
Jussi Auvinen | Rasmus Back | Jeanette Heidenberg | Piia
Hirkman | Luka Milovanov

Improving the Engineering Process Area
at Ericsson with Agile Practices. A Case
Study

TUCS Technical Report
No 716, October 2005

Improving the Engineering Process Area
at Ericsson with Agile Practices. A Case
Study

Jussi Auvinen
Oy L M Ericsson Ab, Telecom R&D,
jussi.auvinen@ericsson.com

Rasmus Back
Oy L M Ericsson Ab, Telecom R&D,
rasmus.back@ericsson.com

Jeanette Heidenberg
Oy L M Ericsson Ab, Telecom R&D,
jeanette.heidenberg@ericsson.com

Piia Hirkman
Åbo Akademi University, Institute for Advanced Management Systems Research,
piia.hirkman@abo.fi

Luka Milovanov
Åbo Akademi University, Department of Computer Science,
lmilovan@abo.fi

TUCS Technical Report

No 716, October 2005

Abstract

Besides the promise of rapid and efficient software development, agile methods
are well-appreciated for boosting communication and motivation of development
teams. However, they are not practical ”as such” in big organizations, especially
because of their well-established, rigid processes. In this paper, we present a case
study where a few agile practices were injected into the software process of a large
organization in order to pilot pair programming and improve the motivation and
competence build-up. The selected agile practices were the planning game, pair
programming, collective code ownership and on-site customer. We show how we
adjust these practices in order to integrate them into the existing software process
of the company in the context of a real software project.

Keywords: Motivation, Agile Methods, Software Engineering Experimentation,
Software Process Improvement, Pair Programming, Competence Build-up.

TUCS Laboratory
Data Mining Laboratory, Software Construction

1 Introduction

Agile methods hold the promise of rapid and efficient software development. Re-
ports from industry [15, 16, 26, 29], research [4, 28, 30] and educational [12, 22,
23] settings describe positive experiences of agile practices. While agile software
development responds to the challenge of change, people is often stated to be one
of its main focal points [13]. Also, issues related to individual agile practices,
such as knowledge building [8], have been found alluring.

However, agile approaches also have their limitations and recommended ap-
plication areas, as software development methods usually do. One of these issues
is that many agile methods are best suited for small and medium projects [7]. For
example, Extreme Programming does not easily scale for large projects [5]: all of
the developers simply cannot work together in one big room.

Regardless of project size, the interest towards agile approaches rises to a great
extent from the same needs, but the actual implementation is different. It requires
much more tailoring in large companies than in smaller ones [21]. The challenge
lies in fitting agile methods in existing processes where software development is
only a small part of the product development process. The question is whether
corporations with well established and rigid processes can use just a few agile
methods and still see significant benefits. Beck’s discussion of the 80/20 rule
would suggest not, as implementing all of the principles and practices creates
synergy benefits [5], but experiences in practice have tried to prove otherwise [21,
31]. This paper presents an account of how agile methods were assessed in a case
study for a large organization.

The pilot project was conducted at Ericsson, the largest supplier of mobile
systems in the world. Ericsson’s customers include the world’s 10 largest mo-
bile operators and some 40% of all mobile calls are made through its systems.
This international telecommunications company has been active worldwide since
1876 and is currently present in more than 140 countries. The pilot project was
conducted at a design department at Ericsson Finland.

This paper proceeds as follows: Section 2 presents the background and drivers
for the pilot. Section 3 states the goals for the pilot and describes the means to
achieve these goals. In Section 4 we describe the agile practices selected for and
implemented during the pilot, while in Section 5 we present the results of the pilot
in the context of the goals stated in Section 3. We discuss open issues in Section 6
and present our conclusions in Section 7.

2 Background

In early spring 2004, the design department in question arranged a workshop
where different improvement areas for the software design process were identi-
fied. This workshop was a part of the continuous Software Process Improvement

1

(SPI) [35] activity performed at the company. One of the identified areas was the
motivation of the employees, and an SPI team was assigned to come up with in-
novative improvement proposals for this area. The results of a survey conducted
within the company indicated that job satisfaction could be enhanced by changing
the way the work was assigned, arranged and carried out. The organization would
benefit from increasing the employees’ motivation by promoting shared responsi-
bilities among the designers, and increasing their competence in different areas of
the large software systems they are working with.

An investigation of potentially suitable methods was conducted. The SPI team
found that pair programming, an agile software development practice, could pro-
mote learning and shared responsibility, and hence increase motivation. The SPI
team also noted that the chosen methods would need to be easy to implement
within the existing process and easy to learn. Furthermore, such methods should
be flexible enough in order to be changed and adapted to the standard process of
the company to keep its integrity and strict deadlines. The SPI team considered
an agile approach to be well-suited for the purpose.

The SPI team presented its ideas and results to the management in the summer
of 2004. Based on this proposal, the management decided to pilot pair program-
ming together with a number of other agile practices at the design department. The
pilot was to be done in a real, live project so that the experiences from the pilot
would be directly applicable in the organization. Since agile practices were new
to the department in question, the management team decided to cooperate with the
Department of Computer Science at Åbo Akademi University where agile prac-
tices had been tried out and developed further in the Gaudí Software Factory for
the last four years [4].

3 Goals and Settings

The pilot started in January 2005 with planning and start-up activities and the
actual implementation was done from February to mid-April. The following sec-
tions describe the goals of the pilot, and the implementation settings, such as the
team composition.

3.1 Goals

The pilot set out to investigate the possibility of using pair programming and an
assortment of other agile practices in the analysis, design and early testing of
the project. More specifically, the question was whether it would be possible
to introduce pair programming into the standard way of working of a designer,
and what changes should be made to the pair programming recommendations for
them to suit the surrounding environment, including premises, IT infrastructure
and project process.

2

The second goal, competence build-up, was set during the pilot preparation.
When a new designer comes to work in a design team, he or she has at least
basic skills in methods and tools, but lacks the knowledge about the specific parts
of the system the team is working with. The newcomer is assigned a mentor
and is assumed to be up to 70% less productive than a designer familiar with the
subsystem. In this situation, the mentor’s productivity is also assumed to drop by
up to 20%. At the beginning of the pilot it was speculated that the mentoring of a
newcomer could be effectively substituted with pair programming.

One of the most important goals of the pilot was to study the impact of pair
work on the motivation of the designers. But while piloting pair programming as
a means to improve the motivation of the designers and build up their competence,
we wanted to keep up the efficiency of the existing way of working. Even though
boosting the employee’s motivation was the primary goal, the deadlines and the
quality could not be sacrificed for increased motivation.

3.2 Project Scope and Selected Practices

The pilot was implemented in only two subsystems of a product called the Eric-
sson Media Gateway for Mobile Networks (M-MGw) [2]. The whole M-MGw
application system consists of eight subsystems. The application runs on the CPP
(Connectivity Packet Platform), Ericsson’s 3G platform. The Media Gateway it-
self is a part of Ericssons’ Mobile Core Network, a much larger system. The Me-
dia Gateway has an interface to several of the other nodes on the Core Network.
Because of the hierarchical structure of the system, the testing of the M-MGw
application is performed on many levels: from unit and subsystem tests up to call
cases covering the whole network and interoperability tests with other telephony
networks. The multitude of required test phases puts strict constraints on the de-
livery process. As a consequence, it is very difficult to have a truly agile process
when developing the system. Consequently, a set of agile practices was selected
for the pilot instead of trying to implement a completely agile process.

Pair programming was the first selected practice. It is supposed to be a “fun”
way of doing implementation [5] and could therefore be expected to improve mo-
tivation. Furthermore, it offers an efficient way of ensuring quality in an early
phase, by having an extra pair of eyes checking the code as it is being written. In
order for pair programming to be easily introduced in the company and to be ef-
ficient, a few supportive agile practices were considered necessary. The practices
chosen to support pair programming were collective code ownership, the plan-
ning game and the on-site customer. These practices are presented and discussed
in more detail in Section 4.

3

3.3 The Pilot Team

The design department where the pilot was conducted is one of the departments
involved in creating the M-MGw product. As seen in Figure 1, a M-MGw de-
sign project consists of three main phases that involve people working at different
departments. The system department does the systemization, which includes re-
quirements handling and overall system design. The design department handles
the design of the actual product, which includes implementation specific design,
coding as well as unit and subsystem level testing. The test department handles
the rest of the testing.

Systemization Design Testing� �

� �

Figure 1: The main phases of a M-MGw project

There are two main roles in the design department, the designer and the sub-
system tester. The designer mainly does design, implementation and unit testing,
while the subsystem tester is responsible for testing on the subsystem level. The
pilot was organized in such a way that only four designers involved in the actual
implementation faced the pilot-induced changes in their work. In other words,
the subsystem testers were only affected by the output produced by the designers.
The system work was unaffected by the pilot.

Usually, each subsystem has its own team to handle all the implementation.
However, the pilot team worked on two neighboring subsystems. This meant
that the competence of the designers varied, allowing us to study the effect of
pair programming on competence build-up. The features implemented during the
pilot mostly impacted one of the subsystems, and only one of the designers had
previous experience in that subsystem. Of the three other designers, two had
worked with the other, less impacted subsystem. One of the designers was new to
both of the subsystems. All designers were competent in the tools used as well as
in the overall system principles and basic functionalities.

3.4 Room Arrangement

The room arrangements for the pilot required some attention. Since four designers
were to participate in the pilot, two dedicated places for pair programming were
needed. All the designers had responsibilities that required them to work alone
as well, so they also needed personal work places. Furthermore, the needs for
obstacle free communication and for work peace needed to be balanced.

The pilot steering team and the designers worked together to come up with the
solution presented in Figure 2. In this solution, each of the designers has his own

4

corner for private work while the pair programming work places are located in
the center of the room. A divider is placed between the pair programming places
to give some work peace for the pairs, without completely isolating them from
each other. The designers made minor additions to the room furnishing during the
pilot.

Shelves

Shelves

Figure 2: The pilot room

3.5 Pilot Steering

In addition to the actual pilot team, the project also had a management sponsor
and a steering group. The pilot steering group was formed in order to follow the
progress of the pilot and to make necessary adjustments to the pilot whenever
refinement was necessary. The group included a researcher who was experienced
in coaching and managing agile software projects in an academic setting and had
participated in developing the process used in these projects. The task of the
steering group was to monitor the adaptation of the selected agile practices into
the existing process, propose changes in the practices based on this monitoring,
and to collect the data needed to evaluate the achievement of the goals in the end
of the pilot.

The pilot steering group and the designers held one hour long pilot steering
meetings every Monday during the pilot project. The first part of each meeting
was a regular team progress follow-up: what had been done, what features were
currently under work and was the schedule kept. The team leader would later sum-
marize this to the project manager. Before the pilot, this follow-up had been based

5

on informal estimations, expressed as the designers’ gut feelings, such as”60% of
the coding is done”. This did not really provide a good sense of project progress
to the managers.

During the second part of each meeting, the pilot steering group presented the
results of the pilot monitoring. Typical data shown here included the distribution
of the designers pair-solo work, and the accuracy of the designers’ time estima-
tion, to mention a few. The meetings proceeded with a discussion of the pilot
practices both in the context of this data and the subjective opinions of the design-
ers. These discussions aimed at finding any need for improvement and adapting
the practices better into the existing process. The designers were also expected to
give feedback at the end of the project. This feedback was provided in the form
of questionnaires and interviews, but they also could propose ways to improve the
process and the adaptation of the selected practices.

4 Agile Practices in Action

In this section, we go in detail through the agile practices selected for the pilot.
We proceed with the practices one by one, first introducing the original definition
of the practice and explaining the reason for selecting it. We then discuss how
the practice was changed in order to be adapted to the existing process. Addition-
ally, the sections embody some comments made by the designers during the pilot
steering meetings.

4.1 Pair Programming

Pair programming is a programming technique in which two persons work to-
gether on one computer, one keyboard and one mouse [33]. One of them is called
the driver and does the actual typing, while the other, the navigator, maintains a
strategic viewpoint of the implementation. The roles are supposed to be switched
frequently; the recommended frequency varies from an hour to a day or two.

Pair programming is broadly studied [9, 10, 18, 25, 34], and it is well appre-
ciated for good quality of the code [9], promotion of communication and learning
as well as for being a “fun” way of working. The productivity in pair program-
ming follows Nosek’s principle [27]: two programmers will implement two tasks
in pair 60% slower than two programmers implementing the same tasks in parallel
with solo programming.

According to the experiences with pair programming in the Gaudí Software
Factory [3], pair programming should be enforced by the coach in order for it to
dominate significantly over solo programming. When the choice between doing
pair or solo work is left to the programmers working in the Gaudí Factory, they
tend to distribute pair and solo work equally, though they all agreed that they
enjoyed working in pairs more.

6

In this pilot, pair programming was recommended instead of enforced. While
students can easily take an open-minded attitude towards pair programming, the
experienced designers in the company expressed a slightly skeptical stance con-
cerning the efficiency and benefits of the technique. As experienced designers
usually do, the members of the pilot team had grown accustomed to working solo.
They were concerned that adjusting to the work rhythm of the partner would be
difficult.

4.2 The Planning Game

The planning game is the XP planning process [5]: the business specifies what the
system needs to do, while the development specifies how much each feature costs
and what budget is available per day, week or month. XP talks about two types of
planning: by scope and by time. Planning by time is to choose the features to be
implemented when the delivery date is fixed. Planning by scope is the opposite
technique where all of the features are taken to be implemented while a release
date and resources to be used are negotiated.

The planning game practice was chosen in order to facilitate pair switching.
We wanted the pairs to be switched approximately weekly, but the requirements
analysis documents did not as such provide suitable slots for pair switching. Mov-
ing people around when they are in the middle of working on specific parts of the
system would disturb the designers, would have negative influence on produc-
tivity and quality, and would not necessarily promote competence build-up. We
needed to split the features into small (one week) units supporting the desired pair
dynamics. The planning game seemed to be the answer.

In the pilot, the planning game was not directly based on user stories written
by the customer as in XP. The XP approach is to split the user stories to tasks. The
stories describe the required functionality from a user’s point of view, in about
three sentences of text in the customer’s terminology without using technical jar-
gon [1, 17], whereas the tasks are written by the programmers and contain a lot of
technical details [5]. The pilot planning game followed the principle of splitting
requirements chunks into smaller entities. But in the pilot, the chunks correspond-
ing to XP stories were derived from the requirements analysis document and they
were called features. A task was defined as something which requires one to three
days to implement, while a feature was composed of few tasks and was estimated
as a week or maximum two weeks of work.

The features and tasks were identified during the planning game, which was
held twice for this pilot: on the first day and in the middle of the pilot. During
the first planning game, the designers selected the main pieces of the functionality
from the requirements analysis document. Each of these features was then split
into detailed tasks and the tasks were estimated. These estimations were in ideal
programming hours and did not consider that the implementation would be done
in pairs, thus no additional time for pair programming was reserved. The new

7

estimations confirmed the original deadlines for the project. It was, however, un-
clear whether the pilot could follow the original deadlines since pair programming
is considered to be less productive then solo programming. In a live project the
deliveries have to be on schedule and if pair programming caused the schedule to
slip the pilot would be cancelled.

The designers did not sign up for the tasks during the planning game. They
formed pairs as needed during the development. Initially, the idea was that in order
to promote competence build-up, a pair should consist of a person who is highly
competent for the task, while his partner has little or no knowledge about the part
of the system the task concerned. But by the time the second planning game was
held, it had become clear that when defining the tasks, also the difficulty of the task
should be specified and that should be used as one criterion when forming pairs
and assigning tasks. Consequently, besides selecting features and splitting them
to tasks, the tasks were assigned complexity (High, Medium, Low) and ordered
during the second planning game. The division into categories was done from the
most experienced designers’ point of view.

After the second planning game, the distribution of tasks among pairs took
both competence build-up and deadlines into consideration by using some guide-
lines where the level of difficulty of the task played a central role. These guidelines
generally say that the simple tasks should be implemented as solo programming or
in pairs where both of the designers are less familiar with the task at hand. Tasks
of medium complexity should be done in pairs where the driver has less compe-
tence than the navigator. The most difficult tasks should be done in pairs where at
least one of the designers has a good level of competence. These complex tasks
should not be left to the end of an iteration. Additionally, both designers should
be equally good when debugging in pairs.

The pilot project made no use of a special issue tracking tool, such as Source-
Forge or JIRA. Instead, the features and tasks were written down on the kinds of
paper cards depicted in Figure 3, as originally suggested in XP.

In summary, the planning game used in the pilot was a customization of the
original XP planning game. It was targeted towards the most efficient competence
build-up while respecting the deadlines of the project. When implementing a
task in pair, the more experienced designer taught his skills to his programming
partner. This practice was highly appreciated by the designers and also by the
testers. Furthermore, the designers found this type of planning game ”perhaps
the most valuable practice introduced in this pilot”. They even recommended this
practice to higher management before the pilot steering group started working on
the final evaluation of the pilot.

4.3 Customer on Site

The on-site customer practice was selected because it was felt that in large projects
it is easy for the individual designer to lose track of the big picture and the original

8

Figure 3: Features and task cards

9

requirements. It was thought that adding a direct channel of communication to
someone in charge of the requirements would reduce the risk of misinterpretation.

The role of the customer in Extreme Programming is to write and prioritize
user stories, explain them to the development team and define and run acceptance
tests to verify the correct functionality of the implemented stories. One of the most
distinctive features of XP is that the customer should work on site, as a member
of the team, in the same room with the team and be 100% available for the team’s
questions.

The real on-site customer is very hard to implement in practice [11, 19, 20, 32]
due to the high value or lack of commitment of the customer. Originally it was de-
cided that the pilot will use the customer representative model as described in [14]
for the customer-designers interaction, but right in the beginning of the pilot this
was changed. The requirement specification for the software was complete and
well-defined – this was according to the standard requirement management pro-
cess used in the company. Further on, the person who prepared the latest version
of the requirements was working in the same corridor as the designers involved
in the pilot. Therefore it was agreed that the designers could come and ask any
questions concerning the requirements personally, at any time. However, none of
the designers felt the need for that during the whole pilot time – the requirements
were well understood.

4.4 Collective Code Ownership

Collective code ownership in XP means that no one person owns the code and
may become a bottleneck for changes. Instead, every team member is encouraged
to contribute to all parts of the project. Every programmer improves any code
anywhere in the system at any time if they see the opportunity [5, 6].

We chose to enforce collective code ownership in order to empower the pairs to
change and update any part of the code when necessary. This concept of sharing
the responsibility for the code was also necessary due to the competence build-
up. By the end of the pilot, every designer should ideally have the same level
of system competence. The different pairs were working with all parts of the
system, designers with high competence in a particular part of the code were not
the bottlenecks for changes and did not have more responsibility for these parts of
the system than the rest of the design team.

Surprisingly, the design team commented this practice as ”something we al-
ready have been using, just did not know the right name for this practice”. Nev-
ertheless, the testers found positive changes with the introduction of shared code
ownership: ”Whenever we had a question concerning some part of the code, any
designer could answer us – this is something we have not seen before the pilot”.

10

5 Results

In this section we present the quantitative and qualitative results of the pilot. The
presented data is based on the metrics selected for the pilot and data collected
during and after the pilot, minutes of the pilot steering meetings and interviews of
the designers and testers. We start with the results on pair programming in Sec-
tion 5.1. Actual adherence to project schedule and software quality (Section 5.2)
are presented before proceeding to results concerning two softer goals stated in
Section 3: competence (Section 5.3) and motivation (Section 5.4).

5.1 Pair Programming

Based on Nosek’s principle [27], we expected pair programming to be less ef-
ficient than solo programming. Furthermore, other factors such as competence
build-up and the overhead of introducing a new methodology led us to assume a
best case scenario of a 100% increase in lead time. Nevertheless, the deliveries
were made on schedule without deviations from the original man-hour estimates.
This came as somewhat of a surprise, since the other teams not involved in the
pilot had to work overtime to achieve their corresponding objectives on time.

The standard way of tracking time is fairly coarse, and is not suitable for the
pilot. Examples of categories normally used are: implementation, testing and
writing design specifications. In order to get meaningful statistics on how well
the designers were adopting pair programming, a more detailed way of reporting
time usage was needed. The designers were required to keep track of almost
all possible work activities with the precision of half an hour. The results were
collected in a database and analyzed.

The first goal of the case study was to pilot pair programming. Figure 4 shows
the percentage of pair programming among the other activities of the designers.
For the reader’s convenience we do not distinguish between different activities
such as design, programming, unit testing, etc in this chart. Instead, we generalize
these tasks as pair or solo work. As seen in Figure reffig:allTasks, working in
pairs took one third (33%) of all possible activities of the designers. The time
when a single designer could work in pair, but had to wait for his partner due to
different reasons was only 2%. This is shown as waiting for pair in the figure.
The 9% piece of other activities here includes lunches, coffee breaks, department
meetings and other activities not related to the project.

The largest slice in Figure 4 is not available for pair work. This is due to the
fact that the designers had other responsibilities in other projects, in addition to
their work in the pilot. This is a common situation in many organizations: a single
developer is often involved in more than one project at the same time. Figure 5
shows the activities of the designers within the pilot only. Figure 5 shows that,
within the pilot, more than half of the work was done in pairs: 51% pair vs. 37%
solo. The pair programming practice was not enforced in the pilot, it was only

11

6 %

2 %

23 %

33 %
36 %

pair work solo work waiting for pair other not available for pair work

Figure 4: The distribution of the designers’ activities

3 % 9 %

37 %
51 %

pair work solo work waiting for pair other

Figure 5: The distribution of the designers’ activities when available for pair work

12

recommended. The designers decided on whether to work alone or in pair based
on the estimated complexity of the task as described in Section 4.2. Based on
the numbers in Figure 5 we conclude that our first goal, the piloting of the pair
programming practice, was achieved.

Figure 6 gives us the share of the pair work among the tasks described in
Section 4.2. There were 37 tasks defined during the planning games and imple-
mented during the pilot. Some of the tasks required upfront design, while others
were straightforward programming tasks. The numbers of the tasks (their iden-
tities) lie on the horizontal axis of the graph, while the vertical axis presents the
percentage of pair work in the whole time effort to complete the tasks. Four tasks

0 %

25 %

50 %

75 %

100 %

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Tasks

E
ff

o
rt

Figure 6: Percentage of pair work vs solo work per task

were implemented completely in pairs and five completely solo. For the rest of
the tasks the average share of the pair work was dominating: 68% pair vs. 32%
solo.

5.2 Software Quality

When the designers make the official release of the code, any faults found result
in a trouble report (TR) being written. A TR describes the problem, the test which
finds the fault and so forth. These TR’s are the principal measure of code quality
at the company.

Pair programming, as we mentioned earlier in Section 4.1, is appreciated for
the higher quality code when compared to the code produced in solo work. To
assess the impact of the pilot on the code quality we compared the TR count from
the pilot to the TR count from a previous delivery which is similar in size and

13

complexity. The analysis gave us a 5.5% decrease in TR’s. In addition to the
quantitative measure, a formal code review was conducted at the end of the pilot.
The review found that the code produced during the pilot was of the same quality
as code produced previously.

To assess the impact of the introduced agile practices on the subsystem testers,
each of the testers was interviewed. The feedback provided by the testers was
mainly positive. The first advantage of the pilot from the testers’ point of view
was that the planning game and the division of the system requirements into tasks.
Usually, the testers start their work when the code is almost complete, but in the
pilot, writing the tests could be started much earlier. This was mainly because the
tasks produced by the designers in the planning game had enough information for
the testers to start their work. Consequently, this evened out the testers workload.

Another positive impact of the pilot noticed by the testers was improved com-
munication. Asking questions about the code was easier: all the designers were
sitting in the same room and thanks to pair programming there were always at
least two designers who were familiar with the particular piece of code a tester
was asking about. As for the non-positive impact, the testers found that the num-
ber of faults found remained on the same level as before. One could argue here
that this was due to the testing which was more efficient in the pilot. Another
observation concerned an increase in basic (beginner’s) mistakes. This could be
attributed to the learning process taking place at the same time.

5.3 Competence

A very important aspect of the pilot was to measure how pair programming can
improve the competence level and knowledge sharing of the designers. The de-
signers were asked to rate their competence improvement subjectively in a ques-
tionnaire (see Section 5.5 for more details). They also answered a short quiz on
both subsystems before and after the pilot. The quiz was the same on both occa-
sions and it contained questions covering both subsystems completely. The results
of the quiz before the pilot and the quiz after the pilot were compared in an effort
to assess any change in competence.

The result from the first quiz was subtracted from the maximum available
points. This number represented how much room for improvement the designer
had. The result from the first quiz was then subtracted from the results of the
second quiz. This number showed how much the score had changed after the pilot.
An improvement percentage was calculated from these two numbers according to
the formula shown below:

Improvement% =
t2− t1

max− t1
·100%

where t1 is the score from the first quiz, t2 the score from the second quiz and max
is the maximum score of the quiz.

14

If a designer received 40 points out of 50 available on the first quiz, the de-
signer’s room for improvement was 10 points. If the designer then scored 45
points on the second test, the actual improvement was 5 points. Dividing 10 by
5 gives a competence improvement percentage of 50. Table 1 shows the compe-
tence improvement of each designer during the pilot. The results show a clear

Subsystem 1 Subsystem 2 Total
Designer 1 42 31 37
Designer 2 59 67 63
Designer 3 100 33 67
Designer 4 30 7 19
Team 58 35 47

Table 1: Percentage of competence improvement

improvement in competence – the whole team gained 47%. The largest overall
competence improvement was 67%, while the smallest was 19%.

We would like to note that all the members of the M-MGw project, including
the pilot designers, were given a presentation covering the architecture of both
subsystems before the first quiz. Consequently, the competence build-up in the
pilot must have come from the actual pair work, and not the architectural presen-
tation. If the quiz had been given before the presentation, t1 from the improvement
formula would have been smaller, hence the results for the competence improve-
ment shown in Table 1 would be larger.

5.4 Motivation

The results concerning motivation and job satisfaction are based on semi-structured
interviews conducted before and after the pilot with each designer. At the be-
ginning of each interview, the designers also answered a questionnaire, which
included statements to be rated on a 5-point scale (agree – disagree) and some
open-ended questions. As the sample was small, the results of the questionnaires
were not analyzed using statistical methods; they were used as an additional basis
for discussion. Each interview session was recorded and took approximately an
hour.

The pre-pilot interviews and questionnaires concerned general issues in job
satisfaction and motivation: work content, the results of work, management, com-
munication and social environment. Before the change in work arrangements, the
questionnaires and interviews indicated that the designers liked their jobs, were
well aware of the goals and expectations of their work, and had a sense of respon-
sibility of the results. They were also committed to their work and rather con-
tent with the social environment, besides some communication aspects between
teams/projects. Overall, they were rather content with their jobs. When explicitly

15

asked about their work motivation, the designers considered their motivation to be
rather good; on a school grade scale from 4 to 10, most designers gave an eight.
Things that they found motivating in work included salary, challenging problems,
good team, varying assignments, and learning. That is, the designers seemed to
have a pragmatic view on work and job satisfaction. This down-to-earth stance
reflected also on their expectations concerning the pilot. They had a somewhat
positive attitude, but they did not expect any miracles. One can also note that
answering motivation-related questions had become somewhat of a routine.

The nature of the post-pilot interviews was slightly less general in nature,
excluding issues which were in no way affected by the pilot, such as manage-
ment. On the other hand, the post-pilot questions concerned also how the design-
ers found specific features of the pilot, such as pair programming, and how they
affected their work. Concerning motivation, the results of analysis on general and
pilot-specific issues differ from each other to some extent. Regarding general is-
sues in job satisfaction, no significant changes could be seen compared to pre-pilot
results. The designers did not explicitly acknowledge any change in the motiva-
tion level. The same general ingredients were still present: a pragmatic view on
work, liking the job, the environment, and awareness and sense of responsibility
over results. However, the pilot-specific answers reflected the actual changes in
work in more detail.

The most noticeable pilot feature was pair programming. The designers found
that it increases the sense of team work, slightly increases the sense of responsi-
bility, smoothes out fluctuations in alertness, and facilitates learning. Pair pro-
gramming also increases feedback from peers as discussions and answers imme-
diately follow action. The most notable issue in pair programming was learning.
The challenge of new things was regarded as motivating from the beginning and
learning always motivating. At the same time, learning and enlarging area of ex-
perience also increases the meaningfulness of work. In addition to the positive
effects, the designers also discussed the downsides of pair programming: shared
pair programming schedule competes with other duties and pair work requires
patience and humility. Additionally, some mentioned that pair programming was
strenuous; the other side of keeping alert.

Another important pilot feature was the planning game. The designers liked
the fact that the work was divided into smaller entities making it more systematic.
But a mentioned drawback was that the pair wanted to get tasks done as fast
as possible, a sense of completion frenzy. In summary, pair programming and
planning game (task planning) induced a sense of learning, feedback, problem
solving, responsibility, alertness, and improved structure of work.

Looking at the effects of the pilot practices from a job enrichment perspective,
the detailed effects are also connected with motivation. According to Hackman
and Oldham [24], five core job characteristics form the basis for job outcomes.
These characteristics include skill variety, task identity, task significance, auton-
omy, and feedback. Comparing these with the findings in the pilot, it can be seen

16

that all of these characteristics were affected by the changes in work during the
pilot. New challenges and learning give skill variety and possibility for variation
at work. Better structured work content improves task identity. Task significance
is increased as the knowledge on related tasks grows. Ongoing interaction with
peers increased feedback. The autonomy of work is to some extent decreased by
pair programming, but the effect on felt responsibility on the other hand compen-
sated by the increase in alertness. The core job characteristics, in turn, influence
how work is experienced with regard to three aspects: meaningfulness of work
(derives from skill variety, task identity, and task significance), knowledge of ac-
tual results (feedback), and responsibility for outcomes (autonomy). These three
aspects, together with an individual’s need for growth, lead to job outcomes, one
of which is a high level of motivation and satisfaction.

6 Discussion

As we showed in the previous section, the piloted implementation process was a
success. The four selected agile practices were modified to suit the larger envi-
ronment and three of them were followed throughout the pilot. In spite of the new
arrangements, the deliveries were made on time. However, regarding the three
main goals, the outcome of the pilot was slightly different than we had expected.
While the focus before the pilot was mainly on motivation and software quality,
the main benefit of the pilot seems to be competence build-up. This implies that
this method of working should be used specifically when there is a need for effi-
cient competence build-up. The next two sections present possible explanations
for the goal-specific results and the experiences and improvements concerning the
selected agile practices. The discussion continues with directions for future work.

6.1 Goal-related issues

The fact that the designers did not explicitly acknowledge any change in motiva-
tion level after the pilot can relate to three things. First, the pilot had both positive
and negative effects, which were found to balance out each other. Second, the pi-
lot was known to last only for a certain time and many aspects of work remained
the same even during the pilot. The third possible reason is related to the already
stated impression of a pragmatic attitude towards work, motivation, and also mea-
suring motivation. The pilot was possibly regarded as a refreshing interlude which
broke the daily routines, but the designers were aware of the provisional nature of
the pilot arrangements. In addition, a number of factors which in theory have an
influence on the motivation level were not affected by the pilot. A more long-
running and stable work arrangement can weigh more than temporary changes.

The question of quality, in turn, is also open for discussion. The design team
was not a representative sample of a normal design team at the company, mainly

17

due to the focus on competence build-up, which was chosen as a goal. The com-
petence areas concerned especially the application domain and the existing base
implementation of the subsystems. This fact might be the one most dominant fac-
tor to give uncertainty if the work at hand can be carried out with good enough
quality and in timely fashion. Nevertheless, the outcome of the implementation
was working code delivered on time.

With regard to schedule, we saw that the lead time and used man hours did not
grow because of the introduction of pair programming. There is no clear reason
why this is the case. This might relate to the way the process was monitored.
Usually the work hours are not monitored with half-an-hour precision, and the
coffee breaks and lunches are just reported to effective hours. Since it now was
possible to calculate the truly effective hours, the used effective man hours might
have grown, but it is impossible to tell exactly how much. Also, the increased
attention to the designers’ work and the more accurate monitoring of work hours
was likely to increase the efficiency.

6.2 Experiences on Agile Practices

The pilot provided useful experiences considering the selected agile practices. The
first improvement of the pilot was project monitoring. When originally stating the
goals, transparency was not an issue. However, this was the first thing mentioned
at the first steering meeting of the pilot. Previously, the data about the status of
the project was vague, but during the pilot the managers and the testers could get
tangible deliverables, thanks to the planning game and smaller tasks.

From the four selected practices we saw that the planning game was the most
beneficial. It gave clarity to the implementation work itself, and furthermore
helped in tracking the timeliness of a process. On the other hand, the customer on
site was not used at all as there was no need for that. The existing organization
already gives the support needed for implementation phase. Furthermore, collec-
tive code ownership was implemented so that a pair does all the needed changes
for a feature (or a task) in two subsystems. Normally there would be two different
teams, one making changes only to one subsystem. This new approach seemed to
help in work allocation and overall function understanding, for example.

A couple of improvements were made to the piloted process already while ex-
ecuting the pilot. Use case realizations in the form of sequence diagrams were
seen as good documents to implement in pairs. The tasks that are easy to imple-
ment should not be done in pairs. The team also noticed that some functionality is
easily left out of the original tasks as the task definitions were too specific. On the
other hand, it was not always easy to see what should be done for a task. Thus,
the designers chose to combine some of the tasks.

18

6.3 Future Work

Besides the changes made during the project, other possible improvements were
identified after the pilot. One suggestion for future study that was identified was
task allocation and how it could be formalized to optimize different factors, such
as competence build-up or lead time. The basic idea is that each task should be
assigned a complexity level (High, Medium, Low) and an estimated completion
time. Competence areas should be defined. Those areas can be based on function-
ality of the system or on architectural elements. Each task should belong to one
competence area. Each designer should be assigned a competence level for every
competence area (High, Medium, Low). The tasks should then be assigned based
on the sum of the competence of the pair. E.g., a pair of Low + Low competence
with respect to the competence area that the task belongs to, should only imple-
ment tasks of Low complexity, while a pair of Low + High competence should do
tasks of Medium complexity or higher.

Using these classifications on tasks and designers, the tasks may be allocated
to people in order to optimize different aspects of the development. For example,
if the lead-time or more precisely the total amount of used man-hours, would be
the object function, an optimization function could be of the form:

n

∑
i=0

[
teitci

a
(2−

cxi + cyi

2
)+ tei]

where tei is the estimated amount of man-hours needed to implement the task i,
tci is the complexity of a task i, tc ∈ [0..2], cxi are competence factors for a task i
for designer x, cxi ∈ [1..3], and finally a is a parameter for adjusting competence
impact on implementation time

In this formula, it is assumed that the initial estimation of needed man-hours
is based on having a pair, where both designers have Medium competence in the
competence area of the task. For one task, the man hours needed for the im-
plementation is the estimate corrected with a penalty function. If the pair’s total
competence is lower than average, the penalty function adds hours to the sum,
otherwise it subtracts hours.

Note that there is a parameter a in the penalty function. That parameter value
is not known but it can be determined from previous projects’ data. It might be
that the parameter is not a constant at all.

As an example, let us look at one task, t that has a time estimation of 30
hours. Its complexity is determined to be 2 (task of High complexity). If the
pair allocated to the task have a task specific competence of 2 and 2, (i.e. both
members have Medium competence with regard to this task), the formula reduces
to

30∗2
a

(2−
2+2

2
)+30 = 30

This means that when the pair has medium competence on a task, the estimated
work hours are supposed to hold. If we choose a pair so that both members have

19

low competence on the task, say 1, the formula reduces to

30∗2
a

(2−
1+1

2
)+30 =

60
a

+30

From this it can be seen that the more complex task, the more time is needed for
task implementation.

We need more constraints for a complete formulation of the pair matching
problem. For example, the tasks have constraints on the order they may be im-
plemented. Also for a realistic optimization function other viewpoints should be
included than used man-hours. For example, this optimization function could be
a function also on parallelism, lead time and resource utilization.

This type of a task allocation can also affect job satisfaction. More time is left
for learning whenever it is possible. By taking time, competence and complexity
into consideration, we can decrease some of the downsides of pair programming,
such as competence build-up at a time when project deadline is approaching fast.
Another modification which can facilitate the use of agile practices as methods
for job enrichment is having a limited, specific goal, such as job rotation, training
new team members or task planning.

7 Conclusions

In this paper we presented a case study where a number of agile practices was
introduced into the design department of a large company in the context of a real
software project. We showed how we adjusted these practices in order to integrate
them into the existing software process. The paper presented the background and
goals for the pilot, the measures for the outcome of the pilot, and the actual results.
The pilot concerned a small number of designers during a limited period of time.

The pilot plan originally included four agile practices, three of which were
finally followed: collective code ownership, pair programming, and the planning
game. While the first two provided a good experience by being helpful in overall
function understanding and building competence, we found the planning game to
be the most beneficial practice. The planning game with its tasks gives structure
and clarity to the implementation work itself as well as increases the transparency
of following the schedule. The planning game should be made an integral part of
the design work as a method for work planning and progress status follow-up.

The goals of the case study were to pilot pair programming, improve the mo-
tivation and build up the competence of the designers. While two of the stated
goals were reached clearly, pair programming was introduced and the increased
competence was both felt and measured, the results concerning the original focus
area, the motivation of employees, remained somewhat oblique and requires fur-
ther study. This suggests that pair programming should be used specifically when
there is a need for efficient competence build-up. The effects of learning on job
satisfaction, again, can be argued for.

20

The value of this pilot lies ahead: the pilot gave guidelines on how to proceed
with the development of the implementation process practices. Also, it seems to
be beneficial to test the ideas on a wider scale, e.g. within system design or testing,
and to take competence build-up and lead time into account in task allocation.

On the whole we concluded that the pilot was a success. It demonstrated that
is worthwhile to use pair programming, the planning game and collective code
ownership in the design and implementation. Agile methods could be refined to
suite the existing settings of a large company.

Acknowledgments

We would like to thank all the participants of the pilot: managers, testers and espe-
cially the designers for their participation in the pilot and their valuable feedback.
We would like to extend a special thank you to Jouni Rantanen for his involve-
ment in the task allocation optimization function. We also would like to thank
Harri Oikarinen and the M-MGw Design Department for making this study pos-
sible and Prof. Ralph-Johan Back and Dr. Ivan Porres for their help in the settings
of the pilot and for fruitful discussions.

References

[1] Extreme Programming: A gentle introduction website. Online at:
http://www.extremeprogramming.org/.

[2] Softswitch in Mobile Networks. Ericsson AB. 284 23-3025 UEN Rev A,
April 2005. White Paper.

[3] Ralph-Johan Back, Luka Milovanov, and Ivan Porres. Software Develop-
ment and Experimentation in an Academic Environment: The Gaudi Expe-
rience. Technical Report 641, TUCS, 2004.

[4] Ralph-Johan Back, Luka Milovanov, and Ivan Porres. Software Develop-
ment and Experimentation in an Academic Environment: The Gaudi Expe-
rience. In Proceedings of 6th International Conference on Product Focused
Software Process Improvement – PROFES 2005, Lecture Notes in Computer
Science, Oulu, Finland, 2005. Springer.

[5] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley, 1999.

[6] Kent Beck and Martin Fowler. Planning Extreme Programming. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[7] Barry Boehm. Get Ready for Agile Methods, with Care. IEEE Computer,
35(1):64–69, 2002.

21

[8] Gerardo Canfora, Aniello Cimitile, and Corrado Aaron Visaggio. Working
in Pairs as a Means for Design Knowledge Building: An Empirical Study. In
Proceedings of the 12th International Workshop on Program Comprehension
(IWPC2004), pages 62–69, Bari, Italy, June 2004.

[9] Alistair Cockburn and Laurie Williams. The Costs and Benefits of Pair Pro-
gramming. In Proceedings of eXtreme Programming and Flexible Processes
in Software Engineering – XP2000, Cagliari, Italy, June 2000.

[10] L. L. Constantine. Constantine on Peopleware. Englewood Cliffs: Prentice
Hall, 1995.

[11] C. Farell, R. Narang, S. Kapitan, and H. Webber. Towards an Effective On-
site Customer Practice. In Proceedings of the Third International Conference
on eXtreme Programming and Agile Processes in Software Engineering –
XP2002, Alghero, Italy, May 2002.

[12] Görel Hedin, Lars Bendix, and Boris Magnusson. Teaching Extreme Pro-
gramming to Large Groups of Students. J. Syst. Softw., 74(2):133–146, 2005.

[13] Jim Highsmith and Alistair Cockburn. Agile Software Development: The
Business of Innovation. IEEE Computer, 34(9):120–122, 2001.

[14] Piia Hirkman and Luka Milovanov. Introducing a Customer Representative
to High Requirement Uncertainties. A Case Study. In Proceedings of the
International Conference on Agility – ICAM 2005, Otaniemi, Finland, July
2005.

[15] Sylvia Ilieva, Penko Ivanov, and Eliza Stefanova. Analyses of an Agile
Methodology Implementation. In Proceedings of the 30th EUROMICRO
Conference, pages 326–333. IEEE Computer Society, 2004.

[16] Andreas Jedlitschka, Dirk Hamann, Thomas Göhlert, and Astrid Schröder.
Adapting PROFES for Use in an Agile Process: An Industry Experience
Report. In Proceedings of 6th International Conference on Product Focused
Software Process Improvement – PROFES 2005, Lecture Notes in Computer
Science. Springer, 2005.

[17] Ron Jeffries, Ann Anderson, and Chet Hendrickson. Extreme Programming
Installed. Addison-Wesley, 2001.

[18] David H. Johnson and James Caristi. Extreme Programming and the Soft-
ware Design Course. In Proceedings of XP Universe, Raleigh, NC, USA,
July 2001.

22

[19] Mikko Korkala. Extreme Programming: Introducing a Requirements Man-
agement Process for an Offsite Customer. Department of Information Pro-
cessing Science research papers series A, University of Oulu, 2004.

[20] Mikko Korkala and Pekka Abrahamsson. Extreme Programming: Reassess-
ing the Requirements Management Process for an Offsite Customer. In Pro-
ceedings of the European Software Process Improvement Conference EU-
ROSPI 2004, Lecture Notes in Computer Science. Springer, 2004.

[21] Mikael Lindvall, Dirk Muthig, Aldo Dagnino, Christina Wallin, Michael
Stupperich, David Kiefer, John May, and Tuomo Kähkönen. Agile Software
Development in Large Organizations. IEEE Computer, 37(12):26–33, 2004.

[22] Grigori Melnik and Frank Maurer. Introducing Agile Methods: Three Years
of Experience. In EUROMICRO, pages 334–341. IEEE Computer Society,
2004.

[23] Grigori Melnik and Frank Maurer. A Cross-Program Investigation of Stu-
dents’ Perceptions of Agile Methods. In 27th International Conference on
Software Engineering, pages 481–488, St. Louis, Missouri, USA, May 2005.
ACM.

[24] Terence R. Mitchell and James R. Larson Jr. People in Organizations: An
Introduction to Organizational Behavior. McGraw-Hill, 1987.

[25] Mathias M. Müller and Walter F. Tichy. Case Study: Extreme Programming
in a University Environment. In Proceedings of the 23rd International Con-
ference on Software Engineering, pages 537–544, Toronto, Ontario, Canada,
May 2001. IEEE Computer Society.

[26] Orlando Murru, Roberto Deias, and Giampiero Mugheddu. Assessing XP at
a European Internet Company. IEEE Softw., 20(3):37–43, 2003.

[27] J.T. Nosek. The Case for Collaborative Programming. Communications of
the ACM, 41(3):105–108, 1998.

[28] Donald J. Reifer. How Good are Agile Methods? IEEE Software, 19(4):16–
18, 2002.

[29] Bernhard Rumpe and Astrid Schröder. Quantitative Survey on Extreme Pro-
gramming Projects. In Third International Conference on Extreme Program-
ming and Flexible Processes in Software Engineering – XP2002, pages 95–
100, Alghero, Italy, May 2002.

[30] Outi Salo and Pekka Abrahamsson. Evaluation of Agile Software Develop-
ment: The Controlled Case Study approach. In Proceedings of the 5th In-
ternational Conference on Product Focused Software Process Improvement
PROFES 2004, Lecture Notes in Computer Science. Springer, 2004.

23

[31] Michael K. Spayd. Evolving Agile in the Enterprise: Implementing XP on
a Grand Scale. In Agile Development Conference, pages 60–70, Salt Lake
City, UT, USA, June 2003. IEEE Computer Society.

[32] Nathan Wallace, Peter Bailey, and Neil Ashworth. Managing XP with Multi-
ple or Remote Customers. In Proceedings of the Third International Confer-
ence on eXtreme Programming and Agile Processes in Software Engineering
– XP2002, Alghero, Italy, May 2002.

[33] Laurie Williams and Robert Kessler. Pair Programming Illuminated.
Addison-Wesley Longman Publishing Co., Inc., 2002.

[34] Laurie A. Williams and Robert R. Kessler. Experimenting with Industry’s
Pair-Programming Model in the Computer Science Classroom. Journal on
Software Engineering Education, 10(4), December 2000.

[35] Sami Zahran. Software Process Improvement: Practical Guidelines for Busi-
ness Success. Addison-Wesley, 1998.

24

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematics

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 952-12-1616-6
ISSN 1239-1891

