
Elena Czeizler | Eugen Czeizler

On the Power of Parallel Commu-
nicating Watson-Crick Automata
Systems

TUCS Technical Report

No 722, November 2005





On the Power of Parallel Commu-
nicating Watson-Crick Automata
Systems

Elena Czeizler
Department of Mathematics, University of Turku and

Turku Centre for Computer Science

Turku 20520, Finland

elenac@it.utu.fi

Eugen Czeizler
Department of Mathematics, University of Turku and

Turku Centre for Computer Science

Turku 20520, Finland

eugenc@it.utu.fi

TUCS Technical Report

No 722, November 2005



Abstract

Parallel communicating Watson-Crick automata systems were introduced in
[1] as possible models of DNA computations. This combination of Watson-
Crick automata and parallel communicating systems comes as a natural
extension due to the new developments in DNA manipulation techniques.
It is already known, see [4], that for Watson-Crick finite automata, the com-
plementarity relation plays no active role. However, this is not the case when
considering parallel communicating Watson-Crick automata systems. In this
paper we prove that non-injective complementarity relations increase the ac-
cepting power of these systems. We also prove that although Watson-Crick
automata are equivalent to two-head finite automata, this equivalence is not
preserved when comparing parallel communicating Watson-Crick automata
systems and multi-head finite automata.

Keywords: Watson-Crick, parallel communicating automata systems, com-
plementarity relation

TUCS Laboratory

Discrete Mathematics for Information Technology Laboratory



1 Introduction

Watson-Crick finite automata are a counterpart of finite automata work-
ing on double stranded sequences. They were introduced in [3] and, as
suggested by the name, they are intended as a formalization of DNA manip-
ulation. One of the main features of these automata is that characters on
corresponding positions from the two strands of the input are related by a
complementarity relation similarly with the Watson-Crick complementarity
of DNA nucleotides. Several variants of these automata were investigated
in [6], [7], [8], and [10], see also [9] for a comprehensive presentation.

When considering DNA molecules as a possible support for computa-
tions, we may exploit two key features: the Watson-Crick complementarity
and the massive parallelism. While Watson-Crick automata make use only
of the first one, parallel communicating Watson-Crick automata systems, in-
troduced in [1], come as a possible answer to the problem formulated in [9]
of combining the two features into a model of DNA computations.

A parallel communicating Watson-Crick automata system, PCWKS for
short, consists of a set of Watson-Crick finite automata working indepen-
dently on their own input tape and communicating states on request. Al-
though every component has its own double-stranded tape, the input is the
same on all of them. At the beginning, all components are in their initial
states and start parsing synchronously the input from left to right. As in the
case of other parallel communicating automata systems, see for example [5],
the communication between components is done using special query states,
each of them pointing to exactly one component of the system. When com-
ponent i reaches a query state Kj , the current state of the component j will
be communicated to i and the computation continues. We refer to [2] for
different paradigms of parallelism and communication in grammar systems.

Another question from [9] is about the role of the complementarity re-
lation regarding the expressive power of Watson-Crick automata. A first
answer is given in [4], where it is proved that the complementarity relation
plays no actual role for Watson-Crick automata, i.e. any language accepted
by a Watson-Crick automaton is also accepted by one with a one-to-one
complementarity relation. This result is also extended for the Watson-Crick
ω-automata introduced in [10].

In this paper we prove that for PCWKS, the complementarity relation
plays an active role. In [1] it was shown that systems with injective comple-
mentarity relation accept only regular one-letter languages. Here we prove
that if the relation is not injective, then we can accept also some non-regular
one-letter languages.

Since in [9] it is proved that Watson-Crick automata are equivalent with
two-head finite automata, a natural question is whether this equivalence is
preserved when considering PCWKS and multi-head finite automata. It
is already known, see [5], that n-head finite automata are equivalent with
parallel communicating finite automata systems (communicating by states)
with n components and they recognize only semilinear languages. The main

1



result of this paper proves that PCWKS are more powerful: they recognize
all languages accepted by parallel communicating finite automata systems
and also some non semilinear languages such as {an2

| n ≥ 2}.

2 Definitions

We assume that the reader is familiar with the fundamental concepts from
formal languages and automata theory; for more details we refer to [11].

For a finite alphabet V we denote by V ∗ the set of all finite words over
V and by λ the empty word.

Let now ρ ⊆ V × V be a symmetric relation, called the Watson-Crick

complementarity relation on V , inspired by the Watson-Crick complemen-
tarity of nucleotides in the double stranded DNA molecule. We say that ρ
is injective if any a ∈ V has the unique complementary symbol b ∈ V with
(a, b) ∈ ρ. In accordance with the representation of DNA molecules, viewed

as two strings written one over the other, we write

(

V ∗

V ∗

)

instead of V ∗×V ∗

and an element (w1, w2) ∈ V ∗ × V ∗ as

(

w1

w2

)

.

We denote

[

V

V

]

ρ

= {
[a

b

]

| a, b ∈ V, (a, b) ∈ ρ} and WKρ(V ) =

[

V

V

]

∗

ρ

.

The set WKρ(V ) is called the Watson-Crick domain associated to V and ρ.

An element

[

a1

b1

] [

a2

b2

]

. . .

[

an

bn

]

∈ WKρ(V ) can be also written in a more

compact form as

[

w1

w2

]

, where w1 = a1a2 . . . an and w2 = b1b2 . . . bn.

The essential difference between

(

w1

w2

)

and

[

w1

w2

]

is that

(

w1

w2

)

is just

an alternative notation for the pair (w1, w2), whereas

[

w1

w2

]

implies that the

words w1 and w2 have the same length and the corresponding letters are
connected by the complementarity relation.

A Watson-Crick finite automaton is a 6-tuple M = (V, ρ, Q, q0, F, δ),
where V is the (input) alphabet, ρ ⊆ V ×V is the complementarity relation,
Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final

states, δ : Q×

(

V ∗

V ∗

)

→ 2Q is a mapping, called the transition function, such

that δ(q,

(

w1

w2

)

) 6= ∅ only for finitely many triples (q, w1, w2) ∈ Q×V ∗×V ∗.

We can replace the transition function with rewriting rules, by using

s

(

w1

w2

)

→

(

w1

w2

)

s′ instead of s′ ∈ δ(s,

(

w1

w2

)

).

For more details on Watson-Crick automata we refer to [9].

2



A parallel communicating Watson-Crick automata system of degree n,
PCWKS(n) for short, is a (n + 3)-tuple

A = (V, ρ, A1, A2, . . . , An, K),

where

• V is the input alphabet;

• ρ is the complementarity relation;

• Ai = (V, ρ, Qi, qi, Fi, δi), 1 ≤ i ≤ n, are Watson-Crick finite automata,
where the sets Qi are not necessarily disjoint;

• K = {K1, K2, . . . , Kn} ⊆ ∪n
i=1

Qi is the set of query states.

The automata A1, A2, . . . , An are called the components of the system A.
These systems were introduced in [1] where their accepting power and

some closure properties were investigated. They are composed of several
Watson-Crick automata working independently on their tapes and commu-
nicating on request by use of query states. Each of these states points
to exactly one component of the system such that, when a component Ai

reaches a query state Kj , the current state of the component Aj will be
communicated to Ai and the computation continues.

A configuration of a PCWKS(n) is a 2n-tuple

(s1,

(

u1

v1

)

, s2,

(

u2

v2

)

, . . . , sn,

(

un

vn

)

)

where si is the current state of the component Ai and

(

ui

vi

)

is the part of the

input which has not been read yet by the component Ai, for all 1 ≤ i ≤ n.
We define a binary relation ` on the set of all configurations by setting

(s1,

(

u1

v1

)

, s2,

(

u2

v2

)

, . . . , sn,

(

un

vn

)

) ` (r1,

(

u′

1

v′
1

)

, r2,

(

u′

2

v′
2

)

, . . . , rn,

(

u′

n

v′n

)

)

if and only if one of the following two conditions holds:

• K ∩ {s1, s2, . . . , sn} = ∅,

(

ui

vi

)

=

(

xi

yi

) (

u′

i

v′i

)

, and ri ∈ δi(si,

(

xi

yi

)

),

for all 1 ≤ i ≤ n;

• for all 1 ≤ i ≤ n such that si = Kji
and sji

/∈ K we have ri = sji
,

whereas for all the other 1 ≤ l ≤ n we have rl = sl. In this case
(

u′

i

v′i

)

=

(

ui

vi

)

, for all 1 ≤ i ≤ n.

If we denote by `∗ the reflexive and transitive closure of `, then the
language recognized by a PCWKS is defined as:

3



L(A) = {w1 ∈ V ∗ | (q1,

[

w1

w2

]

, q2,

[

w1

w2

]

, . . . , qn,

[

w1

w2

]

) `∗

(s1,

(

λ

λ

)

, s2,

(

λ

λ

)

, . . . , sn,

(

λ

λ

)

), si ∈ Fi, 1 ≤ i ≤ n}.

Intuitively, the language accepted by such a system consists of all words w1

such that in every component we reach a final state after reading the input
[

w1

w2

]

.

3 Main result

In [1] it was proved that PCWKS with injective complementarity relation
accept only regular one-letter languages. In this section we prove that by
using non-injective complementarity relation we increase the power of these
systems.

Theorem 1 The language {an2

| n ≥ 2} can be accepted by a parallel com-

municating Watson-Crick automata system with three components and a

non-injective complementarity relation.

Proof: The proof is based on the following observation. A word w ∈ {a}∗ is
of the form an2

for some n ≥ 2 if and only if:

(1) we can divide w into blocks of equal length and

(2) the number of such blocks is equal to their length.

Hence, we build a system accepting a word w = an2

only when its com-
plement is of the form bncnbncn . . . with exactly n − 1 alternations between
blocks of b’s and c’s. The system is composed of three components; the first
two verify that the complement has alternating blocks of b’s and c’s of equal
length, while the first and the third components verify that the number of
such blocks is equal to the length of the first block of b’s.

Formally, we construct a PCWKS A = ({a, b, c}, ρ, A1, A2, A3, K), where:

• ρ = {(a, b), (a, c)},

• A1 = ({a, b, c}, ρ, {q1, r1, sb, sc, sbc, scb, f
c
1
, f b

1
}, q1, {f

c
1
, f b

1
}, δ1),

• A2 = ({a, b, c}, ρ, {q2, r1, sb, sc, sbc, scb, f
c
1
, f b

1
, f2, K1}, q2, {f2}, δ2),

• A3 = ({a, b, c}, ρ, {q3, r1, sb, sc, sbc, scb, f
c
1
, f b

1
, f3, K1}, q3, {f3}, δ3).

The transition functions of the components are given in Table 1.
For an input of the form

[aaaaaaaaaaaaa . . .

bb . . . bcc . . . cbb . . .

]

4



Component A1 Component A2 Component A3

q1

(

a

b

)

→

(

a

b

)

r1 q2

(

λ

λ

)

→

(

λ

λ

)

K1 q3

(

a

b

)

→

(

a

b

)

K1

r1

(

a

b

)

→

(

a

b

)

r1 r1

(

λ

λ

)

→

(

λ

λ

)

K1 r1

(

λ

λ

)

→

(

λ

λ

)

K1

r1

(

a

c

)

→

(

a

c

)

sbc sbc

(

a

b

)

→

(

a

b

)

K1 sbc

(

a

b

)

→

(

a

b

)

K1

sbc

(

a

c

)

→

(

a

c

)

sc sc

(

a

b

)

→

(

a

b

)

K1 sc

(

λ

λ

)

→

(

λ

λ

)

K1

sc

(

a

c

)

→

(

a

c

)

sc scb

(

a

c

)

→

(

a

c

)

K1 scb

(

a

b

)

→

(

a

b

)

K1

sc

(

a

b

)

→

(

a

b

)

scb sb

(

a

c

)

→

(

a

c

)

K1 sb

(

λ

λ

)

→

(

λ

λ

)

K1

scb

(

a

b

)

→

(

a

b

)

sb fc

1

(

a

c

)

→

(

a

c

)

f2 fb

1

(

a

c

)

→

(

a

c

)

f3

sb

(

a

b

)

→

(

a

b

)

sb fb

1

(

a

b

)

→

(

a

b

)

f2 fc

1

(

a

c

)

→

(

a

c

)

f3

sb

(

a

c

)

→

(

a

c

)

sbc f2

(

a

c

)

→

(

a

c

)

f2 f3

(

a

c

)

→

(

a

c

)

f3

sb

(

λ

λ

)

→

(

λ

λ

)

f
b

1 f2

(

a

b

)

→

(

a

b

)

f2 f3

(

a

b

)

→

(

a

b

)

f3

sc

(

λ

λ

)

→

(

λ

λ

)

f
c

1 f2

(

λ

λ

)

→

(

λ

λ

)

f2

fb

1

(

λ

λ

)

→

(

λ

λ

)

f
b

1

fc

1

(

λ

λ

)

→

(

λ

λ

)

f
c

1

Table 1: The transition rules of system A

the system evolves as follows. The first component reads the first block of b’s
transmitting at each step its state to the other two components. Meanwhile,

the third component counts the first block by reading
(a

b

)

and then waits

for the signal of the next alternation of letters. The second component also
waits for the same signal but without reading any input.

When component A1 reads the first letter of the next block, it enters a
special state sbc signaling both the change between blocks and its type, in
this case from b’s to c’s. From now on, the second component starts reading
the input and by communicating with the first component checks that any
two consecutive one-letter blocks have equal length. Also, when receives
the signal of the alternation, the third component counts this next block by

reading the next
(a

b

)

. In general, component A3 reads one
(a

b

)

each time

it receives from A1 a signal of alternation, i.e., state sbc or scb.

The computation evolves similarly, until the first component reads all
the input. Then, it enters one of the final states f b

1
or f c

1
depending on the

type of the last block. Both A2 and A3 acknowledge this signal and react
as follows. The second component enters its final state f2 only if it reads on
the input tape exactly the letter indicated by the signal. In this final state
it finishes reading the input. The third component also enters its final state

only if it reads
(a

c

)

on the input tape, verifying that the number of blocks

equals the length of the first block; then it finishes reading the input.

5



If there exist two consecutive blocks of b’s and c’s of different lengths,
then the second component enters a deadlock. On the other hand, if the
number of blocks of b’s and c’s is not equal to the size of the first block,
then the third component enters a deadlock. On both cases the input is not
accepted by the system.

As an immediate consequence we have the following result.

Corollary 2 There exist PCWKS with non-injective complementarity rela-

tion accepting non-regular one-letter languages.

Moreover, any language accepted by a PCWKS with injective comple-
mentarity relation can be accepted also by a system with non-injective com-
plementarity relation. Thus, we have the following result.

Corollary 3 Parallel communicating Watson-Crick automata systems with

non-injective complementarity relation are more powerful than systems with

injective complementarity relation.

Although Watson-Crick automata are equivalent to two-head finite au-
tomata, see [9], this is not true anymore when considering PCWKS and
multi-head automata. In order to prove this, let us first recall the following
result from [5].

Theorem 4 A language is accepted by an n-head finite automaton if and

only if it is accepted by a parallel communicating finite automata system with

n components.

In the same paper, it is also proved that parallel communicating finite
automata systems accept only semilinear languages.

Moreover, it is easy to prove that for any parallel communicating fi-
nite automata system with n components we can construct an equivalent
Watson-Crick system with n components and the identity complementarity
relation. Since the language {an2

| n ≥ 2} is not semilinear we obtain the
following result.

Corollary 5 Parallel communicating Watson-Crick automata systems are

more powerful than multi-head automata and parallel communicating finite

automata systems respectively.

References

[1] E. Czeizler, E. Czeizler, Parallel Communicating Watson-Crick

Automata Systems, in Z. Ésik, Z. Fülöp eds., Proceedings of Automata
and Formal Languages, AFL’05, 83-96, 2005.

[2] J. Dassow, Gh. Păun, G. Rozenberg, Grammar Systems in G.
Rozenberg, A. Salomaa (eds.), The Handbook of Formal Languages,
Springer-Verlag, Vol 2, 155-213, (1997).

6



[3] R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa, Watson-Crick

finite automata, Proc 3rd DIMACS Workshop on DNA Based Comput-
ers, Philadelphia, 297-328, (1997).

[4] D. Kuske, P. Weigel, The Role of the Complementarity Relation in

Watson-Crick Automata and Sticker Systems, DLT 2004, LNCS, 3340,
272 - 283, (2004).

[5] C. Mart́ın-Vide, A. Mateescu, V. Mitrana, Parallel communi-

cating finite automata systems communicating by states, Intern. Journ.
of Found. of Comp. Sci. 13: 5, 733-749, (2002).

[6] C. Mart́ın-Vide, Gh. Păun, Normal forms for Watson-Crick finite

automata, in F. Cavoto, ed., The Complete Linguist: A Collection of
Papers in Honour of Alexis Manaster Ramer: 281-296. Lincom Europa,
Munich., (2000).

[7] V. Mihalache, A. Salomaa, Lindenmayer and DNA: Watson-Crick

DOL systems, Current Trends in Theoretical Computer Science, World
Sci., 740-751, (2001).

[8] A. Păun, M. Păun, State and transition complexity of Watson-Crick

finite automata, Proc. Fundamentals of Computation Theory, FCT’99,
LNCS 1684, Springer-Verlag, 409-420, (1999).

[9] Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New

Computing Paradigms, Springer-Verlag, Berlin, (1998).

[10] E. Petre, Watson-Crick ω-Automata, J. Autom. Lang. Comb. 8(1),
59-70, (2003).

[11] A. Salomaa, Formal languages, Academic Press, New York, (1973).
Revised edition in the series ”Computer Science Classics”, Academic
Press, (1987).

7



Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematics

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 952-12-1640-9

ISSN 1239-1891


