
Pontus Boström | Marina Waldén

Development of Fault Tolerant Grid Applica-
tions Using Distributed B

TUCS Technical Report
No 706, August 2005

Development of Fault Tolerant Grid Applica-
tions Using Distributed B
Pontus Boström

Åbo Akademi University, Department of Computer Science
Turku Centre for Computer Science (TUCS)
Lemminkäisenkatu 14 A, 20520 Turku, Finland
Pontus.Bostrom@abo.fi

Marina Waldén
Åbo Akademi University, Department of Computer Science
Turku Centre for Computer Science (TUCS)
Lemminkäisenkatu 14 A, 20520 Turku, Finland
Marina.Walden@abo.fi

TUCS Technical Report
No 706, August 2005

Abstract

Computational grids have become popular for constructing large scale dis-
tributed systems. Grid applications typically run in a very heterogeneous
environment and fault tolerance is therefore very important for their cor-
rectness. Since the construction of correct distributed systems is di�cult
with traditional development methods we propose the use of formal meth-
ods. We use Event B as our formal framework, which we extend with new
constructs such as remote procedures and noti�cations for reasoning about
grid systems. The extended language, called Distributed B, ensures that
the application can handle both node and network failures. Furthermore,
the new constructs in Distributed B enable straightforward implementation
of the speci�cations, as well as automatic generation of the needed proof
obligations.

Keywords: Event B, Grid computing, Fault tolerance, Domain speci�c
languages, Language extensions, Stepwise development

TUCS Laboratory
Distributed Systems Design Laboratory

1 Introduction
Computational grids have become a popular approach to handle vast amounts
of available information and to manage computational resources. Examples
of areas where grids have been successfully used for solving problems include
biology, nuclear physics and engineering. Grid computing [8] is a distributed
computing paradigm that di�ers from traditional distributed computing in
that it is aimed toward large scale systems that even span organizational
boundaries. Since grid applications run in a very heterogeneous comput-
ing environment fault tolerance is important in order to ensure their correct
behaviour.

The development of correct grid applications is di�cult with traditional
software development methods. Hence, formal methods can be bene�cial in
order to ensure their correctness and structure their development from spec-
i�cation to implementation. The Action Systems formalism [4] is a formal
method that is well suited for developing large distributed and concurrent
systems, since it supports stepwise development. However, it lacks good tool
support. The B Method [1], on the other hand, is a formal method provided
with good tool support, but originally developed for construction of sequen-
tial programs. The B Method can be combined with Action Systems in order
to formally reason about distributed systems as in the related methods B
Action Systems [16] and Event B [2, 3]. B Action Systems models Action
Systems in the B Method, while Event B also extends original B with new
constructs. In this paper we use Event B as the basis for our work.

With generic formal languages like Event B, speci�cations are often un-
intentionally constructed in such a way that they cannot be implemented or
are very di�cult to implement e�ciently. This can be due to synchronisation
issues or the maintenance of atomicity of events. We have previously added
extensions [5] to Event B to remedy this problem and to enable reasoning
about grid applications using grid communication primitives. However, the
extended Event B, referred to as Distributed B, did not consider fault toler-
ance. Here we will modify Distributed B to enable us to develop also fault
tolerant grid applications.

The language Distributed B was designed for developing Grid applica-
tions using the Globus Toolkit [11] middleware. We here further develop
this language to enable us to construct fault tolerant grid applications using
only the fault tolerance mechanisms present in Globus toolkit. We add new
constructs for handling exceptions raised during remote procedure calls and
timeouts to handle lost noti�cations. These new features introduced to Event
B force the developer to consider the grid environment and fault tolerance
throughout the development. Furthermore, the constructs are introduced
in such a manner that all needed proof obligations can be automatically
generated and the system can be directly implemented.

In Section 2 we give an overview of the grid technology. Event B and
the Distributed B extensions are presented in Section 3. In Section 4 we
discuss the failure modes and the fault tolerance mechanisms used. Section

1

5 presents the extensions for developing fault tolerant grid applications. In
Section 6 we present a case study using the new language. Implementation
issues are discussed in Section 7 and in Section 8 we conclude.

2 Grid Systems
The purpose of grid systems is to share information and computing resources
even over organizational boundaries. This requires security, scalability and
protocols that are suited for Internet wide communication. The Open Grid
Service Architecture (OGSA) [9] aims at providing a common standard to
develop grid based applications. This standard de�nes what services a grid
system should provide. A technical infrastructure speci�cation de�ned by
Open Grid Service Infrastructure (OGSI) [6] gives a precise de�nition of
what a grid service is. The Globus Toolkit 3.x [11] is an implementation
of the OGSI speci�cation that has become de facto standard toolkit for
implementing grid systems. We have chosen this toolkit as grid middleware
for our extensions to Event B.

Grid systems usually have a client-server architecture, where the client
initiates communication with the server that only responds to the client's
request. A client may access several servers concurrently. In our grid appli-
cations a server is referred to as a grid service. Grid services as implemented
in Globus Toolkit provide features such as remote procedures, noti�cations,
services that contain state, transient services and service data. The main
communication mechanism of grid services is remote procedure calls from
client to grid service. If a call is unsuccessful the Globus toolkit will raise an
exception for the programmer to handle. By using noti�cations a grid ser-
vice can asynchronously notify clients about changes in its state. The state
of grid services is preserved between calls and grid service instances can be
dynamically created. Service data adds structured data to any grid service
interface. This way not only remote procedures, but also variables are avail-
able to clients. Furthermore, Globus Toolkit contains an index service for
managing information and keeping track of di�erent types of services in the
grid.

A grid application developed with Globus toolkit can be viewed as a
collection of remote objects. A class de�ning a grid service can be used by
�rst creating an instance of it with a speci�ed grid service handle. These
instances correspond to remote objects in Java RMI [14] or CORBA [14] and
they can be used almost like normal local objects.

3 The Distributed B Extensions
Since constructing correct distributed applications is di�cult with traditional
development methods we here propose the use of formal methods to ensure
their correctness. We have chosen to use Event B [2, 3], since it is a well
supported formalism for modelling distributed systems. Event B is based

2

on the B Method by Abrial [1] and Action Systems by Back and Kurki-
Suonio [4]. Grid applications can be speci�ed in Event B. However, it is not
straightforward to construct these speci�cations in such a manner that they
can be e�ciently implemented. Earlier we proposed extensions to Event
B [5] for specifying and implementing grid applications. These extensions
introduced grid features such as remote procedure calls and noti�cations to
Event B. The semantics of the extensions is given by their translation to B.
Note that we translate to B and not Event B, since the current tools for
Event B also translate the speci�cations to B for veri�cation.

We will here present the Distributed B extensions to Event B by a
schematic example of a grid application. Furthermore, we show how these
extensions are translated to B for veri�cation. The abstract speci�cation of
an application is �rst written in Event B. Using a special grid re�nement grid
features are then introduced into the system in a stepwise manner. For a
more formal treatment of the extensions the reader is referred to our previous
paper [5].

3.1 Event B
The abstract speci�cation of a grid application is given in a system-model
written in Event B. A system-model contains constructs for de�ning sets,
variables, an invariant, as well as events de�ning the behaviour of the com-
ponent. The events consists of guarded substitutions. The semantics of the
substitutions are given by the weakest precondition calculus introduced by
Dijkstra [7]. When the guard of the event evaluates to true the event is said
to be enabled. Enabled events are chosen non-deterministically for execu-
tion. When there are no enabled events left the event system terminates.

SYSTEM
C

VARIABLES
v

INVARIANT
I(v)

INITIALISATION
Init(v)

EVENTS
E1 =̂

ANY y WHERE G1(v, y) THEN S1(v, y) END ;
E2 =̂

WHEN G2(v) THEN S2(v) END
END

The variables-clause de�nes a set of variables, v. The invariant I(v)
de�nes the type of these variables as well as additional properties that should
be preserved during the execution of the system. The initialisation Init(v)
assign initial values to the variables. The events-clause contains the events,
here E1 and E2, that describe the behaviour of the system. In event E1 the
values of the local variables y are non-deterministically chosen. When the
predicate G1(v, y) evaluates to true the event is enabled and the substitution
S1(v, y) can be executed. The event E2 has no local variables and when G2(v)

3

evaluates to true, S2(v) can be executed. When both guards G1(v, y) and
G2(v) evaluates to false the event system terminates.

3.2 The Grid Service Machine
The grid service machine [5] has been introduced for giving the abstract
speci�cation of grid services. It extends the system model of Event B with
constructs for specifying remote procedures and noti�cations to send. The
grid service machine can be viewed as a class of which clients can obtain
remote objects.

The example grid service machine presented below has a set of variables
x, the remote procedure Proc and the event EA. Moreover, it can send
noti�cations N1 and N2. A client can call the remote procedure and thereby
enable the event. The event is then executed concurrently with the events
of the client. When all the events (here only one) in the grid service has
become disabled a noti�cation is sent to the client.

In order to give our new constructs meaning and to use the tool sup-
port of B the grid service machine is translated to an ordinary B machine.
Throughout this subsection the grid service machine is presented in the left
column and its translation in the right one.

The B translation of the grid service machine generates an additional
set, a constant and a variable. These are needed to model the instance
management in B.

GRID_SERVICE
A

VARIABLES
x

INVARIANT
xi ∈ T ∧ IA(x)

INITIALISATION
InitA(x)

MACHINE
AV

SETS
A_INSTS

CONSTANTS
A_null

PROPERTIES
A_null ∈ A_INSTS

VARIABLES
x, A_Insts

INVARIANT
A_Insts ⊆ A_INSTS∧
A_null /∈ A_Insts∧
xi ∈ A_Insts → T∧
IAV (x, A_Insts)

INITIALISATION
xi := ∅ ‖
. . .
A_Insts := ∅

The deferred set A_INSTS models all possible instances of grid service
machine A. The constant A_null models the empty instance, while the
variable A_Insts models the set of instances that are currently in use by
the client. Note that a grid service machine instance can only be accessed
from one client. The variables are translated to take into consideration the
instances. Each variable becomes a function from instance to the type de�ned
in the grid service machine. The variables in the translation are initialised
to empty sets. The instance will be initialised to InitA(x(inst)) according

4

to the initialisation clause of the grid service machine in the constructor of
the instance.

The remote procedures are translated to take the instance as an addi-
tional parameter. This is needed since a remote procedure call is always made
to an instance of a grid service machine. Additionally, for each variable xi

in A, a remote procedure, GetXi, for enabling a client to read the variable
value is automatically introduced. These procedures can then be used by a
client as normal remote procedures. The events are then also translated to
take into account every possible instance via an any-statement.

REMOTE_PROCEDURES
Proc(p) =̂

PRE P (p)
THEN Sp(x, p)
END ;

EVENTS
EA =̂

WHEN GA(x)
THEN SA(x)
END ;

OPERATIONS
Proc(inst, p) =̂

PRE inst ∈ A_Insts ∧ P (p)
THEN Sp(x(inst), p)
END ;

rr ← GetX1(inst) =̂
PRE inst ∈ A_Insts
THEN rr := xi(inst)
END

. . .
EA =̂

ANY inst WHERE
inst ∈ A_Insts

THEN
WHEN GA(x(inst))
THEN SA(x(inst))
END

END

Noti�cations to be sent are de�ned in the noti�cations-clause.

NOTIFICATIONS
N1 =̂

GUARANTEES Q1(x)
END ;

N2 =̂
GUARANTEES Q2(x)
END ;

END

Each noti�cation consists of a guarantees-statement. The guarantees-statement
means that a certain condition Qi(x) holds in this grid service when the cor-
responding noti�cation is sent. The noti�cation handling is performed in the
client. However, an invariant is added in the grid service machine to ensure
that when the event system terminates the guarantees-statement of at least
one noti�cation evaluates to true, ∀inst.(inst ∈ A_Insts∧¬GA(x(inst)) ⇒
(Q1(x(inst)) ∨Q2(x(inst)))).

The translated B machine contains two additional automatically gener-
ated operations. These are the constructor and destructor of instances.

5

r ← A_GetNew =̂
ANY inst WHERE

A_Insts 6= A_INSTS − {A_null}∧
inst ∈ A_INSTS −A_Insts∧
inst 6= A_null

THEN
A_Insts := A_Insts ∪ {inst} ‖
InitA(x(inst)) ‖
r := inst

END ;

A_Destroy(inst) =̂
PRE inst ∈ A_Insts
THEN

A_Insts := A_Insts− {inst}
xi := {inst}C− xi ‖
. . .

END
END

The constructor adds the instance to the set of used instances and initialises
it. In order to �nd instances to use, the addresses of all the instances are
stored in the index service of Globus toolkit. The client can then locate a
new instance by asking the index service to return the address to new free
ones. The destructor of instances removes the instance from the set of used
instances and modi�es the variables x to re�ect this change.

3.3 The Grid Re�nement Machine
One of the bene�ts of Event B is that it supports re�nement and thereby
it enables stepwise development of systems. Re�nement of a component
preserves the behaviour of the abstract component while making it more
concrete by adding variables and additional behaviour (events). An event is
said to re�ne another event if the guard is strengthened and the behaviour
of the substitutions is preserved.

In order to re�ne grid service machines and for introducing grid features
to ordinary Event B speci�cations we introduce a grid re�nement machine.
The grid re�nement machine extends the ordinary re�nement of Event B
with constructs for accessing grid service machine instances, re�ning remote
procedures and handling noti�cations. The instances of grid service machines
are modelled as ordinary variables. Remote procedure calls are modelled by
ordinary operation calls. When all events in a grid service machine instance
have become disabled a noti�cation is received from it. The noti�cation
handlers in the grid re�nement are then executed once for each noti�cation.
In order to verify that a grid re�nement machine is a re�nement of a more
abstract speci�cation it is translated to a re�nement machine in B.

Grid re�nement machines are here presented with the example C1 that
uses instances of grid service machine A presented in Subsection 3.2. This
grid re�nement is a re�nement of the abstract system C presented in Sub-
section 3.1. The grid re�nement C1 contains the old variables v from C, new
variables w and a set of instances a1, . . . , an of grid service machine A. The

6

events E1 and E2 in the abstract speci�cation are re�ned by more concrete
events. The grid re�nement machine also contains a new event F that only
modi�es the new variables w and a noti�cation handler N1Handler for han-
dling noti�cations of type N1 from instances of A. A noti�cation handler
is also considered to be a new event and, hence, it can only assign to new
variables. The grid re�nement machine C1 is given below in the left column
and its translation to B in the right.

In Distributed B a new structuring mechanism [5], references, is used
in the grid re�nement to handle instances of grid service machines. This
construct is translated into an includes statement in B. The concurrent exe-
cution of the events in the grid service machine instances and grid re�nement
is modelled by promoting all the events in the grid service machine into the
re�nement in the B model.

GRID_REFINEMENT
C1

REFINES
C

REFERENCES
A

VARIABLES
v, w, a1, . . . , an

INVARIANT
a1 ∈ A∧
. . .
an ∈ A∧
J(v, w, a1, . . . , an)

REFINEMENT
C1V

REFINES
C

INCLUDES
AV

PROMOTES
EA

VARIABLES
v, w, a1, . . . , an, A_notif

INVARIANT
a1 ∈ A_INSTS∧
a1 ∈ A_Insts ∪ {A_null}∧
. . .
JV (v, w, a1, . . . , an)∧
A_notif ∈ A_Insts → BOOL

We introduce variables modelling instances of A, ai. The type of the vari-
ables ai are given in the grid re�nement as A which is then translated to
the corresponding representation of instances in the traditional B model.
The invariant J is also modi�ed by the translation to take into account the
changed representation of instances.

The noti�cation handler can only be executed once for each noti�cation
from A. Hence, we introduce variable A_notif of type function from the
instances in use to boolean values. If the value is true for an instance,
noti�cations can be received from it. If the value is false the noti�cation has
already been handled.

The initialisation of the grid re�nement is similar to its B translation.
The automatically generated variable A_notif is initialised to the empty
set, which corresponds to the value of A_Insts.

INITIALISATION
ai := A_null ‖
. . .
an := A_null ‖
Init′(v, w)

INITIALISATION
a1 := A_null ‖
. . .
Init′(v, w) ‖
A_notif := ∅

Events of the grid re�nement and the B translation are again similar.

7

EVENTS
E1 =̂

ANY y WHERE
G′1(v, y)

THEN
S′1(v, y);
ai ← A_GetNew

END ;
E2 =̂

WHEN G′2(v, w)
THEN S′2(v, w)
END ;

F =̂
WHEN H(v, w, ai)
THEN

Sn(w) ‖
ai.P roc(f(v, w))

END ;

OPERATIONS
E1 =̂

ANY y WHERE
G′1(v, y)

THEN
S′1(v, y);
ai ← A_GetNew;
A_notif(ai) := TRUE

END ;
E2 =̂

WHEN G′2(v, w)
THEN S′2(v, w)
END ;

F =̂
WHEN H(v, w, ai)
THEN

Sn(w) ‖
Proc(ai, f(v, w));
A_notif(ai) := TRUE

END ;

The remote procedure calls are translated in such a way that the instance is
given as the �rst parameter to the procedure. Furthermore, the assignment
A_notif(inst) := TRUE is added after each call to a manually de�ned
remote procedure and after a call to A_GetNew. This is done to enable the
correct handling of noti�cations originating from that instance. However, it
is not added after calls to the automatically generated remote procedures
GetXi, since they are read-only procedures that do not modify the state of
the instance. Note that event above E2 does perform any remote procedure
calls and hence it does not contain assignment A_notif(inst) := TRUE.

Finally we study the noti�cation handlers.

NOTIFICATION_HANDLERS
N1Handler =̂

NOTIFICATION N1

SOURCE inst ∈ A
THEN TN1(inst, w, ai, aj)
END

END

N1Handler =̂
ANY inst WHERE

inst ∈ A_Insts∧
A_notif(inst) = TRUE∧
¬GA(x(inst)) ∧Q1(x(inst))

THEN
TN1(inst, w, ai, aj);
A_notif(inst) := FALSE

END
END

Noti�cations of type N1 from instance inst of A are handled when all the
events in the instance have become disabled, ¬GA(x(inst)), and the con-
dition in the guarantees-statement for that noti�cation holds, Q1(x(inst)).
The variable A_notif is assigned false for this instance to denote that the
noti�cation has been handled.

3.3.1 Proof obligations

Since we develop grid applications in a stepwise manner, we need to show
that each new speci�cation is a re�nement of the speci�cation developed in

8

the previous step. In order to show that an Event B or a Distributed B
component is a re�nement of another component the following properties
must hold [2, 16]:

1. The initialisation of the concrete speci�cation has to be a re�nement
of the initialisation of the abstract speci�cation.

2. All events in the abstract speci�cation have to be re�ned by corre-
sponding events in the concrete speci�cation.

3. New events that re�ne skip can be introduced in the concrete speci�-
cation.

4. The new events have to terminate when executed in isolation.

5. The concrete system is not allowed to terminate more often than the
abstract system.

6. The guard of a remote procedure cannot be strengthened.

The proof obligations for rules 1-5 [2, 16] can be automatically generated
by the tools of Event B. The proof obligation for rule 6 [16] needs some
additional constructs. Alternatively, the developer can be restricted to only
use non-guarded statements in the remote procedures. The proof obligations
can then be discharged by the automatic and interactive provers for B.

4 Fault Tolerance using Globus Toolkit
Grid applications run in a very heterogeneous computing environment. This
means that fault tolerance is highly important for the correct behaviour of
the application. In this paper we develop extensions to Event B for devel-
oping fault tolerant grid applications using the fault tolerance mechanisms
in Globus toolkit. Currently the only fault tolerance mechanism in Globus
toolkit is exceptions due to failed remote procedure calls. More advanced
fault tolerance mechanism such as Replication [14] and Check pointing [14]
are not yet supported by the toolkit. Even with support for advanced fault
tolerance mechanisms in the middleware the application needs to consider
faults, since these mechanisms in the middleware might not be su�cient to
handle the faults transparently.

It is not feasible to construct a system that can tolerate all types of faults
[14]. We will limit the fault tolerance of Distributed B to handle two types
of faults, which we consider to be most important: Firstly, a grid service
instance can stop (crash) and be restarted. Secondly, network connections
can fail to deliver messages to desired destinations. We do not consider
situations where grid services does not satisfy its speci�cation or where an
attacker can deliberately force a grid service instance to produce erroneous
results since we have proved our application correct and Globus toolkit has

9

a very comprehensive security infrastructure. Furthermore, the grid middle-
ware can use TLS or other secure protocols for communication and therefore
we can assume that data has not been corrupted during transmission.

4.1 Faults and Fault Detection
We can identify �ve distinct faults that can occur in remote procedure calls
from a client to a server grid service instance [14]:

1. The server grid service instance has crashed before the call.

2. The network connection fails when calling a remote procedure.

3. The server instance fails during the call.

4. The network connection fails when returning the result.

5. The client crashes during the remote procedure call.

In the client the faults 1-4 are not easily separated from each other and
they are handled by not using the failed server grid service instance any-
more. These faults are directly detected in the client by the Globus toolkit
middleware that then raises an exception. However, the server grid service
instance can crash and be restarted and it needs to detect the crash in order
to respond correctly to the client. A restart can be detected if the instance
creates a �le on startup using its address as the �lename. If the �le creation
fails due to the fact that the �le already exists, it can be assumed that the
grid service has been restarted. This holds, since �le creation is atomic if
the correct method is used.

In order to handle the �fth fault above the called instance needs to be
able to identify when the calling client has failed, i.e., the instance has be-
come an orphan [14]. To discover this we introduce an is-alive check in
the client and an is-alive timeout in the server grid service instance. We
�rst introduce a new remote procedure in every grid service instance called
isAlive. This remote procedure returns true, if the instance is accessible.
In the client the is-alive check for a given grid service instance consists of
calling remote procedure isAlive of the instance periodically with a speci�ed
time interval. If the call fails, an exception is raised by the Globus toolkit
and the client knows that there is a problem with the instance or with the
network connection. The client then stops using the instance. If the isAlive
procedure was not called with the speci�ed time interval in the server grid
service instance, an is-alive timeout is triggered. This means that the client
has either failed or stopped using the instance. The server grid service in-
stance is then reset in order to enable other clients to use it. It is important
to note that the times for the timeout mechanism should be chosen so that
the client will get the exception for a failed call to isAlive before the server
resets itself. This can be accomplished by choosing the timeout in the server
grid service instance to be greater than the time period that the client calls

10

f1

g2

h2h1

g1

Figure 1: The tree formed by the grid service instances

isAlive with an appropriate amount of bu�er time. This check for orphans is
implemented in a layer on top of Globus toolkit that then provides an easy
to use interface to Distributed B.

There is an additional fault, not directly related to remote procedure
calls, that needs to be considered when allocating new grid service instances.
There might not be any available grid service machine instances of the cor-
rect type when the client tries to obtain new instances to use. The problem
can be due to broken network connections, a broken index service or exhaus-
tion of the pool of available services. Note that the index service is here a
single point of failure for the grid application. Hence, if it fails, the appli-
cation might not function correctly. The index service could, however, be
transformed into a replicated index service on several computers or we could
use a peer-to-peer index service. The instance allocation is also implemented
in a layer on top of Globus toolkit to present a more easy to use interface to
Distributed B.

4.2 Use Cases Describing the Fault Tolerance Mechanisms
In order to clarify the behaviour of the system in the presence of faults we
here present the use cases for the two most complicated failure modes. We
consider a tree of grid service instances as shown in Figure 1. The grid
service instance f1 references instances g1 and g2, where g1 then references
h1 and h2.

4.2.1 The Middle Node Crashes
The �rst use case describes the actions taken when the grid service instance
g1 crashes. The instance g1 is here a middle node that has client f1 and has
references to grid service instances h1 and h2.

1. Instance g1 crashes. There are now two cases to consider, steps 2 and
3.

2. If the instance g1 is unreachable from its client, instance f1:

(a) An exception is raised in f1, due to a failed remote procedure call
or is-alive check. (A noti�cation timeout can also be triggered by
this condition).

11

(b) The instance g1 is removed from the set of used instances in f1.

3. If the instance g1 is reachable from f1 but it has recovered from a
failure and is in a restarted state:

(a) The instance g1 waits for an is-alive timeout. It raises exceptions
for the clients remote procedure calls and is-alive checks. That
way g1 can make sure that the client f1 knows that g1 has failed.

(b) Instance f1 detects that instance g1 has failed and it removes it
from the set of used instances.

(c) The instance g1 receives an is-alive timeout and resets itself.

4. The instances hi notice that g1 has failed when they receive is-alive
timeouts and they are then reset.

4.2.2 The Network Connection Fails.
The second use case describes the behaviour of the system when a network
connection failure between, the client f1 and the middle node g1 is noticed.

1. The network connection between f1 and g1 fails.

2. An exception is raised in f1 due to failed remote procedure call or
is-alive check.

3. The instance f1 removes g1 from its set of used instances.

4. The instance g1 receives an is-alive timeout, since its services are not
requested anymore. It then resets itself.

5. The instances hi reset themselves when they receive is-alive timeouts
due to the reset of g1.

4.2.3 Final Notes
What applies to a middle node gi also applies to a leaf node hi. The only
di�erence is that we do not have to consider any child nodes. If the root
node f1 crashes the program terminates and no result is obtained.

5 Fault Tolerance in Distributed B
Previously we have developed a language called Distributed B [5] based on
Event B for constructing fault free grid applications. In this section we
modify the language to also incorporate fault tolerance mechanisms as de-
scribed in the previous section, Section 4. Distributed B provided a way to
implement grid applications and the fault tolerance mechanisms will also be
introduced in a manner that ensures that they can be implemented.

12

5.1 Speci�cation of Instance Management
A challenging problem when introducing fault tolerance is the management
of instances. In order to correctly reason about instances we need to have
a model of the instance management. The model in the original version
of Distributed B is described in Subsection 3.2. During the translation of
grid service machine A to original B we there added features such as a set
A_INSTS modelling all instances of A, a constant A_null modelling the
empty instance, a variable A_Insts modelling the instances in use, as well
as a constructor and destructor of instances. This model of the instance
management is not changed when we introduce fault tolerance into Distrib-
uted B. However, we did not specify how an instance should be treated if a
fault was encountered during a remote procedure call to it or if noti�cation
was never received from it. In order to also handle faults, an instance ai of
A is immediately removed from the set of instances in use, A_Insts, if a
problem with it is encountered.

The model of instance management described above serves as an abstract
speci�cation that need to be implemented. To increase the con�dence in
the system it can be developed in a stepwise manner using, e.g., Event B.
The model is re�ned to consider the behaviour of grid service instances, the
communication between them, as well as the faults described in Section 4.

We here give an overview of a re�ned, more concrete model of the be-
haviour of an instance of A using the statechart diagram shown in �gure
2. The users of fault tolerant Distributed B will not have to consider this
re�ned model of instance management, since it is built into the language.
It only serves as an illustration on how the instance management is imple-
mented using Globus toolkit. The instance can be in three di�erent states:
idle when the instance is not reserved by a client; busy when a client has
reserved the instance and restarted when the instance has detected that it
has been restarted. The event reserve is generated when a client reserves
the instance by a call to the operation A_GetNew. The reservation is mod-
elled by the transition from state idle to state busy. When the event reserve
occurs the instance is initialised, modelled in Dsitributed B by executing
the initialisation-clause of the grid service machine. The transition release
from state busy to state idle models that the client releases the instance
by a call to operation A_Destroy. The event ia_timeout denotes that an
is-alive timeout occurred and the instance is reset, i.e., it enters the state
idle. The restart event models restart of the grid service instance by taking
the instance to state restarted. When a grid service instance belongs to the
set of instances in use, A_Insts, it is in either state busy or restarted, since
it has then been reserved by a client. Note that the instance will raise an
exception when its remote procedures are called in state restarted.

5.2 Extensions to Distributed B
In order to handle faults as described in Section 4 and to handle instances as
described in the previous subsection we add new constructs to the original

13

idle busy

restarted

ia_timeout restart

restart

reserve

release

ia_timeout

Figure 2: The behaviour of a grid service instance

version Distributed B. New constructs are needed for handling exceptions
raised from remote procedures and timeouts for noti�cations. We also add
constructs for handling orphans with the is-alive check. The mechanism
for handling faults only a�ects the grid re�nement machine and hence, the
constructs in the grid service machine remains the same. For simplicity we
will here consider only grid applications that do not have middle nodes.
Hence, a re�nement of a grid service machine cannot here reference other
grid service machines.

As an example of a fault tolerant grid re�nement machine we modify
grid re�nement C1 in Subsection 3.3 to handle faults. The fault tolerant grid
re�nement CFT has the same variables (v, w) and instances (a1, . . . , an) as
C1. The remote procedure calls to instance ai are modi�ed to consider faults.
The noti�cation handling mechanism is also modi�ed to consider timeouts
due to lost noti�cations. Furthermore, we need an additional event to handle
exceptions raised by is-alive checks. The fault tolerant Distributed B models
are again translated to B for veri�cation purposes. Below the fault tolerant
Distributed B constructs are given in the left column and their translation
to B is given to the right. The complete example can be found in Appendix
A.

5.2.1 Remote Procedures
Remote procedure calls can fail in several ways as outlined in Subsection 4.1.
We add a call -substitution for calling remote procedure in order to model
the exception handling mechanism present in Java and Globus toolkit.

call_subst::=�CALL� operation_call
�EXCEPTION� NG_Substitution
�END�

The call -part of this construct contains a remote procedure call. The ex-
ception-part then gives the non-guarded substitution that is executed if an

14

exception is raised during the call. The call -substitution is used whenever
a remote procedure in a grid service instance is called as shown in event
F . The call -substitution also needs to be used when calling A_GetNew to
allocate a new instance since it can fail as described in Subsection 4.1.

F =̂
WHEN H(v, w, ai)
THEN

Sn(w) ‖
CALL ai.P roc(f(v, w))
EXCEPTION Tf (w, ai)
END

END

FOk =̂
WHEN H(v, w, ai)
THEN

Sn(w) ‖
Proc(ai, f(v, w));
A_notif(ai) := TRUE

END ;
FFail =̂

WHEN H(v, w, ai)
THEN

Sn(w) ‖
A_Destroy(ai);
A_notif := {ai}C−A_notif ;
Tf (w, ai)

END ;

The event F is translated to two separate operations in B, FOk and FFail,
which both re�ne the abstract speci�cation of F . One operation, FOk, mod-
els the successful execution of the remote procedure and the other, FFail,
models the failed execution [2]. The operation FOk is translated as F pre-
viously in Distributed B, i.e., without the exception handler. In FFail the
instance ai is removed from the set of instances in use and the exception
handler is executed. The guard is identical in both events modelling that
any remote procedure call can fail.

5.2.2 Noti�cations
Failure of grid service instances can cause noti�cations to never be sent or
a failure of network connections can cause noti�cation messages to get lost.
In order to detect this we introduce a timeout exception that occurs when
a noti�cation has not arrived within the desired time. We do not specify
the time explicitly in B but we model the timeout with an event that is
chosen non-deterministically for execution. The exact time is a detail that
is considered later during the implementation phase.

The grammar of the noti�cation handler substitution is modi�ed in order
to incorporate the timeout mechanism.

Notif_handler::=�NOTIFICATION� Name
�SOURCE� Name �:� Name
�THEN� NG_Substitution
�TIMEOUT� NG_Substitution
�END�

The noti�cation-part gives the name of the noti�cation and the source-part
gives the source of the noti�cation as <instance>:<grid service machine>.
When a noti�cation is received the non-guarded substitution in the then-part

15

is executed. The timeout-handler denotes the substitution that is executed
when a noti�cation does not arrive within the desired time.

A noti�cation handler for noti�cation N1 from instance inst of A can be
de�ned as follows.

NOTIFICATION_HANDLERS
N1Handler =̂

NOTIFICATION N1

SOURCE inst ∈ A
THEN TN1(inst, w, ai, aj)
TIMEOUT Tt(inst, w, ai, aj)
END

N1HandlerOk =̂
ANY inst WHERE

inst ∈ A_Insts∧
A_notif(inst) = TRUE∧
¬GA(x(inst)) ∧Q1(x(inst))

THEN
TN1(inst, w, ai, aj) ‖
A_notif(inst) := FALSE

END ;
N1HandlerFail =̂

ANY inst WHERE
inst ∈ A_Insts∧
A_notif(inst) = TRUE∧

THEN
A_Destroy(inst);
A_notif := {inst}C−A_notif ;
Tt(inst, w, ai, aj)

END

As for remote procedure calls, the noti�cation handler N1Handler is trans-
lated to two di�erent operations in B, N1HandlerOk and N1HandlerFail.
The noti�cation handler is a new event and hence, both translated opera-
tions have to re�ne skip. The operation, N1HandlerOk, modelling success-
ful noti�cation handling is translated as in previous version of Distributed
B presented in Subsection 3.3. Failed delivery of a noti�cation is modelled
by the execution of the timeout handler, N1HandlerFail. Since it is not
known if all events in the grid service machine instance inst of A have be-
come disabled before the failure, only A_notif(inst) = TRUE is present in
the guard. The instance inst is also here removed from the set of instances
in use.

Note that TN1 can contain a remote procedure call, which means that
the translation needs to be performed in two steps. First the the noti�ca-
tion handler is split into two events as described above and then the event
containing the remote procedure call is translated as in Subsubsection 5.2.1.

5.2.3 Checking if an Instance is Alive
In order to handle orphans we introduce an is-alive check in the grid re�ne-
ment machine. This check is performed in the grid re�nement machine for all
instances of all referenced grid service machines. If an instance is unavailable
an exception is then raised. To handle these exceptions we introduce a new
clause is_alive_handlers

is_alive_handlers ::=�IS_ALIVE_HANDLERS� is_alive_handler+;
is_alive_handler ::= Name �=�

�SOURCE� Name �:� Name

16

�THEN� NG_Substitution
�END�

The handler substitutions for is-alive check exceptions consists of two parts;
a source given as <instance>:<grid service machine> and a non-guarded
substitution describing the behaviour of the system when an exception is
raised . The handler for grid service machine A is given below with its
translation.

IS_ALIVE_HANDLERS
IAHandler =̂

SOURCE inst ∈ A
THEN Tia(inst, w, ai, aj)
END

END

IAHandler =̂
ANY inst WHERE

inst ∈ A_Insts
THEN

A_Destroy(inst);
A_notif := {inst}C−A_notif ;
Tia(inst, w, ai, aj)

END
END

The handler is translated to an any-substitution in B. The any-substitution
models that an exception can be raised at any time for all instances in use.
The handler for failed is-alive checks is, like the handlers for noti�cations,
a new event that re�nes skip. As for the failed remote procedure calls and
noti�cations we remove the failed instance from the set of used instances and
remove all the variables of the instance.

6 Case study
To better illustrate the use of our fault tolerant extensions to Distributed
B we provide a small case study. The application in the case study is ab-
stract, but it illustrates how a problem can be decomposed into a distributed
grid application. The application we develop computes the value of a func-
tion f of two values v1 and v2. The function f could, for example, be a
complicated matrix computation that takes two matrices as arguments and
produces a third matrix as the result. We assume that the computation of
f(v1, v2) can split up into computations f1(v1) and f1(v2) and a computation
that composes the �nal result g(f1(v1), f1(v2)). We thus have the invariant
∀v1, v2.(f(v1, v2) = g(f1(v1), f1(v2))). First we model the computation ab-
stractly in an Event B speci�cation. We then decompose the problem and
introduce grid features in the re�nement.

6.1 The abstract speci�cation
The �rst abstract speci�cation of the application is written in Event B. The
speci�cation abstractly models the computation of f and the possible failures
that can occur. First we need to introduce a machine GDEF that de�nes
the set of possible values (matrices) V .

17

MACHINE
GDEF

SETS
V

END

The abstract Event B speci�cation COMPF models the application that
computes the function f of two values. The function f used in the compu-
tation is modelled as a constant total function. The values are given by
the variable values, where values(1) is the �rst argument and values(2) is
the second. The result of the computation is then stored in variable result.
We introduce a variable state for modelling the progress of the computa-
tion. State idle models that the computation has not yet started and state
working that the computation is in progress. When computation is suc-
cessfully completed it terminates in state done, while a failed computation
terminates in state failed.

SYSTEM
COMPF

SEES
GDEF

SETS
STATE = {idle, working, done, failed}

CONSTANTS
f

PROPERTIES
f ∈ (V × V) → V

VARIABLES
state, values, result

INVARIANT
state ∈ STATE∧
values ∈ 1..2 → V ∧
result ∈ V ∧
(state = done ⇒ result = f(values(1), values(2))))

INITIALISATION
state := idle ‖
ANY v1, v2 WHERE v1 ∈ V ∧ v2 ∈ V
THEN values := {1 7→ v1, 2 7→ v2} END ‖
result :∈ V

The abstract speci�cation contains three events. The event Start assigns
new values to the variables values(1) and values(2) and initialises the com-
putation. The event Finish computes the function f(values(1), values(2))
and stores the result in variable result. The computation can fail while it is
in progress as modelled by the event Fail.

18

EVENTS
Start =̂

ANY v1, v2 WHERE
v1 ∈ V ∧ v2 ∈ V ∧
state = idle

THEN
values := {1 7→ v1, 2 7→ v2} ‖
state := working

END ;
Finish =̂

SELECT state = working
THEN

result := f(values(1), values(2)) ‖
state := done

END ;
Fail =̂

SELECT state = working
THEN state := failed
END

END

6.2 The grid service machine
We like to use a distributed grid application to compute the function f and,
hence we need to decompose the computation of f . The function f can be
considered as the composition of functions g and f1. To enable decomposition
of the computation of f into computation of f1 and g we �rst introduce a
grid service machine that computes the function f1 of a value. The function
f1 is, as function f , modelled as a constant total function. The client can
then use instances of this machine for the partial computation. The grid
service machine is translated to a B machine for veri�cation. Throughout
this subsection, the grid service machine is presented in the left column and
its translation is given to the right as in previous sections.

The grid service machine RF1 contains a set giving the possible states the
service can be in. The translation also contains an automatically generated
set and constant for modelling the grid service instances.

GRID_SERVICE
RF1

SEES
GDEF

SETS
RS_STATE =
{f1_init, f1_start, f1_done}

CONSTANTS
f1

PROPERTIES
f1 ∈ V → V

MACHINE
RF1V

SEES
GDEF

SETS
RS_STATE =
{f1_init, f1_start, f1_done};

RF1_INSTS
CONSTANTS

f1, RF1_null
PROPERTIES

f1 ∈ V → V ∧
RF_null ∈ RF1_INSTS

We also introduce variables f1_state, f1_value and f1_result. The
variable f1_state gives the progress of the computation. The value to use in
the computation of f1 is given by the variable f1_value. The result is stored

19

in variable f1_result. The invariant states that the variable f1_result con-
tains the result of the computation when f1_state has the value f1_done.

VARIABLES
f1_state, f1_value, f1_result

INVARIANT
f1_state ∈ RS_STATE∧
f1_value ∈ V ∧
f1_result ∈ V ∧
(f1_state = f1_done ⇒
f1_result = f1(f1_value))

INITIALISATION
f1_state := f1_init ‖
f1_value :∈ V ‖
f1_result :∈ V

VARIABLES
f1_state, f1_value, f1_result
RF1_Insts

INVARIANT
RF1_Insts ⊆ RF1_INSTS∧
RF1_null /∈ RF1_Insts∧
f1_state ∈ RF1_Insts → RS_STATE∧
f1_value ∈ RF1_Insts → V ∧
f1_result ∈ RF1_Insts → V ∧
∀xx.(xx ∈ RF1_Insts ⇒
(f1_state(xx) = f1_done ⇒
f1_result(xx) = f1(f1_value(xx))))
. . .

INITIALISATION
f1_state := ∅ ‖
f1_value := ∅ ‖
f1_result := ∅ ‖
RF1_Insts := ∅

The remote procedure StartF1 initiates the computation by assigning
the variable f1_value to the value supplied by the client and by setting
the state, f1_state, to f1_start. The client can obtain the result of the
computation with a call to the automatically generated read-only remote
procedure GetF1_result.

REMOTE_PROCEDURES
StartF1(v1) =̂

PRE v1 ∈ V
THEN

f1_value := v1||
f1_state := f1_start

END

OPERATIONS
StartF1(inst, v1) =̂

PRE inst ∈ RF1_Insts ∧ v1 ∈ V
THEN

f1_value(inst := v1 ‖
f1_state(inst) := f1_start

END ;
xx ← GetF1_state(inst) =̂

PRE inst ∈ RF1_Insts
THEN xx := f1_state(inst)
END ;

xx ← GetF1_value(inst) =̂ . . .
xx ← GetF1_result(inst) =̂ . . .

Grid service machine RF1 contains one event, Comp, that performs the
computation of f1. The event is only executed once and it disables itself by
setting the state to f1_done.

EVENTS
Comp =̂

SELECT f1_state = f1_start
THEN

f1_result := f1(f1_value) ‖
f1_state := f1_done

END

Comp =̂
ANY inst WHERE

inst ∈ RF1_Insts
THEN

SELECT f1_state(inst) = f1_start
THEN

f1_result(inst) :=
f1(f1_value(inst)) ‖

f1_state(inst) := f1_done
END

END ;

20

Two di�erent noti�cations can be sent by this grid service machine. The
noti�cation InitNotification is sent when the grid service instance has been
initialised properly. The second noti�cation DoneNotification, is sent when
the computation has �nished, i.e., when event Comp has become disabled.

NOTIFICATIONS
InitNotification =̂
GUARANTEES

f1_state = f1_init
END ;

DoneNotification =̂
GUARANTEES

f1_state = f1_done∧
f1_result = f1(f1_value)

END
END

The constructor of instances RF1_GetNew and destructor RF1_Destroy
are automatically generated during the translation.

xx ← RF1_GetNew =̂
ANY inst WHERE

inst ∈ RF1_INSTS −RF1_Insts∧
inst 6= RF1_null∧
RF1_Insts 6= RF1_INSTS − {RF1_null}

THEN
RF1_Insts := RF1_Insts ∪ {inst} ‖
f1_state(inst) := f1_init ‖
ANY viWHERE vi ∈ V
THEN

f1_value(inst) := vi ‖
f1_result(inst) := vi

END ‖
xx := inst

END ;
RF1_Destroy(inst) =̂

PRE inst ∈ RF1_INSTS
THEN

RF1_Insts := RF1_Insts− {inst} ‖
f1_state := {inst}C− f1_state ‖
f1_value := {inst}C− f1_value ‖
f1_result := {inst}C− f1_result ‖

END
END

The constructor initialises the new instance to the values given in the initial-
isations-clause of the grid service machine and returns it to the client. The
destructor removes the instance given as a parameter from the instances in
use.

6.3 The grid re�nement
The grid re�nement machine COMP_FT1 is a re�nement of the abstract
speci�cation COMPF presented in Subsection 6.1. The computation of
f(value(1), value(2)) in one step is here re�ned by the distributed com-
putation g(f1(value(1)), f1(value(2))). The function g is modelled with a
constant total function with the appropriate properties. Instances of the

21

grid service RF1 in Subsection 3.2 are used to compute partial results,
f1(values(1)) and f1(values(2)), which is then composed into the �nal re-
sult, g(f1(values(1)), f1(values(2))). The grid re�nement is translated to a
B re�nement machine for veri�cation. As with the grid service machine the
grid re�nement is given in the left column and its translation is given to the
right throughout this subsection.

In this re�nement step we introduce variables f1_instances, f1_results
and tries.

GRID_REFINEMENT
COMP_FT1

REFINES
COMPF

SEES
GDEF

REFERENCES
RF1

CONSTANTS
MaxTimes, g

PROPERTIES
g ∈ (V × V) → V ∧
∀(v1, v2).(v1 ∈ V ∧ v2 ∈ V ⇒
f(v1, v2) = g(f1(v1), f1(v2)))∧
MaxTimes ∈ N

VARIABLES
state, values, result,
f1_instances, f1_results, tries

INVARIANT
f1_instances ∈ 1..2 → RF1∧
f1_results ∈ RF1 7→ V ∧
tries ∈ N∧
. . .

REFINEMENT
COMP_FT1V

REFINES
COMPF

SEES
GDEF

INCLUDES
RF1V

PROMOTES
Comp

CONSTANTS
MaxTimes

PROPERTIES
g ∈ (V × V) → V ∧
∀(v1, v2).(v1 ∈ V ∧ v2 ∈ V ⇒
f(v1, v2) = g(f1(v1), f1(v2)))∧
MaxTimes ∈ N

VARIABLES
state, values, result,
f1_instances, f1_results, tries,
RF1_notif

INVARIANT
f1_instances ∈ 1..2 → RF1_INSTS∧
ran(f1_instances) ⊆

(RF1_Insts ∪ {RF1_null})∧
f1_results ∈ RF1_INSTS 7→ V ∧
dom(f1_results) ⊆

(RF1_Insts ∪ {RF1_null})∧
tries ∈ N∧
. . .
RF1_notif ∈ RF1_Insts → BOOL

The variable f1_instances is an array containing the two instances that will
compute the function values f1(values(1)) and f1(values(2)). The variable
f1_results is a partial function from instance to the result obtained from it.
The number of times the application has unsuccessfully tried to use instances
is modelled by the variable tries. The application can fail to use instances
MaxTimes number of times before it enters state failed and aborts the
computation. Initially, there has been no tries to use instances, tries = 0.

The instances, f1_instances, are initialised to empty instances, RF_null.
Since no results have been obtained the variable f1_results is initialised to
the empty set.

22

INITIALISATION
state := idle ‖
ANY v1, v2 WHERE v1 ∈ V ∧ v2 ∈ V
THEN values := {1 7→ v1, 2 7→ v2} END ‖
result :∈ V ‖
f1_instances := (1..2)× {RF1_null} ‖
f1_results := ∅ ‖
tries := 0

INITIALISATION
state := idle ‖
ANY v1, v2 WHERE v1 ∈ V ∧ v2 ∈ V
THEN values := {1 7→ v1, 2 7→ v2} END ‖
result :∈ V ‖
f1_instances := (1..2)× {RF1_null} ‖
f1_results := ∅ ‖
tries := 0 ‖
RF1_notif := ∅

The event GetInstance performs an allocation to obtain a new instance
of grid service machine RF1 to use. If a new instance could not be allocated
the variable tries is incremented.

EVENTS
GetInstance =̂

ANY xxWHERE
xx ∈ 1..2∧
state = working∧
f1_instances(xx) = RF1_null∧
tries ≤ MaxTimes

THEN
CALL f1_instances(xx) ← RF1_GetNew
EXCEPTION
f1_instances(xx) := RF1_null ‖
tries := tries + 1

END
END ;

OPERATIONS
GetInstanceOk =̂

ANY xxWHERE
xx ∈ 1..2∧
state = working∧
f1_instances(xx) = RF1_null∧
tries ≤ MaxTimes

THEN
f1_instances(xx) ← RF1_GetNew;
RF1_notif(f1_instances(xx)) := TRUE

END ;
GetInstanceFail =̂

ANY xxWHERE
xx ∈ 1..2∧
state = working∧
f1_instances(xx) = RF1_null∧
tries ≤ MaxTimes

THEN
RF1_Destroy(f1_instances(xx));
RF1_notif := {f1_instances(xx)}

C−RF1_notif ;
f1_instances(xx) := RF1_null ‖
tries := tries + 1

END ;

Note that in the translation of the exception handler we actually remove
RF1_null (the value of f1_instances(xx)) from the set of instances in use,
RF1_Insts. Since RF1_null is not in the set, the destructor will have no
e�ect.

Event Submit starts the computation of f1 of values values(1) and
values(2). Both the instances that will be used for the computation need to
be di�erent from RF1_null. When a failure of an instance is detected the
corresponding variable is assigned the value RF1_null since the instance
can no longer be used.

23

Submit =̂
ANY xx WHERE

xx : 1..2∧
state = working∧
f1_instances(1) 6= RF1_null∧
f1_instances(2) 6= RF1_null∧
f1_instances(xx) /∈ dom(f1_results)

THEN
CALL f1_instances(xx).StartF1(values(xx))
EXCEPTION

f1_instances(xx) := RF1_null ‖
tries := tries + 1

END
END ;

SubmitOk =̂
ANY xx WHERE

xx : 1..2∧
state = working∧
f1_instances(1) 6= RF1_null∧
f1_instances(2) 6= RF1_null∧
f1_instances(xx) /∈ dom(f1_results)

THEN
StartF1(f1_instances(xx), values(xx));
RF1_notif(f1_instances(xx)) := TRUE

END ;
SubmitFail =̂
ANY xx WHERE
xx : 1..2∧
state = working∧
f1_instances(1) 6= RF1_null∧
f1_instances(2) 6= RF1_null∧
f1_instances(xx) /∈ dom(f1_results)

THEN
RF1_Destroy(f1_instances(xx));
RF1_notif := {f1_instances(xx)}

C−RF1_notif ;
f1_instances(xx) := RF1_null ‖
tries := tries + 1

END ;

The event modelling failure, Fail, takes the application to state failed
when it has unsuccessfully used instances more than MaxTimes number of
times. Successful execution of the application is modelled by the execution of
the event Finish. This event is enabled when the result from both instances
has been obtained via the execution of the noti�cation handlers.

Fail =̂
SELECT state = working∧

tries > MaxTimes
THEN state := failed
END ;

Finish =̂
SELECT

state = working∧
dom(f1_results) = ran(f1_instances)

THEN
result := g(f1_results(f1_instances(1)),

f1_results(f1_instances(2))) ‖
state := done

END

Fail =̂
SELECT state = working∧

tries > MaxTimes
THEN state := failed
END ;

Finish =̂
SELECT

state = working∧
dom(f1_results) = ran(f1_instances)

THEN
result := g(f1_results(f1_instances(1)),

f1_results(f1_instances(2))) ‖
state := done

END ;

If a noti�cation is received successfully the result in the corresponding
instance is obtained with a call to the automatically generated remote pro-
cedure GetF1_result. When a timeout occurs the application stops using
the instance. Since GetF1_result is a remote procedure the translation is
performed in two steps. The �rst step splits the noti�cation handler into two
events, one for successful handling the noti�cation and the other for time-
out handling. The event for successful handling of noti�cations is then split
into two parts to consider both successful execution of the remote procedure
GetF1_result as well as the failed execution.

24

NOTIFICATION_HANDLERS
F1DoneNotifHandler =̂

NOTIFICATION DoneNotif
SOURCE inst ∈ RF1
THEN

IF inst ∈ ran(f1_instances)
THEN
VAR xx, ok IN
ok := TRUE; xx :: V V ;
CALL xx ← inst.GetF1_result
EXCEPTION

ok := FALSE
f1_instances := f1_instancesC−
{i, v|i ∈ 1..2∧
inst = f1_instances(i)∧
v = RF1_null} ‖

f1_results := {inst}
C−f1_results ‖

tries := tries + 1
END ;
IF ok = TRUE
THEN f1_results(inst) := xx
END

END
TIMEOUT

f1_instances := f1_instancesC−
{i, v|i ∈ 1..2 ∧ inst = f1_instances(i)∧
v = RF1_null} ‖

f1_results := {inst}
C−f1_results ‖

tries := tries + 1
END

F1DoneNotifHandlerOkOk =̂
ANY inst WHERE
inst ∈ RF1_Insts∧
RF1_notif(inst) = TRUE∧
¬(f1_state(inst) = f1_start)∧
(f1_state(inst) = f1_done∧
f1_result(inst) = f1(f1_value(inst)))

THEN
RF1_notif(inst) := FALSE;
IF inst ∈ ran(f1_instances)
THEN

VAR xx, ok IN
ok := TRUE; xx :: V ;
xx ← GetF1_result(inst);
IF ok = TRUE
THEN f1_results(inst) := xx
END

END
END

END ;
F1DoneNotifHandlerOkFail =̂

ANY inst WHERE
inst ∈ RF1_Insts∧
RF1_notif(inst) = TRUE∧
¬(f1_state(inst) = f1_start)∧
(f1_state(inst) = f1_done∧
f1_result(inst) = f1(f1_value(inst)))

THEN
RF1_notif(inst) := FALSE;
IF inst ∈ ran(f1_instances)
THEN

VAR xx, ok IN
ok := TRUE; xx :: V ;
RF1_Destroy(f1_instances(xx));
RF1_notif := {f1_instances(xx)}

C−RF1_notif ;
ok := FALSE;
f1_instances := f1_instancesC−
{i, v|i ∈ 1..2∧
inst = f1_instances(i)∧
v = RF1_null} ‖

f1_results := {inst}
C−f1_results ‖

tries := tries + 1
END ;
IF ok = TRUE
THEN f1_results(inst) := xx
END

END
END ;

F1DoneNotifHandlerFail =̂
ANY inst WHERE
inst ∈ RF1_Insts∧
RF1_notif(inst) = TRUE

THEN
RF1_Destroy(inst);
RF1_notif := {inst}C−RF1_notif ;
f1_instances := f1_instancesC−
{i, v|i ∈ 1..2 ∧ inst = f1_instances(i)∧
v = RF1_null} ‖

f1_results := {inst}
C−f1_results ‖

tries := tries + 1
END ;

25

The variable giving the instance that failed is also here assigned the value
RF1_null, the pending noti�cation is removed and variable tries is incre-
mented. Note that we do not introduce an assignment RF1_notif(inst) :=
TRUE after the call to GetF1_result since it is a automatically de�ned
read-only remote procedure.

Successful is-alive checks are not modelled in Distributed B since they
do not a�ect the behaviour of the application. The handling of failed is-
alive checks is similar to handling noti�cation timeouts. Like for noti�cation
timeouts the application stops using the instance that failed.

IS_ALIVE_HANDLERS
IAHandler =̂
SOURCE inst ∈ RF1
THEN
f1_instances := f1_instancesC−
{i, v|i ∈ 1..2 ∧ inst = f1_instances(i)∧
v = RF1_null} ‖

f1_results := {inst}
C−f1_results ‖

tries := tries + 1
END

END

IAHandler =̂
ANY inst WHERE

inst ∈ RF1_Insts
THEN
RF1_Destroy(inst);
RF1_notif := {inst} << |RF1_notif ;
f1_instances := f1_instancesC−
{i, v|i ∈ 1..2 ∧ inst = f1_instances(i)∧
v = RF1_null} ‖

f1_results := {inst}
C−f1_results ‖

tries := tries + 1
END

END

We have now decomposed the computation of f(values(1), values(2))
into a fault tolerant grid application. The grid service machine RF1 and
the grid re�nement COMP_FT1 can now be further re�ned using grid
re�nement until executable code can be generated. The di�erent components
in the development can be proved correct using the tool support for B.

7 Implementation in Java
The grid application development in fault tolerant Distributed B continues
until all the non-determinism has been removed and all the used constructs
can be implemented, i.e., they belong to the implementable subset of the
B language, B0. When all substitutions of the system belong to the B0
language, they can be automatically translated to Java [15]. The event
system composed of all events in the events-clause can be automatically
translated to a while-loop in Java, if all the guards Gi and the substitutions
Si belong to the B0 language.

E1 =̂
WHEN G1
THEN S1 END
. . .
En =̂
WHEN Gn
THEN Sn END

while (true) {
if(G1) S1;
...
else if(Gn) Sn;
else <stop loop>;

}

The place holder <stop loop> consists of statements that terminate the loop

26

in the main program and statements for sending noti�cations and pausing
the execution in implementations of grid service machines.

In the client the grid service instances are translated to objects encapsu-
lating the grid speci�c features. These features include instance allocation,
remote procedure calls, noti�cation handling, noti�cation timeouts and man-
agement of is-alive checks. In the implementation of grid service machines an
additional layer encapsulating grid features such as state management and
is-alive timeouts is inserted between the Globus toolkit and the translated
grid service machine. The code for the objects and the additional layer need
to be manually created once, but can then be reused in all Distributed B
applications.

Java code is generated for each concrete grid re�nement machine that
is a re�nement of a grid service machine and for the root grid re�nement
machine that is a re�nement of an Event B model. When the code has been
generated we have implemented the grid application in a formal manner,
where we can show that the implementation is a correct re�nement of the
abstract speci�cation.

8 Conclusions
We have earlier developed a language Distributed B [5] that extends Event
B for designing and implementing correct grid applications. In that paper
we introduced two new types of machines, grid service machine and grid
re�nement machine, for handling grid speci�c issues in Event B. In this paper
we have modi�ed Distributed B for developing fault tolerant and robust grid
applications. We introduced exception handling to take care of exceptions
raised due to failed remote procedure calls, as well as timeouts to discover lost
noti�cations. In order to handle orphan grid service instances we introduced
a special checking mechanism and facilities to handle exceptions raised by
it. These new features force the developer to consider the fault tolerance
of grid applications throughout the development and enables formal proofs
of correctness. Hence, we have proposed a method for implementing fault
tolerant grid applications where the implementation can be proved correct
with respect to its speci�cation.

There are several middlewares comparable to Globus toolkit that sup-
port advanced fault tolerance mechanisms. For example, fault tolerance in
CORBA [10, 14] is based on replication. In CORBA replicas of an object
form an object group. Object groups then provide replication transparency
and failure transparency. Replication is complementary to the mechanisms
presented here and both can be used together for developing very reliable
grid applications. Fault detection is an important part of a fault tolerant
application. A service for detecting faulty components in a grid environment
using unreliable fault detectors is presented in a paper by Stelling et al. [13].
However, the service is no longer part of the Globus toolkit due to a number
of de�ciencies, such as excessive resource usage and di�culties in supporting

27

it.
From a performance perspective our fault tolerant language for devel-

oping grid applications could be improved. One of the most challenging
problems when constructing fault tolerant grid systems is to handle the or-
phan grid service instances. Our approach uses timers and extra remote
procedure calls, which might not be optimal. The handling of orphans could
be improved as discussed in detail by Panzieri and Shrivastava [12] and by
Tanenbaum and Steen [14]. Furthermore, the fault tolerance mechanism will
immediately delete references to grid service instances that experiences prob-
lems. This can lead to the deletion of an entire subtree of instances for one
failure. Hence, more e�cient mechanisms that would maintain the partial
results should be investigated.

The language we proposed in this paper provides a convenient formal
development process for fault tolerant grid applications. The applications
will by construction have an architecture that is fault tolerant and imple-
mentable. Furthermore, the applications are modelled in terms of grid prim-
itives with a precise meaning and the speci�cations of them will therefore be
clear to understand. Our approach to adapt Event B to the Globus Toolkit
middleware is not limited to that speci�c middleware, but it can be applied
to other middlewares for distributed systems as well.

References
[1] J. R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge

University Press, 1996.

[2] J. R. Abrial, D. Cansell and D. Méry. Re�nement and Reachability in
Event B. In H. Treharne et al, editors, proceedings of the 4th interna-
tional conference of Z and B users: ZB2005. LNCS 3455, Guildford,
UK, pp. 144-163, Springer-Verlag, 2005.

[3] J. R. Abrial and L. Mussat. Event B Reference Manual, 2001.
http://www.atelierb.societe.com/ressources/evt2b/
eventb_reference_manual.pdf. (accessed 10.08.2005)

[4] R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with
centralized control. In Proceedings of the 2nd ACM SIGACT-SIGOPS
Symposium of Principles of Distributed Computing, pp. 131-142, 1983.

[5] P. Boström and M. Walden. An extension of Event B for developing
grid systems. In H. Treharne et al, editors, proceedings of the 4th inter-
national conference of Z and B users: ZB2005. LNCS 3455, Guildford,
UK, pp. 144-163, Springer-Verlag, 2005.

[6] K. Czajkowski, et. al. Open Grid Services Infrastructure, 2003.
http://www-unix.globus.org/toolkit/
draft-ggf-ogsi-gridservice-33_2003-06-27.pdf.
(accessed 10.08.2005)

28

[7] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall Interna-
tional, 1976.

[8] I. Foster, C. Kesselman and S. Tuecke. The Anatomy of the Grid: En-
abling Scalable Virtual Organizations. The International Journal of Su-
percomputer Applications, 15(3), 2001.

[9] I. Foster, C. Kesselman, J. Nick and S. Tuecke. The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems
Integration. Open Grid Service Infrastructure WG, Global Grid Forum,
2002.
http://www.globus.org/alliance/publications/papers/ogsa.pdf.
(accessed 10.08.2005)

[10] Object Management Group. Fault tolerant CORBA, 2001,
http://www.omg.org/docs/formal/01-09-29.pdf.
(accessed 10.08.2005)

[11] The Globus Alliance. Globus Toolkit. 2005. http://www.globus.org/.
(accessed 10.08.2005)

[12] F. Panzieri and S. K. Shrivastava. Rajdoot: A Remote Procedure Call
Mechanism Supporting Orphan Detection and Killing. IEEE Transac-
tions on Software Engineering, 14(1), pp 30-37, 1988.

[13] P. Stelling, C. DeMatteis, I. Foster, C. Kesselman, C. Lee, G. von
Laszewski. A Fault Detection Service for Wide Area Distributed Com-
putations, Cluster Computing, 2, pp. 117-128, 1999

[14] A. S. Tanenbaum and M. Van Steen. Distributed systems principles and
paradigms. Prentice Hall. 2002

[15] J. C. Voisinet, B. Tatibouet and A. Hammand. JBTools: An experimen-
tal platform for the formal B method. In Proceedings of the inaugural
conference on the Principles and Practice of programming and Proceed-
ings of the second workshop on Intermediate representation engineering
for virtual machines. National University of Ireland, 2002

[16] M. Waldén and K. Sere. Reasoning About Action Systems Using the
B-Method. Formal Methods in Systems Design, 13:5-35, 1998.

29

A A fault tolerant grid re�nement machine

GRID_REFINEMENT
CFT

REFINES
C

REFERENCES
A

VARIABLES
v, w, a1, . . . , an

INVARIANT
a1 ∈ A∧
. . . an ∈ A∧
J(v, w, a1, . . . , an)

INITIALISATION
a1 := A_null ‖
. . .
Init′(v, w)

EVENTS
E1 =̂

ANY y WHERE
G′1(v, y)

THEN
S′1(v, y);
CALL ai ← A_GetNew
EXCEPTION Te

END
END ;

E2 =̂
WHEN G′2(v, w)
THEN S′2(v, w)
END ;

F =̂
WHEN H(v, w, ai)
THEN

Sn(w) ‖
CALL ai.P roc(f(v, w))
EXCEPTION Tf (w, ai)
END

END
NOTIFICATION_HANDLERS
N1Handler =̂

NOTIFICATION N1

SOURCE inst ∈ A
THEN TN1(inst, w, ai, aj)
TIMEOUT Tt(inst, w, ai, aj)
END

IS_ALIVE_HANDLERS
IAHandler =̂

SOURCE inst ∈ A
THEN Tia(inst, w, ai, aj)
END

END

REFINEMENT
CFTV

REFINES
C

INCLUDES
AV

PROMOTES
EA

VARIABLES
v, w, a1, . . . , an, A_notif

INVARIANT
a1 ∈ A_INSTS∧
a1 ∈ A_Insts ∪ {A_null}∧
. . .
JV (v, w, a1, . . . , an)∧
A_notif ∈ A_Insts → BOOL

INITIALISATION
a1 := A_null ‖
. . .
Init′(v, w) ‖
A_notif := ∅

OPERATIONS
E1Ok =̂

ANY y WHERE
G′1(v, y)

THEN
S′1(v, y);
ai ← A_GetNew;
A_notif(ai) := TRUE

END ;
E1Fail =̂ . . .
E2 =̂ . . .
FOk =̂

WHEN H(v, w, ai)
THEN

Sn(w) ‖
Proc(ai, f(v, w));
A_notif(ai) := TRUE

END ;
FFail =̂ . . .
N1HandlerOk =̂

ANY inst WHERE
inst ∈ A_Insts∧
A_notif(inst) = TRUE∧
¬GA(x(inst)) ∧Q1(x(inst))

THEN
TN1(inst, w, ai, aj) ‖
A_notif(inst) := FALSE

END ;
N1HandlerFail =̂ . . .
IAHandler =̂

ANY inst WHERE
inst ∈ A_Insts

THEN
A_Destroy(inst);
A_notif := {inst} << |A_notif ;
Tia(inst, w, ai, aj)

END
END

30

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.�

University of Turku
• Department of Information Technology
• Department of Mathematics

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 952-12-1594-1
ISSN 1239-1891

