
Johanna Tuominen | Juha Plosila

Asynchronous Viterbi Decoder in
Action Systems

TUCS Technical Report
No 710, September 2005





Asynchronous Viterbi Decoder in
Action Systems

Johanna Tuominen
Turku Center for Computer Science
Lemminkäisenkatu 14 A, 20520 Turku, Finland
joeltu@utu.fi

Juha Plosila
University of Turku, Dept. of Information Technology
Lemminkäisenkatu 14 A, 20520 Turku, Finland
juplos@utu.fi

TUCS Technical Report

No 710, September 2005



Abstract

Conventionally, the correctness of functional and non-functional properties of
hardware components is ensured during design process by simulation. Moreover,
different description languages are needed during development phases. Thus, by
adopting the Action Systems, we are able to use the same formalism from speci-
fication down to implementation. Recently, we have been exploiting possibilities
to formally model power consumption. That is the purpose is to develop formal
power estimation flow, which can be used to monitor the power consumption from
abstract level down to the gate level implementation. In this paper, we present a
formal model for asynchronous Viterbi decoder, which will be used as a case study
for the power estimation flow in the future.

Keywords: Viterbi, formalism, asynchronous

TUCS Laboratory
Communication Systems



1 Introduction

Formal methods provides an environment to design, analyze,and verify digital
hardware with the benefits of rigorous mathematical basis. In this study, the Ac-
tion Systems formalism is applied [1]. It is a framework for specification and
correctness preserving development of concurrent systems, and it is based on an
extended version of Dijkstra’s language of guarded commands [3]. Development
of the action system is done in a stepwise manner within therefinement calculus
[2]. The specification of a hardware system is transformed into an implementa-
tion using correctness preserving transformations. In conventional Action Sys-
tems, only the logical correctness of the system is verified,while non-functional
properties, like time, power, and area are not validated.

Convolutional encoding and Viterbi decoding are widely used in modern com-
munication systems, such as digital satellite TV, and digital mobile radios [6]. To
satisfy the demands caused by the developments of the moderntelecommunica-
tion, high-speed, low-power, and low-cost Viterbi decoders are required. In this
paper, we present a formal model of an asynchronous Viterbi decoder. The asyn-
chronous approach is chosen for the implementation becauseof its potential for
low-power, and low-noise behavior [12].

Currently, we are exploiting the possibilities to formallymodel power con-
sumption [10] [11]. The purpose is to develop a formal power estimation flow
from initial specification down to implementation. To estimate the power con-
sumption, there is a trade-off between the accuracy and the abstraction level of
detail which the system is analyzed. The more detailed the description, the more
accurate the simulation will be. But on the other hand, the more time consuming
it will be. Moreover, the designer wants to make decisions asearly as possible in
the design flow to avoid design backtracking. Thus, the purpose is to use the asyn-
chronous Viterbi decoder as a case study for the power estimation flow. That is, to
estimate the power consumption of the decoder at different development phases.
For instance, starting from the formal description presented here, and finally from
the gate-level description.

2 Action Systems

An action A is defined by (for example):

A ::= abort (abortion, non − termination)
| skip (empty statement)
| A1[] ... [] An (non − deterministic choice)
| A1; ... ; An (sequential composition)
| x := e ((multiple) assignement)
| g → A (guarded command)

1



whereAi, i = 0, ..., n, are actions;x is a variable or a list of variables;x0

is a value(s) of the variable(s);e is an expression or a list of expressions; g is a
predicate.

Semantics of actions. Action is considered to beatomic, which means that
only the initial and final states are observed by the system. Thus, when selected
for execution, the action is completed without any interference from other actions.
Atomic actions may be represented by simple assignments or by more complex
action compositions, such as the atomic sequence.Non − atomicity means that
an action outside the composition can execute between two component actions of
the construct, which is not possible in theatomic composition structures. The no-
tation differs whether the composition is atomic or not, forinstance, the sequential
composition is noted by; (atomic), and; (non − atomic).

The actions are defined using weakest precondition for predicate transformers
[3]. For instance, the correctness of an actionA with respect to predicatesP and
Q (precondition and postcondition) is denoted by:{P}A{Q} = P ⇒ wp(A, Q).
Thewp(A, Q) is the weakest precondition for the actionA to establish the post-
conditionQ. Theguard gA of an actionA is defined bygA = ¬wp(A, false).
An action is enabled when its guard evaluates totrue, otherwise disabled.

2.0.1 Action System

An action systemA has a form:

sys A (g) [par]
|[
type t

const c

var v

actions A

subsys SA

init ”initialization of the variables g and v”
exec
do ”composition of actions A” od
]|

Three different parts can be identified from the action system description:
interface, declarations, anditeration.

The interface part specifies global variablesg, that is, variables that are visible
outside the action system. In other words, global variablesare accessible by other
action systems. If an action system does not have any interface variables, it is
a closed action system otherwise it is anopen action system. The declaration
part consists of type(t), variable(v), constant(c), and action(A) declarations.
Furthermore, type definitions and initializations are described in the declaration
part. Using the items introduced in the interface and declarative parts the operation
of the system is described in the iteration section; in thedo − od loop.

2



The operation of an action system is started by initialization in which the vari-
ables are set to predefined values. Actions are selected for execution based on the
composition operators and the enabledness of the actions. The operation is con-
tinued until there are no actions to enable, which temporarily aborts the system.
Thus, the operation continues if some action enables it.

Quantified constructsAny action-level operator• ∈ [], ; (atomic), ;(non − atomic),
and the system-level operator|| can be quantified using the notation defined as fol-
lows:

[• 1 ≤ i ≤ n : A(i)]=̂A(1) • ... • A(n)
[|| 1 ≤ i ≤ n : A(i)]=̂A(1) || ... || A(n)

Composing Action SystemsConsider two hierarchical action systemsA and
B with distinct local variables, local procedures, subsystem instances, and actions.
The parallel composition of such systems is denoted byA || B. It is defined to be
another action system whose global and local identifiers (procedures, variables,
subsystem instances, actions) consist of the identifiers ofthe component systems
and whoseexec-clause has the form:do A [] B od || SA || SB. HereA andB
denote the action compositions, andSA andSB the subsystem compositions inA
andB, respectively. The definition of the parallel composition is used inversely
in system derivation to decompose a system description intoa composition of
smaller separate systems or internal subsystems.

3 Viterbi Algorithm

3.1 Convolutional Coding

The convolutional codes differ from the block codes by the existence of memory
in the encoding scheme. That is, the convolutional encoder achieves low error-rate
transmission by adding redundancy to the input stream symbols. Thus, it produces
more output bits than input bits shifted to its memory. The convolutional code is
generated by passing the information sequence to be transmitted through a linear
finite-state shift register [6].

The code rate of the convolutional encoder is defined as the number of input
bits to output bits. In general, the code rate is defined asRc = k/n, and the
encoder is represented in(K, k, n) format, where

n : number of code symbols produced by the encoder
k : number of information bits coming into the encoder
K : constraint length of the code

The constraint length of the encoder is measure of the memorywithin the
code. The structure of the(K, k, n) convolutional encoder is shown in Figure 1.

3



bits

k

information 

to modulator
Encoded sequence

n321

Kk stages

k...21k...21

++++

k...21

Figure 1: Convolutional encoder

The(K, k, n) convolutional code can be specified (for instance) by using aset
of n vectors, one vector for each of then modulo-2 adders [6]. Each vector has
a Kk dimensions and contains the connections of the encoder to that modulo-2
adder. A1 in the ith position of the vector indicates that the corresponding stage
in the shift register is connected to the modulo-2 adder, anda0 denotes that there
is no connection between that stage and the modulo-2 adder.

To be specific, let us consider the binary convolutional encoder with constraint
lengthK = 3, k = 1,andn = 2, which is shown in Figure 2.

2

1
Input

sequence
output 
Encoded 

Figure 2: K=3, k=1, n=2 convolutional encoder

Initially, the shift register is assumed to be in the all-zero state. Assume that
the first input bit is′1′. Then the output sequence of two bits is′′11′′. Then suppose
that the second input bit is′0′, then the output sequence is′′10′′. If the third input
bit is ′1′, then the output bits are′′00′′, and so on. Next, we number the outputs
of the function generators that generate each two bit outputsequences 1,2 from
top to bottom, and similarly number each function generator. The first function
generator is connected to stages1, 2, and3, and therefore the generator is

4



g
1

= [1, 1, 1]

The second function generator is connected to stages1 and2. Hence

g
2

= [1, 0, 1]

The generators for this code are given in octal form as(7, 5). In conclusion, we
have that, whenk = 1, we requiren generators, each of dimensionK to specify
the encoder [6].

The convolutional encoder is a finite state machine, where any state is a con-
tent of its memory. The outputs of the encoder are dependent on the recent input
bits and on its previous memory contents. Therefore, the convolutional encoder
can be completely described by the state-transition diagram. The state transition
diagram for the(3, 1, 2) encoder is shown in Figure 3 [8].

0/11

1/01

1/11

0/01

1/10

0/10

1/00

0/00

01 10

11

00

Figure 3: State diagram for rate 1/2, K=3 convolutional code.

In the Figure 3, the states are depicted as nodes, and the transitions from one
state to another are indicated as arrows. Thus, depending onwhether the current
binary input is1 or 0, there are two possible states where the encoder might enter.

To describe the transitions between states as a function of time, the convolu-
tional codes can be described as atrellis diagram [6]. The trellis diagram for the
convolutional encoder, shown in Figure 2 is illustrated in Figure 4.

The nodes of the trellis diagram represent the memory contents of the encoder.
The solid line denotes the output generated by the input bit′0′, and the dotted line
the output generated by the input bit′1′. In the encoding procedure, it is often
assumed that the encoder att = 0 is set to initial state(S0). Then at timet = 1,
we have two possible statesS0, andS1, depending on whether the input bit is′0′

5



S2

S1

S0
00000000

t=4t=3t=2t=1t=0

S3

0101

1010

0000

1111
1111 11 11

01 0101

101010

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

	 	
	 	
	 	


 


 


 


� �
� �
� �

� �
� �
� �

 
 
 

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

  
  
  

! !
! !
! !

" "
" "
" "

# #
# #
# #

$ $
$ $
$ $

% %
% %
% %

& &
& &
& &

' '
' '
' '

Figure 4: Trellis diagram for rate 1/2, K=3 convolutional code.

or ′1′, respectively. After, the second stage(t = 2), each node in the trellis has
two incoming paths, and two outgoing paths.

3.2 The Algorithm

The Viterbi algorithm finds the most-likely state transition sequence in a state
diagram, given a sequence of symbols. That is, given a sequence of input symbols
and an initial state, one can derive a sequence of output symbols based on the
transitions and their input/output relations in a given finite state diagram. The
finite state diagram is often presented astrellis, shown in Figure 4. In other
words Viterbi algorithm finds the sequence of symbols in the given trellis that
is closest in distance to the received sequence of noisy symbols. This sequence
computed is the globalmost likely sequence. When theEuclidean distance
is applied as a distance measure, the Viterbi algorithm is the optimal maximum-
likelihood detection method, when the sequence of symbols is corrupted by the
additive white Gaussian noise (AWGN) [4]. In practice, theHamming distance
is often applied event though the performance of the ViterbiAlgorithm is sub-
optimal [5], for instance, in terms of noise optimation. However, regardless of
the distance measure, the procedure to search for the most-likely sequence is the
same. We will use, both the Euclidean and the Hamming distance, to illustrate the
Viterbi Algorithm.

Consider the following communication system, shown in Figure 5.
The convolutional encoder adds redundancy to the input signal s, and the en-

coded outputx symbols are transmitted over a noisy channel. The input of the
convolutional decoder, that is the input for the Viterbi decoderr is the encoded
symbols contaminated by noise. Then the decoder tries to extract the original

6



y[n]
Output
Sequence

r[n]x[n]s[n]

Sequence
Input

Convolutional 
Algorithm
ViterbiChannelEncoder

Figure 5: Encoding / decoding convolutional code.

information from the received sequence and generates an estimatey. The algo-
rithm that maximizes the conditional probabilityP (r|y) is called the maximum
likelihood algorithm [4].

The maximum-likelihood algorithm finds the most likely codesequence for
the received channel output sequence. Therefore, if the encoder output sequence
is denoted byxm, and the channel output sequence is denoted byr, the probability
of receivingr when the channel input isxm is

Pr(r|xm) =

∞∏

n′=0

Pr(rn′|xmn′) (1)

The most likely path through the trellis for the channel output r is the one
that maximizes the function 1 [4, 5]. Thus, the function, shown in Equation 1, is
usually called themetric, and it is used in comparison between the code sequence
and the received sequence. Notice that, the decoding metricin 1 requires product
implementation, and therefore the metricln[Pr(r|xm)] is more frequently applied
than the metricPr(r|xm) in the decoder. Moreover, finding the trellis path with
the largest log-likelihood function corresponds the maximum likelihood decoding:

ln[Pr(r|xm)] = ln[
∞∑

n′=1

Pr(rn′|xmn′)] (2)

where the components of the summation are accumulated on theindividual
branches, and therefore they are denoted bybranch metrics.

3.2.1 Hard-decision decoding

In the hard-decision decoding, the path through the trellisis determined using the
Hamming distance measure. Thus, the most optimal path through the trellis is the
path with the minimum Hamming distance. In other words, the Hamming distance
can be defined as a number of bits that are different between the observed symbol
at the decoder and the sent symbol from the encoder. Furthermore, the hard-
decision decoding applies one bit quantization on the received bits. The channel
noise is assumed to be white, and therefore the channel is assigned to be Binary
Memoryless Channel (BMC) in the hard decision decoding [14].

The decoding is assumed to start from the initial state, and return back into
the all zero state. Assuming that the optimal path covers total of m branches, and
each of the branches is expected to representn bits of the encoder output. Then

7



the overall number of bits in the trellis code word, and the quantized received
sequence isnm. Thus, the Hamming distance between the trellis code word−→c
and the quantized received sequence−→y each of them being of lengthn is [8]:

d(−→c ,−→y ) =
n∑

i=1

d(−→c i,
−→y i) 1 ≤ i ≤ n (3)

3.2.2 Soft-decision decoding

Soft-decision decoding is applied for the maximum likelihood decoding, when
the data is transmitted over the Gaussian channel. On the contrary to the hard-
decision decoding, the soft-decision decoding uses multi-bit quantization for the
received bits, and Euclidean distance as a distance measureinstead of the Ham-
ming distance.

In the soft-decision decoding, the vector output of the channel −→r is applied
instead of the quantized received sequence−→y . Furthermore, the binary sequence
−→c is frequently replaced by the antipodal sequence−→c ′ with:

c′ij =






√
ε

for 1 ≤ i ≤ m and 1 ≤ j ≤ n
−√

ε
(4)

Thus, the Euclidean distance can be represented in a form:

d2(−→c ′,−→r ) =
m∑

i=1

d2

E(−→c ′

i,
−→r i) (5)

3.2.3 Functionality of the algorithm

The maximum likelihood path is characterized with the aid ofthebranch metric
and apath metric. The algorithm uses a set ofpath metrics to describe the
various costs of different path through the trellis. Consider the example, shown in
Figure 6.

At the beginning of the decoding process(t = 0), the path metric of theS0
is initialized to zero. After the first time step, one of the two branches starting
from the stateS0 arrive at the stateS0 with a branch metric. Thus, this branch
metric is, for instance, the Hamming distance between the expected input00 and
the received input01. Similarly, we can define the branch metric for the branch
entering to the stateS2. This procedure is repeated at timet = 2, and so on. The
path metric value is the sum of the previous path metric and the current branch
metric. Notice that, at timet = 1 andt = 2 there are only one path leading to
each state, and therefore the incoming branches are thesurvivor branches. At
time t = 3, each node in the trellis has two incoming paths and two out going
paths. Thus, the trellis is reached its steady state [6]. Forexample, at the stateS0,

8



11 11 11 11 1111 11

01 01 01 01 01 01

11 11 11

00
S0

S1

S2

S3

00 00 00 00 00 00

11

Received 01 10 11 11 01 00 01

t=0 t=1 t=2 t=5t=4t=3 t=6 t=7

sequence

11

00 00 00 00 00

10 10 10 10 10 10

01 01 01 01 01

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
	
	





�
�

�
�



�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

 
 
!
!

"
"
#
#

$
$
%
%

&
&
'
'

(
(
)
)

*
*
+
+

,
,
-
-

.

.
/
/

0
0
1
1

2
2
3
3

4
4
5
5

6
6
7
7

8
8
9
9

:
:
;
;

<
<
=
=

>
>
?
?

Figure 6: The trellis diagram for the Viterbi decoding example.

the arrival at this state is possible from statesS0 andS1. The path entering from
the stateS0 has the path metric value of2, while the other path is entered with the
accumulated metric5. Thus, the path through the stateS1 is discarded, and the
path throughS0 survives. Notice that, if one or more paths have the smallestpath
metric, the selection of the most likely path will be chosen randomly.

Once the survivor path for the whole trellis is identified, the decoded output
sequence is extracted by performing atrace back operation. The trace back pro-
cess starts from the stateS0 at t = 7 and is executed by going backward in time.
The survivor path traces back into the stateS0 at timet = 6. By continuing the
same procedure, the optimal path through trellis is determined.

4 Viterbi Decoding Implementation

The simplified structure of a Viterbi decoder is shown in Figure 7, which consists
of three units:

1. Branch Metric Unit (BMU) generates branch metrics, whichmeasure the
difference between the received symbol, and the symbol thatcauses the
transitions in the trellis.

2. Path Metric Unit (PMU) consists of two parts: The Add-Compare-Select
Unit (ACSU) and the State Metric Memory (SMM). To find the survivor
path for each state, the branch metric of a given transition is added to the
recent path metric value stored in the state metric memory. This new path
metric is then compared with other path metrics, which are entering to that
state. The transition with the minimum path metric is chosento be the
survivor metric. The path metric of the survivor path of eachstate is updated
and stored back into the state metric memory.

9



3. Trace Back Unit (TBU) stores the survivor paths and performs the trace
back operation. Outputs the decoded sequence.

State Metric Memory T
ra

ce
 B

ac
k

 U
n

it

Path Metric Unit 

B
ra

n
ch

 M
et

ri
c 

U
n

it

Add−Compare−Select

Figure 7: A simplified block diagram of the Viterbi decoder

The implementation of the digital decoder requires quantization, that is, the
received analog signal is converted into digital format. Inthis design, we apply
the multi-bit quantization, and therefore theEuclidean distance (soft decision de-
coding). as a distance measure for the branch metrics generation. Thus, the branch
metric is generated by calculating the squared distance between each noisy sym-
bol and the expected sequence of symbols in that path. If the received sequence
of noisy symbols is denoted by−→y = (y1, y2, y3, ..., yn), the branch metric for the
transition from statei to statej is:

Bi,j,n = (yn − Ci,j)
2 (6)

where theCi,j is the expected code symbol of the transition from statei to
statej.

Table 1: Next state table corresponding the butterfly structure in Fig. 8

00 10
00 10
01 11
01 11

To achieve higher computational efficiency, the trellis diagram can be re-
ordered into butterfly structures, as shown in Figure 8. The butterfly structures
are applicable for a rate of1/n convolutional encoders. The reordered trellis is
partitioned into groups of states and state transitions, which are isolated from
other groups. The next state table of the butterfly in Figure 8, is shown in Table 1,
and the output table is depicted in Table 2. Notice that the columns of the tables
corresponds the input bit′0′ and′1′, respectively.

10



10

11

10

00

01

00

S

11/0

01/1

10/0

10/1

01/0

00/1

11/1

00/0

11

10

00

01

b)a)

tt t+1S t+1S

01/1

S

10/1

10/0

01/0

00/1

11/1

11/0

00/0

11

01

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
	
	





�
�

�
�



�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

00

01

10

11

Figure 8: (a) One section of trellis diagram (b) Corresponding butterfly structure.

Table 2: Output table corresponding the butterfly structurein Fig. 8

00 11
11 00
01 10
10 01

The butterfly blocks are implemented by using Add-Compare-Select-Units
(ACSU). The block diagram of the ACSU is shown in Figure 9.

The two adders calculate the sum between incoming branch metrics and the
previous path metrics.

PM1 = PM1 + BM1 (7)

PM0 = PM0 + BM0 (8)

The comparison operation finds the most likely path that has the minimum
metric:

D = (PM0 < PM1) (9)

Furthermore, the selector determines the path with the minimum metric:

PMout = min(PM0, PM1) (10)

11



PM1

PM2

PMout

D

Add SelectCompare

BM2

BM1

Figure 9: Block diagram of Add-Compare-Select Unit

By assuming that the total number of transitions in the trellis is M , and the
number of states isN , a maximum of(M − N) comparison operations are re-
quired, and2N sums are required to initialize the metric for each state. The num-
ber of the memory accesses required to store the indexes for the survivor paths is
dependent on the way the trace back unit(TBU) is implemented. Another real-
time implementation issue for the trace back unit is the possibility for overflows
in the registers that holds the path metrics. This is due to the finite length of the
registers. A conventional approach to prevent the overflow in the registers is to
use normalization. That is, subtracting a constant from allthe path metrics to be
compared from time to time. This approach requires an additional comparison,
and subtraction operations to normalize the path metrics [5].

To avoid the extra computation required to normalize the path metrics is to
design the registers to store the path metrics to be of lengthgreater than2Dmax,
where theDmax is the maximum possible difference between the path metrics[9].
By adopting this methodology, we can imagine that due to the finite precision
of the register, a path metric is running on a circle in the clockwise direction
every time a positive number is added to it. For instance, consider the following
example, shown in Figure 10, where the register length is 3 bits.

Thus, if the distance between the two path metrics to be compared on the cir-
cle is always less than half of the length of the circumference of the circle, then
we know that the metric that is farther along in a clockwise direction has a larger
value. Therefore, to determine the smaller or larger path metric, the comparison
operation can be described as follows:

12



111

110

101

100

011

010

001

000

two metrics
Distance between

Figure 10: Finite precision effect of path metrics

Let m1 = (m1n, ..., m10) andm2 = (m2n, ..., m20) be the two metrics to be
compared, anddn = (dn, ..., d0) = (m1 − m2) using 2’s complement arithmetic.
If Z(m1, m2) denotes the logical result of comparing the path metricsm1 andm2,
then

Z(m1, m2) =

{
1, if m1 ≤ m2

0, otherwise

andZ(m1, m2) = dn

There are two commonly used techniques for the survivor memory design:
The register exchange and the trace back techniques. We willadopt a technique
that is based on the trace back technique, and therefore the name of the unit is
trace back unit(TBU). An example of the memory structure used is shown in
Figure 11, where the memory is divided into several blocks [5]. The number of
blocks depends on how long one wants to keep the survivors. Inother words, the
number is dependent on the survivor path length,L. Each block in the memory
corresponds to one stage of a trellis, and stores the survivor path pointer for each
state. For instance, consider the example shown in Figure 11.

The survivor path memory,in this example, contains two locations in each
block to store the survivor paths for state1 and−1. Location0 in each block
stores the survivor path pointer for state1, and the location1 stores the pointer to

13



1 1 1 10

0 0 0 1 1

Survivor paths:

1

0

����
��
��

��
��

��
��

��		 


��

��


��
��

����

���� ��
��

����state−1

state1

Survivor path
memory

Figure 11: Example: tracing the survivor memory

the state−1. To trace the survivor path from state 1 to the most recently set block,
we can set the pointer to read from location0 of this block. Since, the content in
location0 has a value of1, we decrement the block counter, and read the location
1 from the previous block.

After pointing to the last block of the survivor path memory,the block counter
overflows, and resets to the location0. Thus, the survivor memory can be illus-
trated as circular block of memory, shown in Figure 12.

traceback traceback

At stage S+1At stage S

the survivor path

Block pointer to store
the survivor path

Block pointer to store
the survivor path

Block pointer to trace
the survivor path

Block pointer to trace

Figure 12: Organization of the survivor path memory

If the length of the survivor path isL, there should be at least(L + 1) blocks
in the survivor path memory. Notice that, the survivor path updates can be im-
plemented in a first-in first-out manner, and therefore the oldest block of data is
overwritten continuously in the survivor path memory. Using this implementation
method, the survivor path memory requires(L + 1)N locations andlog2(N) bits
for each location, whereN is the total number of states in the given trellis [5].
Moreover,L memory indexing operations are required to trace the survivor path
memory, andN memory accesses are required to update the survivor path pointers

14



for all states. For instance, a rate1/n convolutional code the minimum value for
L is 5(log2(N)).

5 Formal Specification

5.1 Convolutional encoder

In general, when a binary convolutional code withk = 1 (number of input bits),
and a constraint length K is decoded by means of the Viterbi algorithm, there are
2K−1 states [6]. Therefore, there are2K−1 surviving paths at each stage, and2K−1

metrics, one for each surviving path. For the formal specification, we use (2,1,7)
convolutional code, which is widely used, for example in satellite communication
systems, and in NASA space programs. The Convolutional encoder is illustrated
in the Figure 13.

2

1

Input

Figure 13: Encoder for rate R= 1/2, and constraint length K=7convolutional code

Thus, we can define that the number of states in the trellis is64. The function
generators for the encoder is defined by:

g
1

= [1, 1, 1, 1, 0, 0, 1]

g
2

= [1, 0, 1, 1, 0, 1, 1]

In octal form the generators are(171, 133). Equivalently, we can define the
generator polynomials for each generator:

15



G1(D) = 1 ⊕ D ⊕ D2 ⊕ D3 ⊕ D6

G2(D) = 1 ⊕ D2 ⊕ D3 ⊕ D5 ⊕ D6

where theD can be seen as a delay operator. For rateR = 1/2 convolutional
code, the branch metric calculation between the received code word(G1, G2),
and the code word associated with the branch(C1, C2) is defined by:

BM = (G1 − C1)2 + (G2 − C2)2 (11)

For instance, the code word for the upper branch in state0 is (C1, C2) = 00,
and for the lower branch it is(C1, C2) = 11. These codewords are calculated
with the aid of Matlab, for instance:

>> codeRate = 1/2;
>> constlen = 7;

>> codegen = [171, 133];
>> trellis = poly2trellis(constlen, codegen);

generates a trellis for the (2,1,7) convolutional code. Therefore, we are able to
generate the next state table, and the table for output symbols for each branch, as
shown in Tables 3, and 4.

>> trellis.nextStates(1 : 64, :)
>> trellis.outputs

Table 3: Next state table for the proposed Viterbi decoder.

Current state Next state (Input ’0’) Next state (’1’)
S0 S0 S32
S1 S0 S32
S2 S1 S33
S3 S1 S33
— — —

S62 S31 S63
S63 S31 S63

16



Table 4: Look-up table for the outputs of the proposed Viterbi decoder.

Current state Output (Input ’0’) Output (’1’)
S0 00 11
S1 11 00
S2 01 10
S3 10 01
— — —

S62 11 00
S63 00 11

5.2 The Viterbi decoder

The formal description of the Viterbi decoder is modeled as ahierarchical Action
System. Thus, the top level description is fairly simple. Itconsists of control
variables, and three subsystems: branch metric unit(BMU), path metric unit
(PMU), and the trace back unit(TBU). The Viterbi decoder is defined by:

sys ViterbiDecoder(enabledecoder, enablebmu : bool)
|[
const states := 64;

depth := 2;
L := 30;
memdepth = 2 ∗ (L + 1)
Dmax = 4;

type bit : bool;
array : bit[0..states− 1][0..Dmax];
bvect : bit[0..1];

subsys BMU, PMU, TBU ;
init enabledecoder, enablebmu := F ;
actions V 1 : enabledecoder → enablebmu := T ;

V 2 : ¬enabledecoder → enablebmu := F ;
exec
do V 1 [] V 2 od || BMU || PMU || TBU

]|

The decoder is enabled when there is valid data from the encoder, that is the
variableenabledecoder is settrue. Then the branch metric calculation is enabled
by setting the variableenablebmu to true (V 1). On the contrary, when there is no
data to process the BMU is disabled (V 2). For simplicity, most of the constant
variables are defined in the top level description. Moreover, we define a typebit,
which is of typeboolean. The valuetrue indicates the logic ’1’, and the value
false indicates the logic ’0’.

17



5.2.1 Branch Metric Unit (BMU)

The branch metric is the squared distance between the received noisy symbolYn,
and the ideal noiseless symbol of that transitionCi,j. That is the branch metric
from statei to statej at stagen is:

Bi,j,n = (Yn − Ci,j)
2 (12)

Notice that, in this implementation, we apply theEuclidean distance to the
branch metrics generation, and multi-bit quantization forthe input bits, (all though
the quantization is not formally described here).

The interface of the BMU consists of the following input/output variables:

inputs:
enablebmu: data valid variable, enables the branch metrics calculation.
din: data in variable, noisy input symbols from the encoder.
pmuready: The path metrics are ready, ready to accept new data.
outputs:
bm0: calculated branch metrics, for the ’0’ branch.
bm1: calculated branch metrics, for the ’1’ branch.
bmready: branch metric calculation is ready.
enablepmu: enables path metric calculation.

The next state table, shown in Table 4, of the trellis for the (2,1,7) convolu-
tional encoder is modeled as of typearray, and the BMU receives the table as a
parameter (metrics). The first column of the array contains the metric value if
the assumed input bit is′0′, and the second one the value of the metric if the as-
sumed input bit is′1′. The incoming symbols (din) from the encoder are defined
as of type bit vectorbvect. The output variablesbm1, andbm0 are modeled as of
typearray. Notice that, thebm0 contains the metrics from the′0′ branch for each
state. The external interface of the BMU is illustrated in Figure 14.

bmready

readypmu

pmuenable

bm1

bm0

din

enablebmu

BMU

Figure 14: Branch Metric Unit

The BMU is defined by:

18



sys BMU (din : bvect, bm0, bm1 : array, enablepmu : bool)[metrics]
|[
var bmready : bool;
proc distcalc(metrics[i, j], din) :

(bm0[l, (l, 0..states− 1] :=
(din − metrics[0, i, (i, 0..states− 1)])2;
bm1[l, (l, 0..states− 1] :=
(din − metrics[1, j, (j, 0..states− 1)])2);

init enablepmu, bmready := F

actions B1 : enablebmu ∧ ¬bmready → distcalc;
bmready, enablepmu := T ;

B2 : pmuready → bmready := F ;
B3 : ¬enablebmu → enablepmu := F ;

exec
do B1 [] B2 [] B3 od
]|

The branch metric calculation is enabled when theenablebmu is set totrue,
and thebmready variable is set tofalse. Thus, this indicates that there is valid data
from the encoder, and that the BMU is idle. The branch metricscalculation is car-
ried out in the proceduredistcalc, and thebmready is set totrue (B1). Moreover,
the PMU is enabled by setting theenablepmu variable totrue. After the PMU is
ready to accept new data it sets thepmuready variable totrue. Then thebmready is
set tofalse, which indicates that the BMU is ready to accept new data fromthe
encoder (B2). The action (B3) disables the PMU when there is no data to process.

5.2.2 Path Metric Unit (PMU)

The path metric unit (PMU) is the core of the computation in the decoder. Thus,
it adds the current branch metric to the previous path metric, compares the two
metrics, and selects the smaller one as a next weight to a node. Therefore, this
computation unit is denoted by Add-Compare-Select Unit (ACSU), and it corre-
sponds to a node of the trellis.

The transition tables for the 64-state trellis are shown in Tables 3, and 4. For
instance, if the current state isS0 and the symbol′00′ corresponding the input′0′

is received , The decoder will remain in stateS0 and produces decoded output
′0′. In other words, the whole decoding process is performed with aid of prede-
termined reference values of each state and their interconnects. As mentioned in
previous section, the butterfly unit obeys the similar functionality. Therefore, we
can represent the states of butterfly block, as shown in Figure 15, where the solid
line represents the transition if the input bit is′0′, and dotted line the transition
that correspond the input bit′1′. The relationships, shown in Figure 15, are valid
for everyj, 0 ≤ j ≤ 31.

The proposed decoder consists of 64 states, which are described using 32 but-
terfly blocks, shown in Figure 16. Notice that, each butterflycorresponds two
states in trellis.

19



0

1

1

0

j+32

j2j

2j+1

Current State Next State

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

Figure 15: State relationship for the path metrics computation

Butterfly0

Butterfly1

S0 S0

S1 S32

S2

S3 S33

S1

S62

S63

S31

S63Butterfly 32

�
�
	
	





�
�

�
�



Figure 16: The butterfly blocks for the path metric calculation

The PMU consist of the state metric memorySMM , control logic, and 64
Add-Compare-Select Units (ACSU). The SMM is modeled as of typesmem,
which is an array. It stores the local winner for each state, which is used in the
path metric calculation during next calculation cycle. Thesize of each cell is
defined by2Dmax +1, where theDmax is the maximum possible difference in the
path metrics. For instance, by assuming that the length of the each path metric

20



is four, then the size of the each cell in the given vector variable will be9 bits.
Thus, by adopting this approach the extra calculation needed for the normalization
operation is avoided [5].

The simplified block diagram of the PMU is shown in Figure 17. The intercon-
nects between the ACS-units and SMM illustrates the readingand writing events
between these two sub blocks.

ACS62

ACS0

ACS1

ACS63

SMM

enable

D(i)

PMout(i)

enablePMU

TBU

BM1(i)

BM0(i)

PM(j)

PM(j+32)

PM(j)

PM(j+32)

BM
ready

ready
PMU

ACS2

�
�
�
�

�
�
�
�

�
�
�
�

Figure 17: Path Metric Unit

The PMU is defined by:

sys PMU (enablepmu, pmuready, enabletbu)
|[
type smem : bit[0, ..., states− 1][0, ..., 2Dmax + 1];
var SMM := smem;

enableacsu := bool;
proc update(SMM) : SMM [i, (i, 0..states− 1)] :=

pmout[i, (i, 0..states− 1)];
subsys ACSU [i];
init enableacsu, pmuready, enabletbu := F ;
actions P1 : enablepmu ∧ ¬pmuready →

enableacsu := T ;
P2 : ¬enablepmu → enableacsu := F ;

enabletbu := F ;
P3 : acsuready → update; pmuready := T ;
P4 : pmuready → acsuready, pmuready := F ;

enabletbu := T

exec
do P1 []P2 [] P3 [] P4 od||[ ||0 ≤ i ≤ states − 1 : ACSU [i]]
]|

When thePMU is enabled, each ACS-unit is activated by setting theenableacs

variabletrue (P1). Similarly, if thePMU is disabled, the ACS units are disabled

21



by setting theenableacs to false. When the ACS calculation is ready, the state
metric memory is updated(P3). Finally, the trace back unit is enabled(P4).

Since the ACS-units have similar structure, it is modeled asa single subsystem
ACSU . The 64 ACS units are generated from this model by using quantified
composition. The ACS units are indexed by the state number asfollows: the first
ACS unit isACSU(0), and the second one isACSU(1), and so on. The interface
of the add-compare-select unit is:

inputs:
enableacsu : enables ACSU when there is valid data.
bm1 : branch metrics from the BMU (input ’1’).
bm0 : branch metrics from the BMU (input ’0’).
outputs:
acsuready : acknowledgement, ready to accept new data.
pmout : the chosen path metric (smallest), used in calculation at next state.
D : Decision bit, either ’1’ or ’0’, depends on, which branch the smallest metric
is selected (input ’1’ or ’0’).

The formal model of ACSU consists of four actions: actionA performs the
addition operations, actionC compares the path metrics, and outputs the decision
bit, actionS selects the smallest path metric, which is applied in the next calcula-
tion stage, and actionU acknowledges that the ACS calculation is finished. The
ACSU is defined by:

sys ACSU(acsuready : bool, pmout : smem, D : bit)[i, SMM ]
|[
var pmnew1, pmnew0 : smem;

dv, select, acsuready : bool;
proc decbit(pmnew1, pmnew0) : (pmnew1 < pmnew0 → D := 1;

pmnew0 < pmnew1 → D := 0);
proc min(pmnew1, pmnew0) :

(pmnew1 < pmnew0 → pmout := pmnew1;
pmnew0 < pmnew1 → pmout := pmnew0)

init acsuready, select, dv := F ;
actions A : enableacsu → pmnew1, pmnew0 :=

(bm1[i, (i, 0..states− 1)]+
SMM [j, (j, (j, 0..states − 1]),
(bm0[i, (i, 0..states− 1)]+
SMM [j + 32, (j, (j, 0..states − 1]);
dv := T ;

C : dv ∧ ¬acsuready → D := decbit(pmnew1, pmnew0);
select := T ;

S : dv ∧ select → pmout := min(pmnew1, pmnew0);
acsready, select := T, F ;

U : ¬enableacsu → dv, acsuready, select := F ;
exec
do A [] C [] S [] U od
]|

22



The ACS unit consist of two adders, which calculates the sum of the incoming
branch metrics, and the previous path metric from the state metric memory SMM
(A). The comparison operation finds the most likely path that hasthe minimum
metric. Thus, the decision bitD is calculated by the actionC using the procedure
decbit. The decision bit indicates the branch where the smallest metric came from
(local winner). That is whether the local winner came from the input′1′ or input
′0′ branch. The selector actionS chooses the smallest path metric, which is then
stored to the SMM. Notice that, this smallest metric at timet is used in the path
metric calculation at timet + 1. By assuming that the total transition in trellis is
M , and the number of states isN , a maximum of(M−N) comparison operations
are required, and2N sums are required to initialize the metric for each state. The
actionU disables the operation of the ACS units if there is no data to process.

5.2.3 Trace Back Unit (TBU)

The trace back unit stores the survivor paths for each state,and performs the trace-
back operation. Moreover, it outputs the decoded bit. The data structure of the
trace back memory is illustrated in Table 5.

Table 5: Traceback unit data structure

State Path Metrics Decision bit
0 PM0 D0
1 PM1 D1
2 PM2 D2
— — —
62 PM62 D62
63 PM63 D63

At time t, the path metric, which is the local winner, and the corresponding
decision bit is stored into the path metrics and decision bitcategory, respectively.
Then, the same procedure is repeated at timet + 1. The state numbers are used
as pointers, that is0 corresponds to stateS0, 1 corresponds toS1, and so on.
For simplicity, the state numbers are illustrated as integers. However, in actual
implementation, the length of the pointers is (log2(64) = 6) 6 bits. The minimum
value for the length of the survivor path isL = 5(log2(N)), where theN is the
number of states [5]. In other words, the number of stages to store in the memory
before the trace back operation can begin isL+1. In this case, we define that, the
number of stages that has to be stored before the trace back is31, and the overall
lengthL for the trace back memory is62. Thus, we can carry out the traceback
from the memory location 30 down to 0, and at the same time write new data to

23



memory locations 61 down to 31. The simplified block diagram of the trace back
unit TBU is shown in Figure 18.

D(i)

out
bit 

TBUenable

(i)outPM 

TBUTBU control

Figure 18: Trace Back Unit

The input / output signals of theTBU are:

Inputs:
enabletbu: enables the trace back unit.
PMUout(i): The local winners (smallest metric) from each ACSU.
D(i): Decision bits from each ACSU.
Output:
bitout: decoded bit out

The trace back unit is defined by:

sys TBU (decbit : bit)
|[
type tracemem : [0..states − 3][0..2Dmax + 1];

decisionmem : [0..states − 3];
var trstart, inc, traceback : bool;

count : integer

proc gmin(trmem[k(k, 0..states− 1), trindex]) :
PMmin := trmem[0, trindex];

proc trmem[k(k, 0..states − 1), trindex] ≤ PMmin →
PMmin := trmem[k, trindex]; cstate := PMmin(k);

subsys TBUcontrol;
init trmem := tracemem; decmem := decisionmem;

trstart := F

count := 0, inc := F ;
actions T 1 : enableTBU →

trmem[i, count, (i, 0..states− 1)] :=
PMout[i, (i, 0..states− 1)];
decmem[i, count, (i, 0..states− 1)] :=
D[i, (i, 0..states− 1)]; inc := T ;

T 2 : traceback →
gmin(trmem[k, trindex, (k, 0..states− 1)]);
trstart := T ;

T 3 : traceback ∧ trstart →
decbit := decmem[cstate, trindex];
bitout := decbit; trindex := trindex − 1; trstart := F

exec
do T 1 [] T 2 [] T 3 od|| TBUcontrol

]|

24



TheTBUcontrol is a subsystem that controls the memory operations.

sys TBUcontrol

|[
actions C1 : enabletbu ∧ inc → count := count + 1; inc := F ;

C2 : count = L + 1 → trindex, traceback := L + 1, T ;
C3 : count = 2 ∗ (L + 1) →

trindex, traceback := 2 ∗ (L + 1), T ; count := 0;
C4 : trindex := 0 ∨ traceindex := L → traceback := F ;

exec
do C1 [] C2 [] C3 []C4 od
]|

Before the trace back operation is started, the global winner of the stageL+1
has to be determined. That is the smallest metric in given stage is chosen to be the
global winner, and the starting point of the traceback operation. This is carried
out in the proceduregmin.

TheTBU is enabled by thePMU when there is data to be stored. From each
state, theTBU stores the smallest metric (local winner), and the corresponding
decision bit(T1). TheTBUcontrol is enabled to count the number of stages stored
in the memory(C1). When the number of stages reaches the survivor depth, that
is 31 stages, theTBUcontrol enables the trace back operation(C2). The trace
back is carried out by calculating the global winner at stage31, or 62. That is
the smallest metric from the local winners at that stage. This is carried out in the
proceduregmin. The procedure returns the pointer to the global winner, that is the
state numbercstate. Then, the decision bit corresponding the global winner state
is read from the decision memorydecmem, and outputted(T3). This is carried
out as long as thetrindex is either0 or L (C4). In parallel with the trace back
operation the incoming path metrics are written into the memory locations from
32 to 62. Thus, the trace back is carried out alternately with the memory write
operation, and therefore theTBU is enabled as long as thePMU is enabled.

6 Conclusions and Future Work

In this paper, we presented a formal specification of asynchronous Viterbi decoder.
The decoder is 64-state1/2- rate Viterbi decoder, and the generator polynomials
used are the industrial standards(1718, 1338). The asynchronous implementation
is chosen due to its potential for low-power, and low-noise behavior.

The formal model presented will be used as a case study for theformal power
consumption model. This model will be included into the formal design flow
in the near future. The purpose of this model is to be able analyze the power
consumption of a digital system starting from the formal model presented here
down to the gate-level implementation. Moreover, since thefirst power estimation
is done at early design phase (formal description), we are able to compare the

25



power consumption, for instance between different design solutions, and choose
the most optimal one. The asynchronous Viterbi decoder willbe used as a case
study to compare and analyze the formal specification of the power consumption
with the existing early power estimation methods.

References

[1] R. J. R. Back and K. Sere.From Modular Systems to Action Systems, in Proc.
of Formal Methods Europe’ 94, Spain, October 1994. Lecture notes on com-
puter science, Springer-Verlag.

[2] R. J. Back and J. von Wrigth.Refinement Calculus: A Systematic Introduc-
tion, Springer-Verlag, April 1998.

[3] E. W. Dijkstra. A Discipline of Programming, Prentice-Hall International,
1976.

[4] G. D. Forney Jr.Maximum-Likelihood Sequence Detection in the Presence
of Intersymbol Interference, IEEE Trans. on Information Theory, IT-18(3):
363-378, May 1972.

[5] H. -L. Lou. Implementing the Viterbi Algorithm, IEEE Signal Processing
Magazine, September 1995.

[6] J. G. Proakis.Digital Communications, Third Edition, McGraw-Hill 1995.

[7] P. A. Riocreux, L. E. M. Brackenburry, M. Cumpstey, and S.B. Furber.A
Low-Power Self-Timed Viterbi Decoder, in Proc. 7th International Symposium
on Asynchronous Circuits and Systems, March 11-14, 2001, Salt Lake City,
Utah, pp. 15-24.

[8] M. S. Ryan, and G. R. Nudd.The Viterbi Algorithm, Warwick Research Re-
port 238, University of Warwick, England, February 1993.

[9] C. B. Shung, P. H. Siegel, G. Ungerboeck, and H. K. Thapar.VLSI Architec-
tures for Metric Normalization in the Viterbi Algorithm, in Proc. International
Conference on Communications, Atlanta, Georgia, April 1990.

[10] J. Tuominen, T. Säntti and J. Plosila.Towards a Formal Power Estimation
Framework, Turku Center for Computer Science Technical Report Series,
Number 672, March 2005, ISBN 952-12-1517-8.

[11] J. Tuominen and J. Plosila.Formal Energy Estimation Framework, Turku
Center for Computer Science Technical Report Series, Number 696, June
2005, ISBN 952-12-1578-X.

26



[12] J. Tuominen, P. Liljeberg, and J. Isoaho.Self-Timed Approach for Reducing
On-Chip Switching Noise, in Proc. IFIP SoC-VLSI 2003, December 2003,
Darmstadt, Germany.

[13] A. J. Viterbi.Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm, IEEE Transactions on Information Theory,
April 1967; IT(2): pp. 260-267.

[14] A. J. Viterbi. Convolutional Codes and Their Performance in Communica-
tion Systems, IEEE Transactions on Communications Technology, October
1971; COM - 19(5): pp. 751-772.

27



Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 952-12-1602-6
ISSN 1239-1891


