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Abstract

Let m(w) denote the minimum period of the word w. Let w be a primitive
word with period m(w) < |w|, and z a prefix of w. It is shown that if
m(wz) = m(w), then |z| < w(w) — ged(Jw], |2]). Detailed improvements of
this result are also proven. As a corollary we give a short proof of the fact
that if u,v,w are primitive words such that u? is a prefix of v2, and v? is a
prefix of w?, then |w| > 2|u|. Finally, we show that each primitive word w has
a conjugate w’ = vu, where w = uw, such that 7(w’) = |w'| and |u| < 7(w).

Keywords: combinatorics on words, Weinbaum factorization, critical points,
bordered word, primitive words
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1 Introduction

Various aspects of periodicity play a central role in combinatorics on words
and its applications; see Lothaire’s books [8, 9, 10]. The notion of periodicity
is well posed in many problems concerning algorithmic aspects of strings: in
pattern matching, compression of strings, sequence analysis, and so forth.

In this paper we study extensions of words with respect to their period-
icity. Let w be a word over a finite alphabet A. The length of w is denoted
by |w|. The empty word is denoted by €. A positive integer p is a period of
w, if w = (uwv)*u where p = |uv|, k > 1, and v # . The minimum period of
w is denoted by m(w).

For a word w = wv, the word w is a prefiz of w, denoted by u <, w, and
v is a suffiz of w, denoted by v <; w. If v is nonempty, then u is a proper
prefiz of w, denoted by u <, w. A nonempty word u is a border of w, if u
is a prefix and a suffix of w, i.e., ux = w = yu for some nonempty words x
and y. Each word has a unique factorization in the form w = w*v, where
k>1, v <, uand |ul = m(w). Here u is called the root of w and v the
residue of w. We denote the length |v| > 0 of the residue v by p(w).

A word is primitive if it is not a power of a shorter word, i.e., if m(w)
does not divide |w| properly.

Let w be a word with a nonempty residue and a prefix z <, w. We
show that if the word wz has the same minimum period as w, that is,
m(wz) = w(w), then |z| < m(w) — ged(|w], |2]), where ged denotes the great-
est common divisor function. As a corollary we give a short proof of the well
known result due to Crochemore and Rytter [4] stating that if u,v,w are
primitive words such that u? <, v? <, w?, then v* <, w, i.e., |w| > 2|ul.
Finally, we strengthen the above extension result by showing that if w is a
word with u as a root and w has a nonempty residue, then 7(wz) > 7(w) for
all prefixes z <, w with |z| > m(w) + 7(u) — p(w) — 1.

In the last section, we study extensions wz that force the period m(wz) =
|w|. This problem is stated for unbordered conjugates. For this, let 7(w)
denote the shortest prefiz of the word w, say w = 7(w)u, such that the
conjugate ut(w) is unbordered, i.e., m(ur(w)) = |ur(w)|. We show that for
each primitive word w it holds that 7(w) < m(w).

2 Extensions of words by periods

It is clear that if u is a border of a word w, then |w| — |u| is a period
of w, and thus |w| — |Ju| > 7(w). A word w is said to be bordered (or self-
correlated [11]), if it has a border, that is, if w has a prefix of length less than
|w| which is also a suffix of w. If w is not bordered, it is called unbordered.
Clearly, a word w is unbordered if and only if 7(w) = |w].
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We begin with an application of the basic periodicity result of Fine and
Wilf [6]:

Theorem 1 (Fine and Wilf). If a word w has two periods p and q such
that |lw| > p+ q — ged(p, q), then also ged(p, q) is a period of w.

Note that if w has an empty residue, then m(wz) = 7(w) for all words

2 = whu with u <, w and k > 0. Therefore, in the sequel we consider words

with nonempty residues. Note that each word w with a nonempty residue is
primitive, and thus 7(w?) = |w| > 7(w).

Theorem 2. Let w be a word with a nonempty residue and a prefiv z <, w.
If m(wz)=mn(w) then |z| <m(w)— ged(m(w), |wl).

Proof. Clearly m(wz) > m(w). Let d = ged(m(w), |w|), and suppose that
z <, w satisfies 7(wz) = m(w). Then both |w| and 7(w) are different periods
of wz. If |lwz| > w(w) + |w| — d, then Theorem 1 implies that d is a period
of wz. In this case, d = 7(w), since m(wz) > w(w), and so 7(w) divides |w|
contradicting primitivity of w; hence the claim follows. l O

The following example shows that the bound given in Theorem 2 is opti-
mal for all lengths.

Example 3. Consider the word
w=a""ba

with the minimum period m(w) = n, and let z = a" % <, w. We have
m(wz) = n, where |z] = |w| — 3 = m(w) — ged(m(w), |w|) — 2, since we have
now ged(n,n+1) = 1.

The following example shows that the condition |z| > 7(w)—ged(m(w), |w])
does not imply that m(wz) = |w].

Example 4. Consider the word
w = ababaabab .
Then 7(w) = |ababa| = 5. Let z = aba. We have |z| = m(w) — 2 and
wz = ababa.abab.aba
with m(w) =5 <7 =7w(wz) < 9 = |w|, since |ababaab| is a period of wz.

The following result is due to Crochemore and Rytter [4]. A short proof
due to Diekert is given in [9, Lemma 8.1.14]. Below we show that this result
follows from Theorem 2. Note that an integer p < |w| is a period of the word
w if and only if w <, zw, where x <, w is such that |z| = p.
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Corollary 3. Let u,v,w be primitive words with u* <, v* <, w?. Then
\w| > 2|ul.

Proof. Suppose that |w| < 2|u|, and thus w <, v* <, w?. Hence w has a

nonempty residue. Let w = vz. Then |z| is a period of v, since vv <, ww =
veve and so v <, zv. Now m(v) < |z|, and, by Theorem 2, m(w) > |v|, and
so m(w) = |v|. However, also |u| is a period of w, since w <, u*. Therefore
|v| = m(w) = |u| gives a contradiction. O O

For a word w with a nonempty residue, let its mazimal extension number
be defined by

k(w) = max{p | p = |z| for a prefix z <, w with 7(wz) = 7w(w)}.

Theorem 2, x(w) exists and satisfies k(w) < 7(w) — 1. For a nonempty word
w, let w® denote the word from which the last letter is removed. For the
proof of the following result, see Berstel and Karhumaéki [1].

Lemma 4. Let u and v be two nonempty words. If uv® = vu® then there
exists a word g such that u = g* and v = ¢’ for somei,j > 1.

We shall now have a partial improvement of Theorem 2.

Theorem 5. Let w be a word with a nonempty residue and let u be the root
of w. Then

r(w) < m(w) + 7(u) — p(w) — 2.

Proof. Let u = vy where |v| = p(w), and let = be the root of u. Assume that
there exists a prefix z <, w such that 7(wz) = 7(w) and |z| = 7(w) +7(u) —
p(w)—1 = Jwu|—|v|—1. By Theorem 2, we have that 7(u) < p(w), and thus
xr <p u. Now, |vz| = |uz| — 1 and since vz <, uz, we have vz = uz® = vyz®,
and thus z = yz°®. Also, z = zy®, since z <, v and y <, u, for, y <, z <, u
and x is the root of u. By Lemma 4, yz* = xy® implies that there exists
a primitive word ¢ such that + = ¢* and y = ¢’ for some 7,5 > 1. Then
v = g'q for a prefix g; <, ¢ and an integer ¢ > 0, and so u = vy = g g ¢’.
However, since z is the root of w, v = x"x; for some r > 1 and 2, <, z, from
which it follows that u = ¢®™7/g,. In order for g to be primitive, we must
have j = 0, for otherwise g is a proper conjugate of itself. This contradicts
the fact that j > 1. O O

The bound given in Theorem 5 is optimal as shown in the following ex-
ample.

Example 5. Consider the words
w, = (aba)"ab
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where m(w,) = 3, m(u) = 2 for the root u = aba of w,, and p(w,) = 2.
Hence, k(w) = m(w,) + 7(u) — p(w,) — 2 = 1. Indeed, the extension w,ab
has a larger period than 3, namely 7(w,ab) = 3n + 2.

Also, for

U, = (ab)"aab

of length 2n + 3, we have 7(u,,) = 2n+ 1, and the length p(u,) of the residue
of u, is 2 . Hence, k(u,) =2n — 1 =m(u,) + 7((ab)"a) — p(u,) — 2.

6 Critical points and extensions

Every primitive word w has an unbordered conjugate. For instance, consider
the least conjugate of w with respect to some lexicographic ordering, that is,
a Lyndon conjugate of w; see e.g. Lothaire [8]. Denote by 7(w) the shortest
prefix of w, w = 7(w)u, such that the conjugate ur(w) is unbordered. Hence
0<7(w) < |w|.

Lemma 6. Fach primitive word w has a factorization w = uv such that the
conjugate vu is unbordered and either |u| < w(w) or |v] < 7(w).

Proof. Let w = u¥z, where u is the root of w, k > 1, and z <, u. Suppose
that w has no conjugate as stated in the claim. Let w’ = yu*"zu'"'z be
an unbordered conjugate of w, where u = xy. (Take, for instance, a Lyndon
conjugate of w.) It follows that ¢ = k or i = 1, for otherwise yz is a border
of w'. If i = 1, then w’ = yu*~1zz is a required conjugate: w' = (yu*~12)(z).
Assume then that i = k, we have w’ = yzu* "'z and thus z <, z; otherwise
again yx is a border of w’. However, now w' = (yz)(u*~1x) is a required
conjugate. ] [l

In the following we say that an integer p with 1 < p < |w| is a point in
the word w. A nonempty word wu is called a repetition word at p if w = xy
with |z| = p and there exist words 2’ and ¢ such that u is a suffix of 2’z and
u is a prefix of yy'. Let

7(w, p) = min{|u| | u is a repetition word at p}

denote the local period at point p in w. In general, we have that m(w,p) <
m(w). A factorization w = wv, with u,v # ¢ and |u| = p, is called critical,
and p is a critical point, if w(w,p) = w(w).

The Critical Factorization Theorem (CFT) is a fundamental result on
periodicity. It was first conjectured by Schiitzenberger [12] and then proved
by Césari and Vincent [2]. Later it was developed into its present form by
Duval [5]. We refer to [7] for a short proof of the theorem giving a technically
improved version of the proof by Crochemore and Perrin [3].
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Theorem 7 (CFT). Let w be a word with at least two different letters. Then
w has a critical point p such that p < m(w).

The following lemma rests on the CFT.

Lemma 8. Let w be an unbordered word with |w| > 2, and let w = uv be
such that p = |u| is any critical point of w. Then also the conjugate vu is
unbordered.

Proof. Without loss of generality we can assume that |u| < |v|. Now m(w) =
|w|, since w is unbordered. Assume, contrary to the claim, that the word vu
is bordered. We have two cases to consider. (1) Assume that v = sv’ and
u = u's for a nonempty word s. Then 7(w,|u|) < |s| < |w| contradicting
the assumption that |u| is a critical point. (2) Assume that v = sut. Then
m(w, lu]) < |su] < |w|, and again |u| is not a critical point; a contradiction.
These cases prove the claim. O O

The following theorem states the main result of this section.
Theorem 9. Let w be a primitive word. Then 7(w) < m(w).

Proof. Suppose first that 7w(w) > |w|/2. Assume that w = zyz, where
lzy| = 7(w), z <, xy, and |z| is a critical point of w such that |z| < w(w)
provided by Theorem 7. Suppose that the conjugate w’ = yzx is bordered,
and let u be its shortest border. Since |z| is a critical point in w and u is a
local repetition at |z| in w, we have |u| > m(w), and hence |u| > |yz|. Since
u is unbordered, it does not overlap with itself, and therefore |yzz| > 2|ul,
which implies that |yzx| > 2|yz| and hence |z| > |yz|; a contradiction. Hence
the conjugate w’ = yzx is unbordered, and so 7(w) < 7(w).

Assume then that 7(w) < |w|/2, and et u be the root of w. Then w = u*z
where 7(w) = |u| and z <, v and k > 2.

Assume that 7(w) > w(w), and thus that 7(w) > w(w). By Lemma 6,
there exists an unbordered conjugate w’ = vu*~1't of w, where v <, w such
that |v] < m(w). Consider a critical point p of w’, say w' = gh, where |g| = p.

First, v is a suffix of uz, and thus the critical point p is not in v, i.e.,
p > |v|, since w(w') = |w'| and v occurs in u*~1¢. Similarly, p < |vul, since all
suffixes of w’ starting from a position ¢ > |vu| occur in w’ starting from the
point ¢ — |u| and thus there is a local repetition at point ¢ of length at most
|u|. Now we have |v| < |g| < |vu| and the conjugate hg is unbordered by
Lemma 8. Let u = rs such that g = vr. Then hg = su*"zr and 1 < |r| < |u]
as required. O O

The following example illustrates that it is not enough to just consider
critical points for proving Theorem 9.



Example 7. It is not true that a conjugate vu with respect to a critical
point |u| of w = wv is unbordered. Consider for instance the word w =
abcbababcbabab, where w(w) = 6, and p = 3 is a critical point, but the
corresponding conjugate w’ = bababcbabababe has a border bababe.

Note that we always have m(w*z) < |w| for prefixes z <, w and non-
negative integers k. Theorem 9 gives a complementary result to Theorem 2
and 5.

Corollary 10. Let w be a word with a nonempty residue and a prefiz z <, w.
If |z| > w(w) then w(wz)=|w|.

Proof. Let |z| > m(w). By Theorem 9, w has an unbordered conjugate
w' = vu where w = wv and |u| < m(w). Then we have 7m(wu) = |w| for the
extension wu, since m(wu) is at least the length of the longest unbordered
factor of wu. The claim follows now from wu <, wz. O

The following example elaborates on the differences between Theorem 2
and Corollary 10.

Example 8. Consider the word
w = aaabaa

for which |w| = 6 and 7(w) = 4 and ged(m(w), |w|) = 2 so that we get
m(w) — ged(m(w), |lw|) = 2. We have m(wz) > w(w) for each extension wz
with z <, w and |z| > 2, by Theorem 2. The shortest extension increasing
the period is for z = aa, that is, w.aa = aaabaaaa with w(waa) = 5.

However, we have m(wz) < |w| and the corresponding conjugate w’ =
abaaaa of w is bordered. In this example, we need an extension z = aaa of
length 3 in order to obtain 7(wz) = |w].
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