ 0}.

If two words w,w′ ∈ Σ∗
k satisfy

|w|u = |w′|u, for all u ∈ U, |u| ≤ ⌊|w|/2⌋ + 1,

then w = w′.

We will discuss, secondly, the number inference problem, NI, described in
Section 3. More specifically, we are concerned with the problem: to what extent
do some entries in a Parikh matrix determine the other entries in the matrix?
Here Theorem 4, as well as Lemmas 2 and 3 are central tools. For instance, the
words

abcddcbadcba, abdccbddacba, adcbbacddcba, dcbaabcddcba,

adcdbbaccbda, dcdbaabccbad, dcdbcaabbacd, dcdbcabaabcd

are all M-equivalent (no two of them being trivially so). The words have been
constructed from words over {a, b, c} and {b, c, d}, each with the Parikh matrix









1 3 4 4
0 1 3 4
0 0 1 3
0 0 0 1









.

Thus, the resulting words have the matrix













1 3 4 4 x
0 1 3 4 4
0 0 1 3 4
0 0 0 1 3
0 0 0 0 1













.

Now it is a consequence of Lemma 2 that x = 4 and, thus, the words are
M-equivalent.

By Theorem 3, the second and third diagonals of a Parikh matrix determine
the matrix uniquely, provided the γ-property is satisfied. If it is not satisfied,
then the fourth diagonals can be entirely different in two Parikh matrices with
the same second and third diagonals. However, we present the following con-
jecture.
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Conjecture 1 For some t ≥ 4, every Parikh matrix (no matter how high the
dimension) is uniquely determined by its entries in the diagonals up to the tth.

It is possible that this conjecture holds even for t = 4. Lemmas 2 and 3 can be
used to establish it for t = 4 in some special cases, for instance, the case where
all entries in the 2nd, 3rd and 4th diagonals are equal. Our conjecture does not
concern generalized Parikh matrices. A counter example for t = 4 is obtained
by continuing the example presented in Section 3. We have also

Ψbaaa(baababba) =













1 4 8 7 4
0 1 4 6 4
0 0 1 4 6
0 0 0 1 4
0 0 0 0 1













and, thus, we have two different generalized Parikh matrices, where the 2nd,
3rd and 4th diagonals coincide.

6 Conclusion

Matrix constructions have turned out to be very useful for inference problems
WI and NI. Some basic questions remain open in this area, such as problems
concerning the characterization of Parikh matrices and M-universal languages
for arbitrary alphabets. An interesting problem area, [17, 16], lying outside the
scope of this paper deals with the definition of languages in terms of numbers
|w|u. For instance, the language

b∗(a2ba2 + ab2a)b∗ + b∗ (resp. {anbncndn|n ≥ 1})

is defined by the condition |w|a = |w|aba (resp.

|w|a = |w|b = |w|c = |w|d&|w|abcd = 24|w|a4 + 36|w|a3 + 14|w|a2 + |w|a.)
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