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Abstract

We consider the power of the following rewriting: given a finite or regular
set X of words and an initial word w, apply iteratively the operation which
deletes a word from X from one of the ends of w and simultaneously catenates
another word from X to the opposite end of w. We show that if the deletion is
always done at the beginning and the catenation at the end, and the choice
of a word to be catenated does not depend on the word erased, then the
generated language is always regular, though the derivability relation is not,
in general, rational. If the deletion and the catenation are done arbitrarily
at the opposite ends, the language need not be regular. If the catenation is
done at the same end as the deletion, the relation of derivability is rational
even if the catenated word can depend on the word erased.

Keywords: Rewriting systems, regular languages, commutation of lan-
guages, rational relations.
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1 Introduction

Operations on words, and the properties preserved under these operations,
have always been and still are an essential part of formal language theory. In
particular, operations preserving nice properties, such as the regularity, have
been searched for. Recently a number of such operations were motivated by
two active research topics. On one hand, the formalization of DNA comput-
ing, see [22], has introduced a rich variety of new operations on words. On
the other hand, Conway’s problem on commutation of languages, see [17, 13],
has motivated to reconsider some similarly formulated operations on words.

We consider the following basic operation, which we call one-way rewrit-
ing, and its natural variants and extensions. Let w be a finite word and X
a finite set of words. For each x, y ∈ X we rewrite w to (x−1w)y, that is,
we first delete x from the beginning of w and then add y to the right end
of x−1w. An obvious question is: Is the language consisting of all words ob-
tained in this way necessarily regular? We prove that the language is indeed
always regular, though the rewriting itself is not a rational relation.

It is important to note that both deletions and additions are done freely
in the sense that there is no connection between words x and y used at a
step of rewriting. If for each prefix being erased the choice of the word to be
appended is predetermined, we obtain the well-known tag systems of Post
[25], which are, in general, powerful enough to simulate Turing machines
[19]. We shall prove that if we impose even a single such constraint, i.e.,
when deleting a certain x ∈ X we have to add a particular x′ ∈ X, we can
generate nonregular languages.

There are several variants of the above rewriting, and some simpler cases
have been studied before. Following Post [25], Büchi [5] proved the regularity
of the set of words derivable from a single word using a finite set of rules
x → y that specify local rewriting at the beginning of the word, that is, xw
is rewritten with yw (one-sided rewriting). The regularity is still preserved
by one-sided rewriting with any recognizable set of rules, which follows from
Conway’s result on a certain larger class of language transformations [9,
Th.10]. Kratko [15] and, independently, Büchi and Hosken [6] extended the
result of Büchi [5] in another direction, showing that if the rewriting is done
locally at both of the ends of a word (two-sided rewriting) using a finite set of
rules, then the generated language is regular as well. In addition, one-sided
rewriting was proved to be a rational relation by Caucal [7]. We generalize
these results by proving that the derivability relation of two-sided rewriting
is rational for any recognizable set of rules.

Another variant is obtained by allowing two-way rewriting : the deletion
can be done at either of the ends, but the simultaneous adding has to be
done at the opposite end. More formally, if w = xw′, then w derives w′y,
and if w = w′x, then w derives yw′; in other words, w is rewritten to (x−1w)y
or y(wx−1). We show that nonregular languages can be generated, and that
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their recursiveness in general appears to be a challenging problem.
The above two-way rewriting is a natural sequential variant of commu-

tation of languages, KL = LK [13, 14]. Similarly, one-way rewriting is a
sequential variant of so-called semi-commutation of languages, KL ⊆ LK.
There are remarkable recent results on these language problems, such as the
negative answer to Conway’s problem, that is, that the greatest set commut-
ing with a given regular (or even finite) set need not be recursively enumerable
[17], while in the case of semi-commutation it is always regular [16]. Our pa-
per is motivated by these results — up to the point of its title. On the other
hand, it is intended to be the first systematic study of the corresponding
sequential problems.

In our presentation we need only basic results and notions of formal lan-
guage and automata theory that can be found in the standard textbooks
[28, 11], as well as some background in rational relations [3].

2 Two-sided local rewriting

Let us start from the simplest mode of rewriting, where, at every step, either
a prefix is replaced by another word, or a suffix is replaced by another word.
From the work of Kratko [15] and Büchi and Hosken [6] it is known that for
any finite set of rules of this form the set of words derivable from a given
initial word is regular. We shall first extend this result to the case of an
infinite recognizable set of rewriting rules and any fixed regular set of initial
words. Then we shall prove a stronger result that every such rewriting system
implements a rational relation.

Let Σ be an alphabet and let I ⊆ Σ∗ be a regular set of initial words. Let

the set of rewriting rules x
`→ y admissible at the left end be a recognizable

relation (in other words, regular as a language over Σ∪{ `→}); then it can be

written in the form
`→ =

n⋃
i=1

Xi×Yi, where Xi, Yi ⊆ Σ∗ are regular languages.

Similarly, let the set of rules u
r→ v at the right end be recognizable and

denote it as
r→ =

n⋃
i=1

Ui × Vi, where Ui, Vi ⊆ Σ∗ are regular.

Define the binary relation of one-step derivability on the set Σ∗:

1. For every rule x
`→ y and for every w ∈ Σ∗, xw =⇒ yw.

2. For every rule u
r→ v and for every w ∈ Σ∗, wu =⇒ wv.

The reflexive and transitive closure of this relation, denoted by =⇒∗, is the
relation of derivability. The language generated by the rewriting system is
the set of words derivable from some word in I.

In order to prove that =⇒∗ is a rational relation, we first need to show that
the language derivable via =⇒ from any fixed regular set I is also regular.
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Theorem 2.1. The language generated by any two-sided local rewriting sys-

tem is regular, and, given finite automata for I,
`→ and

r→, a finite automaton
for this language can be effectively constructed.

The proof proceeds as follows. First we represent deletion of a symbol a
as a concatenation of a “negative” symbol: −→a if it is erased from the left and←−a if it is erased from the right. The resulting set of “computation histories”
of our rewriting is regular. Second, we prove that every such history of
derivation of a word is equivalent to this word itself, under a congruence
defined by −→a a = a←−a = ε for all a ∈ Σ. Then we consider this congruence as
an operation on languages; by analogy to the well-known results on reduction
in free groups, see e.g. [2, 23], it can be shown that it preserves regularity,
and so the language generated by the rewriting system must be regular.

Let us proceed with the proof. Define two copies of the alphabet Σ,−→
Σ = {−→a | a ∈ Σ} and

←−
Σ = {←−a | a ∈ Σ}. For every word w = a1 . . . a` ∈ Σ∗,

with ` > 0, denote −→w = −→a ` . . .−→a 1 and ←−w = ←−a ` . . .←−a 1; note that besides
marking the symbols we also reverse their order. This notation is extended

to languages L ⊆ Σ∗ as
−→
L = {−→w | w ∈ L} and

←−
L = {←−w | w ∈ L}. Define

the alphabet Σ3 = Σ ∪ −→Σ ∪ ←−Σ, and consider the following reduction rules
on Σ∗

3:
−→a a → ε and a←−a → ε, for all a ∈ Σ. A word α ∈ Σ∗

3 is said to be
reducible to β ∈ Σ∗

3 if and only if it can be transformed to β by zero or more
such reductions.

We can now represent our rewriting system in terms of this transforma-
tion. Define the following regular language over Σ3:

L0 =
( n⋃

i=1

Yi
−→
X i

)∗ · I · (
n⋃

i=1

←−
U iVi

)∗

Lemma 2.2. A word w ∈ Σ∗ is derivable in the two-sided rewriting system
if and only if there exists α ∈ L0 reducible to w.

Proof. First we assume that w is derivable in zero or more steps, and show,
by induction on the length of the derivation of w, that there exists α ∈ L0

reducible to w.
Basis: If the derivation is of length 0, then w ∈ I and hence w ∈ L0.
Induction step: Suppose w is derivable in one or more steps from some

w0 ∈ I, and consider the last step in the derivation, which can be assumed,
without loss of generality, to be a rewriting at the left end: w0 =⇒ . . . =⇒
xw1 =⇒ yw1 = w using a rule x

`→ y. Since xw1 is derived in one step
less than w, by the induction hypothesis, xw1 can be obtained by reducing
some α ∈ L0. Consider the word y−→x α, and reduce it to y−→x xw1 by exactly
the same sequence of cancellations, and then further to yw1 using |x| more
cancellations. Since α ∈ L0 implies y−→x α ∈ L0, it has been shown that some
word in L0 can be reduced to w = yw1.
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Second, suppose a word w ∈ Σ∗ can be obtained by reducing a word

α = ym
−→x m . . . y1

−→x 1w0
←−u 1v1 . . .←−u kvk ∈ L0,

where xi
`→ yi for all i 6 m, ui

r→ vi for all i 6 k and w0 ∈ I. We prove, by
induction on m + k, that w can be derived in the rewriting system.

Basis: If m + k = 0, then w = w0 ∈ I.
Induction step: Let m + k > 1. Let us first assume that the last

reduction rule that was applied is of the form −→a a → ε. Then, in every
intermediate word in the reduction of α to w there was an occurrence of−→a between the prefix ym and every occurrence of letters from

←−
Σ. Because

letters of the prefix ym can only be removed by a rule of the form c←−c → ε,
this means that ym is never touched.

We would like to know that all deletions removing letters of the factor−→x m are performed at the end of the reduction. Assume that it is not the
case. Then there is a step of the form ym

−→z −→c cγ → ym
−→z γ, where z ∈ Σ∗,

c ∈ Σ, γ ∈ Σ∗
3 and −→z −→c is the remaining prefix of −→x m, such that right

after this step a reduction not involving letters of −→x m is performed. Because
the latter reduction has to occur somewhere inside the suffix γ, the order
of these two reductions can be exchanged. Repeating this argument several
times, we eventually move the whole deletion of −→x m to the end, and so the
word α = ym

−→x mβ is first reduced to ym
−→x mxmw′, where w′ ∈ Σ∗, without

touching the prefix ym
−→x m. Next, the word obtained is reduced to w = ymw′.

Note that β ∈ L0, and that we can reduce β to xmw′ following the same
steps as in the reduction of ym

−→x mβ to ym
−→x mxmw′. Since the sum m + k

for β ∈ L0 is less by one than the corresponding sum for α, we can apply
the induction hypothesis to obtain that xmw′ is derivable in the rewriting

system. Since xmw′ =⇒ ymw′ by the rule xm
`→ ym, the word ymw′ = w is

derivable as well.
If the last reduction uses a rule of the form a←−a → ε, the proof can be

done symmetrically.

In light of Lemma 2.2, it is enough to show that for any regular set
L ⊆ Σ∗

3, the set of words obtained by reduction from words in L is regular
as well. This is very similar to the known problem of reduction in free
groups, that is, given a language L over an alphabet Σ ∪ Σ′, where Σ′ =
{a′ | a ∈ Σ}, and an equivalence aa′ = a′a = ε for all a ∈ Σ, determine
the language of words derivable by reduction from some element of L. This
transformation preserves regularity, which was first established by Benois [2],
see also Berstel [3, p. 59], an alternative proof by Pin and Sakarovitch [23],
and a detailed treatment by Sakarovitch [27, Ch. II, Sec. 6]. In our case,
we have to make a distinction between right- and left-sided cancellation, but
such cases, as pointed out by Pin and Sakarovitch [23], can be treated in the
same fashion. For completeness, we give a simple proof of this result in the
following lemma, which is actually a special case of a more general theorem
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of Book and Otto [4, Th. 4.1.2], as well as a special case of a related general
result due to Hofbauer and Waldmann [12].

Lemma 2.3. For every finite automaton A over Σ3, the set of all words ob-
tained from some element of L(A) by reduction is regular. A finite automaton
accepting this set can be effectively constructed.

Proof. Let D ⊆ Σ∗
3 be the set of all words reducible to the empty word. This

is a variant of the Dyck language defined by a one-nonterminal context-free
grammar with the rules S → −→a Sa, S → aS←−a , S → SS and S → ε. It
is easy to see that every reduction via the rules −→a a → ε and a←−a → ε is
equivalent to removing several factors belonging to D. Such a removal can
be formalized by a regularity-preserving inverse substitution as follows.

Let e be a new symbol not in Σ3 and consider the context-free substitution
f from (Σ3∪{e})∗ to Σ∗

3 defined by the rule f(e) = D and identical otherwise.
Let h : (Σ3 ∪ {e})∗ → Σ∗

3 be the morphism sending e to the empty word
and leaving other symbols unchanged. The set of words over Σ3 that can
be obtained from words in L(A) by reduction can now be represented as
h(f−1(L(A))).

It is well-known that regular languages are effectively closed under mor-
phisms. Inverses of arbitrary substitutions also preserve regularity [27, Ch.
II, Cor. 3.18], and this closure is effective if for the languages being sub-
stituted one can decide the emptiness of intersection with a given regular
language. The decidability of this property for context-free languages is
known, and hence our inverse Dyck substitution f−1 effectively preserves
regularity. Thus we can deduce that the language h(f−1(L(A))) is regular
and an automaton recognizing it can be algorithmically constructed.

Now, the proof of Theorem 2.1 follows from these lemmata. On one hand,
the set of all words over Σ∗ obtained by reduction of some word from L0 equals
the language generated by our rewriting system, according to Lemma 2.2. On
the other hand, it is effectively regular by Lemma 2.3.

Theorem 2.1 states that the derivability relation =⇒∗ preserves regularity.
Next we are going to use this result to prove a stronger statement saying that
this relation is, in fact, rational.

Theorem 2.4. For any recognizable relations
`→ and

r→, the corresponding
derivability relation =⇒∗ is rational, and a rational expression for it can be
effectively constructed.

Proof. Let K ·L−1 = {u |∃v ∈ L : uv ∈ K} denote the quotient of languages.

Let us assume that ε
`→ ε and ε

r→ ε; this assumption does not change
the generative power of the rewriting and allows us to consider only those
derivations where some rule was applied on each side.

We will split the derivation relation into several rational relations accord-
ing to whether the rewritings performed on the left and on the right interfere
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or not, and which rewriting rules are used. To define these relations, we have
to introduce several auxiliary languages.

Let K`
i (resp. Kr

k) be the language consisting of all words derivable from

the language Yi (resp. Vk) using only the rules from
`→ (resp.

r→); it is
regular by Theorem 2.1 applied to a rewriting system with the initial set Yi

(resp. Vk) and the given set of one-sided rules. Further, let N `
i (resp. N r

k )
be the language consisting of all words from which one of the words of the

language Xi (resp. Uk) can be derived using only the rules from
`→ (resp.

r→). The regularity of N `
i and N r

k follows by an application of Theorem 2.1
to another one-sided rewriting system, in which the set of rewriting rules is

the inverse of
`→ (resp.

r→).

For i, k ∈ {1, . . . , n}, let us define a rational relation

ρik = (N `
i ×K`

i ) · {(w,w) | w ∈ Σ∗} · (N r
k ×Kr

k).

As we will verify, this relation consists of all derivations where a certain
part of the initial word remains unchanged and rewriting on both sides is
performed independently.

In order to define languages required to deal with the case when rewriting
on the left eventually removes some letters previously added on the right, let
us consider arbitrary i, j, k ∈ {1, . . . , n}, where i and k denote the indices of
the sets Xi × Yi and Uk × Vk containing the rules applied during the right-
most deletion on the left and the left-most deletion on the right, respectively,
before the two rewritings interfere during an application of a rule from the
set Xj × Yj. We have to classify all factors w remaining from the original
word, which can be removed in this step of the derivation, into finitely many
languages L`

ijq, according to which words ŵ composed of letters previously
added on the right can be appended to get a word from Xj. Equivalently, such
words wŵ are required to belong to the language (K`

i )
−1 ·Xj, and therefore

this classification can be done using an automaton recognizing this language.
So let A`

ij = (Σ, Q`
ij, q0, δ

`
ij, F

`
ij) be a DFA recognizing the language (K`

i )
−1·Xj

and for every q ∈ Q`
ij consider the language L`

ijq = {w ∈ Σ∗ | δ`
ij(q0, w) = q}.

Then, for every q ∈ Q`
ij, denote by M `

ijkq the set of all words derivable using

=⇒∗ from Yj · (((K`
i · L`

ijq)
−1 · Xj)

−1 · Kr
k), which is a regular language by

Theorem 2.1. Finally, define a recognizable relation σ`
ijkq = N `

i L
`
ijqN

r
k×M `

ijkq.

Relations σr
ijkq, corresponding to derivations where the remaining factor

of the original word is removed from the right, are defined symmetrically. As
usual, we denote the reversal of a word w = a1 . . . am by wR = am . . . a1 and
extend the notation to languages as LR = {wR |w ∈ L}. This time we take a
DFA Ar

jk = (Σ, Qr
jk, q0, δ

r
jk, F

r
jk) for the language (Uj ·(Kr

k)
−1)R and for all q ∈

Qr
jk we define Lr

jkq = {w ∈ Σ∗ | δr
jk(q0, w

R) = q}. Further, for every q ∈ Qr
jk,

let M r
ijkq be the language of words derivable from (K`

i ·(Uj ·(Lr
jkq ·Kr

k)
−1)−1)·Vj

and define the relation σr
ijkq = N `

i L
r
jkqN

r
k ×M r

ijkq.
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Now we define a rational relation

ρ =
n⋃

i,k=1

ρik ∪
n⋃

i,j,k=1

⋃

q∈Q`
ij

σ`
ijkq ∪

n⋃

i,j,k=1

⋃
q∈Qr

jk

σr
ijkq.

Notice that this relation can be effectively constructed due to Theorem 2.1.
We are going to prove that ρ is equal to =⇒∗.

Let us consider any words w1 and w2 such that w1 =⇒∗ w2, and prove
that the pair (w1, w2) belongs to ρ. We have to distinguish two cases.

First, we assume that during the derivation of w2 no letter added by
rewriting on one side is removed when rewriting on the other side. Then
(after possibly interchanging the order of independent rewritings on different
sides) the derivation is of the form

w1 = w`
1w3w

r
1 =⇒∗ xiw3uk =⇒2 yiw3vk =⇒∗ w`

2w3w
r
2 = w2, (1)

where w3 ∈ Σ∗ is the common factor of w1 and w2 consisting of all those
letters that are never removed during the derivation, and xi ∈ Xi, yi ∈ Yi,
uk ∈ Uk and vk ∈ Vk, where i and k are the indices of the right-most derivation
on the left and of the left-most derivation on the right, respectively. Then
it is clear that w`

1 ∈ N `
i , w`

2 ∈ K`
i , wr

1 ∈ N r
k and wr

2 ∈ Kr
k , showing that

(w1, w2) ∈ ρik.
Second, we consider the derivation where some letter produced by rewrit-

ing on the right is later removed by rewriting on the left, as illustrated in
Figure 1. The actual derivation is of the form

w1 = w`
1w3w

r
1 =⇒∗ xiw3uk =⇒2 yiw3vk =⇒∗ w̄`w3w̄

r = xjw̃ =⇒ yjw̃ =⇒∗ w2,

where w3 ∈ Σ∗ is the factor of w1 consisting of all letters which were not
removed until the step when rewriting on the left removes something added
from the right, which is achieved by replacing the word xj ∈ Xj with yj ∈ Yj.
The word xj spans over w̄`, w3 and a certain nonempty prefix of w̄r; denote
this prefix by ŵ, so that xj = w̄`w3ŵ. Then we also have w̄r = ŵw̃. Further,
the replacement of xi ∈ Xi by yi ∈ Yi and the replacement of uk ∈ Uk by
vk ∈ Vk in this derivation are the rules where the letters neighbouring in
w1 with w3 are modified. In particular, we have w̄` ∈ K`

i and w̄r ∈ Kr
k .

When we set q = δ`
ij(q0, w3), we immediately obtain w3 ∈ L`

ijq, which implies
ŵ ∈ (w̄`w3)

−1 · Xj ⊆ (K`
i · L`

ijq)
−1 · Xj, and therefore w̃ ∈ ŵ−1 · Kr

k ⊆
((K`

i · L`
ijq)

−1 · Xj)
−1 · Kr

k . Since we have w`
1 ∈ N `

i and wr
1 ∈ N r

k and the
word w2 can be derived from yjw̃, we can deduce that (w1, w2) ∈ σ`

ijkq, which
completes the proof of this case. The symmetric case of a derivation where
some letter added from the left is later removed from the right can be handled
dually using relations σr

ijkq.
Conversely, assume that (w1, w2) ∈ ρ. If (w1, w2) ∈ ρik for some i and k,

then it is easy to construct a derivation of the form (1), which shows that
w1 =⇒∗ w2.
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Figure 1: (w`
1w3w

r
1, w2) ∈ σ`

ijkq in the rationality proof.

So let us assume that (w1, w2) ∈ σ`
ijkq for some i, j, k ∈ {1, . . . , n} and q ∈

Q`
ij (the case (w1, w2) ∈ σr

ijkq is again handled dually). Then w1 = w`
1w3w

r
1,

where w`
1 ∈ N `

i , w3 ∈ L`
ijq and wr

1 ∈ N r
k . Additionally, we have yjw̃ =⇒∗ w2

for certain words yj ∈ Yj and w̃ ∈ ((K`
i · L`

ijq)
−1 · Xj)

−1 ·Kr
k . Hence, there

exist w̄r ∈ Kr
k and ŵ ∈ (K`

i · L`
ijq)

−1 ·Xj satisfying w̄r = ŵw̃. Consequently,
we have w4ŵ ∈ (K`

i )
−1 · Xj for some w4 ∈ L`

ijq. In particular, this means
that δ`

ij(q0, w4) = q = δ`
ij(q0, w3) and therefore w3ŵ ∈ (K`

i )
−1 ·Xj too. This

provides us with words xj ∈ Xj and w̄` ∈ K`
i satisfying xj = w̄`w3ŵ. Taking

any words yi ∈ Yi and vk ∈ Vk such that yi =⇒∗ w̄` and vk =⇒∗ w̄r, we can
now derive

w1 = w`
1w3w

r
1 =⇒∗ xiw3uk =⇒2 yiw3vk =⇒∗ w̄`w3w̄

r = w̄`w3ŵw̃ = xjw̃

=⇒ yjw̃ =⇒∗ w2.

This concludes the proof.

The value of Theorem 2.4 comes from the importance of rational rela-
tions, see e.g. [8], or [10], where the power of rational relations is utilized.
Unfortunately, for the one-way rewriting of the next section we do not have
a counterpart of the above rationality result.

3 One-way rewriting

In the one-way rewriting, a prefix x is consumed and a suffix y is appended
at every step. If the exact set of admissible pairs (x, y) can be speci-
fied, this is rewriting of the type studied by Post [24, 25], and his results

8



imply its computational universality, which is explained in detail in [19].
Post also gave a simple example of one-way rewriting with the set of pairs
{(0ab, 00), (1ab, 1101) | a, b ∈ {0, 1}}, where the behaviour remains unknown
up to now.

Let us consider the uncontrolled version, where the choice of x is indepen-
dent of the choice of y. Formally, let I, X, Y ⊆ Σ∗ be regular sets of initial
words, words read from the left and words written at the right, respectively.
The binary relation of one-step derivability on the set Σ∗ is defined as follows:
for every x ∈ X, y ∈ Y and w ∈ Σ∗, xw =⇒ wy. The reflexive and transitive
closure of this relation is the relation of derivability. A word is generated if
it is derived from a word in I in zero or more steps.

Intuitively, it is feasible to think that the languages obtained by one-
way rewriting are not necessarily regular. Indeed, the “storage” used in the
process of rewriting is a queue of an unbounded size, and its contents need
to be remembered. However, in the next theorem we establish the regularity
of generated languages.

Theorem 3.1. The language generated by any uncontrolled one-way rewrit-
ing system is regular, and, given finite automata for I, X and Y , a finite
automaton for this language can be effectively constructed.

The proof is by a reduction to controlled one-sided rewriting. One-way
rewriting starts with a word from I and proceeds by biting off its prefixes and
appending words taken from the set Y to the right. Once the initial word is
consumed, the elements of Y earlier appended to the right start appearing at
the left, and a typical derivation step is as in Figure 2(a): a word u, zero or
more words from Y and a prefix of another word from Y are consumed (with
their concatenation being in X), and a new word from Y is appended to the
end. For the subsequent construction it is important that u is always either a
suffix of the initial word (this is the case at the last step of its consumption)
or a suffix of some word from Y .

Figure 2: (a) Uncontrolled one-way rewriting and (b) its simulation from the
left side.
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Notice that the choice of a particular element of Y becomes relevant
only when it appears at the left and is consumed, and since the choice is
uncontrolled, it can be postponed till the moment of consumption. The
right part of the word can be assumed to contain identical bricks labelled
Y , as in the figure. Then the derivation step shown in Figure 2(a) can be
equivalently reformulated by inserting a new brick near the left end rather
than appending it to the right, which is shown in Figure 2(b). The latter
type of rules can be simulated using one-sided rewriting.

Consider DFAs for the languages I and Y , and, in order to simplify the
notation, let us merge them into a single DFA (Σ, Q, qI

0 , q
Y
0 , δ, F ) with two

initial states, qI
0 and qY

0 . For every q ∈ Q, let L(q) = {w | δ(q, w) ∈ F}.
Now L(qI

0) = I and L(qY
0 ) = Y . Let # be a symbol not in Q, which will be

used to denote an arbitrary word from Y . Construct a one-sided controlled
rewriting system over the alphabet Q ∪ {#} with a single one-letter initial
word qI

0 and with the following rules:

I. for all q, q′ ∈ Q, such that δ(q, x) = q′ for some x ∈ X, there is a rule

q
`→ q′#;

II. for all q, q′ ∈ Q and for all m > 0, if, for some x1x2x3 ∈ X, x1 ∈ L(q),

x2 ∈ Y m−1 and δ(qY
0 , x3) = q′, then there is a rule q#m `→ q′#.

It is clear that the rules of the first type can be effectively constructed: there
are at most |Q|2 such rules, and for every pair (q, q′) it is enough to test
the nonemptiness of the intersection of two regular languages, namely X and
{w | δ(q, w) = q′}.

The second case, which is illustrated in Figure 2, is not as obvious,
because for each pair (q, q′) there may exist infinitely many suitable ms
that accordingly require an infinite set of rules. Still the set of rules
is recognizable, because, for every (q, q′), the set of all ms, such that
X ∩ L(q) · Y m−1 · {u | δ(qY

0 , u) = q′} 6= ∅, is ultimately periodic. This is
constructively proved in the following lemma.

Lemma 3.2. For any regular languages K, L, M , N the set S of all non-
negative integers satisfying the condition K ∩LMnN 6= ∅ is ultimately peri-
odic and algorithmically computable.

Proof. Let (Σ, P, p0, ρ, FK) be a DFA recognizing K and let k be the number
of its states. We consider a binary relation µ on P describing which states
of the automaton can be connected using words from the language M . The
relation µ is defined for any states p, p′ ∈ P by the rule

(p, p′) ∈ µ ⇐⇒ ∃w ∈ M : ρ(p, w) = p′ .

Then there exists a positive integer ` 6 2k2
such that µ` is idempotent, i.e.

µ2` = µ`. Let us verify that, for every n > `, we have n ∈ S if and only
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if n + ` ∈ S. Assuming that n ∈ S, there exist words u ∈ L, v ∈ N and
w1, . . . , wn ∈ M satisfying uw1 · · ·wnv ∈ K. Then

(ρ(p0, u), ρ(p0, uw1 · · ·w`)) ∈ µ` = µ2` ,

and so one can find words w̄1, . . . , w̄2` ∈ M such that ρ(p0, uw1 · · ·w`) =
ρ(p0, uw̄1 · · · w̄2`). Therefore,

ρ(p0, uw̄1 · · · w̄2`w`+1 · · ·wnv) = ρ(p0, uw1 · · ·wnv) ,

and thus uw̄1 · · · w̄2`w`+1 · · ·wnv ∈ K.
The converse implication can be verified analogously. Altogether, the set

S is ultimately periodic with period `. Since ` is bounded, the set S can be
found algorithmically.

Next we prove the main lemma showing the correctness of our simulation.

Lemma 3.3. A word w ∈ Σ∗ can be derived in t > 0 steps in the original
one-way rewriting system if and only if there exists a state q ∈ Q and a
number k > 0, such that q#k can be derived in t steps in the constructed
one-sided rewriting system, and w ∈ L(q)Y k.

Proof. Lemma is proved by induction on t, the length of both derivations.
The basis, t = 0, is clear: the only word that can be derived in the constructed
system in 0 steps is qI

0 , and L(qI
0) equals I, the set of words derivable in the

original system in 0 steps. So let us move to the induction step.
Suppose the word w′ ∈ Σ∗ is derivable in t + 1 steps in the original

system, and let us prove that it can be represented in the form L(q′)Y k′ for
some q′#k′ derivable in the constructed rewriting system. Since w′ ∈ Σ∗

is derivable in t + 1 steps, there exists a word w derivable in t steps, such
that w =⇒ w′. By the induction hypothesis for the t-step derivation of w,
there exist q and k, such that q#k is derivable in t steps in the constructed
system and w ∈ L(q)Y k. The latter means that there exists a factorization
w = uy1 . . . yk, where u ∈ L(q) and y1, . . . , yk ∈ Y .

Consider the rewriting of w by w′ at the (t+1)-th step, in which a prefix
x ∈ X is removed from w, and instead a word y ∈ Y is appended to the right
end. There are two cases depending on the length of the prefix x.

Case I. The word x is a prefix of u, i.e., u = xu′ and the derivation is of
the form

w = xu′y1 . . . yk =⇒ u′y1 . . . yky = w′,

where y ∈ Y .

Let q′ = δ(q, x). The constructed rewriting system contains the rule q
`→

q′#, and hence we can derive q#k =⇒ q′#k+1. Since δ(q′, u′) = δ(q, xu′) ∈
F , we see that u′ ∈ L(q′). Therefore, the word w′ is in L(q′)Y k+1, which
completes the proof of this case.
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Case II. The word x spans over uy1 . . . y`−1, for ` > 1, and then cuts y`

in two parts. Then x = uy1 . . . y`−1u
′′ and y` = u′′u′, and the derivation is

w = uy1 . . . y`−1u
′′u′y`+1 . . . yk =⇒ u′y`+1 . . . yky = w′,

where y ∈ Y is the word appended to the right.
Let q′ = δ(qY

0 , u′′). The one-sided rewriting system, contains the rule

q#` `→ q′#, which allows one to derive q#k =⇒ q′#k−`+1. Since δ(q′, u′) =
δ(qY

0 , u′′u′) = δ(qY
0 , y`) ∈ F , we know that u′ ∈ L(q′). The word w′ is

therefore in L(q′)Y k−`+1, and the second case is proved.
In order to prove the converse implication, let k > 0 and q′ ∈ Q, let q′#k

be derivable in the constructed one-sided rewriting system in t+1 steps, and
let w′ ∈ L(q′) · Y k. It is claimed that w′ is derivable in t + 1 steps in the
original one-way rewriting system.

Let us represent w′ as uy1 . . . yk, where u ∈ L(q′) and y1, . . . , yk ∈ Y .
Consider the last step in the derivation of q′#k, which, by the construction
of the one-sided rewriting system, can be of one of the two types:

Case I. Suppose q′#k is derived using a rule of the form q
`→ q′#. Then

it is derived from q#k−1, which itself is derivable in t steps. Since there is
a rule q → q′#, by the construction, there must exist x ∈ X, such that
δ(q, x) = q′.

Consider the word w = xuy1 . . . yk−1, which is in L(q) · Y k−1, since
δ(q, xu) = δ(q′, u) ∈ F . Since q#k−1 is derivable in t steps in the con-
structed system, by the induction hypothesis, w is derivable in t steps in the
original system. Appending one more step to this derivation, we obtain w′:

w = xuy1 . . . yk−1 =⇒ uy1 . . . yk−1yk = w′.

Case II. Let q′#k be derived from q#k+`−1 using a rule q#` → q′#. By
the construction, there exists x1x2x3 ∈ X, such that x1 ∈ L(q), x2 ∈ Y `−1

and δ(qY
0 , x3) = q′.

Consider the word w = x1x2x3uy1 . . . yk−1. As in the previous case,
δ(qY

0 , x3u) = δ(q′, u) ∈ F , meaning x3u ∈ Y , hence w ∈ L(q)Y `−1Y Y k−1 =
L(q)Y k+`−1. Now the induction hypothesis can be applied for w′ and q#k+`−1

(the latter is derivable in t steps by assumption) to obtain that w is derivable
in the original one-way system in t steps. This derivation can be extended
as follows:

w = x1x2x3u
′y1 . . . yk−1 =⇒ uy1 . . . yk−1yk = w′.

This completes the proof.

Now the regularity of any language generated by uncontrolled one-way
rewriting systems can be inferred from the regularity of any language gener-
ated by one-sided local rewriting.
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of Theorem 3.1. Given I,X, Y ⊆ Σ∗, construct the rewriting system over
Q ∪ {#} as specified above. Let K ⊆ Q ·#∗ be the language it generates.

Define a regular substitution f : (Q ∪ {#})∗ → 2Σ∗ as f(q) = L(q) for all
q ∈ Q and f(#) = Y , and consider the language

f(K) =
⋃

q#k∈K

L(q) · Y k ⊆ Σ∗. (2)

By Theorem 2.1, K is regular, and therefore f(K) is regular as well. Accord-
ing to Lemma 3.3, f(K) is exactly the language generated by the original
one-way rewriting system.

It is interesting to note that, in spite of the regularity result of Theo-
rem 3.1, the derivability relation of such a rewriting system is, in general,
not rational.

Example 3.4. Let Σ = {a, b} and consider the one-way rewriting system
with X = Y = {a}. Its derivability relation R ⊆ Σ∗ × Σ∗ is not rational.

To see this, consider, for every m,n > 0, the pair (ambn, bnam) ∈ R.
Supposing that R is rational, we can use the pumping lemma for rational
relations [3, Lemma 3.3] to see that (am+kbn, bn+`am) must be in R for some
sufficiently large m,n and for some k + ` > 0. This, however, contradicts
with the definition of R.

4 Controlled one-way rewriting

The regularity result of the previous section essentially relies upon the com-
plete independence of the choice of a word being erased at the left and of a
word simultaneously appended at the right. It turns out that the least re-
striction on this choice is enough to generate a nonregular language, in fact,
even a non-context-free one.

Example 4.1. Let Σ = {a, b, c}, define I = {abc} and X =
{ab, baba, cb, bc} = Y , and impose a single restriction that whenever ab is
erased, the word appended should be baba. The language generated by this
system, intersected with (ab)∗c, yields {(ab)2n

c | n > 0}.
To establish that, let us show that the first word from (ab)∗c encountered

in any derivation starting from (ab)nc, for n > 1, is the word (ab)2nc. The first
n steps of the computation are deterministic: (ab)nc =⇒ (ab)n−1cbaba =⇒
. . . =⇒ c(baba)n. Once the word c(baba)n = cb(ab)2n−1a is reached, there are
four choices:

1. cb(ab)2n−1a =⇒ (ab)2n−1aab. This will be followed by a deterministic
computation: (ab)2n−1aab =⇒ . . . =⇒ aab(baba)2n−1. At this point the
computation gets stuck, because no rule is applicable;
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2. cb(ab)2n−1a =⇒ (ab)2n−1ababa = (ab)2n+1a. This results in an infi-
nite deterministic computation (ab)2n+1a =⇒ (ab)2nababa = (ab)2n+2a,
(ab)2n+2a =⇒ (ab)2n+3a, etc.;

3. cb(ab)2n−1a =⇒ (ab)2n−1acb. Like in case 1, the computation gets stuck
regardless of what rule is used;

4. cb(ab)2n−1a =⇒ (ab)2n−1abc = (ab)2nc, which is the intended route of
the computation.

If we allow X and Y to be different, then the rewriting system with rules
X = {ab, cb}, Y = {baba, bc} and the same ab → baba restriction forms a
smaller example with the above behaviour.

5 Two-way rewriting

In two-way rewriting, we are given regular or even finite sets of words I,X ⊆
Σ∗. At every step, some word belonging to X is removed either from the
beginning or from the end of the word, and some word from X is appended
to the other side. Formally, the binary relation of one-step derivability on
the set Σ∗ is defined as follows: for every x, y ∈ X and w ∈ Σ∗, xw =⇒ wy
and wx =⇒ yw.

The languages generated by these rewriting systems appear to be much
more complicated than in the one-way case. It is even not known whether
they are in general recursive. We show that these systems can generate non-
regular languages. The argument is based on the fact that these systems are
powerful enough to significantly modify positions of letters in the word even
when all the rules preserve the difference between the number of occurrences
of two letters.

Example 5.1. Let Σ = {a, b} and let X = {a, aab}. Then the set L of all
words derivable from the word ab using the set of rewriting rules

{xw =⇒ wy, wx =⇒ yw | x, y ∈ X, w ∈ {a, b}∗}

is not linear context-free.

Let us consider the non-linear context-free language P = {ambm+nan |
m,n ≥ 0, m+n ≥ 1}. We are going to verify that L∩a∗b∗a∗ = P , which will
show that L is not linear context-free, since linear context-free languages are
closed under taking intersections with regular languages.

First, notice that L consists only of words where the number of occur-
rences of a is the same as that of b, because this property is preserved by
all rewriting rules. This, in particular, means that L ∩ a∗b∗a∗ ⊆ P . On the
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other hand, every word bnan, for n > 1, can be inductively derived from ab
as follows:

bnan−1a =⇒ aab · bnan−1 =⇒ abbnan−1 · a =⇒ bbnan−1a · a = bn+1an+1 .

Since the rule wa =⇒ aw allows us to shift in any word bnan arbitrarily many
as to the left, we can obtain from ab all words belonging to P . Therefore
L ∩ a∗b∗a∗ = P .

6 Conclusions and open problems

We have studied a few basic modes of word rewriting. Our main result is
that the language generated by any uncontrolled one-way rewriting system is
regular. We also made a certain contribution to the study of local rewriting.
The main question left open is the exact power of uncontrolled two-way
rewriting.

As we hinted in the introduction, each of these rewriting systems also
has a natural counterpart among systems of language inequalities with con-
catenation as the only operation, in which constants are finite or regular
languages. In view of the recently grown interest in language equations in
a broader sense [1, 20, 21] and their computational properties, these paral-
lels between equations and rewriting provided an additional motivation for
our study. Although no formal connection has been found, their similarity
amazingly matches their expressive power:

• Local rewriting at one end resembles inequalities XZ ⊆ Y Z, where Z
is a variable. Largest solutions of these inequalities are known to be
regular [1, 26]. Our results on the regularity of languages generated
by local rewriting at both ends suggest to study systems of the form
{XZ ⊆ Y Z, ZX ⊆ ZY }: there seem to be no results on the regularity
of their solutions so far.

• Largest solutions of inequalities of the form XZ ⊆ ZY , corresponding
to one-way rewriting studied in Section 3, are also regular [16]. Simi-
larly to the negative result of Section 4 on controlled one-way rewriting,
largest solutions of systems {XZ ⊆ ZY, X ′Z ⊆ ZY ′} can be, in gen-
eral, non-recursively enumerable [18].

• Finally, the two-way rewriting system of Section 5 is an analogue of
Conway’s commutation equation XZ = ZX, where the largest solution
is, even for a certain finite language X, also non-recursively enumerable,
see [17].

We conclude by noting that there exist some natural intermediate cases
between one-way and two-way rewritings. Consider rewriting systems with
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rules xw =⇒ yw and xw =⇒ wy for all x, y ∈ X (let us call it the one-and-
half-way rewriting of sending), or with rules xw =⇒ yw and wx =⇒ yw for
all x, y ∈ X (one-and-half-way rewriting of receiving). While Example 5.1
can be modified to show the nonregularity in the former case, nothing seems
to be known about the latter case. These types of rewriting are suggested
for further study.
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