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Abstract

We point out that to determine whether a given self-adjoiatrim A is positive
semidefinite is equivalent to determining whether the dtarestic polynomial of
A is alternating and give a new algorithm for computing the characteristityp
nomial. The said algorithm use&8(n>logn) multiplications and additions, and
one division when computing any coefficient of the charastier polynomial of
ann x n matrix. The algorithm is essentially division-free, anchte it can be
also used to compute the determinant fox n matrices over a great variety of
commutative rings. It take®(n?3 log n) ring multiplications, additionsZ-module
multiplications, and on&-module division to compute the determinant.

Keywords: Determinant, Characteristic Polynomial, Positive Seffimite, Poly-
nomial Time
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1 Introduction

In the usualHilbert space formalisnof quantum mechanics, the states of quan-
tum systems are identified with self-adjoint mappings tlatehunit trace and are
positive semidefinite. In quantum physics literature, tépwsitive semidefinite”
is sometimes replaced by “positive”, and we will also usel#iger term in this
article.

It follows that when studying quantum mechanics, it is some$ necessary
to discover whether a given matrix is indeed a valid represdiem of a state of a
guantum system or not. That is, one should find out if the marself-adjoint,
has unit trace, and is positive semidefinite.

The two first conditions, namely the self-adjointness aed.thit trace property
are very straightforward to verify, but the third one, thesifive semidefiniteness
seems to be much more complicated. The following criteriotucs in the litera-
ture very frequently: Matrix4 is positive semidefinite if and only if the principal
minors of A are all nonnegative. The mentioned criterion is theorkyicery in-
teresting but appears very tedious to verify, since fon ann-matrix, there ar@"
principal minors, including the two trivial ones.

In this article, we are interested only in finite-dimensioH#dbert spaces, and
hence we can identify the Hilbert space with the Cartesiamlyet C*. Having
this identification, we also assume that a linear mapfifig— C" is specified by
a givenn x n-matrix A over complex numbers.

Here we will not pay any particular attention to the algaritb aspects of rep-
resenting complex numbers. Instead, we will present the mesiult just by count-
ing how many multiplications and additions are needed. ¢h fahen introducing
the algorithm for computing the characteristic polynomia only assume that the
matrix entries are from a commutative ring, and we will alsartt the number of
Z-module multiplications (defined later).

We present our criterion for positive semidefiniteness &&arem below. The
notations and terminology involved in the theorem are @rplhin the next section.

Theorem 1. Define an infinite sequence of expressions as follows:
Thekth expression is defined as

DD YT Nl L) Tr(Al) L Tr(Al), 1)

r=1 I+ .+lr=k
1<l <. <Up<k

where Ny (14, ...,l,) is the number of permutations i#}, having cycle structure
(l1,...,1,). Hence a few first expressions are as follows:

Tr(A)

Tr(A)? — Tr(A?%)

Tr(A)? — 3 Tr(A) Tr(A?) + 2 Tr(A3)

Tr(A)* — 6 Tr(A)? Tr(A?) + 3 Tr(A?)% + 8 Tr(A) Tr(A43) — 6 Tr(A?)
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Then, ann x n self-adjoint matrixA is positive semidefinite if and onlynif first
expressions in (2) are nonnegative.

The above criterion leads into a new algorithm (using pafgiad number of
arithmetical operations) for verifying the positive segfiditeness, even though
the number of summands in (1) equals to the number of pansitaf 4, which
is asymptoticallyﬁlx/ge”\/m (see [1]), superpolynomial with respect to <
n. Despite the large number of summands, we show later howrtpote (1) in
polynomial time with respect th < n.

The criterion of Theorem 1 establishes also a connectiowdmst the coeffi-
cients of the characteristic polynomial and the traces@fibwers of the matrix, a
connection which is interesting on its own.

2 Preliminaries and Terminology

Notation H,, stands for am-dimensional Hilbert space, antl(H,,) means the
linear mappingd?,, — H,,. We will identify H,, with C", andL(H,,) withn x n
matrices with complex entries.

We denote the complex conjugate o C by z*. Theadjoint matrix A* of
A is given by taking the complex conjugate of the transposeimat A. That
is, if the matrix entries ofd are A4;;, then the matrix entries ol are given by
(A*)i; = (Aj:)*. Matrix A is self-adjoin if A = A*.

SpaceH,, = C" is equipped with so-calleHermitian inner product

(@ y) =21+ + 2 yn.

We understand the vectagse H,, as column vectors, hence the imagerainder
mappingA € L(H,) is Az, understood as the product ofx n-matrix and a
column vector.

The trace of matrix A is denoted byIr(A) and defined as the sum of the
diagonal elements of:

i=1
Matrix A is positiveor positive semidefinitaf
(x| Ax) >0

for eachx € H,. Itis a well-known fact that ifz | Az) € R for eachxz € H,,
then A is self-adjoint. Hence it makes no sense to define the nofipogitivity in
this way forn x n-matrices that are not self-adjoint.

A submatrixof A is a matrix that is obtained by deleting some rows and
columns ofA. A principal submatrixof ann x n matrix is a submatrix obtained by
deleting some rows and tleerresponding:olumns. Aminorof A is a determinant
of a principal submatrix ofd.

If Aisan x n-matrix, andl C {1,...,n}, notationA[I] stands for the princi-
pal submatrix ofd obtained by deletingth row and column for each¢ I. Hence
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AlI]is an|I| x |I|-matrix that has those rows and columns whose indices afe in
left. Matrix A[(] is defined to bd andA[{1, ..., n}] is naturally understood as.
Thecharacteristic polynomiabf an x n matrix A is defined as

pa(A) = (=1)"det(A — AI) = det(A — A),

wherel is then x n identity matrix. As it is well-knownp 4(\) is @ monic poly-
nomial, and the roots gf4(\) are the eigenvalues of. It is obvious that ifA
is self-adjoint, so is alsel[I] forany I C {1,...,n}, and the basic properties of
the determinants imply easily that the characteristic pafgial of a self-adjoint
matrix has real coefficients.

The symmetric basic functiong; = V;(\1,...,A,) on variables\, ..., A,
are defined by identity

A=) - A= 2) = VoA = VAL VoA 2 4 (=1)"V,. (3)

The explicit expressions fdr; can also be found straightforwardly:

‘/E)()‘la-"v)‘n) - 17
‘/1()\1,...,)\”) = M+X+...+ A\,
‘/2()\1, e >\n) = M+ M+ ...+ A1, (4)

VoAl An) = Atdg-... - A

Notation.S,, stands for the symmetric group arelements, that is, the permu-

tations on se{1,...,n}. If 7 € S, is a permutation, thesgn(7) stands for the
signof =. Any permutation inS,, can be represented as a productydles
7= 1,7(1),..., 7)) ... (ip, 7(ip), ..., 7" (i), (5)

and representation (5) is unigue when ignoring the ordehefcycles and cyclic
shifts in each cycle. We say that permutation (5) bysle structure(ly, ..., 1),
wherely, ..., [, are the lengths of the cycles.lif< ... < [.andl;+...+1. = n,
the subset of permutations &), having cycle structur€ly, . ..,[,) is denoted by
Cn(l1,...,l). The cardinality oiC,(ly,...,1,) is denoted byV,(I1,...,1l.).

Example 1. In S5 there are6 permutations: The identityl)(2)(3), three trans-
positions(1)(23), (2)(13), (3)(12), and two three-cyclegl23) and(132). Hence
C3(1,1,1) = {(1)(2)(3)}, C5(1,2) = {(1)(23). (2)(13), (3)(12)}, andCs(3) =
{(123), (132)}. ConsequentlyNs(1,1,1) = 1, N3(1,2) = 3, andN3(3) = 2.
Exploiting the structure of, in the same way, one can see that(1,1,1,1) =1,
Ni(1,1,2) = 6, Ny(1,3) = 8, Ny(2,2) = 3, andN,(4) = 6.

If a is an element of a ring, and € 7Z, thenZ-module multiplication ofxz by
nisdefinedas-a=a+...+a(ntimes),ifn >0,andn-a = —(a+...+a)
(—n times), ifn < 0. Hence aZ-multiplication can always be interpreted as a
repeated ring addition, but for example,@z|, a Z-module multiplication has a
more natural implementation by multiplying each coeffitieyn the given integer.
By aZ-module division we understand recoverinffom a = n - b, wheren € Z.
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3 Positivity Criterion

The following fact is well-known, and sometimes it is usecaslternative defin-
ition of positivity.

Theorem 2. A self-adjoint matrixA is positive if and only if all its eigenvalues are
nonnegative.

Remark 1. All eigenvalues of a self-adjoint matrix are real, see [@t,gxample.

To see that Theorem 2 is equivalent to the previous definittsuffices just
to notice that sinced is self-adjoint, there are eigenvectars, .. ., x, of A that
form an orthonormal basis df,, [2], and then any vector can be represented as
xr=cx+...+c,x,. Itisthen clear that

(| Az) = M el + ... + A enl?. (6)

Hence if\; > 0, then certainlyA is positive, but if any\; < 0, then vectorz;
substituted into Equation 6 shows thdis not positive.

According to Theorem 2, to determine whether a given matris positive,
we should determine if its eigenvalues are all nonnegafi@.this purpose, one
should discover the characteristic polynomialAf There are previously known
polynomial time algorithms for this purpose (see [4] and §BH the references
therein), but here we present a another method, which ierdthsed on linear
algebra than combinatorics.

We will next present a modest lemma giving a part of the ddsiréerion, but
for that purpose, we must first introduce the following déim: We definean al-
ternating polynomiahs a monic polynomial over real numbers having coefficients
with alternating signs. In symbols, an alternating polyrm(z) is a polynomial

p(z)=2" —az" Fagr™ -+ (=) a1z + (=) "a,, (7)
where eaclu; > 0.
Lemmal. The real roots of an alternating polynomial are nonnegative

Proof. Assume the contrary: Alternating polynomial (7) has a reot, where
A > 0. Then

0 = p(=X
)" —a (N (D) Y (<A) + (—1)ay,
DA+ a N @\ R an N+ ay).

Since eachy; is nonnegative, the last expression in parenthesis is sttA&a> 0.
In particular, the last line is nonzero, a contradiction. O

The above lemma provides easily a positivity criteriontextan the following
theorem.

Theorem 3. A self-adjoint matrixA is positive if and only if its characteristic
polynomial is alternating.



Proof. As discussed above, the characteristic polynomial of aastiint matrix
has real coefficients and real roots. If the characterigilgnmmial is alternating,
the eigenvalues ofl are nonnegative by the previous lemma, and hehieposi-
tive.

Assume then thatl is positive. Then each eigenvalue4fs nonnegative, and
by (4), each symmetric basic function an, ..., A, is nonnegative, too. But then
the characteristic polynomial of is alternating, as Equation 3 shows. O

To proceed towards Theorem 1, we will present the coeffisiehthe charac-
teristic polynomial in an alternate way. For that purpose, refer to [3] for the
following well-known representation:

pa(d) =D A= 3" det(A[). ®)
k=0 I1C{1,...,n}
|1|=k

Equation (8) says that theh coefficient (counting from the highest power)gfof
the characteristic polynomial of equals ta—1)* times the sum of the minors of
A of sizek x k. Since anyway we have

paN) = A=) - (A=)
= VoA = VAN R AT L (1),

equation (8) implies that

ViAo dn) = > det(A[T]), 9)

and hence Theorem 3 can be rephrased as

Theorem 4. A matrix A is positive if and only if

for eachk € {0,1...,n}.

Notice that Theorem 4 seems like a weaker version of thericitenentioned
in the introduction: to guarantee the positivity of matrxit is not necessary to
have each individual minatet(A[I]) nonnegative, but it is sufficient to have the
sum of orderk minors nonnegative for eaéhe {1,...,n}.

4 Connecting Characteristic Polynomial to the
Power Traces

In this section, we will prove Theorem 1 by discovering altgive forms for sums
(9) in terms of the traces of the powers of matrix(see Theorem 5 below). By
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Equation (8), these sums are equal to the coefficients offthecteristic polyno-
mial of A (ignoring the alternating sign), which means that evahgagums (9) is
equivalent to finding the characteristic polynomialAf

To begin with, we introduce the following simple lemma.

Lemma 2. Let AV, ..., A®) ben x n matrices andr € S, be ak-cycle
(1,...,k). Then

Z Z H w(]) (1) L A(k))' (10)

i1=1 ip=17=1

Proof. For k = 1 the left hand size of (10) becomes

as claimed. Assume then that the claim is truekfer 1. Then

> TA,

i1=1 ip=17=1
n n
_ Ak=1) 4 (k)
- Z Z H ngr(y)z o 1711@‘411@,11
’i1 1 Zk 1= 1] 1 Zk 1
n n k-2
_ ) k—1) 4 (k)
= 2 > ITAd,, (% 0a®),
i1=1  ip_1=1j=1

= Tr(A(l) oo AR=2) (A(kfl)A(k)))j

which is the claim. The last equality is a result of applyihg induction hypothesis

on matricesA®, ..., A®=2) andAk—1) A(k), O]
Remark 2. We will actually use only a special case of the previous lemvita
AN = = Ak = A, Equation (10) becomes then
Z Z Aiyig oo Ai iy Ay iy = Tr(AF). (11)
21 1 Zk 1
In this case, we can denofé= (1,...,k) and write (11) in a form
k
Z H ijiin(g) A ) (12)
ij=1 jeC
.7'66’

to shorten the notations. We will use form (12) later.

In the light of Theorem 4, Theorem 1 follows immediately frone theorem
below.



Theorem 5. Let A be ann x n-matrix andk < n. Then

> det(A[I)
=k
1 k
= o SN Nl L) Te(Al) L Te(Al),
r=1 4. +lr=k
1< <. <Up<k
Proof. We introduce a slight variation to the notation used beftfré;, ..., i, €

{1,2,...,n}, then

Ai1,i1 Ail,iQ s Aihik
Ap i Ai A
. . . _ 2,11 12,12 e 12,1k
A[Zl,’LQ,... ,Zk] = ) (13)
Aikyil Aik,iQ s Aikyik

whereA; ; are the matrix elements of matrik The difference between the previ-
ous notationA[{i1, ..., }] is that now the order of numbefs, .. ., i is signifi-
cant, and a number can occur many times. On the other handsifs; < ... < i,
then clearlyAliy, ..., ix] = A[{i1, ... it }].

It is important to notice that if two indices are equal in (18)en there are
two identical rows (and also two identical columns)Af , is, . . ., ix], and conse-
quentlydet(Aliy, 2, ... ,ix]) = 0. Moreover, any permutation af . . ., £ does not
affect the value oflet(Aliy,io,...,ix|). To see this, consider arbitrary transposi-
tion, say swapping indiceis andis. The effect of this transposition is simply that
one of swapping theth andsth rows and the corresponding columns. But since
both swappings result in a sign change, the determinantinsmmachanged. Since
all permutations can be expressed as a product of trangpssitve conclude that
det(Aliy, 2, ...,1]) is invariant under permuting the subindices.. ., k.

To get the desired result, we will evaluate the sum

> det(Ali, i) (14)

i1=1 =1

in two different ways.

As discussed before, the terms having= is for somer # s are zero. To
avoid equalitiesj; can be selected in ways,is in n — 1 ways, and so on. Thus
there aren(n — 1) - ... (n — k 4+ 1) = k! (}) nontrivial summands in (14). We
can then classify all the nontrivial terms into classes wtssquenceg, . . . , ix)
differ from each other only by a permutation of subindiges. ., k. In each class,
there is a unique representative with propéity ... < iz, SO we get (recall that
det(Aliy, 2, ...,1]) is invariant under the permutation of subindices)
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Z Dmmwp

211 Zkl

_ Z Z det 1),~~-ai7r(k;)])

1<i1 <. <ip<nmeSy

— Rl Z det(Alir, ..., ix])

1<ir1<..<ip<n
= k1Y det(A[l
[I]=k
We will next show that

Z Zdet [i1,. ., ik])

i1=1 =1

DTN Nl L) Tr(A) - Te(AR), (15)

r=1 I +...+lr=k
1<l <...<lp<k

and Theorem 5 will follow immediately. To prove (15), we apfte definition of
the determinant to the left hand side to get

Z Zmuww

211 Zkl

n n k
= > DD sen(m) [[ A4, (16)
i1=1 ip=17mESy J=1
Consider then the product
k
sgn(m) H Aijinis) (17)
7=1
whenr € Sy is a fixed permutation i€ (l4,...,l.), thatis,r has cycle structure
(I1,...,1.). Clearlysgn(r) = (—1)h=1+-+=1 — (_1)k=7 ‘and using notations
Ci, ..., C, asin Remark 2 for the cycles af we can write (17) as
DT TT A (18)
m=1j€Cy,

Now the inmost sum of (16) consists of terms of form (18). Catimyg the
outer sums over each such term, we have

1)k_r Z e Z H H Aijaiwm

=1  ig=1m=13j€Cn

= ’”ZH% ZH”,

i=t jecy j=1 j€Cm
.7601 ,7'ECm
= (DTl - Tre(Al) (19)
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by lemma 2. This means that in sum (16) each permutation Ci(ly,...,1,)
contributes term (19). Then

) det(Aliy, i)

i1=1 ip=1

k
=¥ (—1)F = Te(Ah) - .. Tr(Al) (20)

r=1 I+ +lr=k
1<l <. <lp<k
T€CK (11, lr)

k
= > DT YT Nl L) Tre(A) - Tr(Al),
r=1 l1+...+Hlr=k
1<l <. <<k
and the claim follows. O

5 Computational Aspects

We will now explain how to compute the sum

DD YT Nl L) Tr(AR) - Te(AR) (21)

r=1 Iy 4. +lr=k
1<l <. <Up<k

occurring in Theorem 1 efficiently. It is clearly enough tgkin how sum

Strk)y= > Ni(ly,....L)Tr(A") ... Tr(A") (22)

I +..+lr=Fk
1<) <...<lp<k

can be computed efficiently, and for that purpose, we wilt firesent the following
simple lemma.

Lemma 3. Letly, ..., [, be positive integers such that+ ... + 1. = k and
1 <...<l..Then

Nu(l, . 0)
el — 1 =k/r
- (Q)Nm(zl,...,lr/)Nk,m(z,n/H,...,zT) if 4. 4+l =m
andl,s < ly4q.

Proof. To get the first claim, notice that alll permutations of numbers ..., &
can be obtained exactly once by starting from all represienta (5) of all per-
mutations consisting of [-cycles, then arranging the cycles in allways, and
finally applying cyclic shifts to these cycles in dll ways. In symbols:k! =

Ni(l,...,01)rll", and the first claim follows.
For the second claim, we notice that there éli%) ways to choose a sdt
of m elements of{1,...,k}, and then one had/,,(ly,...,,) possibilities for
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havings’ cycles inl, andNy_,,,(l,741, ..., 1) for having the rest of the cycles in
the complement of . The claim follows immediately, because nly, ..., 1/} N
{lr1+1,...,l7«} :w D

Lemma 3 provides the recursion we can use for computing @&heralizing
(22), we define

S(rk,M)y= Y N(la,...,0;) Tr(A") ... Te(A"), (23)

I 4t lp=k
1<l <. <lp<M

but it turns out that a further generalization is useful. &oye € {1,...,7} we
define also
S(r k,M,e) = > Ne(lh,.o L) Te(AR) - Te(AT) (24)
I+ Hlr=k

1<l <. <lp<M

lp—eq1=r=lp
to be a restricted version of (23), withlast variabled, .1, ..., [, having the
same value. Then we have cleadyr, k, M) = S(r,k,M,1) and S(r,k) =
S(r k,k+1,1).

Some boundary conditions are very easy to obtain. For exgrbhplLemma 3
it is clear that

Ni(k) Tr(AF) = (k — 1) Tr(A¥), if & < M,
0 otherwise.

S(1,k,M,e) = { (25)

Moreover, if all variables are required to be equal, we haaraa very easy case.
In fact,

S(rk,M,r) = > N(...,I)Te(A")
1;lz:<]§w
k! \r H —
_ o Lr(AY)", ifr | k f’indl =k/r <M, (26)
0 otherwise.
Since each variablg, .. ., . is at leastl, we have also evidently
 N(1,. D) Te(A) =Te(A), ifE=r,
S(“k’M’e)_{o if r > k.

We will now find a recursion foiS(r, k, M, e), and for that purpose, we separate
the terms in the defining sum according to whetheg = [, . or not.

S(r,k,M,e)
= > Ni(ly, ... 1) Te(AD) - Te(AY) + S(r k, M, e + 1)
l1+...+Hlr=k
1<l <...<lp<M
lp_e<lp_ey1=--=lr
Denotingl = I, _.+1 = ... = [, and using the recursion of Lemma 3 we get
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S(r,k,M,e)

Yy ¥ <Z)Nk_le(l1,...,lre)

I<M U+ Alp_og=k—le
1< <..<lp<l

Tr(AD) - Te(A )N (1, ..., 1) Te(AY - Tr(AD
+ S(rk,M,e+1)

X

If £ — leis less than — e, the inner sum is empty, so we can write

S(r,k,M,e)
min(| 2= |4+1,M—1)

e

= Z Z (i) Ni—te(lry ooy lr—e)

=1 U+t lp_o=k—le
1< <...<lp<l

x  Tr(Ah). ... Tr(Alr‘e)@ Tr(A)°

[¢e!
+ S(rk,M,e+1)
min(| 2= |4+1,M 1)

e

_ 3 (i) (le)! Tr(AN°S(r — e,k — le, 1, 1)

lee!
=1

+ S(r,k,M,e+1)

The recursion

min{ | E=C |41,M -1}

¢ !
S(r,k,M,e) = Z (Z) (lleee)|' Tr(Al)eS(r —ek—lel 1)
=1 ’
+ S(rk,M,e+1) 27)

obtained gives rise to the following procedure:

Step 1. Compute and store valudd(A), ..., Tr(A™). A matrix multiplication
of ann x n matrix can be done witl(n?) ring multiplications and additions,
and A™ can be computed witth(log n) matrix multiplications by repeated squar-
ing. Hence this first step can be done witin® logn) ring multiplications and
additions.

Step 2. Compute and stor@r(A') for eachl < e,l < n. Basing on the values
stored in the first step, this step can be done by uéltg? log ) ring multiplica-
tions.

Step 3.0. ForeachM € [r + 1,k + 1] andr € [1, k] compute

S(r,k,M,r) = g Te(AN)7,if | kandl = k/r < M,
o 0 otherwise.

For Step 3.j assume that valu€ér, k, M, r — i) are computed for each/ €
[r+1,k+1],r € [i+1,k],andi € [0,1,...,7—1]. After step 3.0 the assumption

11



holds for: = 0, and step 3.j implies that the assumption holdsifer j after step
3.
For j=1tok-1

Step 3.j. ComputeS(r, k, M,r — j) foreachM € [r+1,k+1]andr € [j +1, k]
by using recursion

S(r,k, M,r — j)
min(|[ &=L +1,M 1)
= Y Ok L) Te(AY IS3 k= (r = j)1,1,1)
1=1
+ S(rk,M,r—j+1), (28)

whereC(r, k,1,j) = ((rfj)l) l,((rj(j il . (cf. (27)). By the assumption, values

S(j, k—(r—j)i,1,1) andS(r, k, M,r —j+1) are computed in the previous steps.
Step 4. Compute

k

C(k) = (1) S(r,k, k +1,1). (29)
r=1
As
S(rokk+1,1) = > N(ly,...,0,) Tr(AR) - Te(A),
I +...+lr=k

1<) <...<lp<k+1

we see that (29) equals to sum (21), that is,

Ck) = Z Y det(Alin, i)

wherec, is thekth coefficient of the characteristic polynomial 4f(co = 1 being
the leading coefficient).

Now we estimate how many algebraic operations are needel feteps3.;,
0 < j < k — 1. Recursion (28) reveals that one needs at rﬁe§t+ 1= k—j
ring multiplications, additions, and-module multiplications for f|xed and M.
Clearly this holds also fof = 0. Since there aré — r + 1 possibilities forM, one

needs at most
k

Z(k—rﬂ)u

"" —
r=j+1 J

aforementioned operations for st8. Summing over eacli, we see that the
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number of required algebraic operations is at most

k=1 k —j k-1 k 1 k—1k—j 1

S SYIIRRILE 15 5P SR ST 5) 3¢

j=0r=j+1 —J j=0r=j+1 r= j=0r=1 "
k—1 k—1

< K2 (log(k—7)+1) <k*) (logk+ 1) < 2k3log k,
: i

<

Il
=)

<

whenk > 3.

Step 4 can be done witf (k) algebraic operations, hence we need altogether
O(k3log k) algebraic operations for computing(k) and the coefficient;, =
(_kl!)k C(k). Now that determinant is given by-1)"c,, the claimed goal of the
algorithm is reached.

We conclude by noticing that even though computitig) = kl,)kC(/-c) re-
quires division byk!, the procedure can be still implemented over some rings over
finite characteristics, such as polynomial rings over priiakls Z,, for instance.

In such cases, the polynomials have to be interpreted asgulials overZ when
performing steps 1-4. After that, the outcoming polynomiaist be divided by
k!, and its coefficients can then be projected to the prime figldo get the final

outcome.
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