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Abstract

Secret sharing schemes, introduced by Blakley and Shamir independently in
1979, have a number of applications in security systems. One approach to the
construction of secret sharing schemes is based on coding theory. In principle,
every linear code can be used to construct secret sharing schemes. But only well
structured linear codes give secret sharing schemes with nice access structures
in the sense that every pair of participants plays the same role in the secret
sharing. In this paper, we construct a class of good linear codes, and use them
to obtain a class of secret sharing schemes with nice access structures.
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1 Introduction

Since the introduction of secret sharing schemes by Blakley [4] and Shamir [18]
in 1979, many constructions have been proposed. Two related constructions of
secret sharing schemes from linear codes were developed. A relationship between
Shamir’s secret sharing scheme and the Reed-Solomon codes was pointed out
by McEliece and Sarwate in 1981 [13]. Later several authors have considered
the construction of secret sharing schemes using linear error correcting codes [1,
6, 8, 11, 12, 15, 16]. Massey utilized linear codes for secret sharing and pointed
out a relationship between the access structure and the minimal codewords of
the dual code of the underlying code [11, 12].

Several authors have investigated the minimal codewords for certain codes
and characterized the access structures of the secret sharing schemes based on
their dual codes [17, 2, 3, 19]. It is known that only well designed codes yield
secret sharing schemes with nice access structures.

In this paper, we first construct a class of linear codes suitable for secret
sharing, and then determine the access structure of the secret sharing schemes
based on the duals of those linear codes. The secret sharing schemes obtained
have nice access structures in the sense that every pair of participants plays the
same role in the secret sharing.

2 A construction of secret sharing schemes from

linear codes

The Hamming weight of a vector in GF(q)n is defined to be the total number of
nonzero coordinates. An [n, k, d; q] code C is a linear subspace of GF(q)n with di-
mension k and minimum nonzero Hamming weight d. Let G = (g0,g1, . . . ,gn−1)
be a generator matrix of an [n, k, d; q] code, i.e., the row vectors of G generate
the linear subspace C. Throughout this paper we assume that no column vector
of any generator matrix is the zero vector for all the linear codes.

There are several ways to use linear codes to construct secret sharing schemes.
One of them is the following described by Massey [11].

In the secret sharing scheme based on C, the secret is an element of GF(q),
which is called the secret space, and n − 1 participants P1, P2, · · · , Pn−1 and a
dealer are involved. The dealer is a trusted person.

In order to compute the shares with respect to a secret s, the dealer chooses
randomly a vector u = (u0, . . . , uk−1) ∈ GF(q)k such that s = ug0. There
are altogether qk−1 such vectors u ∈ GF(q)k. The dealer then treats u as an
information vector and computes the corresponding codeword

t = (t0, t1, . . . , tn−1) = uG,

and gives ti to participant Pi as share for each i ≥ 1.
Since t0 = ug0 = s, a set of shares {ti1 , ti2 , . . . , tim

}, 1 ≤ i1 < . . . < im ≤
n − 1 and 1 ≤ m ≤ n − 1, determines the secret if and only if g0 is a linear
combination of gi1 , . . . ,gim

.
Hence we have the following lemma [11].

Lemma 1 Let G be a generator matrix of an [n, k; q] code C. In the secret
sharing scheme based on C, a set of shares {ti1 , ti2 , . . . , tim

}, 1 ≤ i1 < . . . <
im ≤ n − 1 and 1 ≤ m ≤ n − 1, determines the secret if and only if there is a
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codeword

(1, 0, . . . , 0, ci1 , 0, . . . , 0, cim
, 0, . . . , 0) (1)

in the dual code C⊥, where cij
6= 0 for at least one j.

If there is a codeword of (1) in C⊥, then the vector g0 is a linear combi-
nation of gi1 , . . . ,gim

, say, g0 =
∑m

j=1 xjgij
. Then the secret s is recovered by

computing s =
∑m

j=1 xjtij
.

If a group of participants can recover the secret by combining their shares,
then any group of participants containing this group can also recover the secret.
A group of participants is referred to as a minimal access set if they can recover
the secret with their shares, while any of its proper subgroups cannot do so.
Here a proper subgroup has fewer members than the whole group. In view of
these facts, we are only interested in the set of all minimal access sets. To
determine this set, we need the notion of minimal codewords.

The support of a vector c ∈ GF(q)n is defined to be {0 ≤ i ≤ n− 1 : ci 6= 0}.
A codeword c2 covers a codeword c1 if the support of c2 contains that of c1.

If a nonzero codeword c covers only its scalar multiples, but no other nonzero
codewords, then it is called a minimal codeword.

¿From Lemma 1 and the discussions above, it is clear that there is a one-to-
one correspondence between the set of minimal access sets and the set of minimal
codewords of the dual code C⊥ whose first coordinate is 1. To determine the
access structure of the secret sharing scheme, we need to determine only the
set of minimal codewords whose first coordinate is 1, i.e., a subset of the set
of all minimal codewords. However, in almost every case we should be able to
determine the set of all minimal codewords as long as we can determine the set
of minimal codewords whose first coordinate is 1. The covering problem of a
linear code is to determine the set of all its minimal codewords.

It is clear that the shares for the participants depend on the selection of the
generator matrix G of the code C. However, by Lemma 1 the selection of G does
not affect the access structure of the secret sharing scheme. Therefore in the
sequel we will call it the secret sharing scheme based on C, without mentioning
the generator matrix used to compute the shares.

We say that a secret sharing scheme is democratic of degree t if every group
of t participants is in the same number of minimal access sets, where t ≥ 1.

3 The access structure of the secret sharing

schemes based on the duals of the codes

Every linear code has the dual code. In Section 2, we described the secret
sharing scheme based on a linear code C. Naturally, we have also the secret
sharing scheme based on the dual code C⊥. In this and later sections, we
consider only the secret sharing scheme based on the dual code of a given linear
code. This should cause no confusion.

The following lemma describes properties of the minimal access sets of the
secret sharing scheme based on C⊥ [7]. Note that the vectors gi in this and
later sections are not the same as those in Section 2.

Lemma 2 [7] Let C be an [n, k; q] code, and let G = [g0,g1, · · · ,gn−1] be its
generator matrix, where all gi are nonzero. If each nonzero codeword of C is
minimal, then in the secret sharing scheme based on C⊥, there are altogether
qk−1 minimal access sets. In addition, we have the following:
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1. If gi is a scalar multiple of g0, 1 ≤ i ≤ n − 1, then participant Pi must
be in every minimal access set. Such a participant is called a dictatorial
participant.

2. If gi is not a scalar multiple of g0, 1 ≤ i ≤ n−1, then participant Pi must
be in (q − 1)qk−2 out of qk−1 minimal access sets.

In view of Lemma 2, it would be an interesting problem to construct codes
whose nonzero codewords are all minimal. Such a linear code gives a secret
sharing scheme with the interesting access structure described in Lemma 2.

If the weights of a linear code are close enough to each other, then all nonzero
codewords of the code are minimal, as described below.

Lemma 3 (Ashikhmin-Barg [3]) In an [n, k; q] code C, let wmin and wmax be
the minimum and maximum nonzero weights respectively. If

wmin

wmax
>

q − 1

q
,

then all nonzero codewords of C are minimal.

The Ashikhmin-Barg lemma is quite useful in determining the minimal code-
words for special linear codes.

4 Group characters and bounds on character

sums

In this section, we present some bounds on character sums which will be needed
in the sequel. Consider the finite field GF(q), where q = ps, p is a prime, and s
is a positive integer. The absolute trace function Trq/p from GF(q) to GF(p) is
defined by

Trq/p(x) = x + xp + xp2

+ · · · + xps−1

.

An additive character of GF(q) is a nonzero function χ from GF(q) to the set of
complex numbers such that χ(x + y) = χ(x)χ(y) for any pair (x, y) ∈ GF(q)2.
For each b ∈ GF(q), the function

χb(c) = e2π
√
−1Trq/p(bc)/p for all c ∈ GF(q) (2)

defines an additive character of GF(q). When b = 0, χ0(c) = 1 for all c ∈ GF(q),
and is called the trivial additive character of GF(q). The character χ1 in (2) is
called the canonical additive character of GF(q).

A multiplicative character of GF(q) is a nonzero function ψ from GF(q)∗ to
the set of complex numbers such that ψ(xy) = ψ(x)ψ(y) for all pairs (x, y) ∈
GF(q)∗ × GF(q)∗. Let g be a fixed primitive element of GF(q). For each j =
0, 1, . . . , q − 2, the function ψj with

ψj(g
k) = e2π

√
−1jk/(q−1) for k = 0, 1, . . . , q − 2 (3)

defines a multiplicative character of GF(q). When j = 0, ψ0(c) = 1 for all c ∈
GF(q)∗, and is called the trivial multiplicative character of GF(q).

Let q be odd and j = (q−1)/2 in (3). We then get a multiplicative character
η such that η(c) = 1 if c is the square of an element and η(c) = −1 otherwise.
This η is called the quadratic character of GF(q).
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In this paper, we denote the canonical additive characters of GF(q) and
GF(qm) respectively by

χ1(x) = e2π
√
−1Trq/p(x)/p, x ∈ GF(q),

χ2(x) = e2π
√
−1Trqm/p(x)/p, x ∈ GF(qm);

and the quadratic characters of GF(q) and GF(qm) respectively by η1 and η2.

Suppose α is a primitive element of GF(qm). Then α′ = α(qm−1)/(q−1) is a
primitive element of GF(qm). We note that when q is odd, (qm − 1)/(q − 1) =
∑m−1

i=0 qi is even if and only if m is even. Hence we have

η2(x) =

{

1 if m is even,
η1(x) if m is odd

for all x ∈ GF(q).

Let ψ be a multiplicative and χ an additive character of GF(q). Then the
Gaussian sum G(ψ, χ) is defined by

G(ψ, χ) =
∑

c∈GF(q)∗

ψ(c)χ(c).

We have

G(ψ, χ) =







q − 1 for ψ = ψ0, χ = χ0,
−1 for ψ = ψ0, χ 6= χ0,
0 for ψ 6= ψ0, χ = χ0

(4)

If ψ 6= ψ0 and χ 6= χ0, then |G(ψ, χ)| = q1/2. If q = ph, where p is an odd prime
and h is a positive integer, then

G(η, χ1) =

{

(−1)h−1q1/2 if p ≡ 1 (mod 4),
(−1)h−1(

√
−1)hq1/2 if p ≡ 3 (mod 4).

(5)

Let χ be a nontrivial additive character of GF(q) and let the polynomial
f ∈ GF(q)[x] be of positive degree. Sums of the form

∑

c∈GF(q) χ(f(c)) are
called Weil sums.

The following is referred to as Weil’s bound [9].

Lemma 4 Let f ∈ GF(q)[x] be of degree m ≥ 1 with gcd(m, q) = 1 and let χ
be a nontrivial additive character of GF(q). Then

∣

∣

∣

∣

∣

∣

∑

c∈GF(q)

χ(f(c))

∣

∣

∣

∣

∣

∣

≤ (m − 1)q1/2.

The following is useful in the sequel [9].

Lemma 5 Let χ be a nontrivial additive character of GF(q) with q odd, and let
f(x) = a2x

2 + a1x + a0 ∈ GF(q)[x] with a2 6= 0. Then

∑

c∈GF(q)

χ(f(c)) = χ(a0 − a2
1(4a2)

−1)η(a2)G(η, χ). (6)
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5 The class of trace codes

Let p ≥ 5 be a prime, m a positive integer, and q = ps for some positive integer
s. For any a, b, c ∈ GF(qm), define

fa,b,c(x) = Trqm/q(ax3 + bx2 + cx),

which is a function from GF(qm) to GF(q).
We now define a linear code over GF(q) as

Cq,m = {ca,b,c = (fa,b,c(γ1), · · · , fa,b,c(γqm−1)) : a, b, c ∈ GF(qm)}, (7)

where γ1, · · · , γqm−1 are all the nonzero elements of GF(pm) arranged in some
order.

Our task in this section is to study the code Cq,m and its dual. We shall
determine the dimension and some weights of the code, and derive tight lower
and upper bounds on the the minimum distance of the code.

Theorem 1 Let p ≥ 5. Then the code Cq,m of (7) has parameters [qm −
1, 3m, d; q] with

(q − 1)
(

qm−1 − 2q(m−2)/2
)

≤ d ≤ (q − 1)
(

qm−1 + 2q(m−2)/2
)

.

Furthermore, we have the following conclusions.

1. If m is even, then

(q − 1)
(

qm−1 − 2q(m−2)/2
)

≤ d ≤ (q − 1)
(

qm−1 − q(m−2)/2
)

.

and the code Cq,m has codewords of the following weights:

(q − 1)qm−1 ± (q − 1)q(m−2)/2, (q − 1)qm−1 ± q(m−2)/2, (q − 1)qm−1.

2. If m is odd, then

(q − 1)
(

qm−1 − 2q(m−2)/2
)

≤ d ≤ (q − 1)qm−1 − q(m−1)/2

and the code Cq,m has codewords of the following weights:

(q − 1)qm−1 ± q(m−1)/2, (q − 1)qm−1.

Proof. For any a, b, c ∈ GF(qm), define

Na,b,c = |{x : fa,b,c(x) = 0, x ∈ GF(qm)}|.

Then the Hamming weight of the codeword ca,b,c is equal to qm − Na,b,c.
By (4), we have

qNa,b,c =
∑

x∈GF(qm)

∑

y∈GF(q)

χ1[yfa,b,c(x)]

= qm +
∑

y∈GF(q)∗

∑

x∈GF(qm)

χ1[yfa,b,c(x)]

= qm +
∑

y∈GF(q)∗

∑

x∈GF(qm)

χ1[Trqm/q(yax3 + ybx2 + ycx)]

= qm +
∑

y∈GF(q)∗

∑

x∈GF(qm)

χ2[yax3 + ybx2 + ycx]. (8)
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If a 6= 0, it would be hard to derive a formula for Na,b,c. In this case, we
shall develop tight lower and upper bounds on Na,b,c. If a = 0 but b 6= 0, we
are able to give formulas for Na,b,c.

We first consider the case that a 6= 0. In this case, by Lemma 4 and (8) we
have

|qNa,b,c − qm| =

∣

∣

∣

∣

∣

∣

∑

y∈GF(q)∗

∑

x∈GF(qm)

χ2[yax3 + ybx2 + ycx]

∣

∣

∣

∣

∣

∣

≤
∑

y∈GF(q)∗

∣

∣

∣

∣

∣

∣

∑

x∈GF(qm)

χ2[yax3 + ybx2 + ycx]

∣

∣

∣

∣

∣

∣

≤ 2(q − 1)qm/2. (9)

Now we consider the case that a = 0 but b 6= 0. Similarly, by Lemma 4 and
(8) we have

|qN0,b,c − qm| =

∣

∣

∣

∣

∣

∣

∑

y∈GF(q)∗

∑

x∈GF(qm)

χ2[ybx2 + ycx]

∣

∣

∣

∣

∣

∣

≤
∑

y∈GF(q)∗

∣

∣

∣

∣

∣

∣

∑

x∈GF(qm)

χ2[ybx2 + ycx]

∣

∣

∣

∣

∣

∣

≤ (q − 1)qm/2. (10)

Finally, we consider the case that a = 0, b = 0, but c 6= 0. In this case we
have clearly

N0,0,c = qm−1. (11)

Combining (9), (10), and (11), we obtain

qm−1 − 2(q − 1)q(m−2)/2 ≤ Na,b,c ≤ qm−1 + 2(q − 1)q(m−2)/2 (12)

if (a, b, c) 6= (0, 0, 0). Hence the Hamming weight HW(ca,b,c) of any nonzero
codeword ca,b,c satisfies that

(q − 1)
(

qm−1 − 2q(m−2)/2
)

≤ HW(ca,b,c) ≤ (q − 1)
(

qm−1 + 2q(m−2)/2
)

. (13)

This proves the lower bound on the minimum distance of the code.
Now it is time to derive the upper bounds on the minimum distance and

determine some weights in the code. We consider the codewords ca,b,c with
a = 0, b ∈ GF(q)∗, and c ∈ GF(q). Note that

f0,b,c(x) = Trqm/q(bz
2) − Trqm/q(c

2/4b),

where z = x + c/2b. In this case, we have

N0,b,c = |{z ∈ GF(qm) : Trqm/q(bz
2) = Trqm/q(c

2/4b)}|. (14)

Define gγ(x) = Trqm/q(γx2) and

Uv(γ) = |{x ∈ GF(qm) : gγ(x) = v}|.
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Then we have

qUv(γ)

=
∑

x∈GF(qm)

∑

y∈GF(q)

χ1[y(gγ(x) − v)]

= qm +
∑

y∈GF(q)∗

∑

x∈GF(qm)

χ1[y(gγ(x) − v)]

= qm +
∑

y∈GF(q)∗

∑

x∈GF(qm)

χ1[Trqm/q(γyx2 − vy)]

= qm +
∑

y∈GF(q)∗

∑

x∈GF(qm)

χ2[γyx2 − vy]

= qm + G(η2, χ2)
∑

y∈GF(q)∗

χ2[−vy]η2[γy]

=

{

qm + G(η2, χ2)η2(γ)
∑

y∈GF(q)∗ η2[y] v = 0

qm + G(η2, χ2)η2(−vγ)
∑

z∈GF(q)∗ χ2[z]η2[z] v 6= 0

=















qm + (q − 1)η2(γ)G(η2, χ2) v = 0,m even
qm v = 0,m odd
qm + η2(−vγ)G(η2, χ2)

∑

z∈GF(q)∗ χ2[z] v 6= 0,m even

qm + η2(−vγ)G(η2, χ2)G(η1, χ1) v 6= 0,m odd

(15)

=







































qm − (q − 1)qm/2η2(γ) v = 0,m even, p ≡ 1 (mod 4)
qm + (−1)ms/2+1(q − 1)qm/2η2(γ) v = 0,m even, p ≡ 3 (mod 4)
qm v = 0,m odd
qm + qm/2η2(γ)η2(−v) v 6= 0,m even, p ≡ 1 (mod 4)
qm − (−1)ms/2qm/2η2(γ)η2(−v) v 6= 0,m even, p ≡ 3 (mod 4)
qm + q(m+1)/2η2(γ)η2(−v) v 6= 0,m odd, p ≡ 1 (mod 4)
qm + (−1)(m+1)s/2q(m+1)/2η2(γ)η2(−v) v 6= 0,m odd, p ≡ 3 (mod 4)

Note that c0,0,c has Hamming weight (q − 1)qm−1 for any c ∈ GF(qm)∗.
Clearly, η2(γ) takes on both ±1 when γ ranges over GF(qm)∗. It then follows

from (15) that when m is even Uv(γ) takes on all the values

qm−1 ± (q − 1)q(m−2)/2, qm−1 ± q(m−2)/2.

Hence in this case, by (14) Cq,m has codewords of the following weights:

(q − 1)qm−1 ± (q − 1)q(m−2)/2, (q − 1)qm−1 ± q(m−2)/2, (q − 1)qm−1.

The conclusions for the case that m is odd follow similarly from (14) and
(15).

We now prove that the dimension of the code is 3m. For any two pairs
(a1, b1, c1) and (a2, b2, c2), if ca1,b1,c1

= ca2,b2,c2
, then we have

(a1 − a2)x
3 + (b1 − b2)x

2 + (c1 − c2)x = 0

for all x ∈ GF(qm). It then follows from p ≥ 5 that (a1, b1, c1) = (a2, b2, c2).
Hence C has q3m distinct codewords, and thus dimension 3m.

This completes the proof of this theorem.

Theorem 2 The dual code C⊥
q,m has parameters [qm − 1, qm − 3m − 1, 4; q].
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Proof. Let d⊥ denote the minimum distance of C⊥
q,m. Clearly, d⊥ 6= 1. We

first prove that d⊥ 6= 2. Let x1 and x2 be two distinct nonzero elements of
GF(qm). Suppose that there is a u ∈ GF(q)∗ such that

Trqm/q(ax3
1 + bx2

1 + cx1) = uTrqm/q(ax3
2 + bx2

2 + cx2)

for all (a, b, c) ∈ GF(qm)3. Then we have

x1 = ux2, x2
1 = ux2

2, x3
1 = ux3

2.

It follows that u = 1 and hence x1 = x2. This is contrary to the assumption
that x1 and x2 are distinct. This proves that d⊥ 6= 2.

Then we prove that d⊥ 6= 3. Suppose C⊥ has a codeword of Hamming weight
3. Then there are three pairwise distinct elements x1, x2, x3 of GF(qm)∗ and
two elements u and v of GF(q)∗ such that







x1 + ux2 + vx3 = 0,
x2

1 + ux2
2 + vx2

3 = 0,
x3

1 + ux3
2 + vx3

3 = 0.
(16)

Set x = x2/x1 and y = x3/x1. Then (16) becomes






1 + ux + vy = 0,
1 + ux2 + vy2 = 0,
1 + ux3 + vy3 = 0.

(17)

The first two equations of (16) give

u =
y − 1

x(x − y)
, v =

x − 1

y(y − x)
.

Substituting the u and v in the last equation of (16) yields

(x − 1)(y − 1) = 0.

Hence x = 1 or y = 1. This is contrary to the fact that x1, x2 and x3 are
pairwise distinct. Thus C⊥

q,m has no codeword of Hamming weight 3.

Now we prove that d⊥ = 4. It suffices to prove that C⊥
q,m has a codeword of

Hamming weight 4. Since q ≥ 5, we can select three pairwise distinct elements
x, y, z in GF(q) \ {0, 1}. Define

u = − (y − 1)(z − 1)

x(x − y)(z − x)
∈ GF(q),

v = − (x − 1)(z − 1)

y(x − y)(z − y)
∈ GF(q),

w = − (x − 1)(y − 1)

z(y − z)(z − x)
∈ GF(q).

It is easily checked that (u, v, w) is a solution to the following set of equations:






1 + ux + vy + wz = 0,
1 + ux2 + vy2 + wz2 = 0,
1 + ux3 + vy3 + wz2 = 0.

Assume that
γi1 = 1, γi2 = u, γi3 = v, γi4 = w.
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Then the i1th, i2th, i3th and i4th columns of the code Cp,m are linearly de-
pendent (with coefficients 1, u, v and w). Thus C⊥

q,m must have a codeword of
Hamming weight 4. This completes the proof.

In general, the codes Cp,m are very good. To justify this, we now give two
examples of the codes. When (q,m) = (5, 2), the code C5,2 has parameters
[24, 6, 12; 5] with weight distribution

1 + 104x12 + 1404x16 + 1536x17 + 3024x18 + 1824x19

+3624x20 + 2496x21 + 960x22 + 576x23 + 76x24.

The dual code C⊥
5,2 has parameters [24, 18, 4; 5].

When (q,m) = (5, 3), the code C5,3 has parameters [124, 9, 90; 5] with weight
distribution

1 + 147560x90 + 468720x95 + 930124x100 + 362080x105 + 44640x110.

This code is the best code known with these parameters.

6 The access structure of the secret sharing

schemes based on the dual codes

Theorem 3 If m ≥ 4 and p ≥ 5, then all nonzero codewords of Cp,m are mini-
mal. Furthermore, in the secret sharing scheme based on C⊥

p,m every participant
is in (q − 1)q3m−2 out of q3m−1 minimal access sets.

Proof. If m ≥ 4 and p ≥ 5, by Theorem 1 we have

wmin

wmax
≥ (q − 1)(qm−1 − 2q(m−2)/2)

(q − 1)(qm−1 + 2q(m−2)/2)
>

q − 1

q
.

It then follows from Lemma 3 that all nonzero codewords of Cp,m are minimal.
The second conclusion then follows from Theorem 2 and Lemma 2.

With the help of Theorem 17 in [5], we can prove that in the secret sharing
scheme based on C⊥

p,m, every group of two participants is involved in the same
number of minimal access sets. Hence the access structure is democratic of
degree 2.
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