
Juhani Karhumäki | Michal Kunc | Alexander Okhotin

Computational power of two stacks
with restricted communication

TUCS Technical Report
No 744, May 2008

Computational power of two stacks
with restricted communication

Juhani Karhumäki
Michal Kunc
Alexander Okhotin

Department of Mathematics, University of Turku and
Turku Centre for Computer Science
Turku FIN–20014, Finland
karhumak@utu.fi, kunc@math.muni.cz, alexander.okhotin@utu.fi

TUCS Technical Report

No 744, May 2008

Abstract

Rewriting systems working on words with a center marker are considered.
The derivation is done by erasing a prefix or a suffix and then adding a
prefix or a suffix. This models a communication of two stacks according to
a fixed protocol defined by the choice of rewriting rules. The paper sys-
tematically considers different cases of these systems and determines their
expressive power. Several cases are identified where very restricted commu-
nication surprisingly yields computational universality.

Keywords: Word rewriting, string rewriting, Post systems, multi-pushdown
machines, communication, universality

TUCS Laboratory
Discrete Mathematics for Information Technology

1 Introduction

The earliest evidence of computational power of simple rewriting systems
seems to be the following fascinating example of Post [13] dating to 1920’s.
Given a binary word w, apply to it iteratively the following rule: “omit the
three-letter prefix and, if its first symbol was 0 (1, respectively), append a
suffix 00 (1101, respectively)”. There are three possible outcomes: either
the process terminates, or goes into a periodic stage, or proceeds without
repetitions. As noticed already by Post, it is not easy to determine what
is the case for a given w. In fact, even now no algorithm to decide this is
known. Based on the above example Post developed his canonical systems,
which have universal computing power.

In 1960’s Büchi [3] and Kratko [8] independently started to consider sim-
pler rewriting systems of a similar kind. They noticed that if Post’s rules are
applied locally, that is, a word w is rewritten to y(x−1w) under a rule x → y,
then the languages obtained are regular. On the other hand, the power of
another simpler variant of Post’s rewriting was determined only recently. In
this rewriting, given an initial word w and a finite or a regular set X, the
rule “delete a prefix from X and append any word from X to the end” is
iteratively applied. The choice of the word being appended is independent
of the word removed, so this was called uncontrolled one-way rewriting, and
the regularity of the sets generated was established [7].

This process resembles another problem dealing with operations on two
ends of a word proposed by Conway [4]. He asked whether for every regular
language X the largest language Z with XZ = ZX is regular as well. This
problem was recently solved strongly negatively: by a sophisticated construc-
tion it was proved that such Z need not be recursively enumerable [9]. This
demonstrated that Conway’s equation is deeper than it seems, and motivated
the study of its approximate sequential variant, called uncontrolled two-way
rewriting, defined by the rule “delete an element of X from either of the ends
of the word, and at the same time append any element of X to the opposite
end”. It was found to generate a nonregular language [7], but its exact power
was left undetermined.

This paper is dedicated to a systematic study of such rewriting systems
and their variants. We assume that the words being rewritten contain a
center marker that is never touched: this does not reduce the power of the
most general case and leads to interesting special cases. Besides two-way
rewriting, we consider three augmented cases of one-way rewriting, which
are illustrated by diagrams in Figure 1, where # is the center marker. In
these subcases local Büchi rewriting steps are also allowed, that is, steps
where both deletion and appending are done at the same end. If this is
allowed on the right, we call the rewriting one-way R-rewriting, where R
stands for “receiving”. If the local rewriting is allowed only at the left end,
then it is called one-way S-rewriting, where S stands for “sending”. Finally,

1

Figure 1: Modes of rewriting.

if it is allowed at both ends, then we call it one-way RS-rewriting.

In all of the above cases the rewriting may be controlled or uncontrolled.
In the former case a connection between the word x being erased and the
word y being appended is allowed: for example, the set of all pairs (x, y)
may be defined by a recognizable or rational relation. In the latter case
the words to be deleted and added are chosen independently, that is, the
relation between x and y is a Cartesian product of two sets, which we call
an uncontrolled relation. Obviously, the computational power of the former
tends to be much higher than that of the latter, though in some cases we
shall see that uncontrolled rewriting is as powerful as its controlled variant.

We have described our approach in terms of rewriting. However, our
systems can be equally interpreted in terms of communication between two
(pushdown) stacks. In one-way rewriting we pop from the left stack and
simultaneously push onto the right stack, that is, we send a message from
left to right. When an uncontrolled relation defines a communication, all
messages sent through such a channel are indistinguishable, that is, the fact
of sending a message constitutes the entire message. When we pop from
and push onto the same stack, this models local processing of data. This
interpretation gives a further motivation for our systematic study.

Our presentation is structured as follows. In Section 2 we formally define
all variants of our rewriting systems. Then in Section 3 we consider one-way
R-rewriting. Here, assuming that the set of initial words is regular, only reg-
ular languages can be generated even using a seemingly powerful controlled
rewriting. On the other hand, for a context-free initial set the rewriting be-
comes computationally universal. In the case of one-way S-rewriting studied
in Section 4, our result is, in essence, that already quite restricted models
generate all context-free languages, but even their significant generalizations
do not give anything more. For one-way RS-rewriting, in Section 5 we obtain
a greater variety of results: if the one-way rewriting is uncontrolled, then only
special cases of context-free languages are generated, while if it is controlled,
all recursively enumerable languages can be obtained. Finally, in Section 6 we
establish the unexpected computational universality of uncontrolled two-way
rewriting.

2

2 Formal definitions and notation

We consider finite words over a finite nonempty alphabet Σ. For every word
w = a1 . . . an ∈ Σ∗, with ai ∈ Σ, we denote its length by |w| = n and
its reversal by wR = an . . . a1. The unique word of length 0 is denoted ε.
Any subset L ⊆ Σ∗ is called a language. We consider standard operations
on languages, such as concantenation K · L = {uv | u ∈ K, v ∈ L }, right-
quotient K · L−1 = { x | ∃y ∈ L : xy ∈ K }, left-quotient L−1 · K = { x |
∃y ∈ L : yx ∈ K } and Boolean operations.

Various standard formalisms for specifying languages shall be used
throughout this paper. Brief definitions are given below. For further ex-
planations the reader is referred to the textbooks by Salomaa [15] and by
Sakarovitch [14].

A deterministic finite automaton (DFA) is a quintuple A =
(Σ, Q, q0, δ, F), in which Q is a finite set of states, with the initial state q0 ∈ Q
and the set of final states F ⊆ Q, while δ : Q×Σ → Q is a transition function.
Extend δ to the domain Q×Σ∗ as δ(q, ε) = q and δ(q, wa) = δ(δ(q, w), a), and
define the language recognized by A as L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F }. A
language is regular if it is recognized by some DFA.

A context-free grammar is a quadruple G = (Σ, N, P, S), with the set
of nonterminal symbols N , the start symbol S ∈ N , and a finite set P of
rewriting rules of the form A → α, for A ∈ N and α ∈ (Σ ∪ N)∗. We shall
refer to the rules of grammars as productions and reserve the word “rule” for
rewriting systems operating on sides of words, which are the main subject
of this paper. The relation =⇒ of generation on (Σ ∪ N)∗ is defined by
ηAθ =⇒ ηαθ for any A → α ∈ P and for any η, θ ∈ (Σ ∪ N)∗. Let =⇒∗ be
the reflexive and transitive closure of =⇒. Every word α ∈ (Σ∪N)∗ generated
from S in zero or more steps (that is, with S =⇒∗ α) is called a sentential
form of G. The language generated by the grammar is defined as L(G) =
{w ∈ Σ∗ | S =⇒∗ w }. Furthermore, we consider the language generated
by any word α ∈ (Σ ∪ N)∗, defined as LG(α) = {w ∈ Σ∗ | α =⇒∗ w }. If
α ∈ Σ∗NΣ∗ ∪ Σ∗ in every production in P , the grammar is called linear. A
language is (linear) context-free if it is generated by some (linear) context-free
grammar.

If productions in the definition of a context-free grammar are allowed to
be of the form α → β, with α ∈ N+ and β ∈ (Σ ∪ N)∗, and the rest of
the definition of generation is repeated verbatim, the resulting device can
generate any recursively enumerable set. It is known as Chomsky’s type 0
grammar.

A pushdown automaton (PDA) is defined as a septuple, B =
(Σ, Γ, Q, q0, δ, F, γ0), in which Q, q0 and F are as in the case of DFAs, Γ is the
pushdown alphabet with γ0 as the initial symbol, and the transition function
δ maps Q× (Σ ∪ {ε})× (Γ ∪ {ε}) to the set of finite subsets of Q× Γ∗. The
configurations of the automaton are triples (q, w, x), where q ∈ Q, w ∈ Σ∗

3

and x ∈ Γ∗. The relation ` of one-step transition on the set of these config-
urations is defined as (q, uw, γz) ` (q′, w, yz), for all (q′, y) ∈ δ(q, u, γ). The
language generated by the PDA is

L(B) = {w ∈ Σ∗ | (q0, w, γ0) `∗ (qF , ε, ε) for some qF ∈ F }.
We shall use the following semi-formal notation for commonly used cases of
PDA transitions: δ(q, u, ε) 3 (q′, ε) will be called “read u”, δ(q, ε, ε) 3 (q′, x)
is “push x”, while δ(q, ε, γ) 3 (q′, ε) is “pop γ”. In some cases we shall
restrict, without loss of generality, the domain of δ to be Q×(Σ∪{ε})×Γ, that
is, every transition checks the top pushdown symbol. Pushdown automata
recognize exactly the context-free languages.

An important subclass of PDAs are the counter automata, which use
a single pushdown symbol 1 (besides the initial symbol γ0) and which are
known to be strictly less powerful than the general PDAs. The initial symbol
may appear only at the bottom of the stack and is used to test the emptiness
of the pushdown. Then it is natural to consider the pushdown as a counter,
and to interpret the number of symbols 1 in it as the value of the counter.
We shall actually deal only with a subclass of one-turn counter automata,
in which, in course of a computation on any word, the value of the counter
monotonically increases until some point, and then monotonically decreases
until the end of the computation. For such automata we can assume that
they have no initial pushdown symbol, as zero test is not needed.

Let us now define the rewriting systems we study in this paper. Let
Σ be a finite nonempty alphabet and let # /∈ Σ be an additional symbol
called the center marker. Let I ⊆ Σ∗#Σ∗ be a set of words with a center
marker, from which the rewriting starts; this set is called the initial set. Let
``→,

rr→,
`r→,

r`→ ⊆ Σ∗ ×Σ∗ be four relations that constitute the rewriting rules.
The corresponding relations of one-step rewriting are defined as follows:

xw#w′ ``
=⇒ yw#w′ (w, w′ ∈ Σ∗, (x, y) ∈ ``→)

w#w′x
rr

=⇒ w#w′y (w, w′ ∈ Σ∗, (x, y) ∈ rr→)

xw#w′ `r
=⇒ w#w′y (w, w′ ∈ Σ∗, (x, y) ∈ `r→)

w#w′x
r`

=⇒ yw#w′ (w, w′ ∈ Σ∗, (x, y) ∈ r`→)

The relation of one-step rewriting is defined as the union of these relations:

=⇒ =
(``
=⇒∪ rr

=⇒∪ `r
=⇒∪ r`

=⇒)

The reflexive and transitive closure of =⇒ is denoted by =⇒∗. The language
generated by the rewriting system is then defined as

{w | ∃w0 ∈ I : w0 =⇒∗ w }.
The main modes of rewriting we consider, illustrated in Figure 1, are

formally defined as follows:

4

Figure 2: Families of relations used for
``→,

rr→,
`r→ and

r`→.

• If the relations
`r→ and

rr→ are essentially used, while
``→ =

r`→ = ∅, we
call this one-way R-rewriting.

• If
``→ and

`r→ are used and
rr→ =

r`→ = ∅, this is one-way S-rewriting.

• The combined version of (R) and (S), in which
``→,

`r→ and
rr→ are used

and
r`→ = ∅, will be called one-way RS-rewriting.

• Finally, if
`r→ and

r`→ are used and
``→ =

rr→ = ∅, we call this two-way
rewriting.

The strong representability results obtained for two-way rewriting in Sec-
tion 6 make it unnecessary to consider any more powerful cases.

Let us now further classify relations
``→,

rr→,
`r→ and

r`→. One type of
relations we consider are uncontrolled relations, which represent rewriting
rules in which there is no connection between the word erased and the word
written. Such relations are defined by Cartesian products of two languages
as follows:

• Let L andM be two families of languages. A relation→ is uncontrolled
using L and M, denoted → ∈ Unc(L,M), if → = X × Y for any
languages X ∈ L and Y ∈ M. We shall consider classes of relations
Unc(Reg,Reg) and Unc(Fin, F in), in which the languages X and Y
must be regular or finite, respectively.

• The class of uncontrolled relations of a special form → = X ×X, for a
single language X ∈ L, will be denoted by Unc(L). We shall consider
Unc(Reg) and Unc(Fin).

We call other relations controlled and consider, in particular, the following
well-known families:

• Finite relations (Fin) are given by lists of pairs of the form → =
{(x1, y1), . . . , (xn, yn)}. These are the commonly used sets of rewriting
rules, such as in Thue systems and Chomsky phrase-structure gram-
mars.

A very simple case of finite relations are the copy relations: let Σ′ ⊆ Σ

and define → = { (a, a) | a ∈ Σ′ }. When
`r→ ∈ Copy, it moves certain

symbols verbatim from one side of the word to the other.

5

• Recognizable relations (Rec) are those for which the language { x$y |
(x, y) ∈ →} is regular, or, equivalently, which can be represented as a
finite union of relations in Unc(Reg,Reg).

• Rational relations (Rat) are those recognized by finite transducers.

A (nondeterministic) finite transducer is defined as a sextuple
(Γ, Θ, Q, q0, δ, F), where Γ and Θ are two alphabets; Q is a finite set of
states; q0 ∈ Q is the initial state; δ : Q× (

(Γ×{ε})∪ ({ε}×Θ)
) → 2Q

maps triples of the form (q, a, ε) and (q, ε, s), with q ∈ Q, a ∈ Γ and
s ∈ Θ, to subsets of the set of states; and F ⊆ Q is the set of final
states. The relation defined by a transducer consists of all pairs of words
(u, v) ∈ Γ∗×Θ∗, for which there exists a sequence of states p0, p1, . . . , pn,
where pi ∈ Q, p0 = q0, pn ∈ F , and factorizations u = u1 . . . un and
v = v1 . . . vn, with pi ∈ δ(pi−1, ui, vi) for all i. In the case of our rewrit-
ing systems, the relations are → ⊆ Σ∗ × Σ∗, and the transducers have
Γ = Θ = Σ.

• The most general family of relations we consider are the regularity
preserving relations (Reg.Pres.), i.e., relations →, such that for every
regular L, the language { y | ∃x ∈ L : (x, y) ∈ →} is regular.

These families of relations form a hierarchy from copy relations and Unc(Fin)
up to the most powerful class Reg.Pres.; this hierarchy is given in Figure 2.

A class of rewriting systems is defined by the mode of rewriting (R, S, RS

or 2W), the families of relations to which the relations
``→,

`r→,
r`→ and

rr→ may
belong and the family of languages from which the initial set may be selected.
Every class of rewriting systems defines a family of formal languages. On
the other hand, each class of rewriting systems models a certain type of
communication between two stacks, and the computational power of this kind
of communication is characterized by the aforementioned language family.

For example, we shall consider S-rewriting with recognizable
``→, rational

`r→ and context-free I, and show that these rewriting systems define only
context-free languages.

Quite a few classes of rewriting systems we study turn out to have univer-
sal computational power, that is, some system from such a class generates a
language, to which every recursively enumerable language is reducible. This
usually means that there is a way to encode the definition of any given Tur-
ing machine in the rewriting rules of such a system, so that derivations of
words of a certain form (that is, belonging to a certain regular language)
simulate computations of the Turing machine, while derivations of the rest
of the words are irrelevant.

For some combinations of modes of rewriting and families of relations
their computational universality is too obvious. If either of the relations
``→,

rr→ is rational, then it is easy to produce an r.e.-complete language from

6

a one-element initial set by using a well-known result that iteration of finite
transducers has universal computational power.

This holds already for an input-deterministic transducer, also known as a
generalized sequential machine or gsm. Transducers of this kind are defined
with a transition function specifying, for every state q and for every input
symbol a ∈ Γ, a unique target state q′ and output word w ∈ Θ∗. Formally, its
transition function is δ : Q× Γ → Q×Θ∗, and the transducer implements a
function → from Γ∗ to Θ∗. In case Γ = Θ = Σ, one can consider the relation
→∗ ⊆ Σ∗ × Σ∗, which is the reflexive and transitive closure of →.

Folklore Theorem. There exists an alphabet Σ, a word w0 ∈ Σ∗ and a func-
tion → from Σ∗ to Σ∗ computed by an input-deterministic finite transducer,
for which the language {w ∈ Σ∗ | w0 →∗ w } is r.e.-complete.

This can be established, for instance, as follows. Let M be a Turing
machine starting on an empty tape and doing one infinite computation, in
which it produces all elements of a certain r.e.-complete set one by one. Let
the configuration of M in state q, with the tape containing uav and with
the head over a be represented by a string uqav over a suitable alphabet Σ.
Let w0 be the word representing the initial configuration of M . Then an
input-deterministic finite transducer can be constructed, which computes
the next configuration of M out of the previous one. Therefore, the set
{w ∈ Σ∗ | w0 →∗ w } represents all reachable configurations of M , and the
given r.e.-complete set is clearly reducible to it.

In view of the above folklore theorem, the most general relations we are

going to consider in this paper are regularity-preserving relations
`r→ and

r`→
(in particular, rational ones) and recognizable relations

``→ and
rr→.

Let us also mention another folklore theorem on the computational
completeness of two-pushdown automata. Because of this, controlled 2W-
rewriting is trivially computationally universal, and so only the uncontrolled
case is of interest.

3 Receiving

In this section we consider one-way R-rewriting, which uses the relations
`r→ and

rr→. We can show that the relation =⇒∗ of such rewriting systems
preserves regularity even in the most general case, and thus the power of
this rewriting is determined by the initial set. Let us organize the study of
R-rewriting on the basis of whether I is regular or not.

3.1 The case of regular I

If I is regular, then
rr→ may be any recognizable relation, while the relation

`r→ needs to be only regularity-preserving, and the resulting rewriting system

7

is always guaranteed to generate a regular language.

Theorem 1. The language L ⊆ Σ∗#Σ∗ generated by
a rewriting system consisting of a regularity-preserving

relation
`r→, a recognizable relation

rr→ and a regular initial
set I is always regular. If in addition images of regular

languages under
`r→ can be algorithmically computed, then

L is algorithmically computable too.

For a given alphabet Σ, we shall use its disjoint copy Σ̃ = { ã | a ∈ Σ },
where the letter ã will represent deletion of a. For any word w = a1 . . . an ∈
Σ∗, where n ∈ N0 and a1, . . . , an ∈ Σ, denote w̃ = ãn . . . ã1, and extend this
notation to languages by the rule K̃ = { w̃ | w ∈ K }.

The proof consists of two parts. First, we consider computation histories
of our rewriting, in which, to the right from #, all letters which occurred
there during the rewriting are preserved and only symbolically deleted by
appending the corresponding “negative” symbols from Σ̃. We shall demon-
strate that the language of all such computation histories, defined as

L0 =
{
u#v0ρ0z1ρ1 . . . znρn

∣∣ n > 0, ρi ∈ { x̃y | (x, y) ∈ rr→}∗,
∃w1, . . . , wn : w1 . . . wnu#v0 ∈ I, (wi, zi) ∈ `r→}

,
(1)

is regular.
Second, we consider the set of reduction rules { aã → ε | a ∈ Σ }. A word

α ∈ (Σ ∪ Σ̃)∗ is said to be reducible to β ∈ (Σ ∪ Σ̃)∗ if it can be transformed

to β by zero or more such reductions. For any language K over Σ∪ Σ̃∪{#},
denote by red(K) the set of all words over Σ∪{#} to which some word from
K can be reduced. Then we apply a known result on such reductions to show
that the transformation from computation histories to actual words derived
by the rewriting system preserves regularity.

Before getting to the main track of the proof, let us establish a useful
auxiliary statement on reduction rules of this kind.

Lemma 1. For each α ∈ (Σ ∪ Σ̃)∗ and x, u ∈ Σ∗, if αx̃ is reducible to u,
then α is reducible to ux.

Proof. Let us first show for a ∈ Σ that if αã is reducible to u, then α is
reducible to ua. The symbol ã gets cancelled at some point, that is, αã
is reduced to α′aã, then to α′ and finally to u. By the same sequence of
reduction steps, α can be reduced to α′a and then to ua.

The main statement is proved by induction on |x|. The basis trivially
holds. For the induction step, let y = ax and suppose αỹ = αx̃ã is reducible
to u. By the above claim, then αx̃ is reducible to ua. By the induction
hypothesis, this implies that α is reducible to uax = uy.

Our first claim is the following:

8

Lemma 2. A word u#v ∈ Σ∗#Σ∗ is derivable in the R-rewriting system if
and only if there exists α ∈ L0 reducible to u#v.

Proof. First we assume that u#v is derivable in zero or more steps, and
show, by induction on the length of the derivation of u#v, that there exists
α ∈ L0 reducible to u#v.

Basis. If the derivation is of length 0, then u#v ∈ I and hence u#v ∈ L0.
Induction step. Suppose u#v is derivable in one or more steps from

some u0#v0 ∈ I, and consider the last step in the derivation. If a left-to-right
rewriting is performed, that is,

u0#v0 =⇒ . . . =⇒ wu#v′ =⇒ u#v′z (where (w, z) ∈ `r→),

then, by the induction hypothesis, there exists α = wu#v0ρ0z1ρ1 . . . znρn ∈
L0 reducible to wu#v′. The same sequence of reductions reduces α′ =
u#v0ρ0z1ρ1 . . . znρnz to u#v′z. Also, since α is of the form (1), α′ is of
the same form, with wn+1 = w, zn+1 = z and ρn+1 = ε. Therefore, α′ ∈ L0,
which proves this case.

Now suppose the last step in the derivation is a local rewriting on the
right:

u0#v0 =⇒ . . . =⇒ u#v′x =⇒ u#v′y (where (x, y) ∈ rr→).

By the induction hypothesis, there is α = u#v0ρ0z1ρ1 . . . znρn ∈ L0 reducible
to u#v′x. Using the same sequence of reductions, α′ = u#v0ρ0z1ρ1 . . . znρnx̃y
is reduced to u#v′xx̃y, which can be further reduced to u#v′y. This α′ is
also of the form (1), with ρ′n = ρnx̃y, which means α′ ∈ L0, completing the
proof of this part.

Let us now establish the converse implication. Consider α =
u#v0ρ0z1ρ1 . . . zn−1ρn−1znρn ∈ L0, where, as in (1), there exist w1, . . . , wn ∈
Σ∗, such that (wi, zi) ∈ `r→ for all i and w1 . . . wnu#v0 ∈ I. Suppose α is re-
ducible to a word u#v ∈ Σ∗#Σ∗; it has to be proved that u#v is derivable.
The proof is an induction on n + |ρ0z1ρ1 . . . zn−1ρn−1znρn|.

Basis: n = 0, ρ0 = ε. Then u#v = u#v0 ∈ I, derivable in zero steps.
Induction step, case ρn = ε. Because zn ∈ Σ∗, the letters of

zn cannot be deleted when reducing α, and so v = v′zn for a certain
word v′ ∈ Σ∗ obtained by reduction from v0ρ0z1ρ1 . . . zn−1ρn−1. Let α′ =
wnu#v0ρ0z1ρ1 . . . zn−1ρn−1, and note that α′ ∈ L0. The same sequence of re-
ductions that transforms α to u#v′zn can be used to transform α′ to wnu#v′.
Then, by the induction hypothesis, wnu#v′ is derivable, and u#v′zn = u#v

can be derived from it using the pair (wn, zn) ∈ `r→.
Induction step, case ρn = ρ′nx̃y. Let α = α′x̃y, where α′ =

u#v0ρ0z1ρ1 . . . zn−1ρn−1znρ
′
n ∈ L0 and (x, y) ∈ rr→. Then v = v′y, where

v′ ∈ Σ∗ is obtained by reduction from v0ρ0z1ρ1 . . . zn−1ρn−1znρ′nx̃. Using the

9

same steps of reduction, α′x̃ is reducible to u#v′. By Lemma 1, this im-
plies that α′ is reducible to u#v′x. By the induction hypothesis, u#v′x is
hence derivable, and using the rule (x, y) ∈ rr→, the word u#v can be derived
next.

Next, we show regularity of the language of computation histories.

Lemma 3. The language L0 is regular. A deterministic finite automaton rec-
ognizing it can be effectively constructed, provided that the images of regular

languages under
`r→ are computable.

Proof. Since I is regular, it is a finite union of languages of the form K#M ,
where K and M are regular languages over Σ, so we can assume that
I = K#M . Let (Σ, Q, q0, δ, F) be a DFA recognizing K. For p, q ∈ Q,
we denote by Kp,q the language {w ∈ Σ∗ | δ(p, w) = q } and by Kp,F the
language {w ∈ Σ∗ | δ(p, w) ∈ F }. Consider the alphabet Γ = (Q×Q)∪ {r}
and define a regular language N over Γ as follows:

N = r∗({q0} ×Q)Γ∗ \
⋃

p,q∈Q
p6=q

Γ∗(Q× {p})r∗({q} ×Q)Γ∗

Each occurrence of the letter r in this language represents one rewriting step
of

rr→, and each letter (p, q) stands for reading a word belonging to Kp,q from

the left and appending an appropriate word to the right according to
`r→.

Further, we define a regular substitution ϕ from Γ∗ to (Σ ∪ Σ̃)∗ by the rules

ϕ((p, q)) =
`r→(Kp,q), for p, q ∈ Q, and ϕ(r) = { x̃y | x rr→ y }.

Let us show that the following regular language

L1 = K#Mϕ(r∗)∪
⋃
q∈Q

Kq,F #Mϕ(N ∩Γ∗(Q×{q})r∗) ⊆ (Σ∪ Σ̃)∗#(Σ∪ Σ̃)∗

is equal to L0.
Let us take any word w = u#v0ρ0z1ρ1 . . . znρn from L0 and consider

words w1, . . . , wn satisfying w1 . . . wnu ∈ K and (wi, zi) ∈ `r→. Define qi =
δ(q0, w1 . . . wi), for i = 1, . . . , n. Then w belongs to the language

Kqn,F #Mϕ(r∗(q0, q1)r
∗(q1, q2)r

∗ . . . (qn−1, qn)r∗)

and consequently also to L1. Conversely, every element of N belongs to the
language r∗(q0, q1)r

∗(q1, q2)r
∗ . . . (qn−1, qn)r∗ for some states q1, . . . , qn ∈ Q,

where n ≥ 0. Therefore each word from L1 lies in a language of the form

Kqn,F #Mϕ(r)∗z1ϕ(r)∗z2ϕ(r)∗ . . . znϕ(r)∗,

where for each i ∈ {1, . . . , n} there exists wi ∈ Kqi−1,qi
such that (wi, zi) ∈ `r→.

Because every word from the language Kq0,q1Kq1,q2 . . . Kqn−1,qnKqn,F belongs
to K, we can immediately see that all words from L1 actually belong to L0.

10

Proof of Theorem 1. According to Lemma 2, the language L generated by
the rewriting system equals red(L0). By Lemma 3, the language L0 is regular.
This implies that red(L0) is regular, due to the known results on reduction
in free groups dating back to Benois [2], see Sakarovitch [14, Ch. II, Sec. 6],
Hofbauer and Waldmann [5], as well as the authors [7]. We have thus proved
that the language L is regular.

3.2 The case of nonregular I

If we consider nonregular sets of initial words, then, even for very simple

relations
`r→, R-rewriting systems become computationally universal.

Theorem 2. For every recursively enumerable language
L0 over an alphabet Σ there exist an alphabet Σ′ and an

R-rewriting system over Σ′ given by a copy relation
`r→,

a finite uncontrolled relation
rr→ and a language I that is

a concatenation of two linear context-free languages, such
that the language generated by the rewriting system equals
#L0 modulo intersection with #Σ∗.

Proof. Using the method of Baker and Book [1], one can construct an al-
phabet Γ ⊇ Σ and linear context-free languages K and M over Γ, such that
L0 = MK−1. Define Σ′ = Γ ∪ Γ̃, where Γ̃ = { ã | a ∈ Γ }, and keep the

tilde notation from the proof of Theorem 1. Let
`r→ = { (ã, ã) | a ∈ Γ } be

a copy relation on Γ̃; consider the set X = { aã | a ∈ Γ } ∪ {ε} and define
rr→ = X × X. We take the initial set I = K̃#M , which is a concatenation
of two linear context-free languages. We are going to prove that the lan-
guage L generated by this rewriting system satisfies L ∩ #Σ∗ = #MK−1.
To show that all words in #MK−1 can be generated, one can use induction
with respect to the length of a word u ∈ Σ∗ to prove that if some word ũ#vu
is derivable, then the word #v is derivable too. The induction step can be
performed as follows:

ũa#vua = ãũ#vua
`r

=⇒ ũ#vuaã
rr

=⇒ ũ#vu

Conversely, it is easy to see that all words u#v generated by our system
satisfy red({vu}) ⊆ MK−1, and therefore L ∩#Σ∗ ⊆ #MK−1 = #L0.

Corollary 1. There exist a finite relation
`r→, a finite uncontrolled relation

rr→
and a language I recognized by a three-turn pushdown automaton such that
the language generated by the rewriting system is r.e.-complete.

If
`r→ is uncontrolled or the initial set is linear context-free, the exact

power of such rewriting remains unknown.

11

4 Sending

This section is devoted to one-way S-rewriting systems, in which we are
allowed to delete and add words at the beginning of the word or delete
a word at the beginning and append some word to the end. According to
our two stacks analogy, the first stack can do internal processing, as well as
send data to the second stack. Since the second stack only receives data and
cannot do any internal processing, it can be understood as the output. Then
our rewriting system behaves as a special case of a pushdown automaton
without internal states which starts working in configurations given by the
set of initial words I.

S-rewriting also has an explanation in terms of R-rewriting. Observe
that the derivability relations =⇒∗ of S-rewriting systems are in principle
just inverses of those of R-rewriting systems. More precisely, for a given

R-rewriting system we can construct an S-rewriting system by taking x
`r→ y

whenever yR `r→ xR in the original system, and x
``→ y whenever yR rr→ xR.

Then it is easy to see that w0 =⇒∗ w in the S-rewriting system if and only
if wR =⇒∗ w0

R in the R-rewriting system.

4.1 The case of uncontrolled
`r→

Let us first suppose that the sending relation
`r→ is uncontrolled. The fol-

lowing example gives a weakest system of this kind, in which the processing

relation
``→ is also uncontrolled: however, a nonregular language can still be

produced.

Example 1. Let Σ = {a, b} and let
``→ =

`r→ = {a, aab} ×
{a, aab}, i.e.,

``→,
`r→ ∈ Unc(Fin) and the same two-element

set is used for both relations, which is denoted in the diagram
on the right by the equality sign. Let I = {ab#}. Then the
set L of derivable words is nonregular.

Let us show that L is nonregular. Notice that every word in L has the
same number of occurrences of a and of b, since the initial word has this
property and each step of rewriting preserves it. On the other hand, every
word abn#an−1, for n > 1, can be inductively derived from ab# as follows:

abn#an−1 ``
=⇒ aab · bn#an−1 `r

=⇒ abbn#an−1 · a = abn+1#an.

Every word of the form abn#an−1 derives bn#an by a single application

of
`r

=⇒, and therefore L ∩ b∗#a∗ = { bn#an | n > 1 }, which proves the
nonregularity of L.

12

Though the language generated in Example 1 is nonregular, it is linear

context-free. It turns out that even if the relation
``→ is controlled, the gen-

erated languages are still only linear context-free. This will be proved later
in Theorem 5.

If the initial set I can be linear context-free, we can generate non-linear-

context-free languages even without using
``→.

Example 2. Let Σ = {a, b}, let I = { anbn# | n > 0 }, let
`r→ = {(a, a)}

(i.e.,
`r→ ∈ Unc(Fin) ∩ Copy) and let

``→ = ∅. Then the rewriting system
generates the language { aibn#an−i | 0 6 i 6 n }, which is a known non-linear
context-free language.

Let us turn to the second case of a controlled sending relation.

4.2 The case of controlled
`r→

Here even in the case of an uncontrolled
``→ every context-free language can

be generated.

Theorem 3. For every context-free language L0 ⊆ Σ∗ there
exists an S-rewriting system over an alphabet Γ ⊇ Σ given by

relations
``→ ∈ Unc(Fin, F in) and

`r→ ∈ Copy, and a single-
ton initial set I, which generates #L0 modulo intersection
with #Γ∗. Given a context-free grammar for L0, this rewrit-
ing system can be effectively constructed.

Let us first define the construction. Assume the language is given by
a context-free grammar G = (Σ, N, P, S) in Chomsky normal form with
possible ε-productions, that is, every production in P is of the form A → BC

or A → w, with A,B,C ∈ N , w ∈ Σ∗. Let
G/lm
=⇒ be the relation of one-step

derivability in G by rewriting the leftmost nonterminal, and let
G/lm
=⇒ ∗ be its

reflexive and transitive closure. Consider the alphabet Γ = Σ ∪ N ∪ N̂ ∪
Ñ , where N̂ = { Â | A ∈ N } and Ñ = { Ã | A ∈ N }, and construct the
following two finite sets:

X = N ∪ { ÃÂ | A ∈ N } (2a)

Y = {BB̂CĈÃ | A → BC ∈ P } ∪ {wÃ | A → w ∈ P } ∪ {ε} (2b)

Define I = {SŜ#}, ``→ = X × Y and let a
`r→ a for all a ∈ Σ.

The proof of correctness of this construction begins with the following
simulation of generation in S by the rewriting system:

Claim 3.1. If S
G/lm
=⇒ ∗ uA1 . . . An, where u ∈ Σ∗ and A1, . . . , An ∈ N , then

there exist θ1, . . . , θn ∈ { D̃D̂ | D ∈ N }∗, such that the word

A1Â1θ1A2Â2θ2 . . . AnÂnθn#u (3)

13

is derivable in the rewriting system.

Proof. The statement is proved by induction on the length of the generation
of uA1 . . . An in G.

Basis. S is generated by G in 0 steps, and SŜ# ∈ I.

Induction step, production A1 → BC. Let S
G/lm
=⇒ ∗ uA1A2 . . . An and

let uA1A2 . . . An
G/lm
=⇒ uBCA2 . . . An by a production A1 → BC ∈ P . By the

induction hypothesis, a word

A1Â1θ1A2Â2θ2 . . . AnÂnθn#u,

for some θ1, . . . , θn ∈ { D̃D̂ | D ∈ N }∗, is derivable in the rewriting system.

Since A1 → BC ∈ P , by construction A1 ∈ X and BB̂CĈÃ1 ∈ Y , hence we
derive

BB̂CĈ Ã1Â1θ1︸ ︷︷ ︸
θ′1

A2Â2θ2 . . . AnÂnθn#u (4)

by
``→. Since the factor Ã1Â1θ1 is in { D̃D̂ | D ∈ N }∗, it can be taken as θ′1,

which shows that (4) is of the form (3) corresponding to uBCA2 . . . An.

Induction step, production A1 → w. Let S
G/lm
=⇒ ∗ uA1A2 . . . An and

then uA1A2 . . . An
G/lm
=⇒ uwA2 . . . An by A1 → w ∈ P . Again, by the induction

hypothesis, a word

A1Â1θ1A2Â2θ2 . . . AnÂnθn#u,

for some θ1, . . . , θn ∈ { D̃D̂ | D ∈ N }∗, is derivable in the rewriting system.

Because A1 ∈ X and wÃ1 ∈ Y , by
``→ we derive

wÃ1Â1θ1A2Â2θ2 . . . AnÂnθn#u.

By the copying rule
`r→ applied |w| times we obtain

Ã1Â1θ1A2Â2θ2 . . . AnÂnθn#uw.

It remains to use |θ1|/2 + 1 times the relation
``→ (via D̃D̂ ∈ X and ε ∈ Y)

to erase Ã1Â1θ1, obtaining the required word

A2Â2θ2 . . . AnÂnθn#uw.

This proves Claim 3.1.

In order to show that only words generated by G can be produced by our
rewriting, let us denote by d(α) the word obtained from α ∈ (Γ ∪ {#})∗ by

deleting all occurrences of elements of N̂ ∪ Ñ . The following claim states
that every word α derivable in our rewriting system either corresponds to a
sentential form of G, or it cannot be further rewritten to get a word belonging
to the language #Γ∗, and so it has no impact on the intersection of the
generated language with #Γ∗.

14

Claim 3.2. Let α ∈ (Γ∪{#})∗ be any word derivable in the rewriting system
such that some word belonging to #Γ∗ can be derived from α. Then α belongs
to the language

M = Σ∗{AÂ, ÃÂ | A ∈ N }∗#Σ∗.

In addition, if we denote the words to the left and to the right from # in
d(α) by vA1 . . . An and u, respectively, where u, v ∈ Σ∗ and A1, . . . , An ∈ N ,
i.e. d(α) = vA1 . . . An#u, then uvA1 . . . An can be generated in G.

Proof. We verify both statements of this claim simultaneously by induction
on the length of the derivation of α.

Basis. The initial word α = SŜ# clearly satisfies the claim.
Induction step. Assume we have a word α = vθ#u ∈ M , where u, v ∈

Σ∗, θ ∈ {AÂ, ÃÂ | A ∈ N }∗ and d(uvθ) can be generated in G. We take
any word β obtained from α by one step of the rewriting such that some
word from #Γ∗ is derivable from β. We have to show that β belongs to M
and that the word over Σ∪N constructed from d(β) can be generated in G.

This trivially holds when β is obtained from α by applying a rule from
`r→.

If some rule from
``→ is applied to α, then certainly v = ε. Now we have

to distinguish two cases according to the first letter of θ, and consider all
possible rules which can be applied.

First assume that α = AÂη#u, where A ∈ N and η ∈ {AÂ, ÃÂ |
A ∈ N }∗. If A is rewritten to BB̂CĈÃ for a certain A → BC ∈ P or to

wÃ for A → w ∈ P , then β is of the required form. If A is replaced by
a word ending with D̃, where D ∈ N , D 6= A, then β contains a factor D̃Â
to the left from #, which can never be removed, and therefore no element of

#Γ∗ can be derived from β. Otherwise, the rule A
``→ ε is used, producing

the word β = Âη#u, to which no rule of the system can be applied, and so
elements of #Γ∗ are not derivable from β.

Now assume that α = ÃÂη#u. Rewriting ÃÂ to the empty word pro-
duces β satisfying the claim because d(β) = d(α). Otherwise, ÃÂ is rewrit-

ten to a word ending with D̃ for a certain D ∈ N . Therefore there is an
occurrence of D̃ in β to the left of #, which is not immediately followed
by D̂. Since this occurrence of D̃ cannot be removed by our rewriting rules,
no word starting with # is derivable from β. This concludes the proof of
Claim 3.2.

Returning to the proof of Theorem 3, it can now be established that
a word α ∈ #Γ∗ is derivable in the rewriting system if and only if
α = #w ∈ #Σ∗ and w ∈ L(G). Indeed, Claim 3.2 is applicable to any
derivable word α ∈ #Γ∗, giving that α = #w ∈ #Σ∗ for some w generated

in G. Conversely, if w ∈ L(G), then there is a leftmost derivation S
G/lm
=⇒ ∗ w,

and, using Claim 3.1 with n = 0, we conclude that the word #w is generated
in the rewriting system. Q. E. D.

15

As a by-product we obtain a peculiar normal form for pushdown au-
tomata.

Corollary 2. Every context-free language over an alphabet Σ is recognized
by a nondeterministic pushdown automaton with pushdown alphabet Γ ⊇ Σ,
with two states, q0 and q1 (of which q0 is the only initial state and the only
accepting state), and with the following transitions:

• (for every a ∈ Σ) from q0 to q0, reading an input symbol a and popping
the corresponding pushdown symbol a from the stack;

• (for every word xi ∈ Γ∗ from a finite list) from q0 to q1, popping xi and
not touching the input;

• (for every word yj ∈ Γ∗ from a finite list) from q1 to q0, pushing yj and
not touching the input.

If the least controlled S-rewriting yields all context-free languages, what
could be its expressive power in a fully controlled case? It will now be proved
that, in fact, still nothing but the context-free languages can be generated.

Theorem 4. Let
``→ be a recognizable relation, let

`r→ be a
rational relation, let I be a context-free language. Then the
language generated by this rewriting system is context-free.

Given a finite automaton for
``→, a finite transducer for

`r→
and a context-free grammar for I, a context-free grammar
for the generated language can be effectively constructed.

The proof is based upon two results, which are interesting on their own.
One of them is the known closure of the context-free languages under the
cyclic shift operation.

Lemma 4 (Oshiba, 1972 [11]; Maslov, 1973 [10]; Hopcroft and Ullman, 1979
[6, solution to Ex. 6.4c]). For every context-free language L, the language
shift(L) = {uv | vu ∈ L } is context-free. Given a context-free grammar
for L, a context-free grammar for shift(L) can be effectively constructed.

Another key property is that pushdown automata with initial stack con-
tents defined by a context-free language still recognize only context-free lan-
guages.

Lemma 5. Let Σ and Γ be two alphabets, and let L0 be a context-free lan-
guage over Γ. Let A = (Σ, Γ, Q, q0, δ, F) be a nondeterministic pushdown au-
tomaton without the initial pushdown symbol, where δ : Q× (Σ∪ {ε})×Γ →
2Q×Γ∗. Define

L(A) = {w | ∃x ∈ L0 ∃qF ∈ F : (q0, w, x) `∗ (qF , ε, ε) }.
Then L(A) is context-free and a standard PDA recognizing this language can
be effectively constructed.

16

This can be regarded as a system of two cooperating pushdown automata,
in which one PDA supplies the initial contents of the pushdown to the other.
We prove that such a superposition is no more powerful than a single PDA.

Another interpretation of this result is the following. Let us say that each
PDA A defines a relation RA ⊆ Γ∗×Σ∗ between its pushdown and its input.
This relation is defined as RA(x,w) if and only if (q0, w, x) `∗ (qF , ε, ε) for
some qF ∈ F , that is, A accepts w from state q0 and with the initial pushdown
contents x. Then our lemma states that every such relation preserves context-
freeness.

One more interpretation is that the word given in the pushdown is a
“certificate” of the membership of the input word, and we prove that an
access to a context-free set of certificates does not give a PDA any extra
computational power.

Proof of Lemma 5. It is convenient to assume that L0 is given by a context-
free grammar G = (Γ, N, P, S). Define Θ = Γ ∪N .

Construct a new PDA (in the ordinary sense) B = (Σ, Θ, Q, q0, δ
′, F, S)

with the same states as A, with a pushdown alphabet Θ, with S ∈ Θ as the
initial pushdown symbol and with transitions defined as follows:

δ′(q, u, s) = δ(q, u, s) (for all q ∈ Q, u ∈ Σ ∪ {ε} and s ∈ Γ) (5a)

δ′(q, ε, A) = { (q, α) | A → α ∈ P } (for all q ∈ Q and A ∈ N) (5b)

δ′(q, a, A) = ∅ (for all q ∈ Q, a ∈ Σ and A ∈ N) (5c)

The idea is that symbols of an initial pushdown word are generated upon
demand. In the beginning, a leftmost derivation in G from S is simulated at
the top of the pushdown until any terminal symbol from Γ is generated. This
first symbol of the initial pushdown word is used to operate A. Once the
simulated A empties its pushdown and requires the next symbol of the initial
pushdown word, a nonterminal from N appears at the top of the pushdown,
and a leftmost derivation in G is simulated until another symbol from Γ is
generated. For the computation to be accepting, the simulated derivation
in G should eventually eliminate all symbols from N in the pushdown, and
conclude with a pure computation of A.

It is claimed that a configuration (q, w, β) of B, in which q ∈ Q, w ∈ Σ∗

and β ∈ Θ∗, leads to acceptance if and only if there exists y ∈ LG(β), such
that the configuration (q, w, y) of A leads to acceptance.

⇒© Induction on the length of an accepting computation of B starting
from (q, w, β).

Basis. If (q, w, β) is an accepting configuration of B, then q ∈ F , w = ε
and β = ε. Taking y = ε, we show that (q, w, y) is an accepting configuration
of A.

Induction step. Consider the first step in the given accepting com-
putation of B. Suppose it is an application of a production from P , that

17

is,

(q, w, Aβ′)
B
` (q, w, αβ′)

B
` . . .

B
` Acc.

By the induction hypothesis, there exists y ∈ LG(αβ′), such that (q, w, y)
leads A to acceptance. Since LG(α) ⊆ LG(A), y ∈ LG(αβ′) implies y ∈
LG(Aβ′), and the required conditions are met.

Consider the other case, when the given computation of B starts with
simulating one step of A:

(q, uv, sβ′)
B
` (q′, v, zβ′)

B
` . . .

B
` Acc.

By the induction hypothesis, there exists y ∈ LG(zβ′), such that (q′, v, y)
leads A to acceptance. Note that y = zy′, where y′ ∈ LG(β′), and construct

the computation of A, which starts as (q, uv, sy′)
A
` (q′, v, zy′) = (q′, v, y) and

then proceeds to acceptance, completing the proof of this implication.
⇐© Induction on the pair (`A, `G), where `A is the length of accepting

computation of A from (q, w, y), while `G is the length of generation of y
from β in G.

Basis. If y = β and (q, w, y) is an accepting configuration, then w = ε
and y = ε, and (q, w, β) is an accepting configuration of B as well.

In the induction step, the word β is always nonempty, because β = ε
implies y = ε, which obviously implies `G = 0, and in addition, since A
cannot perform any transitions with the empty pushdown, `A = 0. We shall
consider two cases, depending on what the first symbol of β is.

Induction step, case β = Aβ′, for A ∈ N . Let (q, w, y) be a config-
uration that leads A to acceptance and let y ∈ LG(Aβ′). Consider the first

step in the leftmost generation of y in G: Aβ′ G
=⇒ αβ′ G

=⇒ ∗ y. This gener-
ation can be simulated by B using (5b): (q, w,Aβ′) ` (q, w, αβ′). Since the
word y ∈ Γ∗ is derived from αβ′ in fewer steps than y from β, the induction
hypothesis can be applied to (q, w, αβ′), showing that (q, w,Aβ′) leads B to
acceptance.

Induction step, case β = sβ′, for s ∈ Γ. In this case we have y = sy′

for a certain y ∈ LG(β′). The first step in the accepting computation of
A on (q, w, y) is (q, uw′, sy′) ` (q′, w′, zy′), where w = uw′, u ∈ Σ ∪ {ε},
w′ ∈ Σ∗ and (q′, z) ∈ δ(q, u, s). This step can be directly repeated by B
using (5a): (q, uw′, sβ′) ` (q′, w′, zβ′). By the induction hypothesis applied
to (q′, w′, zβ′), there exists an accepting computation of B from (q′, w′, zβ′),
which yields the required accepting computation from (q, w, sβ′).

It follows that B accepts an input word w ∈ Σ∗ if and only if A accepts
w for some initial pushdown word x ∈ L0.

Let us now simulate the derivation in an S-rewriting system by a compu-
tation of a certain pushdown automaton over a common input and pushdown
alphabet Σ ∪ {$}, where $ /∈ Σ is a new symbol. This PDA, denoted by A,

18

is set to verify whether a word x#y can derive another word u#v. Both
words are supplied to A, one as an input, the other as the initial pushdown
contents; in addition, the components of each word are exchanged, that is,
u#v is given as an input word v$u, while x#y is given as a pushdown word
y$x.

The constructed PDA A, illustrated in Figure 3, uses three principal
states, q0, q1 and q2, as well as some auxiliary states to simulate finite au-

tomata for
``→ and

`r→. In the initial state q0, the PDA reads input symbols,
matching them to the symbols popped from the pushdown. The equality of
the symbols is checked: the PDA is set to read a word y and at the same
time to pop the same word y from the pushdown. This is done until the
symbol $ is encountered in the pushdown.

The main processing is done in q1. Let
``→ =

⋃n
i=1 Xi×Yi, where Xi, Yi are

regular languages. Every time a rule from
``→ is to be applied, A nondeter-

ministically chooses a number i and proceeds with popping any word x ∈ Xi

from the pushdown. The first symbol of x is at the top of the pushdown
and should be popped first. Therefore, x is removed from the pushdown
by simulating a finite automaton for Xi, with its input symbols drawn from
the pushdown. Once the simulated automaton accepts, A should place any
word y ∈ Yi onto the pushdown, the first symbol at the top. For that rea-
son, the symbols of y should be pushed in the reverse order, which is done
by simulating a finite automaton for (Yi)

R. Every time this automaton re-
quests an input symbol, such a symbol is pushed to the pushdown. Once the
automaton for (Yi)

R accepts, A returns to state q1.

To apply a rule from
`r→, the PDA simulates a finite transducer imple-

menting this relation. Every time the transducer requests an input symbol,
the symbol is popped from the pushdown; every time the transducer prints
a symbol, it is read from the input. Once the transducer accepts, the control
returns to q1.

Eventually the symbol $ will be encountered in the input, and then A
goes to the accepting state q2, in which it reads and pops the same symbols
exactly as it did in q0. To reach acceptance, the remainder of the input has
to coincide with the pushdown contents.

Let us formally define this PDA. Let the DFA for Xi be (Σ, Ri, ri0, δi, Fi)
and let the DFA for Y R

i be (Σ, R′
i, r

′
i0, δ

′
i, F

′
i). Let the nondeterministic finite

transducer for
`r→ be (Σ, Σ, P, p0, δ̂, F̂), in which δ̂ : P × (

({ε} × Σ) ∪ (Σ ×
{ε})) → 2P . Then the PDA A has the set of states {q0, q1, q2}∪P ∪⋃n

i=1(Ri∪
R′

i), of which q0 is the initial state and q2 is the only finite state, and its

19

Figure 3: PDA A in the proof of Theorem 4.

transitions are defined as follows:

(q0, a, a) → (q0, ε) (for all a ∈ Σ)

(q0, ε, $) → (q1, ε)

(q1, ε, ε) → (ri0, ε) (for all i = 1, . . . , n)

(ri, ε, a) → (δi(ri, a), ε) (for all i = 1, . . . , n, ri ∈ Ri, a ∈ Σ)

(ri, ε, ε) → (r′i0, ε) (for all i = 1, . . . , n, ri ∈ Fi)

(r′i, ε, ε) → (δ′i(r
′
i, a), a) (for all i = 1, . . . , n, r′i ∈ R′

i, a ∈ Σ)

(r′i, ε, ε) → (q1, ε) (for all i = 1, . . . , n, r′i ∈ F ′
i)

(q1, ε, ε) → (p0, ε)

(p, ε, a) → (q, ε) (for all p ∈ P , a ∈ Σ, q ∈ δ̂(p, (a, ε)))

(p, b, ε) → (q, ε) (for all p ∈ P , b ∈ Σ, q ∈ δ̂(p, (ε, b)))

(p, ε, ε) → (q1, ε) (for all p ∈ F̂)

(q1, $, ε) → (q2, ε)

(q2, a, a) → (q2, ε) (for all a ∈ Σ)

The correctness of this construction is stated in the following lemma:

Lemma 6. Consider a one-way S-rewriting system over an alphabet Σ as

defined in Theorem 4, and construct PDA A according to
``→ and

`r→, as
described above. Then for every x, y, u, v ∈ Σ∗:

I. A can reach an accepting configuration from a configuration (q1, v$u, x)
if and only if x# =⇒∗ u#v;

II. A can reach an accepting configuration from a configuration
(q0, vu, yx) if and only if x#y =⇒∗ u#v.

Proof. Let us prove the first part of the lemma.

20

⇒© Suppose A has an accepting computation starting from (q1, v$u, x); it
has to be proved that x# =⇒∗ u#v. The proof is by an induction on the
number of visits to state q1 in this accepting computation of A.

Basis: no visits. Suppose the computation starts with a transition to
q2, in which $ is read. Then v = ε, and for the rest of the computation to be
accepting, u must be equal to x. Then x# derives u# in zero steps.

Induction step, first visit via Xi and Yi. Let the computation start

in (q1, v$u, x) with implementing a transition by
``→. Let the pair (Xi, Yi) be

chosen, let x̃ ∈ Xi be the word popped from the stack and let ỹ ∈ Yi be the
word subsequently pushed to the stack. Then x = x̃x′, and the configuration
at the next visit to q1 is (q1, v$u, ỹx′).

The latter configuration, by assumption, leads to acceptance. Then, by

the induction hypothesis, ỹx′# =⇒∗ u#v. Since (x̃, ỹ) ∈ ``→, we can construct
a derivation

x̃x′# ``
=⇒ ỹx′# =⇒ . . . =⇒ u#v,

which proves this case.

Induction step, first visit via
`r→. Now suppose the computation,

having started in (q1, v$u, x), first implements a transition by
`r→. Then, for

a certain pair (x̃, ṽ) ∈ `r→ recognized by the given finite transducer, PDA A
pops x̃, reads ṽ and gets back to q1 in the configuration (q1, v

′$u, x′), where
v = ṽv′ and x = x̃x′.

Since this configuration leads to acceptance, x′# =⇒∗ u#v′ by the in-

duction hypothesis. Using the rule (x̃, ṽ) ∈ `r→, and then repeating the same
steps as in the first derivation, we obtain

x̃x′#
`r

=⇒ x′#ṽ =⇒ . . . =⇒ u#ṽv′,

which completes the proof of the forward implication.
⇐© Let us prove the converse, that is, if x# =⇒∗ u#v, then the configu-

ration (q1, v$u, x) leads A to acceptance. We use induction on the length of
the derivation.

Basis: 0 steps. If x = u and v = ε, the computation starting from
(q1, $u, x) proceeds to q2 by reading $ and then verifies the equality of x and
u, accepting in the end.

Induction step, first step using
``→. Suppose the derivation starts as

follows:
x̃x′#

``
=⇒ ỹx′# =⇒ . . . =⇒ u#v,

where (x̃, ỹ) ∈ ``→. By the induction hypothesis applied to the rest of the
derivation, the configuration (q1, v$u, ỹx′) leads the PDA to acceptance.

Then an accepting computation of the PDA starting from (q1, v$u, x̃x′)
can be constructed as follows. Let (x̃, ỹ) ∈ Xi × Yi. From q1, the new
computation proceeds into the “pop Xi–push Yi” cycle of A, in which x̃ is

21

first popped from the pushdown, and then ỹ is pushed. No symbols of the
input are read. The resulting configuration (q1, v$u, ỹx′), as we know, leads
to acceptance.

Induction step, first step using
`r→. Consider the case of the derivation

starting as follows:

x̃x′# `r
=⇒ x′#ṽ =⇒ . . . =⇒ u#v,

for some (x̃, ṽ) ∈ `r→. Since the symbols sent to the right part remain there,
v = ṽv′. By repeating the same steps, we can construct the derivation

x′# =⇒ . . . =⇒ u#v′,

to which the induction hypothesis is applicable, that is, A accepts from the
configuration (q1, v

′$u, x′).
Now let the PDA start from (q1, ṽv′$u, x̃x′). We start the new computa-

tion by simulating the finite transducer, to the effect that x̃ is popped from
the pushdown, while ṽ is read from the input. In the end the configura-
tion (q1, v

′$u, x′) is obtained, from which acceptance can be reached. This
completes the proof of the first part of the lemma.

The second part can be easily inferred from the first part. It is easy to
see that one can reach acceptance from (q0, vu, yx) if and only if v = yz
and the configuration (q1, z$u, x) can lead to an accepting configuration.
Similarly, since in S-rewriting the symbols on the right are only stacked and
never modified, x#y =⇒∗ u#v holds if and only if v = yz and x# =⇒∗ u#z.
By the first part of the lemma, these two statements are equivalent.

Now Lemmata 4–6 can be combined to obtain a succinct proof of our
theorem on the power of S-rewriting.

Proof of Theorem 4. Consider the context-free initial set I of the S-rewriting
system. Let $ /∈ Σ and define

I ′ = shift(I$) · {#}−1 = { v0$u0 | u0#v0 ∈ I }

By Lemma 4 and by the well-known closure of the context-free languages
under quotient with regular languages, I ′ is context-free.

Construct PDA A as described before Lemma 6 and let I ′ be the language
of its initial pushdown words. By definition, v$u ∈ L(A) if and only if

there exists v0$u0 ∈ I ′, such that (q0, v$u, v0$u0) leads to acceptance.

According to the second part of Lemma 6, this is equivalent to the following:

there exists v0$u0 ∈ I ′, such that u0#v0 =⇒∗ u#v,

22

which means u#v ∈ L, where L is the language generated by the given
S-rewriting system. Therefore, L(A) = { v$u | u#v ∈ L }.

Now, by Lemma 5, the language L(A) is context-free and we can construct
PDA B with a single initial pushdown symbol, such that L(B) = L(A). It
remains to apply the cyclic shift to obtain shift(L(B)#) · {$}−1 = L, and
this language is context-free by the same closure properties as above.

5 Receiving and sending

We shall now consider one-way RS-rewriting, which is the strongest type

of one-way rewriting that uses the relations
``→ (local processing of the first

stack),
`r→ (one-way communication from the first stack to the second) and

rr→ (local processing of the second stack).
As in the case of S-rewriting, the expressive power is mainly determined

by whether
`r→ is controlled or not. Let us consider two cases.

5.1 The case of uncontrolled
`r→

In Example 1 we have already seen that uncontrolled S-rewriting is sufficient

to generate nonregular languages. An uncontrolled relation
`r→ was used

there to communicate the number of symbols generated on the left to the
right side, resulting in a most simple nonregular language. The most obvious
computational model for replicating this behaviour is a counter automaton.
We shall now see that the one-turn counter automata are sufficient to simulate
any RS-rewriting system, as long as

`r→ is uncontrolled.

Theorem 5. Let
`r→ ∈ Unc(Reg,Reg) be uncontrolled,

let
``→ and

rr→ be recognizable relations, let I be regu-
lar. Then the generated language can be recognized by
a one-turn counter automaton, and, given finite au-

tomata for
`r→,

``→,
rr→ and I, this PDA can be effec-

tively constructed.

The proof generally follows the scheme used for Theorem 1: first we
define the language of computation histories, then use reductions to obtain
the language generated by the rewriting system. However, the use of one-
turn counter automata instead of DFAs in this context is novel, so we can
no longer rely upon any well-known results.

Let Σ be the original alphabet and define two copies:
−→
Σ = {−→a | a ∈ Σ }

and
←−
Σ = {←−a | a ∈ Σ }. For every word w = a1 . . . a` ∈ Σ∗, with ` >

0, denote −→w = −→a ` . . .−→a 1 and ←−w = ←−a ` . . .←−a 1. Extend this notation to

languages as
−→
L = {−→w | w ∈ L } and

←−
L = {←−w | w ∈ L } for every L ⊆ Σ∗.

Consider the alphabet Σ3 = Σ ∪ −→Σ ∪←−Σ.

23

Let L` = { y−→x | x
``→ y }, Lr = {←−x y | x

rr→ y } and
`r→ = Z × W , and

define the language of computation histories L0 ⊆ Σ∗
3#Σ∗

3 as follows:

L0 =
{
αn
−→zn . . . α1

−→z1α0u0#v0β0w1β1 . . . wnβn

∣∣
n > 0, u0#v0 ∈ I, αi ∈ L∗` , βi ∈ L∗r, zi ∈ Z, wi ∈ W

} (6)

Consider the following reduction rules on (Σ3 ∪ {#})∗: −→a a → ε and
a←−a → ε, for all a ∈ Σ. A word α ∈ (Σ∗

3 ∪ {#}) is said to be reducible to
β ∈ (Σ3∪{#})∗ if it can be transformed to β by zero or more such reductions.

For every L ⊆ (Σ ∪ −→Σ)∗#(Σ ∪ ←−Σ)∗, denote by red(L) the set of words in
Σ∗#Σ∗ obtained by reducing words in L.

Lemma 7. A word u#v ∈ Σ∗#Σ∗ is derivable in the system if and only if
there exists η#θ ∈ L0 reducible to u#v.

Proof. Let u#v be derivable in zero or more steps, and let us show that some
η#θ ∈ L0 is reducible to u#v. The proof is an induction on the length of
the derivation of u#v.

Basis: derivation of length 0. Then u#v = u0#v0 ∈ I and hence
u#v ∈ L0.

Induction step. Consider the last step in the derivation of u#v from
some u0#v0 ∈ I. Suppose it is a left-to-right rewriting:

u0#v0 =⇒ . . . =⇒ zu#v′ `r
=⇒ u#v′w (where z

`r→ w).

By the induction hypothesis, there exists η#θ ∈ L0 reducible to zu#v′. Then−→z η#θw is in L0, and it is reducible to −→z zu#v′w using the same sequence
of reductions. The latter can be reduced to u#v′w.

If the last step in the derivation of u#v from u0#v0 is a local rewriting
on the right, then

u0#v0 =⇒ . . . =⇒ u#v′x
rr

=⇒ u#v′y (where x
rr→ y).

Using the induction hypothesis, we obtain η#θ ∈ L0, which can be reduced to
u#v′x. The same sequence of reductions reduces η#θ←−x y ∈ L0 to u#v′x←−x y,
which is in turn reducible to u#v′y.

The case when the last step in the derivation of u#v from u0#v0 is a
local rewriting on the left is proved symmetrically.

Next, we establish the converse implication. Let

η#θ = αn
−→zn . . . α1

−→z1α0u0#v0β0w1β1 . . . wnβn ∈ L0

be reducible to a word u#v ∈ Σ∗#Σ∗. The derivability of this word in the
rewriting system has to be shown. The proof is by induction on the length
of η#θ.

Basis: η#θ = u0#v0. Then η#θ ∈ I, and u#v = u0#v0 is derivable in
zero steps.

24

Figure 4: A one-turn counter automaton recognizing computation histories.

Induction step, case αn = βn = ε, n > 0. Let η#θ = −→znη′#θ′wn

be reducible to u#v′wn. Using the same sequence of reductions, −→znη′#θ′

is reduced to u#v′. By Lemma 1, η′#θ′ ∈ L0 can be reduced to znu#v′.
Applying the induction hypothesis to the latter reduction, we obtain that
znu#v′ is derivable in the rewriting system. Then it is sufficient to apply the

rule (zn, wn) ∈ `r→ to derive u#v′wn.
Induction step, case βn = β′n

←−x y. If η#θ = η#θ′←−x y ∈ L0, where
x

rr→ y, is reducible to u#v′y, then η#θ′←−x is reducible to u#v′, and, by
Lemma 1, η#θ′ ∈ L0 is reducible to u#v′x. Therefore, u#v′x is derivable by
the induction hypothesis, and the rule x

rr→ y can be used to derive u#v′y.
Induction step, case αn = y−→x α′n. Proved symmetrically.

In contrast to Theorem 1, here the language of computation histories
is, in general, not regular. However, it can be recognized by a pushdown
automaton from a simple subclass.

Since I is regular and
``→,

rr→ are recognizable, they can be represented

as I =
⋃

i I`,i#Ir,i,
``→ =

⋃
i Xi × Yi and

rr→ =
⋃

i Ui × Vi, where all the
languages are regular. Consider a counter automaton A (that is, a pushdown
automaton with the pushdown alphabet Γ = {1}) over the input alphabet
Σ3 ∪ {#}, and with transitions defined according to Figure 4. The arcs
labelled with regular languages specify subautomata that simulate DFAs for
these languages without modifying the counter.

Lemma 8. The counter automaton A defined in Figure 4 generates the lan-
guage L0. Additionally, A makes one turn of the counter in each computa-
tion, and this turn takes place exactly over the center marker.

Proof. By (6), every word αn
−→zn . . . α1

−→z1α0u0#v0β0w1β1 . . . wnβn ∈ L0 can be
accepted by A as follows. The left part αn

−→zn . . . α1
−→z1α0 is read while in the

initial state: every αt = yi1
−→xi1 . . . yik

−→xik is read by traversing the appropriate

paths Yij

−→
Xij for every j ∈ {1, . . . , k}, while each −→zj is read along with adding

1 to the counter. After this part is read, the value of the counter is n. Since
the middle part u0#v0 ∈ I is in I`,s#Ir,s with 1 6 s 6 m by assumption, it
is read along the s-th path from the initial state to the accepting state. The

25

Figure 5: The form of a one-turn counter automaton A in Lemma 9.

right part β0w1β1 . . . wnβn is read while in the accepting state, symmetrically
to the left part; for every wj the counter is decremented by 1. Exactly n
decrementations are done, and when the input is exhausted, the counter
equals zero, which leads to acceptance.

Conversely, if A accepts some word η#θ, then the computation consists

of n > 0 visits to the push 1—
−→
Z component, interleaved with any number

of visits to any of the Yi—
−→
Xi components, then it follows one of the paths

I`,s#Ir,s, and finally makes n visits to the W—pop 1 component, interleaved

with any number of visits to the
←−
Ui—Vi components. If the number of visits to

push 1—
−→
Z and to W—pop 1 does not match, the counter will not be equal

to zero in the end. This requires the word to be exactly of the form (6).

The next step is to apply reductions to the language of computation
histories (6). It is well-known that such reductions preserve regularity, see
the proof of Theorem 1. It turns out that for PDAs of the restricted kind
used in Lemma 8, these reductions can also be effectively implemented.

Lemma 9. Let A be a one-turn counter automaton over Σ3 ∪ {#}, such

that L(A) ⊆ (Σ ∪ −→Σ)∗#(Σ ∪ ←−Σ)∗, and for every computation of A on an
input u#v, the turn of the counter takes place over the center marker. Then
red(L(A)) is recognized by a one-turn counter automaton B, which, given A,
can be effectively constructed.

Proof. Let us assume that transitions of A are of three forms: by reading a
certain input symbol without touching the counter (read a), by increment-
ing the counter (push 1) and by decrementing the counter (pop 1). Every
accepting computation of A contains exactly one transition by #, so it can be
assumed that A is of the form given in Figure 5, where the left part contains

transitions by symbols in Σ∪−→Σ and increments the counter, while the right

part makes transitions by symbols in Σ ∪←−Σ and decrements the counter.

It is known that the language of reduced words red(L(A)) can be repre-
sented in terms of an inverse substitution of the set D of words reducible to
ε into L(A), see e.g. Benois [2], Pin and Sakarovitch [12] or the authors [7].

26

The set D is a variant of the Dyck language, defined by a context-free gram-
mar with the following productions: S → −→a Sa, S → aS←−a , S → SS and
S → ε. Precisely, we have

red(L(A)) = {u1 . . . um#v1 . . . vn | u1, . . . , um, v1, . . . , vn ∈ Σ∗, and

there exist x0, x1, . . . , xm, y0, y1, . . . , yn ∈ D, such that

x0u1x1 . . . umxm#y0v1y1 . . . vnyn ∈ L(A)},
and we aim at constructing a new one-turn counter automaton B over
the alphabet Σ ∪ {#}, such that the computation of B on the input
u1 . . . um#v1 . . . vn simulates the computation of A on the appropriate in-
put x0u1x1 . . . umxm#y0v1y1 . . . vnyn.

In our simulation, the value of B’s counter after reading u1 . . . um shall
be equal to the value of A’s counter after reading x0u1x1 . . . umxm, and the
right part shall be handled symmetrically. When the automaton A reads a
block ui and increments the counter by some value, B repeats exactly the
same actions. On the other hand, when A reads a block xi and increments
the counter by some value, the automaton B shall not consume any input
symbols, but it shall increment the counter by the same value. To achieve
the latter, B has to be equipped with an additional detour block between
every two states, which we now describe.

Let Q be the set of states in the left part of the automaton A, as shown in
Figure 5. For every pair of states q, q′ ∈ Q, we consider the computations ofA
starting from q, ending with q′, consuming any word from D and incrementing
the counter by k. Let Kq,q′ be the set of all such numbers k. The key to our
proof is the following fact:

Claim 5.1. For every q, q′ ∈ Q, the set Kq,q′ is ultimately periodic, and an
automaton for this set can be algorithmically computed.

To prove this claim, let us construct a pushdown automaton Cq,q′ recogniz-
ing this set, with numbers given to it in unary notation. All these automata
are obtained from a single base automaton by fixing its initial and accepting
states.

This base automaton C has the input alphabet {1}, the set of states
Q, and its transitions are obtained from A’s transitions by the following
relabelling:

• Every time A reads a symbol −→a ∈ −→Σ, C pushes a onto the pushdown.

• Every time A reads a symbol a ∈ Σ, C pops a from the pushdown.

• Every time A increments the counter, C reads 1 from the input.

Recalling that A and C have the same states and their transitions differ
only in labels, there is a natural one-to-one correspondence between sequences
of transitions of A and of C. Every sequence of transitions of A within Q

27

yields a well-formed computation. On the other hand, not every computation
of C is valid, since some transitions lead to popping a symbol which is not
at the top of the pushdown. However, as long as A is reading a word from
D, the corresponding transitions of C form a valid computation, because C
operates its stack in the same way as the standard PDA accepting the Dyck
language. This leads to the following correspondence between computations
of C starting and ending with an empty pushdown and computations of A
reading a word from D within Q:

• A computation of C starting with an empty pushdown ends with an
empty pushdown if and only if the corresponding computation of A
reads a word from D (since the push and pop in C simulate the well-
known recognizer for the Dyck language).

• A computation of C reads 1k if and only if the corresponding compu-
tation of A increments the counter by k.

Claim 5.1.1. For every q, q′ ∈ Q, and k > 0, there is a computation of
the automaton C starting from (q, 1k, ε) and ending with (q′, ε, ε) if and only
if there exist w ∈ D and a computation of the automaton A starting from
(q, w, ε) and ending with (q′, ε, 1k).

If C goes from (q, 1k, ε) to (q′, ε, ε), then the corresponding computation of
A goes from (q, w, ε) to (q′, ε, 1`) for certain w and `; by the above properties,
w ∈ D and ` = k. Conversely, when A goes from (q, w, ε) to (q′, ε, 1k), for
some w ∈ D and k > 0, the corresponding computation of C goes from
(q, 1`, ε) to (q′, ε, x), for some ` > 0 and for some pushdown word x. By the
above properties, x = ε and ` = k, and Claim 5.1.1 is proved.

For every q, q′ ∈ Q, define an automaton Cq,q′ as C with the initial state q
and a unique accepting state q′. The following statement immediately follows
from Claim 5.1.1:

Claim 5.1.2. For every q, q′ ∈ Q, and k > 0, Cq,q′ accepts 1k if and only if
k ∈ Kq,q′;

The latter claim establishes that Kq,q′ is recognized by a certain pushdown
automaton, and hence is context-free. Then, as every context-free language
over a unary alphabet, it must be regular, which proves Claim 5.1.

Let us apply the same procedure to the right part of the automaton A,
see Figure 5. Let R be the set of states in that part, and for every pair of
states r, r′ ∈ R we consider those computations of A that start from r, end
in r′, consume any word from D and decrement the counter by k. Let Kr,r′

be the set of all such numbers k. Then the following statement is proved by
exactly the same method as Claim 5.1:

Claim 5.2. For every r, r′ ∈ R, the set Kr,r′ is ultimately periodic, and an
automaton for this set can be constructed algorithmically.

28

Figure 6: Transitions and detour blocks in the counter automaton B.

Using the regularity of these sets, we can define the new counter automa-
ton B as follows. The automaton B has the same states as A, plus new states
needed to simulate each Kq,q′ and Kr,r′ . The initial and final states of B are
the same as in A. It has the following transitions:

• When A has a transition by a ∈ Σ or # between any two of its states,
B has the same transition between the same states.

• For every pair of states q, q′ ∈ Q, B has an ε-transition from q to a
subautomaton defined as follows. Let the DFA for Kq,q′ have the set
of states Pq,q′ and the transition function δq,q′ . Then B has all the
states from Pq,q′ , its transition from q goes to the initial state in this
subautomaton, and for every p ∈ Pq,q′ the automaton B has a transition
from p to δq,q′(p, 1) labelled “push 1”. For every final state pF in this
subautomaton, B has an ε-transition from pF to q′.

• Similarly, for every pair of states r, r′ ∈ R, B contains a subautomaton
implementing Kr,r′ , in which every transition is labelled “pop 1”.

The general form of B is illustrated in Figure 6.
Let us now prove that B recognizes the language red(L(A)). First, we

shall see that B correctly simulates A on the right parts of words.

Claim 5.3. The automaton B accepts a word v from state r ∈ R with push-
down contents 1k if and only if there exists y ∈ Σ∗

3, such that v = red(y) and
A accepts y from state r with pushdown contents 1k.

⇒© Induction on the length of an accepting computation of B.
Basis. If (r, v, 1k) is an accepting configuration of B then v = ε, k = 0

and taking y = ε we obtain that (r, y, 1k) is an accepting configuration of A.
Induction step, first step read a. Suppose B starts its computation

by reading an input symbol a ∈ Σ. Then B goes from (r, av′, 1k) to (r′, v′, 1k)
and from there to acceptance. By the induction hypothesis, there is y′, such
that v′ = red(y′) and A accepts from (r′, y′, 1k). Taking y = ay′, we obtain
the following computation:

(r, ay′, 1k)
A
` (r′, y′, 1k)

A
`
∗

Acc,

29

and this case is proved.
Induction step, starting from a detour through Kr,r′. Let the first

step done by B in this computation be an ε-transition to one of the detour
blocks. Thus B makes a transition from (r, v, 1k) to (r′, v, 1`), for certain
r′ ∈ R and k−` ∈ Kr,r′ , and the latter configuration leads to acceptance. By
the induction hypothesis, there exists y, such that v ∈ red(y) and (r′, y, 1`)
leads A to acceptance. On the other hand, by definition, k − ` ∈ Kr,r′

means that there exists a word z ∈ D, such that A can go from (r, zy, 1k)
to (r′, y, 1`). Since red(zy) = red(y) = v, the given computation meets the
requirements.

⇐© Let A accept starting from (r, y, 1k) and let y = y0v1y1 . . . vnyn,
with yi ∈ D, vi ∈ Σ+. We need to prove that B accepts starting from
(r, v1 . . . vn, 1k). The argument proceeds by induction on the length of a
computation of A.

Basis. If A’s configuration (r, y, 1k) is accepting, then n = 0, y = ε,
v1 . . . vn = ε and k = 0. Consequently, (r, v1 . . . vn, 1k) is an accepting con-
figuration of B.

Induction step, case of reading from v1 at the first step. Sup-
pose y0 = ε and the first step in the accepting computation of A is
(r, av′1y1 . . . vnyn, 1k) to (r, v′1y1 . . . vnyn, 1

k), from where A proceeds to accep-
tance. By the induction hypothesis, B accepts from (r, v′1v2 . . . vn, 1

k). Since
B can go from (r, av′1v2 . . . vn, 1k) to (r, v′1v2 . . . vn, 1

k), the required accepting
computation has been constructed.

Induction step, case of the first step not touching v1. If v1 is
not touched at the first step of the computation, consider the last con-
figuration in the computation of A before it starts reading v1. Let it
be (r′, v1y1 . . . vnyn, 1

`). Reaching it requires at least one step, and hence
the induction hypothesis can be applied to show that B accepts from
(r′, v1 . . . vn, 1

`). While moving from configuration (r, y0v1y1 . . . vnyn, 1k) to
configuration (r′, v1y1 . . . vnyn, 1`), A has read y0 ∈ D, so, by the definition
of Kr,r′ , k − ` ∈ Kr,r′ . Therefore, B, having started in (r, v1 . . . vn, 1k), can
proceed through the Kr,r′ detour, popping 1k−` on the way, and thus reach-
ing (r′, v1 . . . vn, 1

`), from where it can accept. This completes the proof of
Claim 5.3.

The behaviour of B on left parts of words is stated in the following claim:

Claim 5.4. B accepts a word u#v from state q ∈ Q with pushdown contents
1k if and only if there exists x#y ∈ Σ∗

3#Σ∗
3, such that u#v = red(x#y) and

A accepts x#y from state q with pushdown contents 1k.

Claim 5.4 is proved in the same way as Claim 5.3, with the only difference
that the basis of induction for Claim 5.4 is the statement of Claim 5.3.

Substituting the initial state of A for q and letting k = 0 in Claim 5.4, we
obtain that u#v ∈ L(B) if and only if there exists x#y ∈ L(A), such that
u#v = red(x#y), which completes the proof of the lemma.

30

On the basis of these three lemmata, Theorem 5 can be proved along the
same lines as Theorem 1, though in a context of nonregularity.

Proof of Theorem 5. Let L ⊆ Σ∗#Σ∗ be the language generated by the
rewriting system. According to Lemma 7, L = red(L0). By Lemma 8,
the language L0 is recognized by a one-turn counter automaton. Due to
Lemma 9, this implies that red(L0) is recognized by a one-turn counter au-
tomaton as well.

5.2 The case of controlled
`r→

As we have seen, having an uncontrolled relation
`r→ limits the expressive

power of RS-rewriting to a subset of the context-free languages. Now let
`r→ be a controlled finite relation. We shall see that even if

``→ and
rr→ are

uncontrolled, the resulting system is still computationally universal.

Theorem 6. For every recursively enumerable
language L ⊆ Σ∗ there exists a one-way RS-

rewriting system formed by relations
`r→ ∈ Fin and

``→ =
rr→ ∈ Unc(Fin) and a singleton initial set

I, which generates the language L# modulo Σ∗#.
Given a type 0 grammar for L, such a system can
be effectively constructed.

Let G = (Σ, N, P, S) be a type 0 grammar for L, let V = Σ∪N . Consider
a new alphabet V ∪ V , where V = { s | s ∈ V }. Let s1 . . . sn = s1 . . . sn for
all n > 0, si ∈ V . Define the RS-rewriting system as follows:

I = {S#}
``→ =

rr→ = X ×X, where X = { aa | a ∈ V } ∪ {ε}
`r→ = { (a, a), (a, a) | a ∈ V } ∪ { (u, v) | u → v ∈ P }

The intended behaviour of the system is to simulate G using words of
a particular form, which have only symbols without bars in the left stack
and only symbols with bars in the right stack. Symbols with inappropriate
bars may appear for a moment on either side during a communication of the
stacks, but they are supposed to be immediately removed using a rule of the

form aa → ε ∈ ``→ =
rr→.

A word of the above form α#β, with α, β ∈ V ∗, represents the sentential

form βα of the grammar. Productions are encoded in the relation
`r→, that

is, the factor being rewritten is always prepared on the top of the left stack,
and always migrates to the right stack during a rewriting. In order to do
rewriting in arbitrary parts of a sentential form, it is necessary to scroll it in
both directions. A symbol can migrate from the left stack to the right stack

31

by a direct use of the relation
`r→. However, even though

r`→ = ∅, that is, no
messages may be directly sent from the right stack to the left stack, such a
reverse communication channel can be implemented as well.

Claim 6.1 (Moving symbols). Let a ∈ V and u, v ∈ V ∗. Then

(“→”) au#v derives u#va;

(“←”) u#va derives au#v.

Proof. Part (“→”) follows by a single application of
`r→. Part (“←”) defines

a reverse communication channel using the following three-step protocol:

u#va
``

=⇒ aau#va
`r

=⇒ au#vaa
rr

=⇒ au#v

First a symbol a ∈ V is guessed at the left and a pair aa is created. Then
one of these symbols is transferred to the right and cancelled there with the
existing a. Thus a has effectively been moved from the right to the left.

As we shall soon see, if a wrong symbol is guessed in the above sequence,
or the protocol is violated in any other way, then a word of the form w# can
no longer be derived.

Claim 6.2. If w ∈ V ∗ is generated by G from S, then w# is derivable in the
constructed rewriting system.

Proof. Induction on the length of the generation of w.
Basis. S is generated by G in 0 steps, and S# ∈ I.

Induction step. Let xuy
G

=⇒ xvy by a production u → v. By the in-
duction hypothesis, a word xuy# is derivable in the rewriting system. Using

Claim 6.1(“→”) |x| times we can derive uy#x. Since u → v ∈ P , u
`r→ v by

construction, and we obtain y#xv. Finally, by Claim 6.1(“←”) |xv| times,
the word xvy# is derivable, which proves Claim 6.2.

Let us show that only words derivable in G can be produced by our
rewriting. Denote by d(x) the word obtained from x ∈ (V ∪ V)∗ by deleting
all occurrences of factors of the form aa for a ∈ V . In the following we adopt
the convention that x = x for any word x ∈ V ∗.

Claim 6.3. For every word α = y#x derivable in the rewriting system, from
which a word belonging to V ∗# can be derived, the word d(x) d(y) can be
generated in G.

Proof. We proceed by induction on the length of the derivation. The initial
word S# clearly satisfies the claim. To prove the induction step, take any
word α = y#x, where x, y ∈ (V ∪ V)∗ are such that d(x) d(y) is derivable
in G. Let β = y′#x′ be a word obtained from α by one step of the rewriting

32

and assume that some word from V ∗# is derivable from β. If a rule from
``→

or from
rr→ was applied, then d(x′) = d(x) and d(y′) = d(y), and so β satisfies

the claim.

If β was produced by applying a rule u
`r→ v, where either u → v ∈ P

or u = v ∈ V , then x′ = xv and y = uy′. This implies that d(x′) = d(x)v
and d(y) = u d(y′) hold. Therefore we have d(x′) d(y′) = d(x)v d(y′) and
d(x) d(y) = d(x)u d(y′), which shows that d(x′) d(y′) can be derived in G.

Finally, assume that the rule applied is of the form a
`r→ a for a ∈ V , in

other words, we have x′ = xa and y = ay′. Because d(y) contains no letters
from V , the initial letter of y′ has to be a, so y′ = az for some z ∈ (V ∪ V)∗

satisfying d(z) = d(y). By our assumption on β, the final occurrence of a in x′

can be eventually removed by the rewriting. Because this can be achieved
only using rules of

rr→, the letter preceding a in x′ must be a, which shows
that x = wa for some w ∈ (V ∪ V)∗ such that d(w) = d(x′). Altogether, we
obtain d(x′) d(y′) = d(w)a d(z) = d(w)a d(z) = d(x) d(y) as required. The
claim is proved.

Returning to the proof of Theorem 6, for every word w# ∈ Σ∗# derivable
in the rewriting system, the word w can be generated using G by Claim 6.3.
Conversely, if w ∈ Σ∗ is generated by G, then, by Claim 6.2, w# is derivable
in the constructed rewriting system. Q. E. D.

The relation
`r→ in the above construction is almost a copy relation. If

the bars in the right sides of words are inverted,
`r→ becomes a copy relation,

while the relations
``→ and

rr→ become different. This leads to the following
variant of Theorem 6:

Proposition 1. For every recursively enumer-
able language L ⊆ Σ∗ there exists a one-way RS-

rewriting system formed by relations
`r→ ∈ Copy

and
``→,

rr→ ∈ Unc(Fin) and a singleton initial set
I, which generates the language L# modulo Σ∗#.
Given a type 0 grammar for L, such a system can
be effectively constructed.

6 Two-way communication

The rewriting systems considered so far allowed one-way communication only,
with messages sent from the left stack to the right stack. Let us now consider

two-way rewriting, in which both relations
`r→ and

r`→ are used. It will be
shown that this rewriting is computationally universal already in its weakest,
least controlled form.

33

Theorem 7. For every recursively enumerable language
L ⊆ Σ+ there exists an alphabet Γ ⊇ Σ, finite uncontrolled

relations
`r→ and

r`→ and a word w0 ∈ Γ∗#Γ∗, such that the
language generated by the two-way rewriting system from w0

equals λ(L)# modulo intersection with λ(Σ+)#, for a suit-
able injective morphism λ.

The general idea behind our construction is clear. The two stacks contain
a sentential form of a Chomsky type 0 grammar, which is redistributed be-
tween the stacks before every rewriting step. The symbols and productions
are communicated between the stacks in unary notation: in order to send
an object number n, f(n) empty messages are sent. The set of uncontrolled
rules is constructed in such a way that both parties must faithfully follow a
certain rigid protocol, and if they ever divert from it, they will never be able
to get back on the right track.

This sounds easy in theory, but if one recalls that the stacks do not even
have local states, the existence of such a rewriting system will appear highly
unlikely. However, there exists quite a sophisticated solution.

Let G = (Σ, N, P, S) be a type 0 grammar generating L, let V = Σ ∪N
be its full alphabet and assume that every production in P is of the form
u → v with u, v ∈ V +. We consider the following extended alphabet:

Γ = V ∪ {£, $, c, a, b, c, d, e, g, ḡ, g̃, h, ~}.

Let us denote n = |V ∪ P | + 3 and fix an arbitrary bijection ϕ : V ∪ P →
{3, . . . , n− 1}. We define morphisms λ, ρ : V + → Γ+ by setting λ(A) =
h~Acnc and ρ(A) = ccnA~h for every A ∈ V . The morphism λ will be used
to encode symbols from V in the left stack, while ρ symmetrically encodes
symbols in the right stack.

Let
`r→ = L− ×R+ and

r`→ = R− × L+, where

L− = {$, cnch~, gḡ, g̃£,£2ab} ∪ {Acϕ(A), h~Acϕ(A) | A ∈ V }
∪ {ε, h~}−1{λ(u)(cn−ϕ(u→v)c)−1 | u → v ∈ P },

R+ = {£, c, g, h, a£2g̃ḡ$, h~b, ccnde~$} ∪ { ccnA~$ϕ(A) | A ∈ V }
∪ { (ρ(v)h−1)$ϕ(u→v) | u → v ∈ P },

R− = {$, ~hccn, ḡg,£g̃, ba£2, e~h, c2d} ∪ { cϕ(A)A, cϕ(A)A~h | A ∈ V },
L+ = {£, c, g, h, $ḡg̃£2a, b~h, $2~Scnc} ∪ { $ϕ(A)~Acnc | A ∈ V }.

As before, the relations of left-to-right and right-to-left one-step derivation

induced by these rules are denoted by
`r

=⇒ and
r`

=⇒, respectively, and =⇒ =
`r

=⇒∪ r`
=⇒. The initial set is defined as I = {gḡg̃£2ab~#~h~}.

A sentential form z ∈ V + of the grammar will be distributed between
two stacks as a word λ(y)(h~)m#(~h)kρ(x), for various factorizations z = xy

34

and for various k,m > 0. The rewriting will redistribute the sentential form,
alternately shifting it symbol by symbol from the left stack to the right stack
until it is entirely in the right stack, then shifting it back from the right stack
to the left stack until no symbols of the sentential form are left in the right
stack, and so forth. During the left-to-right movement, the rewriting may
apply productions u → v ∈ P : in this case the word encoding u is removed
from the left stack and ρ(v) is added to the top of the right stack. Simply
moving a symbol A ∈ V from one stack to the other can thus be regarded as
applying a production A → A. During the right-to-left movement, symbols
are only moved verbatim, that is, the whole sentential form is returned back
to the left.

Let us now briefly describe how our rewriting rules implement correct
shifting of parts of a sentential form between the stacks. Each basic piece of
a sentential form to be moved from left to right is represented by two words in
L− and a single corresponding word in R+. For each symbol A ∈ V the set L−
contains two words Acϕ(A) and h~Acϕ(A) used for moving A to the other side;
the corresponding word in R+ is ccnA~$ϕ(A). Similarly, for each production
u → v ∈ P there are two words {ε, h~}−1λ(u)(cn−ϕ(u→v)c)−1 in L− represent-
ing its left-hand side, and the corresponding word (ρ(v)h−1)$ϕ(u→v) ∈ R+

encodes its right-hand side. It is intended that whenever one of these words
from L− is removed from the left, the corresponding word in R+ must be
appended to the right.

This correspondence is ensured by keeping a certain number of cs on
the left, which encode the word from L− that has been deleted there, and
by adding a number of $s on the right as a part of the appended word
for subsequent verification. The resulting blocks of cs and $s encode the
number of the applied production or the number of the moved symbol in
unary notation. This information can be communicated between the stacks
by sending $s to the left, changing them for cs on the way. If the number
of new cs matches the number of cs left in the left stack by the rewriting,
all these cs can be deleted together, and this information is communicated
to the right by appending a letter h. If all $s were previously sent to the
left, this letter h adjoins the letter ~ originating from the appended word of
R+ where it occurs right before the block of $s. This certifies that the word
removed from the left and the word added to the right correspond to the
same symbol or production of the grammar. The newly assembled pair ~h
allows to start shifting another piece of a sentential form.

Symmetrically, the sets R− and L+ contain words corresponding to sym-
bols to be moved from right to left. The only difference is that productions
are applied only when moving material from left to right. Apart from this,
productions of the grammar and rules for moving symbols between the two
stacks are encoded in the very same way.

To prove the theorem, it is sufficient to verify the following equivalence:

Main Claim. A word w ∈ V ∗ is a sentential form of G if and only if the

35

word λ(w)# is derivable in our rewriting system.

To prove that every word λ(w)#, with w ∈ V ∗ generated by G, can
be derived, we simulate each application of a production u → v of G to a
sentential form w by rewriting the corresponding word λ(w)#. First, we shift
the entire sentential form w from the left stack to the right one, modifying
the factor λ(u) to ρ(v) on the way, and then we move it back to the left to
get the word λ(w′)#, where w′ is the resulting sentential form.

Each time the sentential form is entirely shifted to one of the stacks and
the direction of shifting is reversed, one pair h~ or ~h is consumed at the
bottom of the emptied stack. Therefore, before starting the actual simulation
we have to generate a sufficient amount of these pairs at the bottom of each
stack. This production of such pairs, which we call “fuel”, is performed quite
similarly to moving parts of a sentential form between stacks; the letters g
and ḡ play the role of h and ~, and £s are used instead of cs.

Claim 7.1 (Fuel generation). For every m ∈ N, the word λ(S)(h~)m#(~h)m

can be derived in the rewriting system.

Proof. Let us first show by induction on m how to derive the word

gḡg̃£2ab~(h~)m−1#(~h)m~

for every m ∈ N. For m = 1 this is just the initial word. Assume we have
already derived gḡg̃£2ab~(h~)m−1#(~h)m~. Then we can add another pair
h~ and ~h at each side by the following derivation:

gḡ g̃££ab~(h~)m−1#(~h)m~
`r

=⇒2 £ab~(h~)m−1#(~h)m~(h~b)(a£2g̃ḡ $)

r`
=⇒ (£)£ab ~(h~)m−1#(~h)m+1~ba£2g̃ḡ

`r
=⇒ ~(h~)m−1#(~h)m+1~ba££g̃ ḡ(g)

r`
=⇒2 ($ ḡg̃£2a)(b~h)~(h~)m−1#(~h)m+1~ba£

`r
=⇒ ḡg̃£2ab~(h~)m#(~h)m+1~ ba£(£)

r`
=⇒ (g)ḡg̃£2ab~(h~)m#(~h)m+1~

Once a sufficient number of pairs has been produced, we can derive

36

λ(S)(h~)m#(~h)m as follows:

gḡ g̃££ab~(h~)m−1#(~h)m~
`r

=⇒2 £ab~(h~)m−1#(~h)m~(h)(ccnde~ $)

r`
=⇒ (£)£ab ~(h~)m−1#(~h)m+1ccnde~

`r
=⇒ ~(h~)m−1#(~h)m+1ccn−2c2d e~(h)

r`
=⇒2 ($2 ~Scnc)(h)~(h~)m−1#(~h)m+1ccn−2

`r
=⇒2 ~Scnc(h~)m#(~h)m~hccn−2(c2)

r`
=⇒ (h)~Scnc(h~)m#(~h)m

= λ(S)(h~)m#(~h)m

This provides the initial words for simulating the generation of sentential
forms in G. The next two claims represent elementary manipulations of the
encoded sentential form by the rewriting system.

Claim 7.2 (Moving a symbol). Let x, y ∈ V ∗ and A ∈ V . Then for every
m ∈ N:

λ(Ay)(h~)m#(~h)m =⇒∗ (h~)−1λ(y)(h~)m#(~h)mρ(A),

(h~)−1λ(Ay)(h~)m#(~h)mρ(x) =⇒∗ (h~)−1λ(y)(h~)m#(~h)mρ(xA).

Similarly in the other direction, for every m ∈ N0:

(h~)m#(~h)m+1ρ(xA) =⇒∗ λ(A)(h~)m#(~h)m+1ρ(x)(~h)−1,

λ(y)(h~)m#(~h)m+1ρ(xA)(~h)−1 =⇒∗ λ(Ay)(h~)m#(~h)m+1ρ(x)(~h)−1.

Proof. In the first part of the claim, the initial words start with h~Acnc and
Acnc, respectively, and since L− contains two words for dealing with A, we
can set x = ε in the first case and treat both cases uniformly:

{ε, h~}Acϕ(A)cn−ϕ(A)cλ(y)(h~)m#(~h)mρ(x)

`r
=⇒ cn−ϕ(A)cλ(y)(h~)m#(~h)mρ(x)(ccnA~ $ϕ(A))

r`
=⇒ϕ(A) (cϕ(A))cn−ϕ(A)ch~(h~)−1λ(y)(h~)m#(~h)mρ(x)ccnA~

`r
=⇒ (h~)−1λ(y)(h~)m#(~h)mρ(x)ccnA~(h)

= (h~)−1λ(y)(h~)m#(~h)mρ(xA)

The second part of the claim is proved symmetrically.

Claim 7.3 (Applying a production). For every x, y ∈ V ∗, m ∈ N and
u → v ∈ P ,

λ(uy)(h~)m#(~h)m =⇒∗ (h~)−1λ(y)(h~)m#(~h)mρ(v),

(h~)−1λ(uy)(h~)m#(~h)mρ(x) =⇒∗ (h~)−1λ(y)(h~)m#(~h)mρ(xv).

37

Proof. We prove this claim similarly to the previous one, again setting x = ε
in the first case:

{ε, h~}−1λ(u)λ(y)(h~)m#(~h)mρ(x)

= {ε, h~}−1λ(u)(cn−ϕ(u→v)c)−1cn−ϕ(u→v)cλ(y)(h~)m#(~h)mρ(x)

`r
=⇒ cn−ϕ(u→v)cλ(y)(h~)m#(~h)mρ(x)(ρ(v)h−1$ϕ(u→v))

r`
=⇒ϕ(u→v) (cϕ(u→v))cn−ϕ(u→v)ch~(h~)−1λ(y)(h~)m#(~h)mρ(xv)h−1

`r
=⇒ (h~)−1λ(y)(h~)m#(~h)mρ(xv)h−1(h)

= (h~)−1λ(y)(h~)m#(~h)mρ(xv)

Using these elementary operations on sentential forms, the generation of
a word in G can be simulated by the rewriting system as follows:

Claim 7.4 (Simulating generation). For every m ∈ N0 and every word
w ∈ V ∗ generated by G, the word λ(w)(h~)m#(~h)m can be derived in the
rewriting system.

Proof. We proceed by induction on the length of the derivation of w. For
the initial symbol S this was already proved in Claim 7.1 except for the case
m = 0, which can be obtained from the case of m = 1 using Claim 7.2 twice:

λ(S)h~#~h =⇒∗ #~hρ(S) =⇒∗ λ(S)#

Let m ∈ N0, u → v ∈ P and x, y ∈ V ∗, and consider the genera-
tion step of G in which xuy generates xvy. By the induction hypothesis
we know that the word λ(xuy)(h~)m+1#(~h)m+1 is derivable in our rewrit-
ing system. Then if x 6= ε we use |x| times Claim 7.2 to derive the word
(h~)−1λ(uy)(h~)m+1#(~h)m+1ρ(x). This means that for any x we can de-
rive (h~)−1λ(y)(h~)m+1#(~h)m+1ρ(xv) by Claim 7.3. Then using |y| times
Claim 7.2 we get (h~)m#(~h)m+1ρ(xvy). Thus a unit of fuel has been con-
sumed at the left stack, and the rewriting proceeds by moving all symbols
from right to left. This is achieved by applying the second part of Claim 7.2
|xvy| times to derive λ(xvy)(h~)m#(~h)m. In the end, a unit of fuel is con-
sumed at the right stack, and the rewriting system is ready to process the
sentential form from left to right again.

Taking m = 0 in Claim 7.4, we obtain that the word λ(w)# can be
derived, which concludes the proof of the direct implication of Main Claim.

To prove the converse of Main Claim, we have to consider words derived
by our rewriting system which belong to one of the following languages:

L1 = λ(V ∗)(h~)∗#(~h)∗ρ(V ∗)(~h)−1

L2 = (h~)−1λ(V ∗)(h~)∗#(~h)∗ρ(V ∗)

L3 = gḡg̃£2ab~(h~)∗#(~h)∗~

38

We shall show that each word of this form derivable in the rewriting system
corresponds to a sentential form of G.

Note that all derivations constructed in Claims 7.1–7.4 generally go
through words in L1 ∪ L2 ∪ L3, and between every two such words there
is only a bounded number of intermediate words. We shall show that if a
derivation proceeds in an essentially different way than as given in the above
Claims, then it inevitably leads to a word from which no word belonging to
any of these three languages can ever be derived.

Many “wrong” derivation steps can be identified immediately by some
prohibited combinations of letters.

Claim 7.5 (Prohibited pairs). Let α ∈ Γ∗#Γ∗ be a word, from which some
element of L1∪L2 can be derived. Then every occurrence of g, h, a or c to the
left of # is followed by ḡ, ~, b or h, respectively. Similarly, every occurrence
of g, h, a or c to the right of # is preceded by ḡ, ~, b or h, respectively.

Proof. Denote Γ∪{#} by Ξ. It is easy to verify that for every α ∈ L1∪L2 the
statement of the claim holds. Then it is sufficient to show that a forbidden
factor from the set

g(Ξ \ {ḡ}) ∪ h(Ξ \ {~}) ∪ a(Ξ \ {b}) ∪ c(Ξ \ {h})

to the left of # cannot be removed by the rewriting, and similarly, a factor
from the set

(Ξ \ {ḡ})g ∪ (Ξ \ {~})h ∪ (Ξ \ {b})a ∪ (Ξ \ {h})c

cannot be removed on the right. This is true, because every occurrence of g,
h, a and c in a word from L− is immediately followed by ḡ, ~, b and h,
respectively. For factors on the right, the same argument applies to R−.

Claim 7.6 (Prohibited prefixes and suffixes). Let α ∈ Γ∗#Γ∗ be a word,
from which some element of L1 ∪L2 can be derived. If the first letter of α is
£, then the second letter is £ or a, and if the first letter is c, then the second
one is c or c. Similarly, if the last letter is £, then the second last is £ or
a, and if the last letter is c, then the second last is c or c.

Proof. If the initial letter of α is £ or c, then, by Claim 7.5, until anything
is removed at the left, only the words £, c ∈ L+ may be added there (any
other word in L+ would form a prohibited pair with each of these letters).
Because no word in L1∪L2 starts with £ or with c, these letters are eventually
removed. This can only be achieved using one of the words cnch~,£2ab ∈ L−.
Therefore, the second letter of α is either a or £ if the initial one is £, and
c or c if the initial one is c. The second part of the claim can be treated in
exactly the same way.

39

The above two technical conditions will now be used to compile the list
of potentially applicable rules for different top letters in the stacks. This list
will be used many times in the following arguments to justify that some word
must be rewritten using a rule from a short list given by this claim.

Claim 7.7 (Rules allowed in a context). Let a rule µ → ν ∈ `r→ (µ → ν ∈ r`→,
respectively) be applied to a word αs ∈ Γ+#Γ∗ (sα ∈ Γ∗#Γ+, respectively),
with s ∈ Γ ∪ {#}, and assume that it is possible to derive some word in
L1 ∪ L2 from the resulting word. Then

• s does not belong to V ∪ {#, $, d, e, g, g̃}.
• If s ∈ {£, a}, then ν = £.

• If s ∈ {c, c}, then ν = c.

• If s = b, then ν = a£2g̃ḡ$ ∈ R+ (ν = $ḡg̃£2a ∈ L+, respectively).

• If s = ḡ, then ν = g.

• If s = h, then ν is one of the words from R+ starting with c (one of the
words from L+ ending with c, respectively), that is, ν = ccnde~$ ∈ R+,
ν = ccnA~$ϕ(A) ∈ R+ with A ∈ V , or ν = (ρ(v)h−1)$ϕ(u→v) ∈ R+ with
u → v ∈ P in the case of appending to the right, and ν = $2~Scnc ∈ L+

or ν = $ϕ(A)~Acnc ∈ L+ with A ∈ V in the case of appending to the
left.

• If s = ~, then ν = h ∈ R+ or ν = h~b ∈ R+ (ν = h ∈ L+ or
ν = b~h ∈ L+, respectively).

Proof. To prove this claim, one has to consider all possible combinations of
top letters and elements of R+ (L+, respectively) that are not listed in the
statement, and in each case a contradiction with Claim 7.5 or with Claim 7.6
is obtained. The combinations listed in the statement are exactly those that
do not yield an immediate contradiction with these claims.

For instance, for s = £ and for ν = h~b ∈ R+, the resulting word will
be µ−1α£h~b, which contains an occurrence of h to the right of # that is
not preceded by ~, contradicting Claim 7.5. If s = £ and ν = c ∈ R+, the
resulting word is µ−1α£c, which contradicts Claim 7.6. In this way each
element of R+ is considered, and for all except £ a contradition is obtained.

All other cases are handled in exactly the same way.

The next property of our rewriting system we prove ensures that the
information about a symbol being moved or a production being applied is
always correctly communicated to the other side. This is done by comparing
the length of the block of $s at one end of the word to the length of the block
of cs or £s at the other end.

40

Claim 7.8 (Soundness of data transfer). Let m, k ∈ N and α ∈ Γ∗#Γ∗ be
arbitrary, and let s ∈ {ḡ, ~}. Then some word from L1 ∪ L2 can be derived
from the word cmcαs$k ($ksαccm, respectively) only if m + k = n, and every
derivation leading to a word from L1 ∪L2 starts by applying k times the rule

($, c) ∈ r`→ (($, c) ∈ `r→, respectively).
Furthermore, some word from L1 ∪ L2 can be derived from the word

£maαs$k ($ksαa£m, respectively) only if m = k = 1, and every deriva-

tion leading to a word from L1 ∪ L2 starts by applying the rule ($,£) ∈ r`→
(($,£) ∈ `r→, respectively).

Proof. We deal only with the case of the word cmcαs$k; the other cases can
be treated similarly. Consider any derivation starting from cmcαs$k and

ending at any word from L1 ∪ L2. By Claim 7.7, the relation
`r→ is not

applicable at the first step, hence the derivation starts with the application

of a rule µ → ν ∈ r`→, which must have µ = $. On the other hand, Claim 7.7
asserts that ν = c, and the word is rewritten to cm+1cαs$k−1. The same rule
must be applied until there is no $ at the end. The resulting word cm+kcαs
ends with s, which is not the last letter of any element of R−, so some rule

µ′ → ν ′ ∈ `r→ must follow. This rule must have µ′ = cnch~, since no other
words from L− apply, and therefore m + k = n.

Now, with all technical results established, we can prove how exactly the
rewriting must proceed in order to derive any word in L1 ∪ L2.

It turns out that for every derivable word which is not in L1 ∪ L2 ∪ L3

the next rule to apply is determined uniquely: if a different rule is used, the
subsequent derivation can no longer arrive at any word in L1∪L2. Branching
of a derivation is only possible at words belonging to L1∪L2∪L3. For words
in L1 ∪ L2, the choice is whether to move a symbol to the other stack or to
apply a production of G, as well as which production to apply. For words
in L3, the choice is whether to generate two more units of fuel or to proceed
to a word from L1 encoding the start symbol of G.

Claim 7.9 (Soundness of the simulation). Let x0, y0 ∈ V ∗ and let

α ∈ λ(y0)(h~)∗#(~h)∗ρ(x0)(~h)−1

︸ ︷︷ ︸
⊆L1

∪ (h~)−1λ(y0)(h~)∗#(~h)∗ρ(x0)︸ ︷︷ ︸
⊆L2

be a word derivable in the rewriting system. Then x0y0 can be generated in G.

Proof. The claim will be proved by induction on the length of the derivation
of α. The induction assumption states that the claim holds for every word
from L1 ∪ L2 occurring in this derivation before α. Let β be the last word
in this derivation that belongs to L1 ∪ L2 ∪ L3. Such a word β clearly exists
since the initial word belongs to L3. The argument proceeds by considering
possible subsequent words in this derivation: since from each of them one

41

can derive α ∈ L1 ∪L2, Claims 7.7 and 7.8 generally apply to each rewriting
step, and they impose some restrictions on the applicable rules.

The below case study shows that, in fact, once the rewriting rule applied
to β is fixed, only one rule will be applicable at each subsequent step until
α is reached. In this way we determine how α was obtained from β. If
β ∈ L1∪L2, then it corresponds to a sentential form of G, and the derivation
from β to α represents a transformation of this sentential form: either by
moving a symbol from V from one stack to the other, or by applying a
production of G (chosen by the rule applied to β). If β ∈ L3, then it was
obtained during fuel generation, and α is derived from β either by generating
one more unit of fuel in each stack, or by closing the fuel generation phase
and producing an encoded sentential form S.

Case I. Let us first assume that β belongs to L1, that is,

β = λ(y)(h~)m#(~h)kρ(x)(~h)−1

for some x, y ∈ V ∗ and m, k ∈ N0. By the induction hypothesis the word xy
can be generated by G. We have to distinguish two cases.

Case I(a). If x 6= ε, let x = x′A for some A ∈ V . Then

β = λ(y)(h~)m#(~h)kρ(x′)ccnA, (7)

and, by Claim 7.7, the first step of the derivation uses
r`→. The word removed

on the right is cϕ(A)A and, since the first letter of β is h or #, Claim 7.7 implies
that only words $2~Scnc and $ϕ(B)~Bcnc with B ∈ V can be added on the
left. In the former case,

(7)
r`

=⇒ $2~Scncλ(y)(h~)m#(~h)kρ(x′)ccn−ϕ(A).
By Claim 7.8, no word from L1 ∪L2 can be derived from the resulting word,
since the sum of the number of $s at the beginning and the number of cs at
the end is strictly less than n. So this case is impossible and $ϕ(B)~Bcnc
must be added to the left. By the same Claim 7.8 applied to the resulting
word, ϕ(B) + n− ϕ(A) = n, which, due to the bijectivity of ϕ, implies that
A = B, and the word added to the left is actually $ϕ(A)~Acnc, that is,

(7)
r`

=⇒ $ϕ(A)~Acncλ(y)(h~)m#(~h)kρ(x′)ccn−ϕ(A). (8)

Claim 7.8 further asserts that the rewriting must continue by applying

ϕ(A) times the rule ($, c) ∈ `r→:

(8)
`r

=⇒ϕ(A) h−1λ(Ay)(h~)m#(~h)kρ(x′)ccn. (9)

Because the word obtained in (9) begins with ~, no prefix of it belongs to L−,

and hence the rule applied after (9) must belong to
r`→. The only word which

42

can be deleted on the right is ~hccn, and by Claim 7.7 only h or b~h can be
added to the left.

If b~h is used, the derivation proceeds as

(9)
r`

=⇒ b~λ(Ay)(h~)m#(~h)kρ(x′)(~h)−1. (9′)

As the initial letter of the resulting word is b, from which no words in L−
begin, no rules from

`r→ are applicable. Hence the next step uses
r`→. The

word deleted on the right must be of the form cϕ(B)B, for some B ∈ V . By
Claim 7.7, the word added to the beginning must be $ḡg̃£2a:

(9′)
r`

=⇒ $ḡg̃£2ab~λ(Ay)(h~)m#(~h)kρ(x′ ·B−1)ccn−ϕ(B).
In the resulting word, the sum of the number of $s at the beginning and cs at
the end is less than n, which contradicts Claim 7.8.

This means that the letter h is added to (9):

(9)
r`

=⇒ λ(Ay)(h~)m#(~h)kρ(x′)(~h)−1,

where the word obtained lies in L1. By the choice of β, this word must be α.
This shows that x0y0 = x′Ay = xy, and so x0y0 can be generated by G by
the induction hypothesis.

Case I(b). If x = ε, then

β = λ(y)(h~)m#(~h)k−1. (10)

In this case β has no suffix from R− and so a rule from
`r→ must be applied.

The word removed on the left can be either λ(A)(cn−ϕ(A)c)−1 with A ∈ V ,
in which case let y = Ay′, or λ(u)(cn−ϕ(u→v)c)−1 with u → v ∈ P , in which
case let y = uy′′. Since β ends with h or #, by Claim 7.7, the only words
from R+ which can be appended to β are ccnde~$, (ρ(B)h−1)$ϕ(B) with
B ∈ V , or (ρ(v′)h−1)$ϕ(u′→v′) with u′ → v′ ∈ P . By Claim 7.8, the sum
of the number of $s at the end of the resulting word and the number of
cs at its beginning is n, which limits the possible combinations of removals
and appends to the following: (1) if λ(A)(cn−ϕ(A)c)−1 was removed, then only
(ρ(A)h−1)$ϕ(A) can be appended; (2) if λ(u)(cn−ϕ(u→v)c)−1 was removed, then
only (ρ(v)h−1)$ϕ(u→v) can be appended. Hence the next step is either

(10)
`r

=⇒ cn−ϕ(A)cλ(y′)(h~)m#(~h)k−1(ρ(A)h−1)$ϕ(A) or (11a)

(10)
`r

=⇒ cn−ϕ(u→v)cλ(y′′)(h~)m#(~h)k−1(ρ(v)h−1)$ϕ(u→v). (11b)

In addition, Claim 7.8 states that these words have to be further rewritten
by removing all $s from the right and adding the same number of cs to the
left. The word obtained after these modifications is either

(11a)
r`

=⇒ϕ(A) cncλ(y′)(h~)m#(~h)k−1ρ(A)h−1 or (12a)

(11b)
r`

=⇒ϕ(u→v) cncλ(y′′)(h~)m#(~h)k−1ρ(v)h−1. (12b)

43

Because in both cases the resulting word ends with ~, it has no suffix from

R−, and so a rule from
`r→ must be applied at the next step. The word

removed from the beginning is clearly cnch~, and Claim 7.7 ensures that the
only words from R+ that can be appended are h and h~b.

Appending h~b results in

(12a)
`r

=⇒ (h~)−1λ(y′)(h~)m#(~h)k−1ρ(A)~b or in

(12b)
`r

=⇒ (h~)−1λ(y′′)(h~)m#(~h)k−1ρ(v)~b,
respectively. In both cases no rule from

r`→ is applicable (since none of the
words in R− ends with b), and only the word a£2g̃ḡ$ can be added to the
right by Claim 7.7. On the left, only one of the words λ(B)(cn−ϕ(B)c)−1 with
B ∈ V , or λ(u′)(cn−ϕ(u′→v′)c)−1 with u′ → v′ ∈ P , can be deleted. This
would contradict Claim 7.8, since the sum of the number of $s at the end
and cs at the beginning would be less than n.

Therefore, after the derivation step (12), h must be appended at the next
step, and the derivation proceeds as follows:

(12a)
`r

=⇒ (h~)−1λ(y′)(h~)m#(~h)k−1ρ(A) or

(12b)
`r

=⇒ (h~)−1λ(y′′)(h~)m#(~h)k−1ρ(v).

Because in both cases the word obtained belongs to L2, by the definition of β,
we have just derived α. The corresponding word x0y0 is either Ay′ = xy or
vy′′, where xy = uy′′ and G generates vy′′ from uy′′. In both cases this shows
that x0y0 can be generated by G.

Case II. The case of β ∈ L2 is symmetric. More precisely, in the case
of L1, pieces of a sentential form can be moved to the right only when x = ε,
while in the case of L2, they can be moved to the left only when y = ε. So
the only difference is in which situations productions of G can be applied:
for β ∈ L1 this happens only when the whole sentential form is in the left
stack, whereas for β ∈ L2 applicability of productions is not restricted. This,
however, has no impact on the required arguments, since rules for productions
can be treated in exactly the same way as rules for moving symbols between
stacks.

Case III. It remains to deal with β ∈ L3. So assume that

β = gḡg̃£2ab~(h~)m#(~h)k~, (13)

where m, k ∈ N0. Since no words in R− end with ~, the rule applied to β

must belong to
`r→, and on the left gḡ ∈ L− must be removed. By Claim 7.7,

either h or h~b can be added on the right.
Case III(a). Suppose the word h~b is appended at the first step:

(13)
`r

=⇒ g̃£2ab~(h~)m#(~h)k+1~b. (14)

44

Since the resulting word ends with b, it has no suffix from R−, so a rule

from
`r→ is used next. The only prefix that can be removed is g̃£ ∈ L−.

By Claim 7.7, the ending b allows only one word to be appended, namely
a£2g̃ḡ$, so the next step is

(14)
`r

=⇒ £ab~(h~)m#(~h)k+1~ba£2g̃ḡ$. (15)

The second part of Claim 7.8 shows that the rule ($,£) ∈ r`→ must be applied
next:

(15)
r`

=⇒ £2ab~(h~)m#(~h)k+1~ba£2g̃ḡ. (16)

This word has no suffix from R−, so no deletion at the end is possible.

Therefore, a rule from
`r→ is applied: £2ab ∈ L− is the only prefix that can

be removed, and by Claim 7.7 only g ∈ R+ can be appended. This leads to

(16)
`r

=⇒ ~(h~)m#(~h)k+1~ba£2g̃ḡg. (17)

As before, the suffix ḡg ∈ R− is then deleted, and either h ∈ L+ or b~h ∈ L+

can be added to the left.
Addition of h produces

(17)
r`

=⇒ (h~)m+1#(~h)k+1~ba£2g̃,
and no prefix of the resulting word is in L−. Hence,

r`→ must be used, and
£g̃ ∈ R− is the only suffix that can be removed. By Claim 7.7, the word
added on the left is either $2~Scnc ∈ L+ or $ϕ(A)~Acnc ∈ L+ with A ∈ V .
In each case we get a word in $`~Γ∗#Γ∗a£ with ` ≥ 2, which contradicts
Claim 7.8.

Therefore, b~h is added to the word obtained in (17), deriving

(17)
r`

=⇒ b~(h~)m+1#(~h)k+1~ba£2g̃. (18)

Using arguments symmetric to the previous ones (cf. the three-step transition
from (14) to (17)), this word must be rewritten as follows:

(18)
r`

=⇒ $ḡg̃£2ab~(h~)m+1#(~h)k+1~ba£
`r

=⇒ ḡg̃£2ab~(h~)m+1#(~h)k+1~ba£2

r`
=⇒ gḡg̃£2ab~(h~)m+1#(~h)k+1~.

The last word belongs to L3. Because it is obtained after β in the derivation
of α, we get a contradiction with the choice of β.

Case III(b). Now consider the situation when the letter h is appended
to β, that is, the first step is

(13)
`r

=⇒ g̃£2ab~(h~)m#(~h)k+1. (19)

45

Since the word obtained has no suffixes from R−, another rule from
`r→ has

to follow. The only prefix that can be erased is g̃£ ∈ L−, while the word
from R+ appended on the right, by Claim 7.7, may be ccnde~$, ccnA~$ϕ(A)

with A ∈ V , or (ρ(v)h−1)$ϕ(u→v) with u → v ∈ P . The resulting word is in
£aΓ∗#Γ∗~$` in all these cases, and from the second part of Claim 7.8 one
can see that ` must be equal to 1, that is, the word ccnde~$ is added to the
right:

(19)
`r

=⇒ £ab~(h~)m#(~h)k+1ccnde~$. (20)

Claim 7.8 additionally asserts that the rule ($,£) ∈ r`→ is employed at the
next step:

(20)
r`

=⇒ £2ab~(h~)m#(~h)k+1ccnde~. (21)

No words in R− end with ~, hence a rule from
`r→ is applied next. The prefix

£2ab has to be deleted, and, by Claim 7.7, one of the words h~b and h is
appended, resulting in

(21)
`r

=⇒ ~(h~)m#(~h)k+1ccnde~h~b or

(21)
`r

=⇒ ~(h~)m#(~h)k+1ccnde~h. (22)

None of the resulting words has any prefix from L−. The former word also
has no suffix from R−, hence no rules are applicable to it and that case is
impossible.

Therefore, this derivation step must be (22). At the next step, since no

words in L− start with ~, only
r`→ can be applied: the suffix e~h is removed,

and the word added to the beginning must be either b~h or h by Claim 7.7.
The derivation proceeds as:

(22)
r`

=⇒ b~(h~)m+1#(~h)k+1ccnd or (23a)

(22)
r`

=⇒ (h~)m+1#(~h)k+1ccnd. (23b)

Let us show that the addition of b~h leads to a contradiction. Since no
word of L− starts with b, only

r`→ would be applicable to (23a). The only
suffix that could be removed is c2d ∈ R−, and by Claim 7.7 only $ḡg̃£2a ∈ L+

could be added at the left:

(23a)
r`

=⇒ $ḡg̃£2ab~(h~)m+1#(~h)k+1ccn−2.
By Claim 7.8, α could not be derived from this word, because the sum of the
number of leading $s and the number of terminating cs would be only n− 1.

Hence, the rewriting proceeds according to (23b). By Claim 7.7, no rules

from
`r→ can be applied to the resulting word. Consequently, the word c2d ∈

R− is removed from the right and, by Claim 7.7, the only words that can be

46

added to the left are $2~Scnc ∈ L+ and $ϕ(A)~Acnc ∈ L+ with A ∈ V . The
latter case is impossible due to Claim 7.8, since adding ϕ(A) $s would result
in the total number of $s in the beginning and cs in the end exceeding n.
Therefore, the next step is

(23b)
r`

=⇒ $2~Scnc(h~)m+1#(~h)k+1ccn−2. (24)

Then, in accordance with Claim 7.8, the rule ($, c) ∈ `r→ must be applied
twice:

(24)
`r

=⇒2 ~Scnc(h~)m+1#(~h)k+1ccn. (25)

Using the same arguments as for (9) one can show that the rule (~hccn, h) ∈
r`→ is applied next:

(25)
r`

=⇒ λ(S)(h~)m+1#(~h)k.

The resulting word belongs to L1, and by the definition of β, it has to be α.
Hence, the word x0y0 corresponding to α is just the start symbol S. This
completes the proof of Claim 7.9.

Now we can verify the converse of Main Claim. For every w ∈ V ∗, if the
word λ(w)# can be derived in our rewriting system, then by Claim 7.9 the
word w can be generated by G. Q. E. D.

Corollary 3. There exist finite uncontrolled relations
`r→ and

r`→ and
a word w such that the language generated by the two-way rewriting system
from w is r.e.-complete.

Theorem 7 also implies that emptiness of intersection is undecidable al-
ready for a very restricted class of context-free languages.

Corollary 4. The intersection non-emptiness problem is undecidable for bi-
nary context-free languages recognized by three-state pushdown automata of
the form of Figure 7, where the two ε-transitions define initial and final con-
tents of the stack and the whole computation takes place in the middle state,
with transitions labelled by one letter pushing to the stack and those labelled
by the other letter popping.

Sketch of a proof. Using the previous corollary, let L be an r.e.-complete lan-
guage generated by a two-way rewriting system defined by an initial word

u0#v0 and uncontrolled relations
`r→ and

r`→ over the alphabet Σ. We are
going to prove that a word u#v is generated by our rewriting system if and
only if the languages recognized by the pushdown automata A and B in Fig-
ure 7 are not disjoint. Then decidability of the intersection non-emptiness
problem would imply that the language L is recursive, and so the problem is
necessarily undecidable.

47

Figure 7: Automata A and B in Corollary 4.

Intuitively, each of the automata A and B encodes in its stack manipula-
tions of one side of the word, while the letters a and b represent applications

of
`r→ and

r`→, respectively. When A reads a, it simulates the impact of
`r→ on

the left part of the word, that is, removes any prefix belonging to L− from the

word contained in the stack; when B reads a, it simulates
`r→ by appending

any element of R+ to its stack word. The existence of a word recognized by
both automata ensures that these manipulations can be synchronized, and

therefore realized by the relations
`r→ and

r`→. Now we verify our claim more
formally.

First, assume that u#v ∈ L and fix any derivation producing u#v from
u0#v0 in our rewriting system. Let ` be the length of this derivation. We
construct a word w over {a, b} of length ` by taking for n = 1, . . . , ` the n-th

letter of w equal to a if the n-th step of the derivation uses a rule from
r`→,

and equal to b if this step uses a rule from
`r→. Then w is recognized by both

automata A and B. To verify this for the automaton A, we determine the
n-th step of A in the middle state as follows: if the n-th letter of w is a and

the rule x
r`→ y was used in the n-th step of the derivation, then y is pushed,

and if the n-th letter of w is b and the rule x
`r→ y was used, then x is popped.

During this computation of A, after reading the n-th letter of w, the stack
contains exactly the word which is obtained to the left from # after the n-th
step of the derivation. In particular, once the whole word w has been read,
the stack contains precisely u, which is then popped by the transition to the
final state. For the automaton B, the arguments are analogous; the stack of
B always contains the reverse of the word to the right from #. This shows
that the languages recognized by A and B are not disjoint.

Conversely, let w ∈ {a, b}∗ be a word recognized by both A and B, and
let us choose an arbitrary accepting computation on w in each automaton.
Then u#v can be derived in our rewriting system by performing one step for
each letter of w as follows: If the n-th letter of w is a, then in the n-th step

of the derivation we apply the rule x
r`→ y, where x ∈ R− is the reverse of

the word popped by B and y ∈ L+ is the word pushed by A when reading
this letter of w in the accepting computation. Similarly, if the n-th letter is

b, then we apply x
`r→ y, where x ∈ L− is the word popped by A and y ∈ R+

is the reverse of the word pushed by B.

48

7 Conclusion

Let us summarize the results of this paper. Four general cases of the com-
munication of two stacks (namely, R-, S-, RS- and 2W-rewriting) were con-
sidered in Sections 3–6. In each case, the power of the resulting rewriting

systems was determined for different families of relations for
`r→,

r`→,
``→ and

rr→, as well as for different language families for the initial set I. It turned
out that for each of the first three modes of rewriting, there is a dichotomy
of expressive power according to one particular decisive factor.

• For R-rewriting, this is the initial set. If I is regular, then only reg-

ular sets can be generated even if powerful relations are used for
`r→

and
rr→. On the other hand, if I is allowed to be context-free, then

computational universality is attained already for very weak rewriting
relations.

• The power of S-rewriting is determined by the relation
`r→. If it is

uncontrolled, then such rewriting systems can be simulated by a special

class of pushdown automata: the one-turn counter automata. If
`r→ is

controlled (at least able to copy symbols from the left stack to the
right stack), then these systems can simulate context-free grammars
even using uncontrolled

rr→. In any case, S-rewriting systems cannot
generate anything non-context-free.

• The same relation
`r→ is decisive for the power of RS-rewriting. For an

uncontrolled
`r→, the languages generated by such a rewriting can still

be recognized by one-turn counter automata. However, as soon as
`r→ is

able to copy symbols verbatim, the rewriting becomes computationally

universal even if both
``→ and

rr→ are uncontrolled.

Finally, two-way rewriting was found to be computationally universal

even in its simplest possible case, when both
`r→ and

r`→ are finite uncontrolled
relations. Hence, using any more general types of relations cannot essentially
increase their expressive power.

The utmost succinct summary of our results is given in Table 1.

Acknowledgements

Research supported by the Academy of Finland under grants 118540, 206039
and 208414.

49

Regular I: regularity.
Context-free I: universality.

Uncontrolled
`r→: one-turn counters.

Controlled
`r→: universality.

Uncontrolled
`r→: one-turn counters.

Controlled
`r→: context-freeness.

Universality.

Table 1: Legend to our results.

References

[1] B. S. Baker, R. V. Book, “Reversal-bounded multipushdown machines”,
Journal of Computer and System Sciences, 8 (1974), 315–332.

[2] M. Benois, “Parties rationnelles du groupe libre”, C. R. Acad. Sci. Paris
Series A, 269 (1969) 1188–1190.

[3] J. R. Büchi, “Regular canonical systems”, Arch. Math. Logic Grundla-
genforsch, 6 (1964), 91–111.

[4] J. H. Conway, Regular Algebra and Finite Machines, Chapman and Hall,
1971.

[5] D. Hofbauer, J. Waldmann, “Deleting string rewriting systems preserve
regularity”, Theoretical Computer Science, 327:3 (2004), 301–317.

[6] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Lan-
guages and Computation, Addison-Wesley, 1979.

[7] J. Karhumäki, M. Kunc, A. Okhotin, “Computing by commuting”, The-
oretical Computer Science, 356:1–2 (2006), 200–211.

[8] M. I. Kratko, “On a certain class of Post calculi”, Soviet Mathematics
Doklady, 6 (1965), 1544–1545.

[9] M. Kunc, “The power of commuting with finite sets of words”, Theory
of Computing Systems, 40:4 (2007), 521–551.

[10] A. N. Maslov, “Cyclic shift operation for languages”, Problems of Infor-
mation Transmission, 9:4 (1973), 333–338.

50

http://dx.doi.org/10.1016/j.tcs.2004.04.009�
http://dx.doi.org/10.1016/j.tcs.2004.04.009�
http://dx.doi.org/10.1016/j.tcs.2006.01.051�
http://dx.doi.org/10.1007/s00224-006-1321-z�

[11] T. Oshiba, “Closure property of the family of context-free languages
under the cyclic shift operation”, Transactions of IECE, 55D:4 (1972),
119–122.

[12] J.-E. Pin, J. Sakarovitch, “Une application de la représentation ma-
tricielle des transductions”, Theoretical Computer Science, 35 (1985),
271–293.

[13] E. L. Post, “Formal reductions of the general combinatorial decision
problem”, American Journal of Mathematics, 65:2 (1943), 197–215.

[14] J. Sakarovitch, Elements de théorie des automates, Vuibert, 2003.

[15] A. Salomaa, Formal Languages, Academic Press, 1973.

51

http://dx.doi.org/10.1016/0304-3975(85)90019-2�
http://dx.doi.org/10.1016/0304-3975(85)90019-2�

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematical Sciences

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 952–12–1687–5
ISSN 1239-1891

