

Tero Harju | Dirk Nowotka

Periods in Extensions of Words

Turku Centre for Computer Science

TUCS Technical Report
No 736, January 2006

Periods in Extensions of Words

Tero Harju
Turku Centre for Computer Science and Department of Mathematics, University of Turku, FIN-20014 Turku, Finland harju@utu.fi
Dirk Nowotka
Institute of Formal Methods in Computer Science, University of Stuttgart, D-70569 Stuttgart, Germany
dirk.nowotka@informatik.uni-stuttgart.de

Abstract

Let $\pi(w)$ denote the minimum period of the word w. Let w be a primitive word with period $\pi(w)<|w|$, and z a prefix of w. It is shown that if $\pi(w z)=\pi(w)$, then $|z|<\pi(w)-\operatorname{gcd}(|w|,|z|)$. Detailed improvements of this result are also proven. As a corollary we give a short proof of the fact that if u, v, w are primitive words such that u^{2} is a prefix of v^{2}, and v^{2} is a prefix of w^{2}, then $|w|>2|u|$. Finally, we show that each primitive word w has a conjugate $w^{\prime}=v u$, where $w=u v$, such that $\pi\left(w^{\prime}\right)=\left|w^{\prime}\right|$ and $|u|<\pi(w)$.

Keywords: combinatorics on words, Weinbaum factorization, critical points, bordered word, primitive words

1 Introduction

Various aspects of periodicity play a central rôle in combinatorics on words and its applications; see Lothaire's books $[8,9,10]$. The notion of periodicity is well posed in many problems concerning algorithmic aspects of strings: in pattern matching, compression of strings, sequence analysis, and so forth.

In this paper we study extensions of words with respect to their periodicity. Let w be a word over a finite alphabet A. The length of w is denoted by $|w|$. The empty word is denoted by ε. A positive integer p is a period of w, if $w=(u v)^{k} u$ where $p=|u v|, k \geq 1$, and $v \neq \varepsilon$. The minimum period of w is denoted by $\pi(w)$.

For a word $w=u v$, the word u is a prefix of w, denoted by $u \leq_{\mathrm{p}} w$, and v is a suffix of w, denoted by $v \leq_{\mathrm{s}} w$. If v is nonempty, then u is a proper prefix of w, denoted by $u<_{\mathrm{p}} w$. A nonempty word u is a border of w, if u is a prefix and a suffix of w, i.e., $u x=w=y u$ for some nonempty words x and y. Each word has a unique factorization in the form $w=u^{k} v$, where $k \geq 1, v<_{\mathrm{p}} u$ and $|u|=\pi(w)$. Here u is called the root of w and v the residue of w. We denote the length $|v| \geq 0$ of the residue v by $\rho(w)$.

A word is primitive if it is not a power of a shorter word, i.e., if $\pi(w)$ does not divide $|w|$ properly.

Let w be a word with a nonempty residue and a prefix $z \leq_{\mathrm{p}} w$. We show that if the word $w z$ has the same minimum period as w, that is, $\pi(w z)=\pi(w)$, then $|z|<\pi(w)-\operatorname{gcd}(|w|,|z|)$, where gcd denotes the greatest common divisor function. As a corollary we give a short proof of the well known result due to Crochemore and Rytter [4] stating that if u, v, w are primitive words such that $u^{2}<_{\mathrm{p}} v^{2}<_{\mathrm{p}} w^{2}$, then $u^{2}<_{\mathrm{p}} w$, i.e., $|w|>2|u|$. Finally, we strengthen the above extension result by showing that if w is a word with u as a root and w has a nonempty residue, then $\pi(w z)>\pi(w)$ for all prefixes $z \leq_{\mathrm{p}} w$ with $|z| \geq \pi(w)+\pi(u)-\rho(w)-1$.

In the last section, we study extensions $w z$ that force the period $\pi(w z)=$ $|w|$. This problem is stated for unbordered conjugates. For this, let $\tau(w)$ denote the shortest prefix of the word w, say $w=\tau(w) u$, such that the conjugate $u \tau(w)$ is unbordered, i.e., $\pi(u \tau(w))=|u \tau(w)|$. We show that for each primitive word w it holds that $\tau(w)<\pi(w)$.

2 Extensions of words by periods

It is clear that if u is a border of a word w, then $|w|-|u|$ is a period of w, and thus $|w|-|u| \geq \pi(w)$. A word w is said to be bordered (or selfcorrelated [11]), if it has a border, that is, if w has a prefix of length less than $|w|$ which is also a suffix of w. If w is not bordered, it is called unbordered. Clearly, a word w is unbordered if and only if $\pi(w)=|w|$.

We begin with an application of the basic periodicity result of Fine and Wilf [6]:

Theorem 1 (Fine and Wilf). If a word w has two periods p and q such that $|w| \geq p+q-\operatorname{gcd}(p, q)$, then also $\operatorname{gcd}(p, q)$ is a period of w.

Note that if w has an empty residue, then $\pi(w z)=\pi(w)$ for all words $z=w^{k} u$ with $u \leq_{\mathrm{p}} w$ and $k \geq 0$. Therefore, in the sequel we consider words with nonempty residues. Note that each word w with a nonempty residue is primitive, and thus $\pi\left(w^{2}\right)=|w|>\pi(w)$.

Theorem 2. Let w be a word with a nonempty residue and a prefix $z \leq_{\mathrm{p}} w$.

$$
\text { If } \pi(w z)=\pi(w) \text { then }|z|<\pi(w)-\operatorname{gcd}(\pi(w),|w|) .
$$

Proof. Clearly $\pi(w z) \geq \pi(w)$. Let $d=\operatorname{gcd}(\pi(w),|w|)$, and suppose that $z \leq_{\mathrm{p}} w$ satisfies $\pi(w z)=\pi(w)$. Then both $|w|$ and $\pi(w)$ are different periods of $w z$. If $|w z| \geq \pi(w)+|w|-d$, then Theorem 1 implies that d is a period of $w z$. In this case, $d=\pi(w)$, since $\pi(w z) \geq \pi(w)$, and so $\pi(w)$ divides $|w|$ contradicting primitivity of w; hence the claim follows.

The following example shows that the bound given in Theorem 2 is optimal for all lengths.

Example 3. Consider the word

$$
w=a^{n-1} b a
$$

with the minimum period $\pi(w)=n$, and let $z=a^{n-2} \leq_{\mathrm{p}} w$. We have $\pi(w z)=n$, where $|z|=|w|-3=\pi(w)-\operatorname{gcd}(\pi(w),|w|)-2$, since we have now $\operatorname{gcd}(n, n+1)=1$.

The following example shows that the condition $|z| \geq \pi(w)-\operatorname{gcd}(\pi(w),|w|)$ does not imply that $\pi(w z)=|w|$.

Example 4. Consider the word

$$
w=a b a b a a b a b .
$$

Then $\pi(w)=|a b a b a|=5$. Let $z=a b a$. We have $|z|=\pi(w)-2$ and

$$
w z=a b a b a \cdot a b a b \cdot a b a
$$

with $\pi(w)=5<7=\pi(w z)<9=|w|$, since $|a b a b a a b|$ is a period of $w z$.
The following result is due to Crochemore and Rytter [4]. A short proof due to Diekert is given in [9, Lemma 8.1.14]. Below we show that this result follows from Theorem 2. Note that an integer $p \leq|w|$ is a period of the word w if and only if $w \leq_{\mathrm{p}} x w$, where $x \leq_{\mathrm{p}} w$ is such that $|x|=p$.

Corollary 3. Let u, v, w be primitive words with $u^{2}<_{\mathrm{p}} v^{2}<_{\mathrm{p}} w^{2}$. Then $|w|>2|u|$.

Proof. Suppose that $|w| \leq 2|u|$, and thus $w<_{\mathrm{p}} v^{2}<_{\mathrm{p}} w^{2}$. Hence w has a nonempty residue. Let $w=v x$. Then $|x|$ is a period of v, since $v v \leq_{\mathrm{p}} w w=$ $v x v x$ and so $v \leq_{\mathrm{p}} x v$. Now $\pi(v) \leq|x|$, and, by Theorem $2, \pi(w) \geq|v|$, and so $\pi(w)=|v|$. However, also $|u|$ is a period of w, since $w<_{\mathrm{p}} u^{2}$. Therefore $|v|=\pi(w)=|u|$ gives a contradiction.

For a word w with a nonempty residue, let its maximal extension number be defined by

$$
\kappa(w)=\max \left\{p\left|p=|z| \text { for a prefix } z \leq_{\mathrm{p}} w \text { with } \pi(w z)=\pi(w)\right\}\right.
$$

Theorem 2, $\kappa(w)$ exists and satisfies $\kappa(w)<\pi(w)-1$. For a nonempty word w, let w^{\bullet} denote the word from which the last letter is removed. For the proof of the following result, see Berstel and Karhumäki [1].

Lemma 4. Let u and v be two nonempty words. If $u v^{\bullet}=v u^{\bullet}$ then there exists a word g such that $u=g^{i}$ and $v=g^{j}$ for some $i, j \geq 1$.

We shall now have a partial improvement of Theorem 2.
Theorem 5. Let w be a word with a nonempty residue and let u be the root of w. Then

$$
\kappa(w) \leq \pi(w)+\pi(u)-\rho(w)-2 .
$$

Proof. Let $u=v y$ where $|v|=\rho(w)$, and let x be the root of u. Assume that there exists a prefix $z \leq_{\mathrm{p}} w$ such that $\pi(w z)=\pi(w)$ and $|z|=\pi(w)+\pi(u)-$ $\rho(w)-1=|w u|-|v|-1$. By Theorem 2, we have that $\pi(u)<\rho(w)$, and thus $x<_{\mathrm{p}} u$. Now, $|v z|=|u x|-1$ and since $v z \leq_{\mathrm{p}} u x$, we have $v z=u x^{\bullet}=v y x^{\bullet}$, and thus $z=y x^{\bullet}$. Also, $z=x y^{\bullet}$, since $z \leq_{\mathrm{p}} u$ and $y<_{\mathrm{p}} u$, for, $y<_{\mathrm{p}} z<_{\mathrm{p}} u$ and x is the root of u. By Lemma $4, y x^{\bullet}=x y^{\bullet}$ implies that there exists a primitive word g such that $x=g^{i}$ and $y=g^{j}$ for some $i, j \geq 1$. Then $v=g^{i t} g_{1}$ for a prefix $g_{1}<_{\mathrm{p}} g$ and an integer $t \geq 0$, and so $u=v y=g^{i t} g_{1} g^{j}$. However, since x is the root of $u, u=x^{r} x_{1}$ for some $r \geq 1$ and $x_{1}<_{\mathrm{p}} x$, from which it follows that $u=g^{i t+j} g_{1}$. In order for g to be primitive, we must have $j=0$, for otherwise g is a proper conjugate of itself. This contradicts the fact that $j \geq 1$.

The bound given in Theorem 5 is optimal as shown in the following example.

Example 5. Consider the words

$$
w_{n}=(a b a)^{n} a b
$$

where $\pi\left(w_{n}\right)=3, \pi(u)=2$ for the root $u=a b a$ of w_{n}, and $\rho\left(w_{n}\right)=2$. Hence, $\kappa(w)=\pi\left(w_{n}\right)+\pi(u)-\rho\left(w_{n}\right)-2=1$. Indeed, the extension $w_{n} a b$ has a larger period than 3 , namely $\pi\left(w_{n} a b\right)=3 n+2$.

Also, for

$$
u_{n}=(a b)^{n} a a b
$$

of length $2 n+3$, we have $\pi\left(u_{n}\right)=2 n+1$, and the length $\rho\left(u_{n}\right)$ of the residue of u_{n} is 2 . Hence, $\kappa\left(u_{n}\right)=2 n-1=\pi\left(u_{n}\right)+\pi\left((a b)^{n} a\right)-\rho\left(u_{n}\right)-2$.

6 Critical points and extensions

Every primitive word w has an unbordered conjugate. For instance, consider the least conjugate of w with respect to some lexicographic ordering, that is, a Lyndon conjugate of w; see e.g. Lothaire [8]. Denote by $\tau(w)$ the shortest prefix of $w, w=\tau(w) u$, such that the conjugate $u \tau(w)$ is unbordered. Hence $0 \leq \tau(w)<|w|$.

Lemma 6. Each primitive word w has a factorization $w=u v$ such that the conjugate vu is unbordered and either $|u|<\pi(w)$ or $|v|<\pi(w)$.

Proof. Let $w=u^{k} z$, where u is the root of $w, k \geq 1$, and $z<_{\mathrm{p}} u$. Suppose that w has no conjugate as stated in the claim. Let $w^{\prime}=y u^{k-i} z u^{i-1} x$ be an unbordered conjugate of w, where $u=x y$. (Take, for instance, a Lyndon conjugate of w.) It follows that $i=k$ or $i=1$, for otherwise $y x$ is a border of w^{\prime}. If $i=1$, then $w^{\prime}=y u^{k-1} z x$ is a required conjugate: $w^{\prime}=\left(y u^{k-1} z\right)(x)$. Assume then that $i=k$, we have $w^{\prime}=y z u^{k-1} x$ and thus $z<_{\mathrm{p}} x$; otherwise again $y x$ is a border of w^{\prime}. However, now $w^{\prime}=(y z)\left(u^{k-1} x\right)$ is a required conjugate.

In the following we say that an integer p with $1 \leq p<|w|$ is a point in the word w. A nonempty word u is called a repetition word at p if $w=x y$ with $|x|=p$ and there exist words x^{\prime} and y^{\prime} such that u is a suffix of $x^{\prime} x$ and u is a prefix of $y y^{\prime}$. Let

$$
\pi(w, p)=\min \{|u| \mid u \text { is a repetition word at } p\}
$$

denote the local period at point p in w. In general, we have that $\pi(w, p) \leq$ $\pi(w)$. A factorization $w=u v$, with $u, v \neq \varepsilon$ and $|u|=p$, is called critical, and p is a critical point, if $\pi(w, p)=\pi(w)$.

The Critical Factorization Theorem (CFT) is a fundamental result on periodicity. It was first conjectured by Schützenberger [12] and then proved by Césari and Vincent [2]. Later it was developed into its present form by Duval [5]. We refer to [7] for a short proof of the theorem giving a technically improved version of the proof by Crochemore and Perrin [3].

Theorem 7 (CFT). Let w be a word with at least two different letters. Then w has a critical point p such that $p<\pi(w)$.

The following lemma rests on the CFT.
Lemma 8. Let w be an unbordered word with $|w| \geq 2$, and let $w=u v$ be such that $p=|u|$ is any critical point of w. Then also the conjugate $v u$ is unbordered.

Proof. Without loss of generality we can assume that $|u| \leq|v|$. Now $\pi(w)=$ $|w|$, since w is unbordered. Assume, contrary to the claim, that the word $v u$ is bordered. We have two cases to consider. (1) Assume that $v=s v^{\prime}$ and $u=u^{\prime} s$ for a nonempty word s. Then $\pi(w,|u|) \leq|s|<|w|$ contradicting the assumption that $|u|$ is a critical point. (2) Assume that $v=s u t$. Then $\pi(w,|u|) \leq|s u|<|w|$, and again $|u|$ is not a critical point; a contradiction. These cases prove the claim.

The following theorem states the main result of this section.
Theorem 9. Let w be a primitive word. Then $\tau(w)<\pi(w)$.
Proof. Suppose first that $\pi(w)>|w| / 2$. Assume that $w=x y z$, where $|x y|=\pi(w), z<_{\mathrm{p}} x y$, and $|x|$ is a critical point of w such that $|x|<\pi(w)$ provided by Theorem 7. Suppose that the conjugate $w^{\prime}=y z x$ is bordered, and let u be its shortest border. Since $|x|$ is a critical point in w and u is a local repetition at $|x|$ in w, we have $|u| \geq \pi(w)$, and hence $|u| \geq|y x|$. Since u is unbordered, it does not overlap with itself, and therefore $|y z x| \geq 2|u|$, which implies that $|y z x| \geq 2|y x|$ and hence $|z| \geq|y x|$; a contradiction. Hence the conjugate $w^{\prime}=y z x$ is unbordered, and so $\tau(w)<\pi(w)$.

Assume then that $\pi(w)<|w| / 2$, and et u be the root of w. Then $w=u^{k} z$ where $\pi(w)=|u|$ and $z<_{\mathrm{p}} u$ and $k \geq 2$.

Assume that $\tau(w) \geq \pi(w)$, and thus that $\tau(w)>\pi(w)$. By Lemma 6, there exists an unbordered conjugate $w^{\prime}=v u^{k-1} t$ of w, where $v \leq_{\mathrm{s}} w$ such that $|v|<\pi(w)$. Consider a critical point p of w^{\prime}, say $w^{\prime}=g h$, where $|g|=p$.

First, v is a suffix of $u z$, and thus the critical point p is not in v, i.e., $p>|v|$, since $\pi\left(w^{\prime}\right)=\left|w^{\prime}\right|$ and v occurs in $u^{k-1} t$. Similarly, $p<|v u|$, since all suffixes of w^{\prime} starting from a position $q \geq|v u|$ occur in w^{\prime} starting from the point $q-|u|$ and thus there is a local repetition at point q of length at most $|u|$. Now we have $|v|<|g|<|v u|$ and the conjugate $h g$ is unbordered by Lemma 8. Let $u=r s$ such that $g=v r$. Then $h g=s u^{k-1} z r$ and $1 \leq|r|<|u|$ as required.

The following example illustrates that it is not enough to just consider critical points for proving Theorem 9.

Example 7. It is not true that a conjugate $v u$ with respect to a critical point $|u|$ of $w=u v$ is unbordered. Consider for instance the word $w=$ abcbababcbabab, where $\pi(w)=6$, and $p=3$ is a critical point, but the corresponding conjugate $w^{\prime}=b a b a b c b a b a b a b c$ has a border bababc.

Note that we always have $\pi\left(w^{k} z\right) \leq|w|$ for prefixes $z \leq_{\mathrm{p}} w$ and nonnegative integers k. Theorem 9 gives a complementary result to Theorem 2 and 5 .

Corollary 10. Let w be a word with a nonempty residue and a prefix $z \leq_{\mathrm{p}} w$.

$$
\text { If }|z| \geq \pi(w) \text { then } \pi(w z)=|w| .
$$

Proof. Let $|z| \geq \pi(w)$. By Theorem 9, w has an unbordered conjugate $w^{\prime}=v u$ where $w=u v$ and $|u|<\pi(w)$. Then we have $\pi(w u)=|w|$ for the extension $w u$, since $\pi(w u)$ is at least the length of the longest unbordered factor of $w u$. The claim follows now from $w u \leq_{\mathrm{p}} w z$.

The following example elaborates on the differences between Theorem 2 and Corollary 10.

Example 8. Consider the word

$$
w=a a a b a a
$$

for which $|w|=6$ and $\pi(w)=4$ and $\operatorname{gcd}(\pi(w),|w|)=2$ so that we get $\pi(w)-\operatorname{gcd}(\pi(w),|w|)=2$. We have $\pi(w z)>\pi(w)$ for each extension $w z$ with $z \leq_{\mathrm{p}} w$ and $|z| \geq 2$, by Theorem 2. The shortest extension increasing the period is for $z=a a$, that is, $w \cdot a a=a a a b a a a a$ with $\pi(w a a)=5$.

However, we have $\pi(w z)<|w|$ and the corresponding conjugate $w^{\prime}=$ abaaaa of w is bordered. In this example, we need an extension $z=a a a$ of length 3 in order to obtain $\pi(w z)=|w|$.

References

[1] Berstel, J., Karhumäki, J.: Combinatorics on words - A tutorial. Bull. EATCS 79, 178-229 (2003)
[2] Césari, Y., Vincent, M.: Une caractérisation des mots périodiques. C. R. Acad. Sci. Paris Sér. A 286, 1175-1177 (1978)
[3] Crochemore, M., Perrin, D.: Two-way string-matching. J. ACM 38(3), 651-675 (1991)
[4] Crochemore, M., Rytter, W.: Squares, cubes, and time-space efficient string searching. Algorithmica 13(5), 405-425 (1995)
[5] Duval, J.P.: Périodes et répétitions des mots de monoïde libre. Theoret. Comput. Sci. 9(1), 17-26 (1979)
[6] Fine, N.J., Wilf, H.S.: Uniqueness theorem for periodic functions. Proc. Amer. Math. Soc. 16, 109-114 (1965)
[7] Harju, T., Nowotka, D.: Density of critical factorizations. Theor. Inform. Appl. 36(3), 315-327 (2002)
[8] Lothaire, M.: Combinatorics on Words, Encyclopedia of Mathematics, vol. 17. Addison-Wesley, Reading, MA (1983. Reprinted in the Cambridge Mathematical Library, Cambridge Univ. Press, 1997)
[9] Lothaire, M.: Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications, vol. 90. Cambridge University Press, Cambridge, United Kingdom (2002)
[10] Lothaire, M.: Algorithmic Combinatorics on Words. Cambridge University Press, Cambridge, United Kingdom (2005)
[11] Morita, H., van Wijngaarden, A.J., Vinck, A.J.H.: On the construction of maximal prefix-synchronized codes. IEEE Trans. Inform. Theory 42, 2158-2166 (1996)
[12] Schützenberger, M.P.: A property of finitely generated submonoids of free monoids. In: Algebraic theory of semigroups (Proc. Sixth Algebraic Conf., Szeged, 1976), Colloq. Math. Soc. János Bolyai, vol. 20, pp. 545576. North-Holland, Amsterdam (1979)

University of Turku

- Department of Information Technology
- Department of Mathematics

Åbo Akademi University

- Department of Computer Science
- Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

- Institute of Information Systems Sciences

