
Ralph-Johan Back | Johannes Eriksson | Luka Milovanov

Experience on Using Stepwise Feature
Introduction in Software Construction

TUCS Technical Report
No 705, August 2005

Experience on Using Stepwise Feature
Introduction in Software Construction

Ralph-Johan Back
Åbo Akademi University, Department of Computer Science,
Lemminkäisenkatu 14, FIN-20520 Turku, Finland
backrj@abo.fi

Johannes Eriksson
joheriks@abo.fi

Luka Milovanov
lmilovan@abo.fi

TUCS Technical Report

No 705, August 2005

Abstract

Stepwise Feature Introduction is an incremental method and software architecture
for building object-oriented system in thin layers of functionality, and is based on
the Refinement Calculus logical framework. We have evaluated this method in a
series of real software projects. The method works quite well on small to medium
sized software projects, and provides a nice fit with agile software processes like
Extreme Programming. The evaluations also allowed us to identify a number of
places where the method could be improved, most of these related to the way
inheritance is used in Stepwise Feature Introduction. Three of these issues are
analyzed in more detail here: diamond inheritance, complexity of layering and
unit testing of layered software.

Keywords: Agile Methods, Software Architecture, Stepwise Feature Introduc-
tion, Empirical Software Engineering, Gaudi Factory

TUCS Laboratory
Software Construction Laboratory

1 Introduction

Stepwise Feature Introduction (SFI) [2] is a bottom-up software development
methodology based on incremental extension of the object-oriented system with a
single new feature at a time. It proposes a layered software architecture and uses
Refinement Calculus [3, 10] as the logical framework.

Software is constructed in SFI in thin layers, where each layer implements a
specific feature or a set of closely related features. The bottom layer provides the
most basic functionality, with each subsequent layer adding more and more func-
tionality to the system. The layers are implemented as class hierarchies, where
a new layer inherits all functionality of previous layers by sub-classing exist-
ing classes, and adds new features by overriding methods and implementing new
methods. Each layer, together with its ancestors, constitutes a fully executable
software system.

Layers are added as new features are needed. However, in practice we cannot
build the system in this purely incremental way, by just adding layer after layer.
Features may interact in unforeseen ways, and a new feature may not fit into the
current design of the software. In such cases, one must refactor [15] the software
so that the new feature fits better into the overall design. Large refactorings may
also modify the layer structure, e.g. by changing the order of layers, splitting
layers or removing layers altogether.

An important design principle of SFI is that each extension should preserve
the functionality of all previous layers. This is known as superposition refine-
ment [9]. A superposition refinement can add new operations and attributes to a
class, and may override old operations. However, when overriding an old opera-
tion, the effect of the old operation on the old attributes has to be preserved (but
new attributes can be updated freely). No operations or attributes can be removed
or renamed.

Consider as an example a class that provides a simple text widget in a graphical
user interface. The widget works only with simple ASCII text. A new feature that
could be added as an extension to this widget could be, e.g., formatted text (bold-
face, italics, underlined, etc). Another possible extension could be a clipboard to
support cut and paste. We could carry out both these extensions in parallel and
then construct a new class that inherits from both the clipboard text widget and
the styles text widget using multiple inheritance (this is called a feature combi-
nation), possibly overriding some of the operations to avoid undesirable feature
interaction. Or, we could first implement the clipboard functionality as an exten-
sion of the simple text widget, being careful to preserve all the old features, and
then introduce styles as a new layer on top of this. Alternatively, we could first
add styles and then implement a clipboard on top of the styles layer. The three
approaches are illustrated in Figure 1.

A component is divided into layers in SFI. Layers will often cut across com-
ponents, so that the same layering structure is imposed on a number of related

1

SimpleText

CutAndPaste

Styles

SimpleText

CutAndPaste

Styles

SimpleText

CutAndPaste Styles

BetterText

(a) (b) (c)

Figure 1: Alternative extension orders

components. As an example, consider building an editor that displays the text
widget. In the first layer we have a simple editor that only displays the simple
ASCII text widget. Because of the superposition property of extension this sim-
ple editor can in fact also use the CutAndPaste, Styles or BetterText widgets,
but it cannot make use of the new features. We need to add some features to
the simple editor so that the functionality of the extended widget can be accessed
(menu items for cut and paste, or for formatting, or toolbar buttons for the same
purpose). We do this by constructing a new an extension of the simple editor (a
better editor), which uses the BetterText widget and gives the user access to the
new functionality. The situation is illustrated in Figure 2.

SimpleText

CutAndPaste Styles

BetterText

SimpleEditor

BetterEditor

content

content

Simple layer

Better layer

Editor component Text component

Figure 2: Interacting components

The new editor is, however, restricted to only work on the better text widget,
because the features it assumes are only available on this level. Hence, there are
two layers in the design, the Simple layer and the Better layer.

Stepwise Feature Introduction has been tried out in a number of real software
projects. This allows us now to evaluate the merits of this approach and to spot
possible drawbacks as well as opportunities for improvement. Our purpose in this
paper is to report on these case studies, and to provide a first evaluation of the
approach, together with some suggestions on how to improve the method.

The paper is structured as following: Section 2 present the software projects

2

where SFI was applied. We summarize our experience with the methodology in
Section 3. In Sections 4-6 we then consider in more detail three interesting is-
sues that arose from our experiments with Stepwise Feature Introduction. The
problems with implementing feature combinations using multiple inheritance is
discussed in Section 4. The problem of class proliferation is discussed in Sec-
tion 5, where metaprogramming is considered as one possible way of avoiding
unneccessary classes. In Section 6, we show how to adapt unit testing to also
test for correct superposition refinement. We end with a short summary and some
discussion on on-going and future work.

2 SFI Projects in Gaudi

The software projects where SFI was evauated were all carried out in the Gaudi
Software Factory at Åbo Akademi University. The Gaudi Software Factory is an
academic environment for building software for the research needs and for car-
rying out practical experiments in Software Engineering [6]. Our research group
defines the setting, goals and methods to be used in the Factory, but actual con-
struction of the software is done in the factory, following a well-defined software
process. The work is closely monitored, and provides a lot of data and mea-
sures by wich the software process and its results can be evaluated. The software
process used in Gaudi is based on agile methods, primarily Extreme Program-
ming [11], together with our own extensions.

We will here describe four software projects where Stepwise Feature Introduc-
tion was used throughout. The settings for all these projects were similar: the soft-
ware had to be built with a tight schedule, and the Gaudi software process had to be
followed. The programmers employed for these projects (4-6 persons) were third-
fifth year students majoring in Computer Science or related areas. Each project
had a customer who had final saying on the functionality to be implemented. The
projects were also supervised by a coach (a Ph.D. student specializing in Software
Engineering), whose main task was to guide the use of the software process and
to control that the process was being followed. There has also been one indus-
trial software project [1] with SFI, but this is outside the scope of this paper, as it
was not carried out in the Gaudi Factory, and the software process used was not
monitored in a sufficiently systematic manner.

All of the projects used SFI, but the ways in which the method was applied
differed from project to project. We describe the projects in chronological order
below. For each project, we present the goals: both for the software product
that was to be built, and for the way in which SFI was to be evaluated in this
project. We give a general overview of the software architecture, show how SFI
was implemented, what went right and what went wrong, and discuss the lessons
learned from the project.

3

Command
0..*

EditItem

BasicItem ConfigBasicEditorBasicWindow

CCCPWindow CCCPClipboard

SelWindow

CCCPEditor

SelEditor

MVWindow MVEditor

ExpandEditor

FindEditor

StyleItem StyleStyleEditorStyleWindow

1..* 1

1..* 1

1..* 1

1..* 1StyleDocument

EditCommandHistory

MVCommandHistory MVDocument

EditEditorEditWindowEditDocument

1

FindWindow

ExpandWindow

1

1..*

1..* 1BasicDocument

1

1..*

1

1 1

1

1SelDocument

1

1

1..*

1 1..*

1 1 1 1

1 11 1

0..*

Figure 3: The layers of the editor

2.1 Extreme Editor
The Extreme Editor project [7] was the first application of SFI in practice. It ran
for three months during the summer 2001 and involved six programmers. The
programming language of the project was Python [18]. The software product to
be built was an outlining editor which became a predecessor for the Derivation
Editor described in Section 2.2. The goal for the project was to obtain the first ex-
perience from practical application of SFI with a dynamically typed programming
language. There were no technical guidelines for the application of SFI except that
the extension mechanism for classes (the feature introduction—Section 1) should
be inheritance.

Figure 3 shows the layered architecture of the Extreme Editor. There were
eight layers in the system:

Layer 1. (Basic): Only one text file (document) can be opened per session. Doc-
uments are interpreted as outlined texts. Implemented functionality for
open, save, save-as operations. The opened document, however, cannot
be edited yet. The editor can also create a configuration file, write a set of
configuration options in it and read them later.

Layer 2. (Edit): The basic editing operations such as type and delete characters,
insert and remove items, change the indentation of items are implemented.

4

Command history which allows undo and redo operations is also imple-
mented. New document can now be created.

Layer 3. (Clipboard): Implemented copy, cut and paste operations. However
they can be applied only to the whole document because the selection is not
implemented yet. Some utility functions are bound to hot keys.

Layer 4. (Selection): Implemented the smart selection operation. The user can
select characters of a string or several items. The operations from the previ-
ous layer as well as changing the indentation now work under selection.

Layer 5. (Multiple Windows): Multiple window interface based on the Model-
View-Controller [16] pattern is implemented. The user can have many dif-
ferent documents opened in one session. The user can also have several
views of the same document. The document can be edited in any of its
views. The content of all views is synchronized.

Layer 6. (Expand and Collapse): Composite items of outlined texts can now be
collapsed and expanded. The expansion operation has three models: ”ex-
pand all”, ”expand one level” and ”remember expansion”.

Layer 7. (Find and Replace): The standard operations for finding and replacing
regular expressions in documents are implemented.

Layer 8. (Styles): The concept of styles is introduced. Two styles can now be
applied to the items of a document: plane and title.

Each layer introduced new functionality into the system, without breaking the
old features. The software was structured into these layers in an ad hoc way. A
new layer extended its predecessor by inheriting its corresponding classes and
possibly introducing one or more new classes. There were no physical division of
the software into the layers on the level of the file system: each class name had a
prefix—the name of the layer where the class belongs to. More on the architecture
of the software and detailed description of the layers can be found in the technical
report [7].

The feedback on SFI from this project was rather positive. The method sup-
ported building software with a layered architecture quite well. The developers
found it rather easy to add new features as new layers. The fact that functional-
ity of the system was divided into layers made the overall structure of the system
clearer to all the programmers. Another advantage was ”bug identification”: the
layered structure made it easy to find the layer in which the bug occured and its
location in the source code.

On the other hand, even in the three-month project, as more features were
implementer and the more classes were introduced into the system, it was getting
harder to navigate among them without any tool support, any automatic documen-
tation describing the layer structure and without a systematic naming convention

5

for classes, layers and methods. We also found that SFI requires a special way of
unit testing (the testing classes should be extended in the same way as the ordinary
classes of the system). More on unit testing will be discussed in Section 6.

2.2 Editor for Mathematical Derivations

MathEdit [14] was an effort to implement tool support for structured deriva-
tions and is currently the largest project developed using the SFI methodology.
MathEdit was developed in the Gaudi Software Factory as two successive sum-
mer projects, in 2002 and 2003. One of the objectives of the first summer project
was to try out feature combination by multiple inheritance. The second objective
of the project was to assess how well a new team could embrace an existing SFI
codebase and continue its development. The continuation project in 2003 shared
only one out of four developers with the 2002 project. Still, it turned out that the
new programmers were able to start working productively with the existing code
base within the first three weeks.

MathEdit consists of totally 16 layers. Each layer is named after the key fea-
ture implemented. All layers, each accompanied by a short description of its major
features, are ordered from the most basic (lowest) to the most advanced (highest)
in the following list.

Base: Basic GUI: main window, menus and toolbars.

Frame: Multiple empty MDI (Multiple Document Interface) child windows.

Text: Plain-text editing using a custom editor widget, Open, Save, Save As, Save
All. Document model.

MV: Multiple views of the same document.

Edit: Clipboard interaction, find and replace, and spell checking.

CmdList: Support for undo/redo of editing commands. Extends the document
model with a command list.

Outline1: Extends the document model and editing capabilities of the text widget
to support an outlining structure.

Outline2: Support for folding, i.e., collapsing and expanding an item. Collapsing
hides all lines indented deeper than the current line, expanding shows them
again.

Format: Rich text formatting of text, and hyperlinks.

6

 medit

Text_Editor

Text_ReadOnlyEditor

Text_WrapFormatter

Text_WrapAnywhereFormatter

Text_WordWrapFormatter

Text_WrappedRow

Text_CompositeRow

Text_Document
*

Text_KeyCatcher Text_KeyStore*

Text_EditorKeyCatcher

Text_EditorPopup

Text_SharedDialog

Text_UnicodeDialog

*

Base layer

Text layer

Frame layer

application

Text_KeybindingsDialog

Text_MainWindow

Frame_Viewtabs

Text_ImportText

Text_ExportFilter

Frame_ViewWindow

Base_AboutBox

Text_ViewWindow

Text_OptionsTabDialog

Text_Viewtabs

Base_Menu

Frame_MainWindow

Text_ExportText

Base_Toolbar

Text_DialogBase

*

Base_MainWindow

*

*

Text_ImportFilter
*

**

*

*

Figure 4: The first three layers of MathEdit, unit tests excluded

Derivation: Formula syntax. Possibility to define mathematical expressions, which
the editor parses according to the grammar of the (default) mathematical
profile. Structured derivations can be constructed by using ruiles to rewrite
expressions.

Profile: Support for switching profiles, and adding custom profiles.

Filter: Export documents to HTML files with Javascript support for folding. Ex-
port to LaTeX.

Highlight: Syntax highlighting for programming languages.

Program: Program syntax, programming with nested states.

Picture: Possibility to add pictures to documents.

Hook: Scripting interface, the user can connect custom functions to hooks that
are executed for specific events in MathEdit.

We chose to associate classes with layers using naming conventions instead
of by grouping them into Python modules, mainly because we wanted layering
and modularization to be orthogonal partitionings of the software. Classes are
named according to the template Layer_ClassName, where Layer is the name
of the layer ClassName the name of the class. A diagram showing the classes of
the first three layers (unit tests excluded) can be seen in figure 4. Due to space
considerations, we cannot display a complete class diagram for MathEdit.

On the highest level, MathEdit is separated into three major components: a
document-view component (medit), the application-level UI (application) and

7

a mathematical profile plug-in. The medit and application components are
layered as described above. The layering cross-cuts these top-level components,
so the layering is global. The profile component was designed as a plug-in, so it
was not layered—users should be able to write custom profiles without having to
care about the internal layer structure of MathEdit.

Combining two layers using multiple inheritance was attempted but ultimately
abandoned in the MathEdit project. The main reason were practical problems
arising from the use of multiple inheritance; e.g., classes in the graphical toolkit
used (Qt) did not support multiple inheritance well. Also, the development team
was quite small, so it did not seem fruitful to work on two features in parallel
as if they were independent, when it was already known that the features would
be combined later on. Instead, a feature was implemented with extensibility in
mind, so that it was easy to add the next feature in a new layer. The gains of
parallel development would probably be much higher in a larger project, but this
still remains to be evaluated.

The MathEdit application is executable with any layer as the top layer, provid-
ing the functionality of this layer and all layers below. The gives us the possibili-
ties to fall back to an earlier working version in case of malfunction, and to locate
bugs that were introduced in a some unknown layer. We simply implement a test
that exposes the bug and run it with different top layers. The lowest layer that
exhibits the erroneous behavior is either harboring the bug, or triggering a bug in
a previous layer.

2.3 Software Construction Workbench

The Software Construction Workbench (SCW) project (summer – fall 2002) was
an effort to build a prototype for IDE supporting Stepwise Feature Introduction
and Python. This application was built in Python, as an extension of the System
Modeling Workbench [4]. The main feature are modeling software systems in
a SFI fashion with UML, automatic Python code generation and execution of
the constructed system and support for unit tests in the environment. SCW also
included basic support for Design by Contract [20] and reverse engineering.

As far as SFI is concerned, the goals in this project were to get further feedback
on the practical application of the methods, to try out the layered approach to unit
testing (discussed in Section 6) and to try out new naming conventions (described
below in this section). A special feature of this project was that it used its own
medicine: the software needed to support software development with SFI was
built itself using this method. Since the architecture of the SCW is rather complex,
we do not present it here, for the readers’ convenience. Instead, we illustrate how
the SFI method was applied in this project on a small and simplified fragment of
the software.

Figure 5 shows an example of the layer structure implementation. SFI layers
were implemented using Python’s packaging mechanism: each SFI layer corre-

8

Undo_Redo

SFI_ManagerLayer_Manager

Code_Gen

Code_GeneratorSFI_ManagerLayer_Manager

Figure 5: Layer structure, Python implementation

sponds to a Python package. To show that a layer is a successor of another layer we
draw a dependency from the successor to its ancestor; in practice this dependency
was the Python import statement. The mechanism for extension of classes was
inheritance, as shown in Figure 5. Every class, once introduced, keeps its original
name through all of its extensions. This was simple to implement: Python pack-
ages provide a namespace so we had no conflicts with the names of the classes.
The diagram in Figure 5 will correspond to the following implementation:

Undo_Redo/__init__.py
Code_Gen/__init__.py

Files Undo_Redo/__init__.py and Code_Gen/__init__.py will have the def-
initions of classes Layer_Manager and SFI_Manager, or they will import their
definitions from somewhere else, i.e. from the corresponding files in the follow-
ing directories:

Undo_Redo/ Layer_Manager.py SFI_Manager.py
Code_Gen/ Layer_Manager.py SFI_Manager.py Code_Generator.py

When a successor layer is created, all elements should be imported into it for their
usage with the statement from Undo_Redo import *. For the extensions of
the elements, the ancestor layer should be imported into its successor with the
statement import Undo_Redo.

In our example the directories Undo_Redo and Code_Gen should be located
in the directory SCW which should also contain the init-file with the following
content:

system SCW
Layers = [’Undo_Redo ’, ’Code_Gen ’] #all system’s layers
TopLayer = Layers [-1] #top layer: the latest

#system’s extension

9

exec(’from %s import *’ % TopLayer) #import all elements
#from the top layer

All init-file in the layer implementation should start with two import statements.
The first import imports classes from ancestor for further use and the second im-
ports the ancestor itself for making the extensions of the classes. In our example
(figure 5), file Code_Gen/__init__.py will starts as:

from Undo_Redo import *
import Undo_Redo

A class can be extended with new methods and/or some inherited methods can
be overwritten. When an old method is overwritten in the next class extension, it
is a good practice to have a call to the original method inside the body of the
extended method. Suppose class Undo_Redo.Layer_Manager has a method f(),
and we want to improve it in its extension class Code_Gen.Layer_Manager, and
we also want to add a new method g(). This should be done in the following way:

class Layer_Manager(Undo_Redo .Layer_Manager):
def f(self , x):

... # extension code
r = Undo_Redo .Layer_Manager.f(self)+1 #old code reuse
... # more extension code
return r

def g(self):
.. # do something

Note that the redefined method f contain the call to its ancestor, this is the way to
reused old code in SFI, and it should be always when possible used when extend-
ing a method. The extended method Code_Gen.Layer_Manager.f(x) has one
parameter and return a tuple unlike its ancestor Undo_Redo.Layer_Manager.f().
Due to the highly dynamic nature of Python it is allowed to change number and
types of methods parameter and return values.

According to the developers, the implemented layered structure of the soft-
ware together with the name conventions really clarified the software. The Soft-
ware Construction Workbench project was carried out as two subprojects, such
that half of the developers were new in the second subproject, and in the beginning
had no understanding of the software at all. Nevertheless, the new programmers
were able to take over the code easily because of the division of features into lay-
ers. The new programmers also commented that the layering made it much easier
to navigate in the code, modify code and search for bugs.

The SCW project showed that in order to use the SFI methods properly and
efficiently, tool support is really needed. Because of the way Python packaging
was used to implement the SFI layers, it took a lot of time to divide the code into
directories corresponding to the layers. Building software according to SFI also
promotes refactoring (a practice enforced in our Software Factory). For example,
when changing something in the lower layer, it can often affect the successive

10

Graph

Graph_PlannerGraph_Account

Prognisis

Prognosis_PlannerPrognosis_Account Prognosis_Prediction

Figure 6: Layer structure, Eiffel implementation

layers, so they should be slightly changed. According to the developers a simple
tool helping with the navigation among the layer structure, i.e. from ancestor to
successor and the other way around, would here save a lot of time.

2.4 Personal Financial Planner
The Personal Financial Planner project [5] (FiPla) was the first application of SFI
with a statically typed language—Eiffel [19]. The software goal for the project
was to build a personal financial planner. The features required of this product
type include tracking of actual events (manually or automatically), planning (such
as budgeting and creating scenarios), and showing future scenarios.

SFI was evaluated in this project to see how the method would work with a
statically typed language. Another goal was to see how well the SFI layers layers
correspond to the short release cycles used in the Gaudi Software Factory [6], so
that each short iteration starts a new layer. Finally we also wanted to see how well
SFI and Design by Contract [20] fit together.

SFI layers in Eiffel are implemented using Eiffel clusters. However, unlike
Python packages, a cluster in Eiffel does not provide a namespace for the classes.
It means that all names of the classes in the Eiffel software system should have
unique name, so it was impossible to have the same naming convention as in
the SCW project. For this purpose we used another naming convention, where
each class name should have the name of the layer that the class belongs to as a
prefix. Figure 6 shows a simplified fragment of the software architecture which
corresponds to the following implementation:

system "fipla"
root application: make
cluster
fipla: "$"
library base: "$ISE_EIFFEL/library/base"

11

graph (fipla): "$/graph"
prognosis (fipla): "$/prognosis"
end

—the LACE (Language for the Assembly of Classes in Eiffel) file fipla.ace.
The cluster directories graph and prognosis correspond to the SFI layers, and
files:

graph_account.e graph_planner.e
prognosis_account.e prognosis_planner.e prognosis_prediction.e

contain the definitions of the corresponding classes shown on the diagram. There
is no need for the import statement in Eiffel since all classes from the system’s
clusters are already accessible. However, unlike in Python, the names of classes
change in each layer, see figure 6.

The example with the extension of method f() and addition of new method g()
from the previous Section 2.3 in Eiffel will be implemented as the following:

class PROGNOSIS_ACCOUNT inherit
GRAPH_ACCOUNT
redefine f end

create make
feature -- Extended routines

f is
do

... -- extension code
result := precursor + 1 -- old code reuse
... -- more extension code

end
feature -- New routines

g is
do

...
end

end -- class PROGNOSIS_ACCOUNT

Class PROGNOSIS_PLANNER is the extension of the class GRAPH_PLANNER, and
the extended class is assosiated with class PROGNOSIS_ACCOUNT (extension of
GRAPH_ACCOUNT). This is implemented in the following way:

class GRAPH_PLANNER
feature -- suppliers

account : GRAPH_ACCOUNT
...
class PROGNOSIS_PLANNER inherit

GRAPH_PLANNER
redefine account end

feature -- redefined suppliers
account : PROGNOSIS_ACCOUNT

12

EE MathEdit SCW FiPla
LOC 3300 44372 16334 8572
Test LOC 1360 4198 14565 2548
Total LOC 4660 48570 30899 11120
Classes 52 427 66 59
Test classes 23 53 42 25
Methods 344 3790 610 331
Test methods 85 279 355 177
LOC/class 63 104 247 145
LOC/test class 59 79 347 102
Methods/class 6.6 8.9 9.2 6.0
Test methods/class 3.7 5.3 8.5 7.0

Table 1: Basic product metrics for SFI projects

SFI worked well with Eiffel when we applied the methods in the same way as
in our Python projects. Structuring the software system into layers according to
the small releases defined by the customer turned out to be a good idea. However,
a few important technical issues that needed improvement were found. These
issues only came up when using SFI with a statically typed language.

The extension of classes using pure inheritance did not work well with Eiffel.
The types of the parameters and return value of redefined routines should be at
least of conforming types. Eiffel does not support parametrized polymorphism,
hence, the number of parameters should be constant in all extensions of a routine.
It is possible to overcome these limitations using routine renaming or rewriting a
routine completely previously undefining it with Eiffel’s undefine statement. The
last case is, however, not recommended since it will not be a real extension of the
routine.

To avoid these problems one must pay more attention to the overall system
architecture and plan a bit further ahead then just for the next iteration. Extensive
refactoring was needed in some cases, when the planning had not been done care-
fully enough. To refactor a SFI system efficiently, tool support was again deemed
necessary.

3 Experience of using SFI

In this section we summarize our experience from using SFI in the software
projects mentioned above, based on the quantitative and qualitative data that was
collected during these projects. Table 1 shows some basic code metrics for the
presented SFI projects. It is easy to see that even in small projects like Extreme
Editor and FiPla, the number of classes is growing fast. On the one hand this helps

13

with debugging: as the developers were often commenting, it is easy to find the
source of a bug in the code because of the separation of functionality into the lay-
ers. On the other hand, managing a large number of classes manually eventually
becomes quite complicated, suggesting that tool support for navigation among
successive layers, classes and methods is needed.

SFI is a bottom-up approach for constructing software systems and is therefore
not that well suited for developing graphical user interfaces. Constructing good
GUIs is a complicated task in itself and needs to combine different approaches
such as bottom-up, top-down, use of state charts and designer tools. Our experi-
ence showed that when using SFI, it is better to separate GUI development from
the construction of the core of the system.

Stepwise Feature Introduction fits well in our software process and in general
in the Extreme Programming philosophy of introducing small changes one at a
time in a software project [6, 8]. The division of the system into layers can be
driven by the XP iteration planning process. When the development team nego-
tiates with the customer about what new features should be implemented for the
next small release, it is then easy to see what should be included in the next layer.
Every layer in SFI system together with its ancestor layers represent a functional,
working system. Hence, each layer corresponds to a small release, making it easy
to package a specific release so that the customer can do the acceptance testing.

We obtained good results regarding the practical usability of SFI from our
projects. SFI has a formal basis and provides a sound way of structuring software,
and SFI designs often capture the core concerns of the software (the features)
more explicitly than many traditional OO designs. We have also identified some
shortcomings in the method that we need to work on. The use of inheritance as an
extension mechanism can be cumbersome and does introduce some complexity of
its own into the system. SFI occasionally makes it difficult to add a feature that
does not fit well into the layer hierarchy. In order to make SFI practically usable, it
will be necessary to devise another extension mechanism or introduce SFI-aware
development tools (such a tool is currently being worked on, as explained in Sec-
tion 7).

In the remaining sections, we will discuss in more depth three specific issues
that came up during our experiments, and which we think merit a much closer
analyzis.

4 Feature Combination and Diamond Inheritance

SFI suggests combining two or more independently developed layers into a feature
combination layer (see Section 1). As each layer may contain an extension of
the same class, the feature combination layer combines the extensions of a class
from each layer into a new subclass using multiple inheritance. It is then the
responsibility of the new layer to synchronize the two independent features in a

14

meaningful way.
Multiple inheritance is significantly more complex than single inheritance for

both language implementors and programmers. What constitutes correct use of
multiple inheritance in object-oriented software is a subject of some controversy.
Bir Singh [23] lists the four main uses of multiple inheritance, none of which
correspond to the way it is used in SFI (combination of two implementations with
a potentially large number of common methods):

• combination of multiple independent protocols;

• mix and match, where two or more classes are designed specially for com-
bination;

• submodularity, to factor out similar subparts for improved system design;

• separation of interface and implementation;

This may suggest that multiple inheritance as implemented in most programming
languages might not be ideal for feature combination as originally proposed in
SFI. We will here focus on one serious design problem encountered numerous
times in our experiments, namely diamond inheritance.

Diamond inheritance occurs when two or more ancestors of a class share the
same base class. This situation arises fairly often in large systems, especially if the
class hierarchy has a common root. In SFI diamond inheritance is likely to occur
because of the way inheritance is used as a layer extension mechanism, especially
if one uses the suggested feature combination.

An example of a situation in which the diamond pattern typically oc-
curs in an SFI design can be seen in Figure 7. The Basic layer con-
tains two classes, BasicAccount and a derived class BasicCheckingAccount,
the latter supposedly having some extended behavior such as allowing with-
drawals greater than the balance. In this case the programmer used in-
heritance to be able to handle objects of the two account types uniformly,
i.e. to achieve polymorphism. Let us now assume that in the next layer
(the Better layer), support for multiple currencies is added, and that this
feature requires both BasicAccount and BasicCheckingAccount to be ex-
tended into BetterAccount and BetterCheckingAccount respectively. How-
ever, to preserve polymorphism, BetterAccount must also be extended to
BetterCheckingAccount. We notice that mixing the two usage patterns of in-
heritance results in a diamond structure in the design.

Diamond inheritance causes difficulty when the same method is imple-
mented in more than one base class. In this example the withdraw method
of BetterCheckingAccount depends on functionality implemented in both
BasicCheckingAccount and BetterAccount, and calls both (in some order).
However, each of these calls trigger a call to BasicAccount.withdraw, result-
ing in two calls to this method. The code in BasicAccount.withdraw is thus

15

BasicAccount

+ withdraw (amount :int):void

BasicCheckingAccount

+ withdraw (amount :int):void

BetterAccount

+ withdraw (amount :int):void

BetterCheckingAccount

+ withdraw (amount :int):void

Better layer

Basic layer

Figure 7: Diamond inheritance

executed twice, which is not the intended behavior (the sum is withdrawn twice
from the account). The same situation occurs commonly with constructors—the
constructor of the common base class in the diamond is called twice. This re-
sults in data structures and resources being initialized twice, potentially leading to
resource leaks.

When implementing BetterCheckingAccount.withdraw in the example case,
we want to call the withdraw method of both base classes: BetterAccount and
BasicCheckingAccount. However, BasicAccount.withdraw must be called
only once. In Python 2.3, which was actually designed with inheritance diamonds
in mind [22], this is possible using the built-in super function which creates a
linearization of the class hierarchy and returns for a given class the previous class
in the linearization. By replacing direct calls to __init__ with super the desired
call order can be achieved. The drawback is that since we are no longer explicitly
calling the base class method, we might not be sure which method actually gets
called without considering the linearization of the whole class hierarchy. Because
this would make the class design more complex we have not used super in any of
our Python projects.

Most SFI projects developed in the Gaudi Software Factory have avoided dia-
mond inheritance by not using multiple inheritance for feature combination or for
mixing polymorphic extension with stepwise extension. Consequently we have
not been able to add features to a base class in a polymorphic inheritance hierar-
chy using SFI layers. However, many times features are better implemented using
delegation, where an object uses another object (the delegatee) to perform an op-
eration. In this case we can simply replace the delegatee with a more advanced
version in a higher layer. E.g., MathEdit heavily uses the Bridge and Decorator
design patterns [16] to avoid inheritance diamonds.

An alternative design to Figure 7 using delegation can be seen in Figure 8.
In this scenario there is no BetterAccount class, instead BasicAccount objects
are parameterized in their implementation; calls to BasicAccount.withdraw are

16

BasicCheckingAccount

+ withdraw (amount :int):void

BasicAccount

+ withdraw (amount :int):void

Basic layer

Better layer

BasicAccountImpl

+ withdraw (amount :int):void

impl+

BetterAccountImpl

+ withdraw (amount :int):void

Figure 8: Adding features using delegation

delegated to impl.withdraw. The code instantiating BasicAccount objects is
assumed to make sure impl is a BasicAccountImpl instance the Basic layer and
a BetterAccountImpl instance in the Better layer.

5 Avoiding Trivial Classes with Metaprogramming

One problem discovered early on was that some SFI-supporting metaprogram-
ming framework had to be implemented to reduce complexity that was primarily
caused by proliferating factory methods. This problem occurs whenever one class
(the factory) is responsible for creating instances of another class (the product),
and subclassing the product to add a new feature results in having to subclass the
factory only to override the factory method so that it creates an instance of the
new product class. An example from MathEdit is illustrated in Figure 9.

The class Text_ViewWindow creates an object of type Text_Editor in the
Text layer. In the Edit layer the Editor class is extended with a feature that
does not affect the behavior of ViewWindow in any other way than that it now
has to instantiate objects of type Edit_Editor instead of Text_Editor. A class
Edit_ViewWindow (grayed out) has to be introduced only to override the factory
method that creates the Editor object.

Since frequent subclassing and deep inheritance hierarchies are commonplace
in SFI designs, this situation will occur whenever a product class is subclassed
and results in a large number of trivial factory subclasses, cluttering the design
and increasing the code size. To avoid introducing these subclasses the metapro-
gramming framework of MathEdit implements a routine that given a class name
returns the correct Python class for the running layer (Python classes are first-

17

Text_ViewWindow

+ create ():Text_Editor

Text_Editor

Edit_ViewWindow

+ create ():Edit_Editor

Edit_Editor<< instantiates >>

<< instantiates >>

Text layer

Edit layer

Figure 9: Subclassing to override factory method

class objects which can easily be passed around; in more static languages one
might need to do this in compile time using e.g. macro substitutions). If a cer-
tain class is not extended in the current layer, the routine searches backwards in
the layer stack until it finds the most recent class definition. For example, calling
the routine to get the ViewWindow class when running layer Edit would return
Text_ViewWindow.

A substantial problem we encountered with deep inheritance hierarchies is that
the control flow through the call chains of overridden methods becomes difficult
to overview. The programmers generally thought it was hard to grasp the order of
method calls and how the object state changes in response to the calls, especially
with many nested method calls. Also, finding a method declaration in the code
could require searching through several classes in the inheritance chain, unless
the programmer knew exactly in which layer the method was implemented. One
programmer commented that “a drawback with having so many hierarchical levels
is that you start to forget methods and variables that you defined on the lowest
levels.”

Our experience indicates that the refactoring stage of SFI is of very high im-
portance for keeping the design clean. Especially when working with unstable
requirements, features can not easily be added on top of each other. The program-
mers found some of the refactorings to be difficult and error-prone, partly because
inheritance creates a rather tight coupling between classes. However, a good test
harness will substantially aid in the detection of such errors.

6 Unit Testing of Superposition

Unit testing is testing of individual hardware or software units or groups of related
units [17]. Extensive, automated unit testing has been proposed as an efficient
way of detecting errors introduced by changes in the software [11, 12]. A unit
test exercises some subset of the software’s behavior and validates it against its

18

specification. Unit testing frameworks frequently group test methods into test
case classes, which can further be aggregated into test suites. The complete test
harness, consisting of all test suites, can then be executed with a single command.

SFI architectures should maintain the superposition refinement relationship
between extensions and their bases—class invariants established in previous lay-
ers should not be violated in subsequent layers. A layered unit testing architecture
allows us to easily create and maintain a test suite that aids in the detection of such
violations, typically caused by programmer error or design mistakes. By writing
tests for only new functionality and inheriting existing testing functionality, we
introduce the requirement that a test introduced in one layer should also pass in
all subsequent layers.

Most of our projects have utilized a unit testing architecture based on inherit-
ing test cases. Our experience has shown it to be useful in practice; especially with
many layers programmers easily forget assumptions and requirements introduced
in a lower layer—if these are reflected in unit tests for the lower layer, possible
violations are detected also when running tests for higher layers.

We assume that for testing we use a unit testing framework that provides us
at least with a test case class. When constructing test cases in bottom layers,
all test cases inherit the class from the testing framework. Test cases of the ex-
tended classes in successive layers should be extensions of the test cases from
previous layers using the same extension mechanism as the application classes—
inheritance. If an inherited method of an application class is overridden and ex-
tended with new functionality, the corresponding test method should be extended
accordingly. If the body of the extended method contains a call to its ancestor
method, the same technique should be applied in the body of the corresponding
test method. This allows us to test both new and old functionality by writing tests
just for the new functionality.

An example of a basic testing scenario with two layers can be seen in Figure
10. The Simple layer contains one application class (SimpleText) and its associ-
ated test class (SimpleTextTest), which tests the insertmethod of SimpleText.
The Better layer extends SimpleText into BetterText by overriding insert
and adding the paste method; correspondingly the BetterTextTest test case
extends SimpleTextTest to override testInsert and adds a new test method
for the paste method (testPaste). The new testInsert method should test
directly only the new functionality introduced in BetterText, it should call the
testInsert method from the Simple layer to test that the old functionality of
insertion is preserved in BetterText. In this way, we test that BetterText is in
fact a superposition refinement of SimpleText.

6.1 Python
We have used the PyUnit [21] unit testing framework, which is essentially a
Python version of the JUnit testing framework for Java [12]. The programmers

19

SimpleText

+ insert (s:String):

BetterTextTest

+ testPaste ():

+ testInsert ():

BetterText

+ paste ():

+ insert (s:String):

SimpleTextTest

+ testInsert ():

Better layer

Simple layer

TestCase

Figure 10: Layered test cases

found it easy to write tests in Python using PyUnit. No special compilation cycle
for tests is required, and grouping all tests into a single suite makes it easy to run
the tests often; programmers were encouraged to run the tests before committing
any new code to the main source.

Test cases are created by subclassing TestCase. By default each method with
a name starting in test is called when the test case is executed. The special
methods setUp() and tearDown() should be implemented to respectively ini-
tialize and finalize the class to be tested; typically this is done by instantiating one
or more objects and storing them as member variables. setUp() is called before
running each test method, and tearDown() is called after the method has finished.
This ensures that each test method has freshly initialized test objects.

Code stubs for the two test cases for the SimpleText and BetterText classes
will look as follows:

class SimpleTextTest(TestCase):
def setUp(self):

self.text = SimpleText ()
other initialization...

def tearDown (self):
self.text = None
other finalization...

def testInsert (self):
test the insert method...

class BetterTextTest(SimpleTextTest):
def setUp(self):

self.text = BetterText ()

20

other initializations...
def tearDown (self):

self.text = None
other finalization...

def testInsert (self):
SimpleTextTest.testInsert (self)
test extended behavior...

def testPaste (self):
test the paste method...

6.2 Eiffel
A number of open source testing frameworks for Eiffel are available. In our
project the Gobo [13] tool was used for unit testing. Gobo provides a testing
framework similar to that of PyUnit; the programmer subclasses TS_TEST_CASE
and implements set_up, tear_down and test methods:

deferred class TEST_SIMPLE_TEXT
inherit TS_TEST_CASE

redefine
set_up , tear_down

end
feature {NONE}

text: SIMPLE_TEXT
feature -- Initialization

set_up is
do

create text
--Other initialization

end
tear_down is

do
text:=Void
--Other finalization

end
feature -- Testing

test_insert is
do

--Test the insert method
end

deferred class TEST_BETTER_TEXT
inherit TEST_SIMPLE_TEXT

redefine
set_up , tear_down , text , test_insert

end

21

feature {NONE}
text: BETTER_TEXT

feature -- Initialization
set_up is

do
create text
--Other initialization

end
tear_down is

do
text:=Void
--Other finalization

end
feature -- Testing

test_insert is
do

precursor
--Test extended behavior

end
test_paste is

do
--Test the paste method

end

However, because the Gobo test framework is not integrated into the EiffelStu-
dio environment, it was necessary to set up two different projects, one for compil-
ing the system and one for compiling the tests and the system. The programmers
found this arrangement inconvenient.

7 Conclusion and Future Work

We have above described our results from using Stepwise Feature Introduction, a
formally defined method, in practical software engineering projects. The central
idea in SFI is that layers are built stepwise as superposition refinements on top of
each other; using class inheritance as the extension mechanism. Also, each layer
together with lower layers should constitute a fully executable application.

We have carried out several case studies in Stepwise Feature Introduction.
Our experience from these studies has shown us that SFI works well for struc-
turing, debugging and testing the software under development. Combining SFI
with an agile process like Extreme Programming provides architectural structure
and guidance to an otherwise quite ad hoc software process, and has allowed us
to deliver good working software in a timely manner. It is easy for developers to
learn how to apply SFI, and the layer structure helps developers to understand the
software architecture.

22

The main difficulties in applying the method have been caused by lack of
automation and, to some extent, conflicting use of class inheritance. These obser-
vations point to a need for a generic SFI-supporting programming environment.
Many of the programming taks involved in applying SFI can require considerable
amount of time. However, most of them can be automated, which would pro-
vide a great help for the programmers. The Software Construction Workbench
(Section 2.3) was the first attempt to build tool support for SFI, but it was Python-
specific. A number of smaller case studies also showed that SCW somewhat too
rigidly restricted the software architecture.

SFI-style extensions adds a new dimension to software diagrams, which can
become quite large and difficult to overview. We are currently building and ex-
perimenting with SOCOS, a prototype tool for constructing and reasoning about
software systems, that is intended to support SFI. SOCOS is essentially an editor
for refinement diagrams [3]. Refinement diagrams have exact semantics and a
mathematical base in lattice theory and refinement calculus. A software system
is presented to the user as a three-dimensional diagram containing software parts
and dependencies between parts.

The SOCOS system is currently in early stages and the framework is still being
worked on. Our current focus is on developing an environment for constructing
layered software systems and reasoning about their correctness on both architec-
tural and behavioral levels. Stepwise Feature Introduction, using either inheri-
tance or another layer extension mechanism, is intended to be the main method by
which features are added to the system. The goal is to create a tool for correctness-
preserving, incremental construction of SFI-layered software systems.

References
[1] Heikki Anttila, Ralph-Johan Back, Pekka Ketola, Katja Konkka, Jyrki

Leskela, and Erkki Rysä. Coping with increasing SW complexity - com-
bining stepwise feature introduction with user-centric design. In Human
Computer Interaction, International Conference (HCII2003), Crete, Greece,
2003.

[2] Ralph-Johan Back. Software construction by stepwise feature introduction.
In ZB ’02: Proceedings of the 2nd International Conference of B and Z
Users on Formal Specification and Development in Z and B, pages 162–183.
Springer-Verlag, 2002.

[3] Ralph-Johan Back. Incremental software construction with refinement dia-
grams. Technical Report 660, TUCS - Turku Centre for Computer Science,
Turku, Finland, Jan 2005.

[4] Ralph-Johan Back, Dag Björklund, Johan Lilius, Luka Milovanov, and Ivan
Porres. A workbench to experiment on new model engineering applications.

23

In Perdita Stevens, Jon Whittle, and Grady Booch, editors, UML 2003 - The
Unified Modeling Language. Model Languages and Applications. 6th Inter-
national Conference, San Francisco, CA, USA, October 2003, Proceedings,
volume 2863 of LNCS, pages 96–100. Springer, 2003.

[5] Ralph-Johan Back, Piia Hirkman, and Luka Milovanov. Evaluating the
XP customer model and design by contract. In Proceedings of the 30th
EUROMICRO Conference. IEEE Computer Society, 2004.

[6] Ralph-Johan Back, Luka Milovanov, and Ivan Porres. Software development
and experimentation in an academic environment: The Gaudi experience. In
Proceedings of the 6th International Conference on Product Focused Soft-
ware Process Improvement - PROFES 2005, Oulu, Finland, June 2005.

[7] Ralph-Johan Back, Luka Milovanov, Ivan Porres, and Viorel Preoteasa.
An experiment on extreme programming and stepwise feature introduction.
Technical Report 451, TUCS - Turku Centre for Computer Science, Turku,
Finland, Dec 2002.

[8] Ralph-Johan Back, Luka Milovanov, Ivan Porres, and Viorel Preoteasa. XP
as a framework for practical software engineering experiments. In Proceed-
ings of the Third International Conference on eXtreme Programming and
Agile Processes in Software Engineering - XP2002, May 2002.

[9] Ralph-Johan Back and Kaisa Sere. Superposition refinement of reactive sys-
tems. Formal Aspects of Computing, 8(3):324–346, 1996.

[10] Ralph-Johan J. Back, Abo Akademi, and J. Von Wright. Refinement Calcu-
lus: A Systematic Introduction. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1998.

[11] K. Beck. Extreme Programming Explained: Embrace Change. The XP
Series. Addison-Wesley, 1999.

[12] Kent Beck and Erich Gamma. Test-Infected: Programmers Love Writing
Tests. Java Report, pages 37–50, July 1998.

[13] Eric Bezault. Gobo Eiffel Test. http://www.gobosoft.com/eiffel/gobo/getest/,
2001.

[14] Johannes Eriksson. Development of a mathematical derivation editor. Mas-
ter’s thesis, Åbo Akademi University, Department of Computer Science,
2004.

[15] Martin Fowler. Refactoring: Improving the Design of Existing Code. Object
Technology Series. Addison-Wesley, 1999.

24

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[17] Institute of Electrical and Electronics Engineers. IEEE Standard Computer
Dictionary: A Compilation of IEEE Standard Computer Glossaries. New
York, 1990.

[18] Mark Lutz. Programming Python. O’Reily, 1996.

[19] Bertrand Meyer. Eiffel: The Language. Prentice Hall, second edition, 1992.

[20] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
second edition, 1997.

[21] Steve Purcell. PyUnit. http://pyunit.sourceforge.net/, 2004.

[22] Michele Simionato. The Python 2.3 method resolution order.
http://www.python.org/2.3/mro.html, 2003.

[23] Ghan Bir Singh. Single versus multiple inheritance in object oriented pro-
gramming. SIGPLAN OOPS Mess., 6(1):30–39, 1995.

25

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 952-12-1590-9
ISSN 1239-1891

