Johanna Tuominen | Juha Plosila

Asynchronous Viterbi Decoder!in
Action Systems

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 710, September 2005

<7
7
¥ rucs

Asynchronous Viterbi Decoder In
Action Systems

Johanna Tuominen _
Turku Center for Computer Science

Lemminkaisenkatu 14 A, 20520 Turku, Finland
joeltu@itu. fi

Juha Plosila .
University of Turku, Dept. of Information Technology

Lemminkaisenkatu 14 A, 20520 Turku, Finland
jupl os@it u. fi

TUCS Technical Report
No 710, September 2005

Abstract

Conventionally, the correctness of functional and norefiomal properties of
hardware components is ensured during design process yasiom. Moreover,
different description languages are needed during deseop phases. Thus, by
adopting the Action Systems, we are able to use the same liermiom speci-
fication down to implementation. Recently, we have beenatipy possibilities
to formally model power consumption. That is the purpos® idévelop formal
power estimation flow, which can be used to monitor the powasamption from
abstract level down to the gate level implementation. Is gaper, we present a
formal model for asynchronous Viterbi decoder, which wilused as a case study
for the power estimation flow in the future.

Keywords: Viterbi, formalism, asynchronous

TUCS Laboratory
Communication Systems

1 Introduction

Formal methods provides an environment to design, anabze verify digital
hardware with the benefits of rigorous mathematical basishik study, the Ac-
tion Systems formalism is applied [1]. It is a framework faesification and
correctness preserving development of concurrent systemasit is based on an
extended version of Dijkstra’s language of guarded commm§Bjd Development
of the action system is done in a stepwise manner withindliérement calculus
[2]. The specification of a hardware system is transforméal &m implementa-
tion using correctness preserving transformations. Irveotional Action Sys-
tems, only the logical correctness of the system is verifddle non-functional
properties, like time, power, and area are not validated.

Convolutional encoding and Viterbi decoding are widelydisemodern com-
munication systems, such as digital satellite TV, and digutobile radios [6]. To
satisfy the demands caused by the developments of the mtelecommunica-
tion, high-speed, low-power, and low-cost Viterbi decadare required. In this
paper, we present a formal model of an asynchronous Vitednder. The asyn-
chronous approach is chosen for the implementation beczutepotential for
low-power, and low-noise behavior [12].

Currently, we are exploiting the possibilities to formattyodel power con-
sumption [10] [11]. The purpose is to develop a formal powstmeation flow
from initial specification down to implementation. To eséita the power con-
sumption, there is a trade-off between the accuracy andlisiaztion level of
detail which the system is analyzed. The more detailed teerg#ion, the more
accurate the simulation will be. But on the other hand, theenicme consuming
it will be. Moreover, the designer wants to make decisionsaly as possible in
the design flow to avoid design backtracking. Thus, the pggp®to use the asyn-
chronous Viterbi decoder as a case study for the power esbimféow. That is, to
estimate the power consumption of the decoder at differemtldpment phases.
For instance, starting from the formal description preseiere, and finally from
the gate-level description.

2 Action Systems

An action A is defined by (for example):

A = abort (abortion, non — termination)
| skip (empty statement)
| A1] ... | A (non — deterministic choice)
| Ay; ... A, (sequential composition)
|z:=e ((multiple) assignement)
lg — A (guarded command)

where 4;, i = 0,...,n, are actionsy is a variable or a list of variables;,
is a value(s) of the variable(s);is an expression or a list of expressions; g is a
predicate.

Semantics of actions Action is considered to betomic, which means that
only the initial and final states are observed by the systelnus;Twhen selected
for execution, the action is completed without any intexfere from other actions.
Atomic actions may be represented by simple assignmentg ordse complex
action compositions, such as the atomic sequenge. — atomicity means that
an action outside the composition can execute between tmpaoent actions of
the construct, which is not possible in themic composition structures. The no-
tation differs whether the composition is atomic or not,if@mtance, the sequential
composition is noted by(atomic), and; (non — atomic).

The actions are defined using weakest precondition for pageltransformers
[3]. For instance, the correctness of an actibwith respect to predicated and
@ (precondition and postcondition) is denoted By} A{Q} = P = wp(A, Q).
Thewp(A, Q) is the weakest precondition for the actidnto establish the post-
condition®. Theguard gA of an actionA is defined byyA = —wp(A, false).
An action is enabled when its guard evaluates-t@, otherwise disabled.

2.0.1 Action System

An action systen¥ has a form:

|S[y3 A (g) [par]

type t

const ¢

var v

actions A

subsys S4

init "initialization of the variables g and v”
exec

do ” composition of actions A” od

Il

Three different parts can be identified from the action systkescription:
inter face, declarations, anditeration.

The interface part specifies global variabjethat is, variables that are visible
outside the action system. In other words, global variabtesaccessible by other
action systems. If an action system does not have any intexfariables, it is
a closed action system otherwise it is ampen action system. The declaration
part consists of typét), variable(v), constant(c), and action(A) declarations.
Furthermore, type definitions and initializations are diégd in the declaration
part. Using the items introduced in the interface and datilae parts the operation
of the system is described in the iteration section; indbhe— od loop.

2

The operation of an action system is started by initial@ain which the vari-
ables are set to predefined values. Actions are selecteddouion based on the
composition operators and the enabledness of the actidresoferation is con-
tinued until there are no actions to enable, which templgraborts the system.
Thus, the operation continues if some action enables it.

Quantified constructsAny action-level operatos € [, ; (atomic), ;(non — atomic),
and the system-level operatpcan be quantified using the notation defined as fol-
lows:

: A(i)]=A(L) e ... @ A(n)

o1 < i< n
11 < i< n: AW@=AQ) | ... [Aln)

|1

Composing Action SystemsConsider two hierarchical action systepdiand
B with distinct local variables, local procedures, subsystestances, and actions.
The parallel composition of such systems is denotedllys. It is defined to be
another action system whose global and local identifierscgaures, variables,
subsystem instances, actions) consist of the identifietiseofomponent systems
and whoseexecclause has the formdo A | B od | Sa | Sg. Here A and B
denote the action compositions, afig and.S the subsystem compositions.ih
and B, respectively. The definition of the parallel compositisrused inversely
in system derivation to decompose a system descriptionantomposition of
smaller separate systems or internal subsystems.

3 \Viterbi Algorithm

3.1 Convolutional Coding

The convolutional codes differ from the block codes by thistexice of memory
in the encoding scheme. That is, the convolutional encazteeges low error-rate
transmission by adding redundancy to the input stream signbbus, it produces
more output bits than input bits shifted to its memory. Thevatutional code is
generated by passing the information sequence to be traadrthirough a linear
finite-state shift register [6].

The code rate of the convolutional encoder is defined as thebauof input
bits to output bits. In general, the code rate is definedkas= k/n, and the
encoder is represented (K, k£, n) format, where

n : number of code symbols produced by the encoder
k : number of information bits coming into the encoder
K : constraint length of the code

The constraint length of the encoder is measure of the memvdhyn the
code. The structure of theg(, k£, n) convolutional encoder is shown in Figure 1.

3

| Kk stages |

ko 2 K 1 2 K 1 P K

information|
bits

>< Encoded sequence
to modulator

Figure 1: Convolutional encoder

The (K, k,n) convolutional code can be specified (for instance) by usisefa
of n vectors, one vector for each of themodulo-2 adders [6]. Each vector has
a Kk dimensions and contains the connections of the encodeatartbdulo-2
adder. Al in theith position of the vector indicates that the correspondiages
in the shift register is connected to the modulo-2 adder,ghdenotes that there
is no connection between that stage and the modulo-2 adder.

To be specific, let us consider the binary convolutional eiecavith constraint
lengthK = 3, k = 1,andn = 2, which is shown in Figure 2.

/I

ot >< Encoded

ncode

Input _| output
sequenc

\ / i

Figure 2: K=3, k=1, n=2 convolutional encoder

Initially, the shift register is assumed to be in the allezsetate. Assume that
the first input bitis1’. Then the output sequence of two bit§i8”. Then suppose
that the second input bit i§’, then the output sequence’ig)”. If the third input
bit is '1’, then the output bits ar&0”, and so on. Next, we number the outputs
of the function generators that generate each two bit owpgtiences 1,2 from
top to bottom, and similarly number each function generaidre first function
generator is connected to stadeg, and3, and therefore the generator is

4

gl - [17 17 1]

The second function generator is connected to stagesl2. Hence

g2 - [17 07 1]

The generators for this code are given in octal forrnfias). In conclusion, we
have that, whek = 1, we requiren generators, each of dimensiénto specify
the encoder [6].

The convolutional encoder is a finite state machine, wheyestate is a con-
tent of its memory. The outputs of the encoder are dependtetiteorecent input
bits and on its previous memory contents. Therefore, theatational encoder
can be completely described by the state-transition dagiEhe state transition
diagram for thg3, 1, 2) encoder is shown in Figure 3 [8].

0/00
11 0/11
}/1/00\

e s

0/10

1/01 @ 0/01

1/10
Figure 3: State diagram for rate 1/2, K=3 convolutional code

In the Figure 3, the states are depicted as nodes, and thsgtitvas from one
state to another are indicated as arrows. Thus, dependindnether the current
binary input isl or 0, there are two possible states where the encoder might enter

To describe the transitions between states as a functiamef the convolu-
tional codes can be described as-@lis diagram [6]. The trellis diagram for the
convolutional encoder, shown in Figure 2 is illustrated iiguife 4.

The nodes of the trellis diagram represent the memory cttéthe encoder.
The solid line denotes the output generated by the inpu@’bénd the dotted line
the output generated by the input hit. In the encoding procedure, it is often
assumed that the encodertat 0 is set to initial stat¢.S0). Then at time = 1,
we have two possible staté$9, andS1, depending on whether the input bit @

5

SO @-

T

S1@
S2 @
"0l
‘ X N
s3@ 10 o
=0 t=1 t=2 t=3 t=4

Figure 4: Trellis diagram for rate 1/2, K=3 convolutionabieo

or'l’, respectively. After, the second stage= 2), each node in the trellis has
two incoming paths, and two outgoing paths.

3.2 The Algorithm

The Viterbi algorithm finds the most-likely state transitieequence in a state
diagram, given a sequence of symbols. That s, given a sequéinput symbols
and an initial state, one can derive a sequence of output @gnilased on the
transitions and their input/output relations in a giventérstate diagram. The
finite state diagram is often presentedtasli:s, shown in Figure 4. In other
words Viterbi algorithm finds the sequence of symbols in themtrellis that
is closest in distance to the received sequence of noisy @gmihis sequence
computed is the globahost likely sequence. When theEuclidean distance
is applied as a distance measure, the Viterbi algorithmdstimal maximum-
likelihood detection method, when the sequence of symisot®irupted by the
additive white Gaussian noise (AWGN) [4]. In practice, tHemming distance
is often applied event though the performance of the Vité&dgorithm is sub-
optimal [5], for instance, in terms of noise optimation. Hmwer, regardless of
the distance measure, the procedure to search for the rkelstdequence is the
same. We will use, both the Euclidean and the Hamming distaadllustrate the
Viterbi Algorithm.

Consider the following communication system, shown in Fegat

The convolutional encoder adds redundancy to the inpussigrand the en-
coded outputr symbols are transmitted over a noisy channel. The inputef th
convolutional decoder, that is the input for the Viterbi oeerr is the encoded
symbols contaminated by noise. Then the decoder tries taaxhe original

6

s[n] Convolutional x[n] rn] Viterbi y[n]
Input Encoder Algorithm | output
Sequence Sequence

Figure 5: Encoding / decoding convolutional code.

information from the received sequence and generates ana¢sty. The algo-
rithm that maximizes the conditional probabilify(r|y) is called the maximum
likelihood algorithm [4].

The maximume-likelihood algorithm finds the most likely cosiequence for
the received channel output sequence. Therefore, if thedemoutput sequence
is denoted byt,,,, and the channel output sequence is denoted the probability
of receivingr when the channel input is,, is

Pr(rlz,,) = ﬁ Pr(ry|m.) (1)
=0

The most likely path through the trellis for the channel atitp is the one
that maximizes the function 1 [4, 5]. Thus, the function,whaon Equation 1, is
usually called thenetric, and itis used in comparison between the code sequence
and the received sequence. Notice that, the decoding nretticequires product
implementation, and therefore the metn¢Pr(r|x,,)] is more frequently applied
than the metricPr(r|x,,) in the decoder. Moreover, finding the trellis path with
the largest log-likelihood function corresponds the maxmiikelihood decoding:

In[Pr(r|z,)] = ln[z Pr(rup|Tmmn)] (2)
n/=1
where the components of the summation are accumulated andhedual
branches, and therefore they are denotetibyich metrics.

3.2.1 Hard-decision decoding

In the hard-decision decoding, the path through the triglitietermined using the
Hamming distance measure. Thus, the most optimal pathghrthe trellis is the
path with the minimum Hamming distance. In other words, thetrhing distance
can be defined as a number of bits that are different betweenktberved symbol
at the decoder and the sent symbol from the encoder. Furtieyrthe hard-
decision decoding applies one bit quantization on the vedebits. The channel
noise is assumed to be white, and therefore the channelighadsto be Binary
Memoryless Channel (BMC) in the hard decision decoding.[14]

The decoding is assumed to start from the initial state, ahgdm back into
the all zero state. Assuming that the optimal path covees tdtn branches, and
each of the branches is expected to repreadnits of the encoder output. Then

7

the overall number of bits in the trellis code word, and thargized received
sequence ism. Thus, the Hamming distance between the trellis code wérd
and the quantized received sequenteach of them being of lengthis [8]:

d(T,Y)=) d(Ti,¥:) 1<i<n (3)

3.2.2 Soft-decision decoding

Soft-decision decoding is applied for the maximum likebdodecoding, when
the data is transmitted over the Gaussian channel. On theacpito the hard-
decision decoding, the soft-decision decoding uses rhitltjuantization for the
received bits, and Euclidean distance as a distance meastead of the Ham-
ming distance.

In the soft-decision decoding, the vector output of the clen”’is applied
instead of the quantized received sequepcerurthermore, the binary sequence
¢ is frequently replaced by the antipodal sequeacavith:

Ve

. = for 1<i<m and 1<j<n (4)
—Ve

Thus, the Euclidean distance can be represented in a form:
dQ(?/v ?) = Z d%(?;a ?l) (5)
i=1

3.2.3 Functionality of the algorithm

The maximum likelihood path is characterized with the aithefbranch metric
and apath metric. The algorithm uses a set ptith metrics to describe the
various costs of different path through the trellis. Coesithe example, shown in
Figure 6.

At the beginning of the decoding procegs= 0), the path metric of th&0
is initialized to zero. After the first time step, one of theotliranches starting
from the stateS0 arrive at the stat&0 with a branch metric. Thus, this branch
metric is, for instance, the Hamming distance between tpeeed inpud0 and
the received inpudl. Similarly, we can define the branch metric for the branch
entering to the stat&2. This procedure is repeated at time- 2, and so on. The
path metric value is the sum of the previous path metric and the currearidbr
metric. Notice that, at timé = 1 andt = 2 there are only one path leading to
each state, and therefore the incoming branches areuthévor branches. At
time ¢t = 3, each node in the trellis has two incoming paths and two oirtggo
paths. Thus, the trellis is reached its steady state [6]ekample, at the statg0,

8

Received 01 10 11 11 01 00 01
sequence
00 00 00 00 00 00 00

SO &——=e¢—— =6 ——=06—— 06— 66— >0 ————=8
~11 “11

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

Figure 6: The trellis diagram for the Viterbi decoding exaenp

the arrival at this state is possible from stat®sand.S1. The path entering from
the stateS0 has the path metric value 2f while the other path is entered with the
accumulated metrié. Thus, the path through the stai@ is discarded, and the
path throughS0 survives. Notice that, if one or more paths have the smadkest
metric, the selection of the most likely path will be chosandomly.

Once the survivor path for the whole trellis is identifiede tthecoded output
sequence is extracted by performingrace back operation. The trace back pro-
cess starts from the stat® at¢ = 7 and is executed by going backward in time.
The survivor path traces back into the st&teat timet = 6. By continuing the
same procedure, the optimal path through trellis is detezhi

4 Viterbi Decoding Implementation

The simplified structure of a Viterbi decoder is shown in Fegid, which consists
of three units:

1. Branch Metric Unit (BMU) generates branch metrics, whickasure the
difference between the received symbol, and the symboldhases the
transitions in the trellis.

2. Path Metric Unit (PMU) consists of two parts: The Add-Carg Select
Unit (ACSU) and the State Metric Memory (SMM). To find the suor
path for each state, the branch metric of a given transisadded to the
recent path metric value stored in the state metric memadnys fiew path
metric is then compared with other path metrics, which atererg to that
state. The transition with the minimum path metric is chogeibe the
survivor metric. The path metric of the survivor path of eatdte is updated
and stored back into the state metric memory.

9

3. Trace Back Unit (TBU) stores the survivor paths and penfothe trace
back operation. Outputs the decoded sequence.

Path Metric Unit

Add—Compare—Select

A

Y

Branch Metric Unit
Y
Y
Trace Back Unit

State Metric Memory

Figure 7: A simplified block diagram of the Viterbi decoder

The implementation of the digital decoder requires quaititn, that is, the
received analog signal is converted into digital formattHis design, we apply
the multi-bit quantization, and therefore theclidean distance (soft decision de-
coding). as a distance measure for the branch metrics gemmer&éhus, the branch
metric is generated by calculating the squared distaneedeet each noisy sym-
bol and the expected sequence of symbols in that path. Ifetteswved sequence
of noisy symbols is denoted by = (y1, ¥, ¥s, ..., yn), the branch metric for the
transition from state to statej is:

Bijn= (Yo — Cz',j>2 (6)
where theC; ; is the expected code symbol of the transition from state
state;.

Table 1: Next state table corresponding the butterfly stirean Fig. 8

00| 10
00| 10
01|11
01|11

To achieve higher computational efficiency, the trellisgdgan can be re-
ordered into butterfly structures, as shown in Figure 8. Tigelfly structures
are applicable for a rate df/n convolutional encoders. The reordered trellis is
partitioned into groups of states and state transitionschwhre isolated from
other groups. The next state table of the butterfly in Figyrs 8hown in Table 1,
and the output table is depicted in Table 2. Notice that thensos of the tables
corresponds the input B’ and’1’, respectively.

10

Figure 8: (a) One section of trellis diagram (b) Correspogdiutterfly structure.

Table 2: Output table corresponding the butterfly strucitufeg. 8

00| 11
11| 00
01| 10
10| 01

The butterfly blocks are implemented by using Add-Comparie&-Units
(ACSU). The block diagram of the ACSU is shown in Figure 9.

The two adders calculate the sum between incoming branchcsiand the
previous path metrics.

PM, = PM, + BM, (7)

PMOIPM0+BMO (8)

The comparison operation finds the most likely path that hasminimum
metric:

D = (PM, < PM;) 9)

Furthermore, the selector determines the path with themmim metric:
P M, = min(PM,, PM,) (10)

11

BM1

PM1

|
+-

L |
! < — . IDMoul

A

;
+

Add Compare Select
Figure 9: Block diagram of Add-Compare-Select Unit

By assuming that the total number of transitions in theiged A/, and the
number of states i9/, a maximum of(M — N) comparison operations are re-
quired, and2 N sums are required to initialize the metric for each states flm-
ber of the memory accesses required to store the indexdsd@utvivor paths is
dependent on the way the trace back W#iBU) is implemented. Another real-
time implementation issue for the trace back unit is the ibdgyg for overflows
in the registers that holds the path metrics. This is dueedithite length of the
registers. A conventional approach to prevent the overfloghe registers is to
use normalization. That is, subtracting a constant fronthallpath metrics to be
compared from time to time. This approach requires an amditicomparison,
and subtraction operations to normalize the path metrics [5

To avoid the extra computation required to normalize thé pagtrics is to
design the registers to store the path metrics to be of leggthter thar2 D,
where theD,,... is the maximum possible difference between the path mgg@jcs
By adopting this methodology, we can imagine that due to thigefiprecision
of the register, a path metric is running on a circle in thecklase direction
every time a positive number is added to it. For instancesicien the following
example, shown in Figure 10, where the register length i$s3 bi

Thus, if the distance between the two path metrics to be coedpan the cir-
cle is always less than half of the length of the circumfeeeotcthe circle, then
we know that the metric that is farther along in a clockwigsection has a larger
value. Therefore, to determine the smaller or larger pattricp¢ghe comparison
operation can be described as follows:

12

000

Distance between
two metrics

110 01C

100

Figure 10: Finite precision effect of path metrics

Letm; = (ﬂm, .y myg) andmy = (may,, ..., M) be the two metrics to be
compared, and,, = (d,, ...,dy) = (m; — m3z) using 2's complement arithmetic.
If Z(m1, m3) denotes the logical result of comparing the path metricaindms,
then

L, if my <my
0, otherwise

Z(m—l,m—g):{

andZ (my, mz) = dy,

There are two commonly used techniques for the survivor nmgrdesign:
The register exchange and the trace back techniques. Waduaifit a technique
that is based on the trace back technique, and thereforeathe of the unit is
trace back uni{7’BU). An example of the memory structure used is shown in
Figure 11, where the memory is divided into several blocks The number of
blocks depends on how long one wants to keep the survivoxgther words, the
number is dependent on the survivor path lendthEach block in the memory
corresponds to one stage of a trellis, and stores the supath pointer for each
state. For instance, consider the example shown in Figure 11

The survivor path memory,in this example, contains two tioces in each
block to store the survivor paths for stateand —1. Location0 in each block
stores the survivor path pointer for stdateand the locatior stores the pointer to

13

Survivor paths:
statel @

state—1

Survivor path
memory i

0 1 < 0 1 1 1
1 0 0 0 -1 1

Figure 11: Example: tracing the survivor memory

the state-1. To trace the survivor path from state 1 to the most receetiplock,
we can set the pointer to read from locatioof this block. Since, the content in
location0 has a value of, we decrement the block counter, and read the location
1 from the previous block.

After pointing to the last block of the survivor path memadhg block counter
overflows, and resets to the location Thus, the survivor memory can be illus-
trated as circular block of memory, shown in Figure 12.

Block pointer to store Block pointer to store
the survivor path the survivor path
traceback traceback
Block pointer to trace Block pointer to trace
the survivor path the survivor path
At stage S At stage S+1

Figure 12: Organization of the survivor path memory

If the length of the survivor path i&, there should be at lea§t + 1) blocks
in the survivor path memory. Notice that, the survivor patidates can be im-
plemented in a first-in first-out manner, and therefore thiest block of data is
overwritten continuously in the survivor path memory. Ugthis implementation
method, the survivor path memory requifds+ 1) N locations andogs(N) bits
for each location, wheré/ is the total number of states in the given trellis [5].
Moreover,L. memory indexing operations are required to trace the soingath
memory, andV memory accesses are required to update the survivor pattepoi

14

for all states. For instance, a ratgn convolutional code the minimum value for
Lis5(loga(N)).

5 Formal Specification

5.1 Convolutional encoder

In general, when a binary convolutional code witk= 1 (number of input bits),
and a constraint length K is decoded by means of the Vitegarahm, there are
2K-1 states [6]. Therefore, there aré—! surviving paths at each stage, arfd !
metrics, one for each surviving path. For the formal speatifin, we use (2,1,7)
convolutional code, which is widely used, for example ire§aé communication
systems, and in NASA space programs. The Convolutionalderas illustrated
in the Figure 13.

Input
—

2

>

Figure 13: Encoder for rate R=1/2, and constraint length Eenvolutional code

Thus, we can define that the number of states in the treli$.i3he function
generators for the encoder is defined by:

gl = [17 17 17 17 0707 1]

gQ = [1707 17 17 07 17 1]

In octal form the generators afé71, 133). Equivalently, we can define the
generator polynomials for each generator:

15

G(D)=1®D®D*® D*® D°

Gy(D)=19@D?*¢ D*® D°@ D°

where theD can be seen as a delay operator. For fate 1/2 convolutional
code, the branch metric calculation between the receivele eord (G1, G2),
and the code word associated with the brafh, C2) is defined by:

BM = (G1 - C1)* + (G2 — C2)? (11)

For instance, the code word for the upper branch in $tég€C'1, C2) = 00,
and for the lower branch it isC'1,C2) = 11. These codewords are calculated
with the aid of Matlab, for instance:

>> codeRate = 1/2;
>> constlen = 7;
>> codegen = [171,133];
>> trellis = poly2trellis(constlen, codegen);

generates a trellis for the (2,1,7) convolutional code.réfoge, we are able to
generate the next state table, and the table for output dgrfdrceach branch, as
shown in Tables 3, and 4.

>> trellis.nextStates(1 : 64,:)
>> trellis.outputs

Table 3: Next state table for the proposed Viterbi decoder.

Current state Next state (Input’0’)| Next state ('1")
SO SO S32
S1 SO S32
S2 S1 S33
S3 S1 S33
S62 S31 S63
S63 S31 S63

16

Table 4: Look-up table for the outputs of the proposed Vitddzoder.

Current state Output (Input '0’) | Output ('1’)
SO 00 11
S1 11 00
S2 01 10
S3 10 01
S62 11 00
S63 00 11

5.2 The Viterbi decoder

The formal description of the Viterbi decoder is modeled agaarchical Action
System. Thus, the top level description is fairly simple.cdnsists of control
variables, and three subsystems: branch metric Ualt/U), path metric unit
(PMU), and the trace back unif’BU). The Viterbi decoder is defined by:

sys ViterbiDecodenenablegecoder, €nablepmy, : bool)
I
const states := 64;
depth = 2;
L = 30;
meMgepth, = 2% (L + 1)
Doz = 4;
type bit : bool;
array : bit[0..states — 1][0..Dmas];
bvect : bit[0..1];
subsys BMU, PMU,TBU;
init enablegecoder, enablepm, = F;
actions V1 : enablegecoder — enablepmq, == T
V2 : =enablegecoder — enablepm, = F;
exec
doV1]V2 od| BMU | PMU | TBU

The decoder is enabled when there is valid data from the enctidht is the
variableenablege.oqer 1S S€ttrue. Then the branch metric calculation is enabled
by setting the variablenabley,,, to true (VV'1). On the contrary, when there is no
data to process the BMU is disableld?). For simplicity, most of the constant
variables are defined in the top level description. Moreowerdefine a typéit,
which is of typeboolean. The valuetrue indicates the logic '1’, and the value
false indicates the logic '0’.

17

5.2.1 Branch Metric Unit (BMU)

The branch metric is the squared distance between the egceoisy symbol,,
and the ideal noiseless symbol of that transitigr). That is the branch metric
from statei to state; at stage is:

Bi,j,n = (Yn - Ci,j)2 (12)
Notice that, in this implementation, we apply the.clidean distance to the
branch metrics generation, and multi-bit quantizatiorttierinput bits, (all though

the quantization is not formally described here).
The interface of the BMU consists of the following input/put variables:

inputs:

enableyn,. data valid variable, enables the branch metrics cal@nati
din: data in variable, noisy input symbols from the encoder.
PMUreqqy. 1he path metrics are ready, ready to accept new data.
outputs:

bm0: calculated branch metrics, for the '0’ branch.

bm1: calculated branch metrics, for the "1’ branch.

bm.eqqy: Dranch metric calculation is ready.

enable,,: enables path metric calculation.

The next state table, shown in Table 4, of the trellis for tad /) convolu-
tional encoder is modeled as of typeray, and the BMU receives the table as a
parameterretrics). The first column of the array contains the metric value if
the assumed input bit i®’, and the second one the value of the metric if the as-
sumed input bit ig1’. The incoming symbolsi(n) from the encoder are defined
as of type bit vectobvect. The output variable&n1, andbm0 are modeled as of
typearray. Notice that, thém0 contains the metrics from tH@' branch for each
state. The external interface of the BMU is illustrated igl¥e 14.

enabl%mu bm1l

—— L I

BMU pm uready

din enabI(Smu

bmread)é

Figure 14: Branch Metric Unit

The BMU is defined by:

18

sys BMU (din : bvect, bm0, bm1 : array, enablepm, : bool)[metrics]

Il

var bmyeady : bool;
proc disteqic(metrics[i, j], din) :
(bmO[l, (1,0..states — 1] :=
(din — metrics|0,1, (i,0..states — 1)])?%;
bml1[l, (1,0..states — 1] :=
(din — metrics[1, j, (j,0..states — 1)])?);
init - enablepmu, bMready := F
actions B1 : enablepmy A bMyeqdy — disteaic;
bMiready, enablepmy =T
B2: PMuready — bmready = F7
B3 : —menableymy, — enablepmy = F
exec
do B1| B2| B3 od

I

The branch metric calculation is enabled when ¢heble,,,,, is set totrue,
and thebm,...q4, variable is sett¢false. Thus, this indicates that there is valid data
from the encoder, and that the BMU is idle. The branch metatsulation is car-
ried out in the proceduréist ..., and thebm, .4, is set totrue (B1). Moreover,
the PMU is enabled by setting theable,,,, variable totrue. After the PMU is
ready to accept new data it sets fheu,..q, variable totrue. Then theébm,.cqq, IS
set to false, which indicates that the BMU is ready to accept new data filoen
encoder 32). The action B3) disables the PMU when there is no data to process.

5.2.2 Path Metric Unit (PMU)

The path metric unit (PMU) is the core of the computation i dkecoder. Thus,
it adds the current branch metric to the previous path maetampares the two
metrics, and selects the smaller one as a next weight to a nduerefore, this
computation unit is denoted by Add-Compare-Select Unit$AL, and it corre-
sponds to a node of the trellis.

The transition tables for the 64-state trellis are shownahlds 3, and 4. For
instance, if the current state $#) and the symbaolD0’ corresponding the inpud’
is received , The decoder will remain in stet@ and produces decoded output
'0’. In other words, the whole decoding process is performel aid of prede-
termined reference values of each state and their inteemd®nAs mentioned in
previous section, the butterfly unit obeys the similar fiorality. Therefore, we
can represent the states of butterfly block, as shown in Eitjby where the solid
line represents the transition if the input bit'@, and dotted line the transition
that correspond the input Bit'. The relationships, shown in Figure 15, are valid
forevery;,0 <j < 31.

The proposed decoder consists of 64 states, which are bledarsing 32 but-
terfly blocks, shown in Figure 16. Notice that, each buttectiyresponds two
states in trellis.

19

1

Jtl @7 @®j+32

Current State Next Stai
Figure 15: State relationship for the path metrics compartat

SO SC
S1 ButterflyO 532
S2 S1
S3 Butterflyl 533

°

°

°
S62 S31
S63 Butterfly 32 S63

Figure 16: The butterfly blocks for the path metric calcaati

The PMU consist of the state metric mematy/ M, control logic, and 64
Add-Compare-Select UnitsdC'SU). The SMM is modeled as of typenem,
which is an array. It stores the local winner for each stata@ckvis used in the
path metric calculation during next calculation cycle. ™iee of each cell is
defined by2D,,,... + 1, where theD,,... is the maximum possible difference in the
path metrics. For instance, by assuming that the lengtheoetith path metric

20

is four, then the size of the each cell in the given vectoralde will be9 bits.
Thus, by adopting this approach the extra calculation reié¢he normalization
operation is avoided [5].

The simplified block diagram of the PMU is shown in Figure 1fheTntercon-
nects between the ACS-units and SMM illustrates the reaalthwriting events
between these two sub blocks.

PMUready
ACSO0
BM1(i) PM(j)
ACSlW enablepgy
e
PM(j+32)
enablep,MU ACS2 SMM
: D()
* PM())
BMO(i) ACS62 >
PM(j+32) PMout(i)
ACS63
BM ready

Figure 17: Path Metric Unit

The PMU is defined by:

sys PMU (enablepmuy, pmittready, enablesy,)
I
type smem : bit[0, ..., states — 1][0, ..., 2Dpaz + 1];
var SMM := smem;
enablegcsy, := bool,
proc update(SMM) : SMM|i, (i,0..states — 1)] :=
PMoutlt, (i,0..states — 1)];
subsys ACSUJi];
init enablegesy, PMUready, enablesyy, == F;
actions P1 : enablepmu A "pMiUready —
enablegcsy =T
P2 : —enablepm, — enablegesy 1= F
enablesy, := F;
P3: acsuyeqdy — update; pmiyeqdqy = T
P4 PMUready — ACSUready, PN Uready “— F7
enablesy, =T
exec
doP1|P2| P3| P4od[]0<i<states—1:ACSUJi]]

I

When theP MU is enabled, each ACS-unitis activated by setting-théle,,.,
variabletrue (P1). Similarly, if the PMU is disabled, the ACS units are disabled

21

by setting theenable,., to false. When the ACS calculation is ready, the state
metric memory is updated3). Finally, the trace back unit is enablég4).

Since the ACS-units have similar structure, it is modelea siagle subsystem
ACSU. The 64 ACS units are generated from this model by using dfieht
composition. The ACS units are indexed by the state numbfeilasys: the first
ACS unitisACSU(0), and the second one &C'SU(1), and so on. The interface
of the add-compare-select unit is:

inputs:

enable,.., : €nables ACSU when there is valid data.

bm, : branch metrics from the BMU (input '1’).

bm, : branch metrics from the BMU (input '0’).

outputs:

acsureqdy - @aCknowledgement, ready to accept new data.

pmoy: - the chosen path metric (smallest), used in calculatiomxt state.

D : Decision bit, either "1’ or '0’, depends on, which brancle ttmallest metric
is selected (input 1’ or ’0’).

The formal model of ACSU consists of four actions: actidrperforms the
addition operations, actiafi compares the path metrics, and outputs the decision
bit, actionS selects the smallest path metric, which is applied in the c&lxula-
tion stage, and actioti acknowledges that the ACS calculation is finished. The
ACSU is defined by:

Sys ACSU(acsureqdy : bool, pmoys : smem, D : bit)[i, SM M]
I
var pmapewt; PMnewo : SMEM,;
dv, select, acsuyeqdy : bool;
proc decbit (pmnewlapmnewO) : (pmnewl < PMpewo — D= 1;
PMpewo < PMpewl — D := 0),
proc min(pmuewl, PMnewo)
(pmnewl < PMpewd — PMout ‘= PMpewl;
PMpewo < PMpewl — PMout 1= pmnewO)
Nt acstreqdy, select, dv := F;
actions A : enablegesy, — PMpewls PMnewo =
(bm1[i, (4,0..states — 1)]+
SMM]j, (4, (4,0..states — 1]),
(bm0l[i, (4, 0..states — 1)]4+
SMMI[j+ 32,(j, (J,0..states — 1));
dv:=T;
C:dvA ACSUready — D= decbit (pmnewlvpmnew());
select .= T,
S dv A select — pMioyt := MAN(DMinewl, PMnewo);
ACSready, select := T, I,
U : menableqgesy — dv, acstuyeqdy, select := F;
exec
doA|C]S|Uod
Il

22

The ACS unit consist of two adders, which calculates the simeancoming
branch metrics, and the previous path metric from the stateiermemory SMM
(A). The comparison operation finds the most likely path thatthasninimum
metric. Thus, the decision bi? is calculated by the actiofi using the procedure
decy;;. The decision bit indicates the branch where the smallesicitame from
(local winner). That is whether the local winner came from itput’1’ or input
'0’ branch. The selector actighichooses the smallest path metric, which is then
stored to the SMM. Notice that, this smallest metric at time used in the path
metric calculation at timeé + 1. By assuming that the total transition in trellis is
M, and the number of statesi§ a maximum of M/ — N') comparison operations
are required, anélN sums are required to initialize the metric for each state Th
actionU disables the operation of the ACS units if there is no datadogss.

5.2.3 Trace Back Unit (TBU)

The trace back unit stores the survivor paths for each stateperforms the trace-
back operation. Moreover, it outputs the decoded bit. Thia gaucture of the
trace back memory is illustrated in Table 5.

Table 5: Traceback unit data structure

State| Path Metrics| Decision bit
0 PMO DO
1 PM1 D1

2 PM2 D2

62 PM62 D62

63 PM63 D63

At time ¢, the path metric, which is the local winner, and the corresiog
decision bit is stored into the path metrics and decisiorédtiegory, respectively.
Then, the same procedure is repeated at tinpel. The state numbers are used
as pointers, that i® corresponds to stat€0, 1 corresponds t&'1, and so on.
For simplicity, the state numbers are illustrated as imggélowever, in actual
implementation, the length of the pointersiisg (64) = 6) 6 bits. The minimum
value for the length of the survivor path is= 5(log2(N)), where theN is the
number of states [5]. In other words, the number of stagette g1 the memory
before the trace back operation can begih is 1. In this case, we define that, the
number of stages that has to be stored before the trace batkaad the overall
length L for the trace back memory &. Thus, we can carry out the traceback
from the memory location 30 down to 0, and at the same timeaweiv data to

23

memory locations 61 down to 31. The simplified block diagrdrthe trace back
unit 7’BU is shown in Figure 18.

PM,, ()
enabl - > [
enabley TBU control | TBU S e
D() ~< -

Figure 18: Trace Back Unit

I
|
=

/

The input / output signals of tHEBU are:

Inputs:

enablegy,,: enables the trace back unit.

PMU,,(i): The local winners (smallest metric) from each ACSU.
D(i): Decision bits from each ACSU.

Output:

bit,,:. decoded bit out

The trace back unit is defined by:

sys TBU (decbit : bit)
Il
type tracemem : [0..states — 3][0..2D 40 + 1];
decisionmem : [0..states — 3];
var trsiart, inc, traceback : bool;
count : integer
proc gmin(trmemlk(k,0..states — 1), trindes]) :
PMpin, := trmem|0, trindes;
proc trmeml|k(k,0..states — 1), trindes] < PMpin —
PMpin := trmem[k, trindes|; cstate := P Min (k);
subsys T'BU ontrol;
init trmem := tracemem; decmem = decisionmem;
trstart == F
count := 0,inc := F}
actions T'1 : enablergpy —
trmemli, count, (i,0..states — 1)] :=
PMousl, (i,0..states — 1)];
decmemli, count, (i,0..states — 1)] :=
DJi, (i,0..states — 1)];inc := T;
T2 : traceback —
gmin(trmem[k, trindes, (k, 0..states — 1)]);
trstart := T7
T3 : traceback N trsigrt —
decy;t := decrem|cstate, trindes|;
bitous 1= derit; ITindex = tindex — 1;tTstart = F
exec
doT1]T2] T3 od| TBU.ontror

Il
24

TheT BU, .oniror 1S @ SUbsystem that controls the memory operations.

Sys TBU(:ontrol
I

actions C1 : enablegy, N inc — count := count + 1;inc := F;
C2:count = L+ 1 — tripdes, traceback :== L+ 1, T
C3:count =2x(L+1)—

tTindes, traceback := 2 (L + 1), T; count := 0;
C4 : tringes := 0V traceipges := L — traceback := F,
exec

doC1|C2]C3]C4od

|

Before the trace back operation is started, the global wiahthe stagd. + 1
has to be determined. That is the smallest metric in givagessachosen to be the
global winner, and the starting point of the traceback dpmna This is carried
out in the proceduremin.

TheT BU is enabled by thé’ MU when there is data to be stored. From each
state, thel'BU stores the smallest metric (local winner), and the corneding
decision bit(7'1). TheT BU, .nro IS €nabled to count the number of stages stored
in the memory(C'1). When the number of stages reaches the survivor depth, that
is 31 stages, th&BU,,..ro, €nables the trace back operati@ri2). The trace
back is carried out by calculating the global winner at stageor 62. That is
the smallest metric from the local winners at that stages T carried out in the
procedureymin. The procedure returns the pointer to the global winnet,ititae
state numbetstate. Then, the decision bit corresponding the global winndesta
is read from the decision memody¢cmem, and outputted7'3). This is carried
out as long as thér;,... is either0 or L (C4). In parallel with the trace back
operation the incoming path metrics are written into the mgntocations from
32 to 62. Thus, the trace back is carried out alternately with the orgnwrite
operation, and therefore teBU is enabled as long as theM/ U is enabled.

6 Conclusions and Future Work

In this paper, we presented a formal specification of asymaus Viterbi decoder.
The decoder is 64-state'2- rate Viterbi decoder, and the generator polynomials
used are the industrial standafd31s, 133g). The asynchronous implementation
is chosen due to its potential for low-power, and low-noigkavior.

The formal model presented will be used as a case study fdothel power
consumption model. This model will be included into the fatrdesign flow
in the near future. The purpose of this model is to be ableyanahe power
consumption of a digital system starting from the formal elgoresented here
down to the gate-level implementation. Moreover, sincditepower estimation
is done at early design phase (formal description), we ale tabcompare the

25

power consumption, for instance between different desijutions, and choose
the most optimal one. The asynchronous Viterbi decoderheilused as a case
study to compare and analyze the formal specification of dweep consumption
with the existing early power estimation methods.

References

[1] R.J. R. Back and K. Ser&rom Modular Systems to Action SystemsProc.
of Formal Methods Europe’ 94, Spain, October 1994. Lectatesion com-
puter science, Springer-Verlag.

[2] R. J. Back and J. von WrigtiRefinement Calculus: A Systematic Introduc-
tion, Springer-Verlag, April 1998.

[3] E. W. Dijkstra. A Discipline of ProgrammingPrentice-Hall International,
1976.

[4] G. D. Forney JrMaximum-Likelihood Sequence Detection in the Presence
of Intersymbol InterferengdEEE Trans. on Information Theory, IT-18(3):
363-378, May 1972.

[5] H. -L. Lou. Implementing the Viterbi AlgorithmEEE Signal Processing
Magazine, September 1995.

[6] J. G. ProakisDigital CommunicationsThird Edition, McGraw-Hill 1995.

[7] P. A. Riocreux, L. E. M. Brackenburry, M. Cumpstey, andBs.Furber.A
Low-Power Self-Timed Viterbi Decodén Proc. 7th International Symposium
on Asynchronous Circuits and Systems, March 11-14, 2001 L 8ke City,
Utah, pp. 15-24.

[8] M. S. Ryan, and G. R. Nudd'he Viterbi Algorithm Warwick Research Re-
port 238, University of Warwick, England, February 1993.

[9] C. B. Shung, P. H. Siegel, G. Ungerboeck, and H. K. Thagha&I Architec-
tures for Metric Normalization in the Viterbi Algorithrim Proc. International
Conference on Communications, Atlanta, Georgia, Aprild.99

[10] J. Tuominen, T. Santti and J. Plosileowards a Formal Power Estimation
Framework Turku Center for Computer Science Technical Report Series
Number 672, March 2005, ISBN 952-12-1517-8.

[11] J. Tuominen and J. Plosil&rmal Energy Estimation FramewarRurku
Center for Computer Science Technical Report Series, Nurd®@é, June
2005, ISBN 952-12-1578-X.

26

[12] J. Tuominen, P. Liljeberg, and J. Isoal8elf-Timed Approach for Reducing
On-Chip Switching Noisen Proc. IFIP SoC-VLSI 2003, December 2003,
Darmstadt, Germany.

[13] A. J. Viterbi.Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm EEE Transactions on Information Theory,
April 1967; 1T(2): pp. 260-267.

[14] A. J. Viterbi. Convolutional Codes and Their Performance in Communica-
tion SystemslEEE Transactions on Communications Technology, October
1971; COM - 19(5): pp. 751-772.

27

TURKU

CENTRE for

COMPUTER

SCIENCE

Lemminkaisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

\\ ?A ,/ University of Turku
g é e Department of Information Technology
[— 4
Z N e Department of Mathematics
1y

O

Abo Akademi University
e Department of Computer Science
e Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
e Institute of Information Systems Sciences

ISBN 952-12-1602-6
ISSN 1239-1891

