

Tero Harju | Dirk Nowotka

Binary Words with Few Squares

Turku Centre for Computer Science

TUCS Technical Report
No 737, January 2006

Binary Words with Few Squares

Tero Harju
Turku Centre for Computer Science and Department of Mathematics, University of Turku, FIN-20014 Turku, Finland harju@utu.fi
Dirk Nowotka
Institute of Formal Methods in Computer Science, University of Stuttgart, D-70569 Stuttgart, Germany
dirk.nowotka@informatik.uni-stuttgart.de

Abstract

A short proof is given for a result of Fraenkel and Simpson [Electronic J. Combinatorics 2 (1995), 159-164] stating that there exists an infinite binary word which has only three different squares u^{2}.

Keywords: combinatorics on words, Weinbaum factorization, critical points, bordered word, primitive words

TUCS Laboratory

Discrete Mathematics for Information Technology

1 Introduction

Consider the set $\Sigma_{k}=\{0,1, \ldots, k-1\}$ as an alphabet of symbols, called letters. The set of all words over Σ_{k}, denoted by Σ_{k}^{*}, consists of the finite sequences of elements from Σ_{k}. We denote by $|w|$ the length of the word w, i.e., the number of occurrences of the letters in w. An infinite word over Σ_{k} is a mapping from $w: \mathbb{N} \rightarrow \Sigma_{k}$ which is usually presented as the ordered sequence $w(1) w(2) \cdots$ of the images.

A word u is a factor of a word $w \in \sum_{k}^{*}$, if $w=w_{1} u w_{2}$ for some words w_{1} and w_{2}. A nonempty factor $u^{2}(=u u)$ is called a square in w. The word w is square-free if it has no squares.

It is easy to see that every binary word $w \in \Sigma_{2}^{*}$ with $|w| \geq 4$ has a square. Indeed, the only square-free binary words are $0,1,01,10,010,101$. On the other hand, Entringer, Jackson, and Schatz [1] showed in 1974 that there exists an infinite word with 5 different squares. Later Fraenkel and Simpson [2] showed that there exists an infinite binary word over the alphabet $\{0,1\}$ that has only three squares 00,11 , and 0101 . We shall give a short proof of this result based on square-free words over a three letter alphabet.

Example 2. We can show that the word $w=101100111000111100111011$ of length 24 has the squares u^{2} only for $u \in\{0,1,11\}$. Also, it can be checked that the word w has the maximum length 24 among the words having only the squares $0^{2}, 1^{2}$, and $\left(1^{2}\right)^{2}$. Indeed, it can be checked that all words of length 25 or more do have three squares $0^{2}, 1^{2}$, and u^{2} for some word $u \notin\{00,11\}$.

The following result is due to Axel Thue; see, e.g. Lothaire [3] for background and a proof of this theorem.

Theorem 1. There exists an infinite square-free word over the three letter alphabet Σ_{3}.

3 Three squares

In the rest of this paper, we prove
Theorem 2. There exists an infinite binary word W that has only the squares u^{2} for $u \in\{0,1,01\}$.

Proof. Let w be an infinite square-free word over the alphabet Σ_{3} provided by Theorem 1. Also, let W be the word where each $0(1,2$, resp.) in w is substituted by $A(B, C$, resp.) where

$$
\begin{aligned}
& A=1^{3} 0^{3} 1^{2} 0^{2} 101^{2} 0^{3} 1^{3} 0^{2} 10, \\
& B=1^{3} 0^{3} 101^{2} 0^{3} 1^{3} 0^{2} 101^{2} 0^{3} 10, \\
& C=1^{3} 0^{3} 1^{2} 0^{2} 101^{2} 0^{3} 101^{3} 0^{2} 101^{2} 0^{2}
\end{aligned}
$$

It is easy to check that these words have only the squares $0^{2}, 1^{2}$ and $(01)^{2}$. Denote $\Delta=\{A, B, C\}$. We have the following marking property of $1^{3} 0^{3}$:
the factor $1^{3} 0^{3}$ occurs only as a prefix of each A, B, C
Also, we notice that the longest common prefix (suffix, resp.) of two words from Δ is $1^{3} 0^{3} 1^{2} 0^{2} 101^{2} 0^{3} 1$ of length $18\left(0^{2} 10\right.$ of length 4 , resp.). Since the words A, B and C are longer than 22, we obtain

$$
\begin{equation*}
\text { no word } Z \in \Delta \text { can be factored as } Z=y x \text { where } x \text { is a suffix } \tag{b}
\end{equation*}
$$

of a word $X \in \Delta \backslash\{Z\}$ and y is a prefix of a word $Y \in \Delta \backslash\{Z\}$.
Suppose that W has a square U^{2}, where $U \notin\{0,1,01\}$. It is straightforward using (a) to verify that the short words $X Y$ for different $X, Y \in \Delta$, do not contain other squares than $0^{2}, 1^{2}$, and $(01)^{2}$. In particular, we may assume that U^{2} has a factor Z from Δ.

Suppose first that U does not have a factor from Δ, and thus that U has at most one occurrence of the marker $1^{3} 0^{3}$. Now $U^{2}=x Z y$ for some $Z \in \Delta$, where x is a suffix of a word $X \in \Delta$ and y is a prefix of a word $Y \in \Delta$ for $X, Y \neq Z$, since w is square-free. We divide our considerations into two cases.
(1) Assume that U has exactly one occurrence of $1^{3} 0^{3}$. In this case, $Z=y x$, since y begins with the unique occurrence of $1^{3} 0^{3}$ inside the second U. This, however, contradicts the property (b).
(2) Assume that U has no occurrences of $1^{3} 0^{3}$. In this case, $U=x u=v y$ so that $Z=u v$, where u and y are proper prefixes of $1^{3} 0^{3}$, and as they are both suffixes of U, one of them is a suffix of the other. Necessarily $u=y$, and hence also $x=v$. But now $Z=y x$ contradicts the property (b).

Suppose then that U has a factor from Δ. If $U=u X v$ with $X \in \Delta$, then necessarily $U^{2}=u X v u X v$ is a factor in W such that $v u \in \Delta^{*}$, because of the marking property (a). Therefore, $U=x X_{1} X_{2} \cdots X_{n} y$ such that $X_{0} X_{1} \cdots X_{n} Z X_{1} \cdots X_{n} X_{n+1}$ is a factor of W where $X_{i} \in \Delta$ for each i, x is a suffix of $X_{0}, Z=y x \in \Delta$, and y is a prefix of X_{n+1}. Now $Z \neq X_{0}$, since otherwise $\left(X_{0} X_{1} \cdots X_{n}\right)^{2}$ would be a factor of W and this would contradict the square-freeness of w. Similarly, $Z \neq X_{n+1}$. Again $Z=y x$ contradicts (b).

We observe that the word

$$
w=10110011100011001000111000100
$$

of length 29 has only the squares u^{2} for $u \in\{0,1,100\}$. It can be shown, with the aid of a computer, that each word w of length $|w| \geq 30$ with exactly three different squares, has the squares $0^{2}, 1^{2}$ and $(01)^{2}$ or $0^{2}, 1^{2}$ and $(10)^{2}$.

References

[1] R. C. Entringer, D. E. Jackson, and J. A. Schatz. On nonrepetitive sequences. 16, 1974.
[2] A. S. Fraenkel and J. Simpson. How many squares must a binary sequence contain? Electronic J. Combinatorics, 2(\#R2), 1995.
[3] M. Lothaire. Combinatorics on Words. Addison-Wesley, Reading, MA, 1983. Reprinted in the Cambridge Mathematical Library, Cambridge Univ. Press, 1997.

University of Turku

- Department of Information Technology
- Department of Mathematics

Åbo Akademi University

- Department of Computer Science
- Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

- Institute of Information Systems Sciences

ISBN 952-12-1662-X
ISSN 1239-1891

