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Abstract

We point out that to determine whether a given self-adjoint matrix A is positive
semidefinite is equivalent to determining whether the characteristic polynomial of
A is alternating, and give a new algorithm for computing the characteristic poly-
nomial. The said algorithm usesO(n3 log n) multiplications and additions, and
one division when computing any coefficient of the characteristic polynomial of
an n × n matrix. The algorithm is essentially division-free, and hence it can be
also used to compute the determinant forn × n matrices over a great variety of
commutative rings. It takesO(n3 log n) ring multiplications, additions,Z-module
multiplications, and oneZ-module division to compute the determinant.

Keywords: Determinant, Characteristic Polynomial, Positive Semidefinite, Poly-
nomial Time
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1 Introduction

In the usualHilbert space formalismof quantum mechanics, the states of quan-
tum systems are identified with self-adjoint mappings that have unit trace and are
positive semidefinite. In quantum physics literature, term“positive semidefinite”
is sometimes replaced by “positive”, and we will also use thelatter term in this
article.

It follows that when studying quantum mechanics, it is sometimes necessary
to discover whether a given matrix is indeed a valid representation of a state of a
quantum system or not. That is, one should find out if the matrix is self-adjoint,
has unit trace, and is positive semidefinite.

The two first conditions, namely the self-adjointness and the unit trace property
are very straightforward to verify, but the third one, the positive semidefiniteness
seems to be much more complicated. The following criterion occurs in the litera-
ture very frequently: MatrixA is positive semidefinite if and only if the principal
minors ofA are all nonnegative. The mentioned criterion is theoretically very in-
teresting but appears very tedious to verify, since for ann× n-matrix, there are2n

principal minors, including the two trivial ones.
In this article, we are interested only in finite-dimensional Hilbert spaces, and

hence we can identify the Hilbert space with the Cartesian product Cn. Having
this identification, we also assume that a linear mappingC

n → C
n is specified by

a givenn × n-matrixA over complex numbers.
Here we will not pay any particular attention to the algorithmic aspects of rep-

resenting complex numbers. Instead, we will present the main result just by count-
ing how many multiplications and additions are needed. In fact, when introducing
the algorithm for computing the characteristic polynomial, we only assume that the
matrix entries are from a commutative ring, and we will also count the number of
Z-module multiplications (defined later).

We present our criterion for positive semidefiniteness as a theorem below. The
notations and terminology involved in the theorem are explained in the next section.

Theorem 1. Define an infinite sequence of expressions as follows:
Thekth expression is defined as

k
∑

r=1

(−1)k−r
∑

l1+...+lr=k

1≤l1≤...≤lr≤k

Nk(l1, . . . , lr)Tr(Al1) · . . . · Tr(Alr), (1)

whereNk(l1, . . . , lr) is the number of permutations inSk having cycle structure
(l1, . . . , lr). Hence a few first expressions are as follows:























Tr(A)
Tr(A)2 − Tr(A2)
Tr(A)3 − 3Tr(A)Tr(A2) + 2Tr(A3)
Tr(A)4 − 6Tr(A)2 Tr(A2) + 3Tr(A2)2 + 8Tr(A)Tr(A3) − 6Tr(A4)
. . .

(2)
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Then, ann × n self-adjoint matrixA is positive semidefinite if and only ifn first
expressions in (2) are nonnegative.

The above criterion leads into a new algorithm (using polynomial number of
arithmetical operations) for verifying the positive semidefiniteness, even though
the number of summands in (1) equals to the number of partitions of k, which

is asymptotically 1
4k

√
3
eπ
√

2k/3 (see [1]), superpolynomial with respect tok ≤
n. Despite the large number of summands, we show later how to compute (1) in
polynomial time with respect tok ≤ n.

The criterion of Theorem 1 establishes also a connection between the coeffi-
cients of the characteristic polynomial and the traces of the powers of the matrix, a
connection which is interesting on its own.

2 Preliminaries and Terminology

Notation Hn stands for ann-dimensional Hilbert space, andL(Hn) means the
linear mappingsHn → Hn. We will identify Hn with C

n, andL(Hn) with n × n
matrices with complex entries.

We denote the complex conjugate ofz ∈ C by z∗. Theadjoint matrixA∗ of
A is given by taking the complex conjugate of the transpose matrix of A. That
is, if the matrix entries ofA areAij , then the matrix entries ofA∗ are given by
(A∗)ij = (Aji)

∗. Matrix A is self-adjoint, if A = A∗.
SpaceHn = C

n is equipped with so-calledHermitian inner product

〈x | y〉 = x∗
1y1 + . . . + x∗

nyn.

We understand the vectorsx ∈ Hn as column vectors, hence the image ofx under
mappingA ∈ L(Hn) is Ax, understood as the product ofn × n-matrix and a
column vector.

The trace of matrix A is denoted byTr(A) and defined as the sum of the
diagonal elements ofA:

Tr(A) =
n

∑

i=1

Aii.

Matrix A is positiveor positive semidefinite, if

〈x | Ax〉 ≥ 0

for eachx ∈ Hn. It is a well-known fact that if〈x | Ax〉 ∈ R for eachx ∈ Hn,
thenA is self-adjoint. Hence it makes no sense to define the notion of positivity in
this way forn × n-matrices that are not self-adjoint.

A submatrixof A is a matrix that is obtained by deleting some rows and
columns ofA. A principal submatrixof ann×n matrix is a submatrix obtained by
deleting some rows and thecorrespondingcolumns. Aminorof A is a determinant
of a principal submatrix ofA.

If A is an×n-matrix, andI ⊆ {1, . . . , n}, notationA[I] stands for the princi-
pal submatrix ofA obtained by deletingith row and column for eachi /∈ I. Hence
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A[I] is an|I| × |I|-matrix that has those rows and columns whose indices are inI
left. Matrix A[∅] is defined to be1 andA[{1, . . . , n}] is naturally understood asA.

Thecharacteristic polynomialof an × n matrixA is defined as

pA(λ) = (−1)n det(A − λI) = det(λI − A),

whereI is then × n identity matrix. As it is well-known,pA(λ) is a monic poly-
nomial, and the roots ofpA(λ) are the eigenvalues ofA. It is obvious that ifA
is self-adjoint, so is alsoA[I] for anyI ⊆ {1, . . . , n}, and the basic properties of
the determinants imply easily that the characteristic polynomial of a self-adjoint
matrix has real coefficients.

The symmetric basic functionsVi = Vi(λ1, . . . , λn) on variablesλ1, . . ., λn

are defined by identity

(λ − λ1) · . . . · (λ − λn) = V0λ
n − V1λ

n−1 + V2λ
n−2 + . . . + (−1)nVn. (3)

The explicit expressions forVi can also be found straightforwardly:






















V0(λ1, . . . , λn) = 1,
V1(λ1, . . . , λn) = λ1 + λ2 + . . . + λn,
V2(λ1, . . . , λn) = λ1λ2 + λ1λ2 + . . . + λn−1λn,
. . . . . .
Vn(λ1, . . . , λn) = λ1λ2 · . . . · λn.

(4)

NotationSn stands for the symmetric group onn elements, that is, the permu-
tations on set{1, . . . , n}. If π ∈ Sn is a permutation, thensgn(π) stands for the
signof π. Any permutation inSn can be represented as a product ofcycles:

π = (1, π(1), . . . , πl1−1(1)) . . . (ir, π(ir), . . . , π
lr−1(ir)), (5)

and representation (5) is unique when ignoring the order of the cycles and cyclic
shifts in each cycle. We say that permutation (5) hascycle structure(l1, . . . , lr),
wherel1, . . ., lr are the lengths of the cycles. Ifl1 ≤ . . . ≤ lr andl1 + . . .+ lr = n,
the subset of permutations inSn having cycle structure(l1, . . . , lr) is denoted by
Cn(l1, . . . , lr). The cardinality ofCn(l1, . . . , lr) is denoted byNn(l1, . . . , lr).

Example 1. In S3 there are6 permutations: The identity(1)(2)(3), three trans-
positions(1)(23), (2)(13), (3)(12), and two three-cycles(123) and(132). Hence
C3(1, 1, 1) = {(1)(2)(3)}, C3(1, 2) = {(1)(23), (2)(13), (3)(12)}, andC3(3) =
{(123), (132)}. Consequently,N3(1, 1, 1) = 1, N3(1, 2) = 3, andN3(3) = 2.
Exploiting the structure ofS4 in the same way, one can see thatN4(1, 1, 1, 1) = 1,
N4(1, 1, 2) = 6, N4(1, 3) = 8, N4(2, 2) = 3, andN4(4) = 6.

If a is an element of a ring, andn ∈ Z, thenZ-module multiplication ofa by
n is defined asn · a = a + . . . + a (n times), ifn ≥ 0, andn · a = −(a + . . . + a)
(−n times), if n < 0. Hence aZ-multiplication can always be interpreted as a
repeated ring addition, but for example, inC[x], a Z-module multiplication has a
more natural implementation by multiplying each coefficient by the given integer.
By aZ-module division we understand recoveringb from a = n · b, wheren ∈ Z.
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3 Positivity Criterion

The following fact is well-known, and sometimes it is used asan alternative defin-
ition of positivity.

Theorem 2. A self-adjoint matrixA is positive if and only if all its eigenvalues are
nonnegative.

Remark 1. All eigenvalues of a self-adjoint matrix are real, see [2], for example.

To see that Theorem 2 is equivalent to the previous definition, it suffices just
to notice that sinceA is self-adjoint, there are eigenvectorsx1, . . ., xn of A that
form an orthonormal basis ofHn [2], and then any vector can be represented as
x = c1x1 + . . . + cnxn. It is then clear that

〈x | Ax〉 = λ1 |c1|2 + . . . + λn |cn|2 . (6)

Hence ifλi ≥ 0, then certainlyA is positive, but if anyλi < 0, then vectorxi

substituted into Equation 6 shows thatA is not positive.
According to Theorem 2, to determine whether a given matrixA is positive,

we should determine if its eigenvalues are all nonnegative.For this purpose, one
should discover the characteristic polynomial ofA. There are previously known
polynomial time algorithms for this purpose (see [4] and [5]and the references
therein), but here we present a another method, which is rather based on linear
algebra than combinatorics.

We will next present a modest lemma giving a part of the desired criterion, but
for that purpose, we must first introduce the following definition: We definean al-
ternating polynomialas a monic polynomial over real numbers having coefficients
with alternating signs. In symbols, an alternating polynomial p(x) is a polynomial

p(x) = xn − a1x
n−1 + a2x

n−2 − . . . + (−1)n−1an−1x + (−1)nan, (7)

where eachai ≥ 0.

Lemma 1. The real roots of an alternating polynomial are nonnegative.

Proof. Assume the contrary: Alternating polynomial (7) has a root−λ, where
λ > 0. Then

0 = p(−λ)

= (−λ)n − a1(−λ)n−1 + . . . + (−1)n−1an−1(−λ) + (−1)nan

= (−1)n(λn + a1λ
n−1 + a2λ

n−2 + . . . + an−1λ + an).

Since eachai is nonnegative, the last expression in parenthesis is at least λn > 0.
In particular, the last line is nonzero, a contradiction.

The above lemma provides easily a positivity criterion, stated in the following
theorem.

Theorem 3. A self-adjoint matrixA is positive if and only if its characteristic
polynomial is alternating.
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Proof. As discussed above, the characteristic polynomial of a self-adjoint matrix
has real coefficients and real roots. If the characteristic polynomial is alternating,
the eigenvalues ofA are nonnegative by the previous lemma, and henceA is posi-
tive.

Assume then thatA is positive. Then each eigenvalue ofA is nonnegative, and
by (4), each symmetric basic function onλ1, . . ., λn is nonnegative, too. But then
the characteristic polynomial ofA is alternating, as Equation 3 shows.

To proceed towards Theorem 1, we will present the coefficients of the charac-
teristic polynomial in an alternate way. For that purpose, we refer to [3] for the
following well-known representation:

pA(λ) =
n

∑

k=0

λn−k(−1)k
∑

I⊆{1,...,n}
|I|=k

det(A[I]). (8)

Equation (8) says that thekth coefficient (counting from the highest power ofλ) of
the characteristic polynomial ofA equals to(−1)k times the sum of the minors of
A of sizek × k. Since anyway we have

pA(λ) = (λ − λ1) · . . . · (λ − λn)

= V0λ
n − V1λ

n−1 + V2λ
n−2 + . . . + (−1)nVn,

equation (8) implies that

Vk(λ1, . . . , λn) =
∑

I⊆{1,...,n}
|I|=k

det(A[I]), (9)

and hence Theorem 3 can be rephrased as

Theorem 4. A matrixA is positive if and only if

∑

I⊆{1,...,n}
|I|=k

det(A[I]) ≥ 0

for eachk ∈ {0, 1 . . . , n}.

Notice that Theorem 4 seems like a weaker version of the criterion mentioned
in the introduction: to guarantee the positivity of matrixA it is not necessary to
have each individual minordet(A[I]) nonnegative, but it is sufficient to have the
sum of orderk minors nonnegative for eachk ∈ {1, . . . , n}.

4 Connecting Characteristic Polynomial to the
Power Traces

In this section, we will prove Theorem 1 by discovering alternative forms for sums
(9) in terms of the traces of the powers of matrixA (see Theorem 5 below). By
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Equation (8), these sums are equal to the coefficients of the characteristic polyno-
mial of A (ignoring the alternating sign), which means that evaluating sums (9) is
equivalent to finding the characteristic polynomial ofA.

To begin with, we introduce the following simple lemma.

Lemma 2. Let A(1), . . ., A(k) be n × n matrices andπ ∈ Sk be a k-cycle
(1, . . . , k). Then

n
∑

i1=1

. . .

n
∑

ik=1

k
∏

j=1

A
(j)
ij ,iπ(j)

= Tr(A(1) · . . . · A(k)). (10)

Proof. Fork = 1 the left hand size of (10) becomes

n
∑

i1=1

A
(1)
i1,i1

= Tr(A(1)),

as claimed. Assume then that the claim is true fork − 1. Then

n
∑

i1=1

. . .
n

∑

ik=1

k
∏

j=1

A
(j)
ij ,iπ(j)

=
n

∑

i1=1

. . .
n

∑

ik−1=1

k−2
∏

j=1

A
(j)
ij ,iπ(j)

n
∑

ik=1

A
(k−1)
ik−1,ik

A
(k)
ik,i1

=

n
∑

i1=1

. . .

n
∑

ik−1=1

k−2
∏

j=1

A
(j)
ij ,iπ(j)

(A(k−1)A(k))ik−1,i1

= Tr(A(1) · . . . · A(k−2) · (A(k−1)A(k))),

which is the claim. The last equality is a result of applying the induction hypothesis
on matricesA(1), . . ., A(k−2), andA(k−1)A(k).

Remark 2. We will actually use only a special case of the previous lemmawith
A(1) = . . . = A(k) = A. Equation (10) becomes then

n
∑

i1=1

. . .
n

∑

ik=1

Ai1,i2 · . . . · Aik−1,ikAik,i1 = Tr(Ak). (11)

In this case, we can denoteC = (1, . . . , k) and write (11) in a form

n
∑

ij=1

j∈C

∏

j∈C

Aij ,iπ(j)
= Tr(Ak) (12)

to shorten the notations. We will use form (12) later.

In the light of Theorem 4, Theorem 1 follows immediately fromthe theorem
below.
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Theorem 5. LetA be ann × n-matrix andk ≤ n. Then

∑

|I|=k

det(A[I])

=
1

k!

k
∑

r=1

(−1)k−r
∑

l1+...+lr=k

1≤l1≤...≤lr≤k

Nk(l1, . . . , lr)Tr(Al1) · . . . · Tr(Alr ).

Proof. We introduce a slight variation to the notation used before:If i1, . . ., ik ∈
{1, 2, . . . , n}, then

A[i1, i2, . . . , ik] =









Ai1,i1 Ai1,i2 . . . Ai1,ik

Ai2,i1 Ai2,i2 . . . Ai2,ik

. . . . . . . . . . . .
Aik,i1 Aik ,i2 . . . Aik,ik









, (13)

whereAi,j are the matrix elements of matrixA. The difference between the previ-
ous notationA[{i1, . . . , ik}] is that now the order of numbersi1, . . ., ik is signifi-
cant, and a number can occur many times. On the other hand, ifi1 < i2 < . . . < ik,
then clearlyA[i1, . . . , ik] = A[{i1, . . . , ik}].

It is important to notice that if two indices are equal in (13), then there are
two identical rows (and also two identical columns) inA[i1, i2, . . . , ik], and conse-
quentlydet(A[i1, i2, . . . , ik]) = 0. Moreover, any permutation of1, . . ., k does not
affect the value ofdet(A[i1, i2, . . . , ik]). To see this, consider arbitrary transposi-
tion, say swapping indicesir andis. The effect of this transposition is simply that
one of swapping therth andsth rows and the corresponding columns. But since
both swappings result in a sign change, the determinant remains unchanged. Since
all permutations can be expressed as a product of transpositions, we conclude that
det(A[i1, i2, . . . , ik]) is invariant under permuting the subindices1, . . ., k.

To get the desired result, we will evaluate the sum

n
∑

i1=1

. . .

n
∑

ik=1

det(A[i1, . . . , ik]) (14)

in two different ways.

As discussed before, the terms havingir = is for somer 6= s are zero. To
avoid equalities,i1 can be selected inn ways,i2 in n − 1 ways, and so on. Thus
there aren(n − 1) · . . . · (n − k + 1) = k!

(

n
k

)

nontrivial summands in (14). We
can then classify all the nontrivial terms into classes where sequences(i1, . . . , ik)
differ from each other only by a permutation of subindices1, . . ., k. In each class,
there is a unique representative with propertyi1 < . . . < ik, so we get (recall that
det(A[i1, i2, . . . , ik]) is invariant under the permutation of subindices)
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n
∑

i1=1

. . .

n
∑

ik=1

det(A[i1, . . . , ik])

=
∑

1≤i1<...<ik≤n

∑

π∈Sk

det(A[iπ(1), . . . , iπ(k)])

= k!
∑

1≤i1<...<ik≤n

det(A[i1, . . . , ik])

= k!
∑

|I|=k

det(A[I]).

We will next show that
n

∑

i1=1

. . .

n
∑

ik=1

det(A[i1, . . . , ik])

=

k
∑

r=1

(−1)k−r
∑

l1+...+lr=k

1≤l1≤...≤lr≤k

Nk(l1, . . . , lr)Tr(Al1) · . . . · Tr(Alr), (15)

and Theorem 5 will follow immediately. To prove (15), we apply the definition of
the determinant to the left hand side to get

n
∑

i1=1

. . .

n
∑

ik=1

det(A[i1, . . . , ik])

=

n
∑

i1=1

. . .

n
∑

ik=1

∑

π∈Sk

sgn(π)

k
∏

j=1

Aij ,iπ(j)
. (16)

Consider then the product

sgn(π)
k

∏

j=1

Aij ,iπ(j)
(17)

whenπ ∈ Sk is a fixed permutation inCk(l1, . . . , lr), that is,π has cycle structure
(l1, . . . , lr). Clearlysgn(π) = (−1)l1−1+...+lr−1 = (−1)k−r, and using notations
C1, . . ., Cr as in Remark 2 for the cycles ofπ, we can write (17) as

(−1)k−r
r

∏

m=1

∏

j∈Cm

Aij ,iπ(j)
(18)

Now the inmost sum of (16) consists of terms of form (18). Computing the
outer sums over each such term, we have

(−1)k−r
n

∑

i1=1

. . .

n
∑

ik=1

r
∏

m=1

∏

j∈Cm

Aij ,iπ(j)

= (−1)k−r
n

∑

ij=1

j∈C1

∏

j∈C1

Aij ,iπ(j)
. . .

n
∑

ij=1

j∈Cm

∏

j∈Cm

Aij ,iπ(j)

= (−1)k−r Tr(Al1) · . . . · Tr(Alr) (19)
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by lemma 2. This means that in sum (16) each permutationπ ∈ Ck(l1, . . . , lr)
contributes term (19). Then

n
∑

i1=1

. . .
n

∑

ik=1

det(A[i1, . . . , ik])

=
k

∑

r=1

∑

l1+...+lr=k

1≤l1≤...≤lr≤k

π∈Ck(l1,...,lr)

(−1)k−r Tr(Al1) · . . . · Tr(Alr) (20)

=
k

∑

r=1

(−1)k−r
∑

l1+...+lr=k

1≤l1≤...≤lr≤k

Nk(l1, . . . , lr)Tr(Al1) · . . . · Tr(Alr),

and the claim follows.

5 Computational Aspects

We will now explain how to compute the sum

k
∑

r=1

(−1)k−r
∑

l1+...+lr=k

1≤l1≤...≤lr≤k

Nk(l1, . . . , lr)Tr(Al1) · . . . · Tr(Alr ) (21)

occurring in Theorem 1 efficiently. It is clearly enough to explain how sum

S(r, k) =
∑

l1+...+lr=k

1≤l1≤...≤lr≤k

Nk(l1, . . . , lr)Tr(Al1) · . . . · Tr(Alr) (22)

can be computed efficiently, and for that purpose, we will first present the following
simple lemma.

Lemma 3. Let l1, . . ., lr be positive integers such thatl1 + . . . + lr = k and
l1 ≤ . . . ≤ lr. Then

Nk(l1, . . . , lr)

=



















k!
lrr!

if l1 = . . . = lr
= l = k/r,

(

k
m

)

Nm(l1, . . . , lr′)Nk−m(lr′+1, . . . , lr) if l1 + . . . + lr′ = m
and lr′ < lr′+1.

Proof. To get the first claim, notice that allk! permutations of numbers1, . . . , k
can be obtained exactly once by starting from all representations (5) of all per-
mutations consisting ofr l-cycles, then arranging the cycles in allr! ways, and
finally applying cyclic shifts to these cycles in alllr ways. In symbols:k! =
Nk(l, . . . , l)r!l

r, and the first claim follows.

For the second claim, we notice that there are
(

k
m

)

ways to choose a setI

of m elements of{1, . . . , k}, and then one hasNm(l1, . . . , lr′) possibilities for
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havingr′ cycles inI, andNk−m(lr′+1, . . . , lr) for having the rest of the cycles in
the complement ofI. The claim follows immediately, because now{l1, . . . , lr′} ∩
{lr′+1, . . . , lr} = ∅.

Lemma 3 provides the recursion we can use for computing (22).Generalizing
(22), we define

S(r, k,M) =
∑

l1+...+lr=k

1≤l1≤...≤lr<M

Nk(l1, . . . , lr)Tr(Al1) · . . . · Tr(Alr ), (23)

but it turns out that a further generalization is useful. Foranye ∈ {1, . . . , r} we
define also

S(r, k,M, e) =
∑

l1+...+lr=k

1≤l1≤...≤lr<M
lr−e+1=...=lr

Nk(l1, . . . , lr)Tr(Al1) · . . . · Tr(Alr) (24)

to be a restricted version of (23), withe last variableslr−e+1, . . ., lr having the
same value. Then we have clearlyS(r, k,M) = S(r, k,M, 1) and S(r, k) =
S(r, k, k + 1, 1).

Some boundary conditions are very easy to obtain. For example, by Lemma 3
it is clear that

S(1, k,M, e) =

{

Nk(k)Tr(Ak) = (k − 1)!Tr(Ak), if k < M ,
0 otherwise.

(25)

Moreover, if all variables are required to be equal, we have again a very easy case.
In fact,

S(r, k,M, r) =
∑

rl=k

1≤l<M

N(l, . . . , l)Tr(Al)r

=

{

k!
lrr! Tr(Al)r, if r | k andl = k/r < M ,
0 otherwise.

(26)

Since each variablel1, . . ., lr is at least1, we have also evidently

S(r, k,M, e) =

{

Nk(1, . . . , 1)Tr(A)r = Tr(A)r, if k = r,
0 if r > k.

We will now find a recursion forS(r, k,M, e), and for that purpose, we separate
the terms in the defining sum according to whetherlr−e = lr−e+1 or not.

S(r, k,M, e)

=
∑

l1+...+lr=k

1≤l1≤...≤lr<M

lr−e<lr−e+1=...=lr

Nk(l1, . . . , lr)Tr(Al1) · . . . · Tr(Alr ) + S(r, k,M, e + 1)

Denotingl = lr−e+1 = . . . = lr and using the recursion of Lemma 3 we get
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S(r, k,M, e)

=
∑

l<M

∑

l1+...+lr−e=k−le

1≤l1≤...≤lr<l

(

k

le

)

Nk−le(l1, . . . , lr−e)

× Tr(Al1) · . . . · Tr(Alr−e)Nle(l, . . . , l)Tr(Al) · . . . · Tr(Al)

+ S(r, k,M, e + 1)

If k − le is less thanr − e, the inner sum is empty, so we can write

S(r, k,M, e)

=

min(⌊k−r
e

⌋+1,M−1)
∑

l=1

∑

l1+...+lr−e=k−le

1≤l1≤...≤lr<l

(

k

le

)

Nk−le(l1, . . . , lr−e)

× Tr(Al1) · . . . · Tr(Alr−e)
(le)!

lee!
Tr(Al)e

+ S(r, k,M, e + 1)

=

min(⌊k−r
e

⌋+1,M−1)
∑

l=1

(

k

le

)

(le)!

lee!
Tr(Al)eS(r − e, k − le, l, 1)

+ S(r, k,M, e + 1)

The recursion

S(r, k,M, e) =

min{⌊k−r
e

⌋+1,M−1}
∑

l=1

(

k

el

)

(le)!

lee!
Tr(Al)eS(r − e, k − le, l, 1)

+ S(r, k,M, e + 1) (27)

obtained gives rise to the following procedure:

Step 1. Compute and store valuesTr(A), . . ., Tr(An). A matrix multiplication
of an n × n matrix can be done withO(n3) ring multiplications and additions,
andAn can be computed withO(log n) matrix multiplications by repeated squar-
ing. Hence this first step can be done withO(n3 log n) ring multiplications and
additions.

Step 2. Compute and storeTr(Al)e for each1 ≤ e, l ≤ n. Basing on the values
stored in the first step, this step can be done by usingO(n2 log n) ring multiplica-
tions.

Step 3.0. For eachM ∈ [r + 1, k + 1] andr ∈ [1, k] compute

S(r, k,M, r) =

{

k!
lrr! Tr(Al)r, if r | k andl = k/r < M ,
0 otherwise.

For Step 3.j assume that valuesS(r, k,M, r − i) are computed for eachM ∈
[r+1, k+1], r ∈ [i+1, k], andi ∈ [0, 1, . . . , j−1]. After step 3.0 the assumption
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holds fori = 0, and step 3.j implies that the assumption holds fori = j after step
3.j.

For j=1 to k−1

Step 3.j. ComputeS(r, k,M, r− j) for eachM ∈ [r +1, k +1] andr ∈ [j +1, k]
by using recursion

S(r, k,M, r − j)

=

min(⌊k−r
r−j

⌋+1,M−1)
∑

l=1

C(r, k, l, j)Tr(Al)r−jS(j, k − (r − j)l, l, 1)

+ S(r, k,M, r − j + 1), (28)

whereC(r, k, l, j) =
(

k
(r−j)l

)

((r−j)l)!
lr−j(r−j)!

(cf. (27)). By the assumption, values

S(j, k−(r−j)l, l, 1) andS(r, k,M, r−j +1) are computed in the previous steps.

Step 4. Compute

C(k) =

k
∑

r=1

(−1)r−kS(r, k, k + 1, 1). (29)

As

S(r, k, k + 1, 1) =
∑

l1+...+lr=k

1≤l1≤...≤lr<k+1

N(l1, . . . , lr)Tr(Al1) · . . . · Tr(Alr),

we see that (29) equals to sum (21), that is,

C(k) =

n
∑

i1=1

. . .

n
∑

ik=1

det(A[i1, . . . , ik])

= k!
∑

I⊆{1,...,n}
|I|=k

det(A[I]) = k!(−1)kck,

whereck is thekth coefficient of the characteristic polynomial ofA (c0 = 1 being
the leading coefficient).

Now we estimate how many algebraic operations are needed forall steps3.j,
0 ≤ j ≤ k − 1. Recursion (28) reveals that one needs at mostk−r

r−j + 1 = k−j
r−j

ring multiplications, additions, andZ-module multiplications for fixedr andM .
Clearly this holds also forj = 0. Since there arek− r + 1 possibilities forM , one
needs at most

k
∑

r=j+1

(k − r + 1)
k − j

r − j

aforementioned operations for step3.j. Summing over eachj, we see that the
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number of required algebraic operations is at most

k−1
∑

j=0

k
∑

r=j+1

(k − r + 1)
k − j

r − j
≤

k−1
∑

j=0

k
∑

r=j+1

k2 1

r − j
= k2

k−1
∑

j=0

k−j
∑

r=1

1

r

≤ k2
k−1
∑

j=0

(log(k − j) + 1) ≤ k2
k−1
∑

j=0

(log k + 1) ≤ 2k3 log k,

whenk ≥ 3.
Step 4 can be done withO(k) algebraic operations, hence we need altogether

O(k3 log k) algebraic operations for computingC(k) and the coefficientck =
(−1)k

k! C(k). Now that determinant is given by(−1)ncn, the claimed goal of the
algorithm is reached.

We conclude by noticing that even though computingc(k) = (−1)k

k! C(k) re-
quires division byk!, the procedure can be still implemented over some rings over
finite characteristics, such as polynomial rings over primefieldsZp, for instance.
In such cases, the polynomials have to be interpreted as polynomials overZ when
performing steps 1–4. After that, the outcoming polynomialmust be divided by
k!, and its coefficients can then be projected to the prime fieldZp to get the final
outcome.
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