
Tomi Kärki

Automatic Sequences
and their Shuffles

TUCS Technical Report
No 745, February 2006

Automatic Sequences
and their Shuffles

Tomi Kärki
Department of Mathematics
University of Turku
FIN-20014 Turku, Finland
topeka@utu.fi

TUCS Technical Report

No 745, February 2006

Abstract

Infinite sequences are basic objects in modern discrete mathematics and theoreti-
cal computer science. Especially, sequences generated by some simple model of
computation, for example by morphisms or automata, are widely studied. This
work focuses on automatic sequences. Such a sequence can be generated by a
finite deterministic automaton with output. From another viewpoint, automatic
sequences are fixed points of uniform morphisms under a coding.

In this work we present four equivalent definitions of automatic sequences us-
ing finite automata with output, kernels, fibers and uniform morphisms. Basic
closure properties of this class of sequences are considered. We also mention how
automatic sequences are related to transcendental number theory via the subword
complexity of a sequence. In addition we give a detailed proof of the famous
Cobham’s theorem. It states that if a set is both k- and l-automatic, for two multi-
plicatively independent integers k and l, then it is ultimately periodic. Particularly,
sequences are consider from an algorithmic point of view in context with so called
regular shuffles. We present algorithms, which enable us to easily calculate gen-
erating morphisms and codings for sequences obtained by shuffling fixed points
of uniform morphisms.

Keywords: automatic sequences, finite automata with output, Cobham’s theorem,
regular shuffles, perfect shuffles

TUCS Laboratory
Discrete Mathematics for Information Technology

Contents

Preface 1

1 Automata and regular languages 3
1.1 Definitions . 3
1.2 Closure properties and pumping lemma 6
1.3 Finite automata with output . 9
1.4 Minimization . 12

2 Automatic sequences 19
2.1 Definition and examples . 19
2.2 Fibers . 22
2.3 Kernels . 23
2.4 Uniform morphisms . 25
2.5 Closure properties . 27
2.6 Subword complexity . 31

3 Cobham’s theorem 35
3.1 Multiplicative independence . 35
3.2 Automatic sets . 37
3.3 Right dense and syndetic sets . 38
3.4 Equivalence relations . 42
3.5 Proof of Cobham’s theorem . 43

4 Shuffles of automatic sequences 49
4.1 Definitions . 49
4.2 Perfect shuffles . 50

4.2.1 Perfect k-shuffle of k-automatic sequences 50
4.2.2 Perfect m-shuffle of k-automatic sequences 54

4.3 Regular shuffles . 58
4.4 Applying algorithms to Schröder numbers 64
4.5 On complexities of the algorithms 68
4.6 Final Remarks . 70

References 72

Index 75

Preface

Numbers and sequences of numbers conceal numerous mysteries which have
intrigued people from ancient times. The golden ratio 1+

√
5

2
= 1, 618033 . . .,

π = 3, 14159265 . . ., the sequence of primes 2, 3, 5, 7, 11, 13, 17, 19, . . . and the
Thue-Morse sequence 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, . . . are examples of mathematical
objects which appear in many surprising contexts from nature to art and science.
Well known are also the puzzles where a logical continuation of a given sequence
should be found. For example, how does this sequence 2, 12, 1112, 3112, 132112,
311322, . . . continue? Consider the number of occurrences of different digits
of the previous term or consult Sloane’s web page http://www.research.
att.com/∼njas/ sequences/index.html, which contains over 100000
sequences. They are not just for fun. Sequences are widely studied in the area of
modern mathematics and theoretical computer science. There is even a scientific
web journal, Journal of Integer Sequences, and a periodic international confer-
ence, Sequences and Their Applications, devoted to this topic.

One of the main characteristics of sequences studied in mathematics is their
randomness. Some sequences are highly ordered, even periodic, while others have
no simple description. This concept of order or, from the opposite point of view,
the concept of complexity of a sequence has connections to transcendental number
theory. For example, all decimal expansions of irrational algebraic numbers are
conjectured to be normal, i.e. the decimal expansion contains every block of digits
of length n with a frequency asymptotic to 1/10n. This conjecture is based on the
fact that algebraic irrational numbers are badly approximable by rational numbers.
Thus number theory gives good motivation for the study of sequences.

This work focuses on automatic sequences. They form a class of sequences
between simple order and complex disorder. The presentation is mainly based on
the first integrated treatment of these sequences, the recently published book [4]
by J.-P. Allouche and J. Shallit. In this context, we are especially interested in
constituting new automatic sequences by shuffling given automatic sequences in
a regular way. Algorithmic aspects of these shuffles are emphasized.

The text is organized as follows. In Section 1 we introduce our notation and
recall some basic results on automata and formal language theory. A good and
detailed reference for these results is, for example, the book of S. Eilenberg [10].
In Section 2 we first define automatic sequences using finite automata with out-
put and then we give three other characterizations in terms of fibers, kernels and
uniform morphisms. Basic closure properties are also considered in this section.
Section 3 is devoted to a famous result concerning automatic sequences, known
as Cobham’s Theorem. It characterizes sequences which are automatic in two
multiplicatively independent bases k and l. We give a detailed proof of this re-
sult. Finally, Section 4 deals with shuffles. Perfect shuffles and regular shuffles
are treated in their own subsections. Our main goal is to introduce simple algo-
rithms for calculation of generating morphisms and codings of these shuffles. The
algorithms are based on a connection between automata and morphisms. Com-

1

plexities of the algorithms are also briefly studied. In the end we consider some
generalizations.

Acknowledgements. I am grateful to my supervisors, professor Juhani
Karhumäki and professor Tero Harju, for all the support and advise during the
course of this work. I would also like to thank doctor Ari Renvall for useful dis-
cussions and comments. Special thanks are due to professor Jean Berstel, doctor
Julien Cassaigne and doctor Gwénaël Richomme for comments and suggestions
during my visit in France. I also thank professor M. Rigo and docent J. Honkala
for many valuable comments that made the exposition more readable.

2

1 Automata and regular languages

In this section we introduce the notation and recall some basic results on automata
theory. We begin by considering finite automata, regular languages and their con-
nection to rational languages. The second subsection is devoted to different clo-
sure properties of regular languages. In order to define automatic sequences we
introduce finite automata with output in the third subsection. Finally, minimiza-
tion of an automaton is considered.

1.1 Definitions

We use the following notation: N = {0, 1, 2, . . .}. The set of all functions from a
set A to a set B is denoted by BA = {f | f : A→ B}.

We start with some basic definitions from language theory. An alphabet Σ
is a nonempty finite set of symbols, called letters, and a word over Σ is a (fi-
nite or infinite) sequence of symbols from Σ. The empty word is denoted by
ε. Denote by Σ∗ and Σ+ the sets of all finite words and finite nonempty words
over Σ, respectively. A catenation of finite words is an operation defined by
a1 · · ·an · b1 · · · bm = a1 · · ·anb1 · · · bm for ai, bi ∈ Σ. The reversal of a word
w = a0a1 · · ·an−1an is wR = anan−1 · · ·a1a0. The length of a word w, denoted
by |w|, is the total number of (occurrences of) letters in w. The number of let-
ters a in w is denoted by |w|a. A word w is a factor of a word u (resp. a left
factor or a prefix, a right factor or a suffix), if there exist words x and y such that
u = xwy (resp. u = wy, u = xw). Denote the set of all factors of w of length
n by Ln(w). By w(n) we mean the (n + 1)th letter of the word w ∈ Σ∗, where
n = 0, 1, . . . , |w| − 1. Sometimes we use the notation wn instead of w(n). Finite
words are usually denoted by u, v or w and infinite words are denoted by bold
letters.

For an infinite sequence u0u1u2 · · · we use the notation u = (un)n≥0, where
un = u(n) is the (n+ 1)th symbol of u. Then u can be regarded as a mapping
from N to Σ. A sequence is called ultimately periodic if it is of the form xyω =
xyyy · · · for some x ∈ Σ∗ and for some y ∈ Σ+. A special sequence related to a
subset S of N is the characteristic sequence (χS(n))n≥0 of S. It is defined by the
characteristic function

χS(n) =

{

1 if n ∈ S,
0 otherwise.

A language is a subset of Σ∗. For languages L,K ⊆ Σ∗ and for a word u ∈ Σ∗

we define

L \K = {w | w ∈ L,w 6∈ K},

LK = {uv | u ∈ L, v ∈ K},

LR = {wR | w ∈ L},

3

L∗ =
⋃

i≥0

Li = {u1u2 · · ·un | n ≥ 0, ui ∈ L},

L+ =
⋃

i≥1

Li = {u1u2 · · ·un | n ≥ 1, ui ∈ L},

u−1K = {v | uv ∈ K},

Ku−1 = {v | vu ∈ K},

L−1K =
⋃

u∈L

u−1K = {v | ∃ u ∈ L : uv ∈ K}.

A morphism is a mapping ϕ : Σ∗ → ∆∗ such that

ϕ(vw) = ϕ(v)ϕ(w)

for any two words v, w ∈ Σ∗. It is determined by the images of the letters a ∈ Σ.
If ϕ(a) 6= ε for all a ∈ Σ, then ϕ is nonerasing. A morphismϕ is called k-uniform
or of constant length k, if |ϕ(a)| = k for every a ∈ Σ. A 1-uniform morphism is
also called a coding.

One of the most basic models of computation (by finite memory device) is a
deterministic finite automaton, DFA. Formally, it is a quintuple

M = (Q, Σ, δ, q0, F),

where Q is a finite set of states,
Σ is the finite input alphabet,
δ : Q× Σ → Q is the transition function,
q0 ∈ Q is the initial state and
F ⊆ Q is the set of accepting states.

The domain of δ is extended as follows: Define δ(q, ε) = q for all q ∈ Q and
δ(q, xa) = δ(δ(q, x), a) for all q ∈ Q, x ∈ Σ∗, and a ∈ Σ. Then L(M), the
language accepted by M , is defined to be

L(M) = {w ∈ Σ∗ | δ(q0, w) ∈ F}.

If the input alphabet is Σk = {0, 1, . . . , k − 1}, then the automaton is called a
k-DFA. The languages accepted by DFAs are called recognizable or regular lan-
guages. In Figure 1 we illustrate a deterministic finite automaton using a labeled
transition graph. An edge p

a
−→ q corresponds to a transition δ(p, a) = q. The

initial state is denoted by a small incoming arrow and the accepting states are
marked with double circles. The language accepted by the DFA is easily seen to
consist of the binary words with suffix ab.

Sometimes it is convenient to allow zero or more than one distinct transitions
on a state-input pair. It means that transition functions can be considered as func-
tions from Q × Σ into the set of all subsets of Q. Equivalently, we may replace
functions with relations. In other words, we define a nondeterministic finite au-
tomaton, NFA, by a quintable M = (Q, Σ, E, Q0, F), where E ⊆ Q×Σ×Q is

4

q0 q1 q2

b

a

a

b

b

a

Figure 1: DFA accepting words with suffix ab

a transition relation and Q0 ⊆ Q is a set of initial states. The language accepted
by an NFA M is

L(M) = {w = a1 · · ·an ∈ Σ∗ | ∃ q0, . . . , qn ∈ Q : q0 ∈ Q0, qn ∈ F,

(qi−1, ai, qi) ∈ E for i = 1, . . . , n}.

In a transition graph of a nondeterministic automaton there exists an edge p
a

−→ q
if (p, a, q) belongs to E. An example of such a graph is given in Figure 2.

q0 q1 q2 · · · qn

a,b

a a,b a,b a,b

Figure 2: Transition graph of an NFA

A connection between NFAs and DFAs can be formulated as follows.

Theorem 1. If L is accepted by an NFA with n states, then L is accepted by a DFA
with at most 2n states.

The proof is based on the so called subset construction. Suppose that L is ac-
cepted by an NFA A = (Q, Σ, E, Q0, F). Then L is accepted by a DFA B =
(2Q, Σ, δ, q0, G), where

δ(S, a) = {q ∈ Q | ∃p ∈ S : (p, a, q) ∈ E} for S ∈ 2Q and a ∈ Σ,

q0 = {Q0},

G = {H ∈ 2Q |H ∩ F 6= ∅}.

5

It can be shown that the exponential growth in the number of states when trans-
ferring an NFA to a DFA cannot be avoided in general. For example, consider
the deterministic automata corresponding to the NFAs of Figure 2 accepting the
languages Ln = {wav | |v| = n− 1} for n ≥ 1, or see [21].

Next we define rational expressions over an alphabet Σ as follows:

(i) ∅ and a are rational expressions for each a ∈ Σ.
(ii-iv) If α and β are rational expressions, so are (α+ β),

(αβ) and (α)∗.
(v) These are all rational expressions.

A language L = L(u) specified by a rational expression u is defined naturally and
it is called rational. This means that

(i) the empty set ∅ and the singleton sets {a} are rational languages,
(ii) L(α + β) = L(α) ∪ L(β),

(iii) L(αβ) = L(α)L(β) = {rs | r ∈ L(α), s ∈ L(β)},
(iv) L(α∗) = L(α)∗ = {r1 · · · rn |n ≥ 0, ri ∈ L(α)}.

The celebrated result by Kleene connects rational and regular languages.

Theorem 2. (Kleene) A language L ⊆ Σ∗ is regular if and only if it is rational.

A proof of the theorem can be found, for example, in the book of Eilenberg [10].

1.2 Closure properties and pumping lemma

Next we summarize some basic properties of regular languages. The class of
regular languages is closed under Boolean operations.

Theorem 3. Let L, L1, L2 ⊆ Σ∗ be regular languages. Then also Σ∗\L, L1 ∩ L2

and L1 ∪ L2 are regular.

The class is also closed under rational operations.

Theorem 4. Let L, L1, L2 ⊆ Σ∗ be regular languages. Then also L1L2 and L∗

are regular.

With respect to morphisms we have:

Theorem 5. Let L ⊆ Σ∗ and M ⊆ ∆∗ be regular languages and ϕ : Σ∗ → ∆∗ be
a morphism. Then ϕ(L) and ϕ−1(M) = {w ∈ Σ∗ | ϕ(x) ∈M} are regular.

Also reversing is considered.

Theorem 6. If L is a regular language, then so is LR.

6

The next three closure properties are related to so called k-automatic sets of
natural numbers; see Section 3.2. We consider representations of nonnegative
integers in an integer base k ≥ 2. For any nonnegative integer n there exists a
unique representation (n)k = w0w1 · · ·wr such that

n =
r
∑

i=0

wik
r−i, (1)

where wi ∈ Σk = {0, 1, . . . , k − 1} for i = 0, 1, . . . , r and w0 6= 0. Note
that (0)k = ε. This normalized representation (n)k is a word in the language
Ck = {ε} ∪ (Σk \ { 0}) Σ∗

k, i.e. there are no zeros in the beginning of the word.
We may also define an inverse operation as follows. For any word in Σ∗

k we define

[w0w1 · · ·wr]k =
r
∑

i=0

wik
r−i. (2)

Note that leading zeros are allowed in (2). Clearly we have [(n)k]k = n. For a set
S ⊆ N, we define (S)k = {(s)k | s ∈ S}, and [L]k = {[w]k | w ∈ L} for any
language L ⊆ Σ∗

k. Our next theorem deals with addition. There are some simpler
proofs of this theorem, but the construction of the automaton introduced in the
following proof will be useful in the sequel. Similar constructions can be found
in the literature; see e.g. [29, Lemma 1].

Theorem 7. Let S ⊆ N. If {(n)k | n ∈ S} is a regular language, then so is
{(n+ 1)k | n ∈ S}.

Proof. Suppose that M = (Q, Σk, δ, q0, F) is an automaton accepting the lan-
guage L = {(n)k | n ∈ S}. Our aim is to construct an automaton M ′ accepting
L′ = {(n + 1)k | n ∈ S}. With input (n + 1)k this automaton simulates the be-
havior of the automaton M with input (n)k. Let us first consider these inputs. We
divide the representations of the numbers n+ 1 into two cases. If (n+ 1)k = 10p,
then (n)k = (k − 1)p and these two representations contain a different number
of letters. Suppose now that (n + 1)k = w0w1 · · ·wr is not of that form. We
define an index s = max{i |wi 6= 0, 0 ≤ i ≤ r}. Then the representation of n is
w′

0w
′
1 · · ·w

′
r, where w′

i = wi for i = 0, 1, . . . , s− 1, w′
s = ws − 1 and digits after

w′
s are all k − 1. It is essential for the correct behavior of the automaton M ′ to

know the first digit starting from left in which the representations of integers n+1
and n differ. This is the digit ws in our notation. But when reading the digits from
left to right one cannot know "on-line" which digit is the last nonzero digit. One
solution to this problem is to construct an automaton which guesses the changed
digit ws while reading the input and which is capable of making a new guess if
the first guess proves to be false.

Our construction of M ′ = (Q′, Σk, δ
′, q′0, F

′) is the following. We define
Q′ = (Q × Q) ∪ {q′0, g}, where q′0 is an initial state and g is a garbage state.
Consider first the state pairs of the cartesian product Q × Q. The first coordi-
nate corresponds to the simulation of M before the changed digit. The second

7

coordinate corresponds to the situation, where the change has already happened.
Thus the accepting states of M ′ are the states where the second coordinate is an
accepting state of M . We have F ′ = Q × F . The simulation is implemented in
the transition function. For (x, y) ∈ Q×Q and a ∈ Σk, we have

δ′((x, y), a) =

{

(δ(x, a), δ(y, k− 1)) if a = 0,
(δ(x, a), δ(x, a− 1)) otherwise.

Note that the transition in the case a > 0 depends only on the first coordinate.
The second coordinate can be a right choice only if the rest of the input consists
of zeros. The initial state must also deal with the case where the lengths of (n)k

and (n− 1)k are different. Thus, for a ∈ Σk, we define

δ′(q′0, a) =

g if a = 0,
(δ(q0, 1), q0) if a = 1,
(δ(q0, a), δ(q0, a− 1)) otherwise.

For the garbage state, define δ′(g, a) = g for every a ∈ Σk.
Next we show that this construction is correct. Consider first the representation

of 0, which is ε. Since δ(q′0, ε) = q′0 6∈ F ′, the automaton rejects the input,
which is the correct action. Also representations with leading zeros are rejected
with the help of the garbage state. With the input (n)k = 10p our automaton
ends up to the state (δ(q0, 10p), δ(q0, (k − 1)p)). This is an accepting state if
and only if δ(q0, (k − 1)p)) ∈ F , i.e. n ∈ S. Similar reasoning also applies to
the input a0p, where 1 < a ≤ k − 1. In this case the final state is (δ(q0, a0

p),
δ(q0, (a − 1)(k − 1)p)). Finally, consider the case where |(m)k| = |(m − 1)k|,
(n+ 1)k = w0 · · ·wr and ws, s > 0, is defined as above. Let δ(q0, w0 · · ·ws−1) =
a, δ(a, ws − 1) = b and δ(b, (k− 1)r−s) = c. If r− s = 0, then (k− 1)r−s means
the empty word. We have

δ′(q′0, w0 · · ·wr) = δ′((δ(q0, w0 · · ·ws−1), y), ws0
r−s) (for some y ∈ Q)

= δ′((a, y), ws0
r−s)

= δ′((δ(a, ws), δ(a, ws − 1)), 0r−s)

= δ′((δ(a, ws), b), 0
r−s)

= (x, δ(b, (k − 1)r−s)) (for some x ∈ Q)

= (x, c).

This is an accepting state if and only if δ(q0, (n)k) = c ∈ F . Thus (n + 1)k is
accepted if and only if n ∈ S.

Corollary 1. For all integers c ≥ 0, if {(n)k | n ∈ S} is a regular language, then
so is {(n+ c)k | n ∈ S}.

Theorem 8. Let S ⊆ N. If {(n)k | n ∈ S} is a regular language, then so is
{(bn)k | n ∈ S} for any integer b ≥ 0.

8

Proof. Suppose that M = (Q, Σk, δ, q0, F) is an automaton accepting the lan-
guage L = {(n)k | n ∈ S}. Consider a k-DFA M ′ = (Q′, Σk, δ

′, (q0, 0), F ′),
where

Q′ = Q× {0, 1, . . . , b− 1},

δ′((q, j), l) = (δ(q, b(kj + l)/bc), kj + l (mod b)),

F ′ = {(q, 0) ∈ Q′ | q ∈ F}.

This construction uses the school algorithm of division by b in the base k. Con-
sider two states (q, j) and (q′, j ′) in Q′ such that δ′((q, j), l) = (q′, j ′) for a letter
l ∈ Σk. The second component j of the state (q, j) ∈ Q′ corresponds to the
current remainder modulo b. In school algorithm we obtain the next digit of the
quotient by reading the new digit l of the dividend and calculating b(kj + l)/bc.
The new remainder j ′ is kj + l mod b, which is by definition the second com-
ponent of (q′, j ′). The change of the first component corresponds to the transition
in M from q to the state q′, when the digit b(kj + l)/mc is read. Let (N)k be
the input of M ′. Thus in the first components of Q′ we simulate the original au-
tomaton M with input (bN/bc)k. If N = bn + i, then the first component of the
final state is the final state of M with input (n)k, i.e. the state δ(q0, (n)k), and the
second component is i. Now it is clear that δ ′((q0, 0), (N)k) ∈ F ′ if and only if
δ(q0, (n)k) ∈ F and i = 0. Thus the accepted language is {(bn)k | n ∈ S}.

As a last general property of regular languages we recall the pumping lemma,
which can be used, for example, to prove that some languages are not regular;
cf. [4].

Lemma 1. Let L ⊆ Σ∗ be a regular language. Then there exists a constant n ≥ 1
such that for all strings z ∈ L with |z| ≥ n, there exists a decomposition z = uvw,
where u, v, w ∈ Σ∗ and |uv| ≤ n and |v| ≥ 1, such that uviw ∈ L for all i ≥ 0.
Furthermore, the constant n can be taken to be the minimal number of states in
an NFA accepting L.

1.3 Finite automata with output

We are now going to generalize DFAs. Instead of thinking that a DFA either ac-
cepts or rejects an input string, we could consider it as a function
f : Σ∗ → {0, 1}, where 1 represents acceptance and 0 rejection. Next we de-
fine a more general function f ′ : Σ∗ → ∆ using automata by attaching an output
symbol in ∆ to each state. Thus, if the automaton enters a state q after reading the
input, the output is τ(q), where τ : Q → ∆ is the so called output function. Us-
ing previous notation a deterministic automaton with output, DFAO, is formally
defined to be a 6-tuple

M = (Q, Σ, δ, q0, ∆, τ).

9

If the input alphabet is Σk = {0, 1, . . . , k − 1}, then the automaton is called a
k-DFAO. The automaton M defines a function fM : Σ∗ → ∆ by the rule

fM (w) = τ(δ(q0, w)).

A function, which can be computed this way, is called a finite-state function. Tran-
sition graphs can be used to represent DFAOs in a similar way as they were used
for DFAs; see Figure 3.

Example 1. Consider a 2-DFAO which with input (n)2 computes the residue mod-
ulo 3 of the nonnegative integers n. The states of the automaton correspond to the
residue classes and a state q is labeled by q/τ(q), where τ(q) is the residue class
of the state. Transitions are defined by δ(qi, a) = qj, where j = 2i + a (mod 3).
For example, when w = 1010 = (10)2, then the last state is q1 and the output is 1.

q0/0 q1/1 q2/2

0
1

1
0

01

Figure 3: 2-DFAO computing the residue mod 3

Finite automata with output are closely related to DFAs and to regular lan-
guages.

Theorem 9. Let M = (Q, Σ, δ, q0, ∆, τ) be a DFAO. Then for all d ∈ ∆, the
set Id(M) = {w ∈ Σ∗ | τ(δ(q0, w)) = d} is a regular language.

Proof. Define a DFA Md = (Q, Σ, δ, q0, Fd) with Fd = {q ∈ Q | τ(q) = d}.
Clearly, the corresponding regular language L(Md) is Id(M).

The sets Id(M) are called fibers. Next we prove how DFAOs can be constructed
by "gluing together" DFAs for different regular languages.

Theorem 10. Let Σ be an alphabet and let L1, L2, . . . , Lr be regular languages
that partition Σ∗. Let ∆ = {a1, a2, . . . , ar} be a new alphabet. Then there exists
a DFAO M = (Q, Σ, δ, q0, ∆, τ) such that Li = Iai

(M).

10

Proof. Since each Li is regular, there exists a DFA Mi = (Qi, Σ, δi, q0i, Fi)
accepting Li. Define a DFAO M = (Q, Σ, δ, q0, ∆, τ) as follows:

Q = Q1 ×Q2 × · · · ×Qr,

q0 = (q01, q02, . . . , q0r),

δ((q1, q2, . . . , qr), a) = (δ1(q1, a), δ2(q2, a), . . . , δr(qr, a)) and

τ((q1, q2, . . . , qr)) =

{

aj if qj ∈ Fj for exactly one j,
a1 otherwise.

Suppose first thatw belongs toLj . Then the jth coordinate in the state δ(q0, w)
of M is δj(q0j , w) ∈ Fj. Since the sets Li partition Σ∗, other coordinates of
δ(q0, w) are not final. Thus τ(δ(q0, w)) = aj. Secondly, if τ(δ(q0, w)) = aj , then,
by definition of τ , we have δj(q0j , w) ∈ Fj. Thus w ∈ Lj .

Next we consider finite-state functions and reversed inputs.

Theorem 11. Let f : Σ∗ → ∆ be a finite-state function computable by a DFAO
with n states. Then fR defined by fR(w) = f(wR) is a finite-state function com-
putable by a DFAO with at most |∆|n states.

Proof. Suppose that f(w) = τ(δ(q0, w)) for a DFAO M = (Q, Σ, δ, q0, ∆, τ),
where |Q| = n. We construct a DFAO

M ′ = (Q′, Σ, δ′, q′0, ∆, τ ′),

such that τ ′(δ′(q′0, w)) = fR(w), i.e. τ ′(δ′(q′0, w)) = f(wR) = τ(δ(q0, w
R)).

There is a finite number, more precisely |∆|n, functions from Q to ∆. Especially,
for each w ∈ Σ∗, let hw : Q→ ∆ be defined by

hw(q) = τ(δ(q, wR)). (∗)

Our goal is to construct an automaton with the set of states
Q′ = ∆Q = {f | f : Q→ ∆} such that δ′(q′0, w) = hw for every w ∈ Σ∗. Then
defining the output function by the rule

τ ′(g) = g(q0)

for all g ∈ Q′, we have τ ′(δ′(q′0, w)) = τ ′(hw) = hw(q0) = τ(δ(q0, w
R)).

The initial state of the automaton M ′ must be q′0 = δ′(q′0, ε) = hε = τ , since
hε(q) = τ(δ(q, ε)) = τ(q) for all q ∈ Q. Let us next consider the transition
function δ′. We define

δ′(g, a) = h, where h(q) = g(δ(q, a)).

Now it suffices to prove that δ′(q′0, w) = hw for every word w ∈ Σ∗. We prove
it by induction on |w|. First, if |w| = 0, i.e. w = ε, the case is clear. Sec-
ondly, suppose that the claim holds for |w| = n. We proceed to |w| = n + 1.

11

Let w = xa, where |x| = n and a ∈ Σ. Then δ ′(q′0, xa) = δ′(δ′(q′0, x), a) =
δ′(g, a) = h, where by the induction hypothesis g(q) = hx(q) = τ(δ(q, xR)) for
every q ∈ Q. Then h(q) = g(δ(q, a)) = τ(δ(δ(q, a), xR)) = τ(δ(q, axR)) =
τ(δ(q, wR)). This completes the induction. The claim concerning the number of
states in M ′ follows from the construction.

Note that as a corollary of Theorem 11 we obtain Theorem 6 by considering
the output alphabet ∆ = {0, 1}.

1.4 Minimization

In this subsection we consider minimization of DFAs and, as a generalization,
minimization of deterministic automata with output. We say that a DFA M is
minimal if it has the smallest number of states among all DFAs M ′ with L(M ′) =
L(M). Minimization is closely related to the so called Myhill-Nerode theorem,
which gives another characterization of regular languages. In order to present the
theorem we first need to consider some equivalence relations.

Recall that an equivalence relation ∼ on Σ∗ is a relation, which is reflexive,
symmetric and transitive. This means that for u, v, w ∈ Σ∗

u ∼ u,

u ∼ v =⇒ v ∼ u,

u ∼ v, v ∼ w =⇒ u ∼ w.

An equivalence relation partitions Σ∗ into a number of disjoint equivalence classes.
By [w] we mean the equivalence class containing the word w. The word w is
called a representative of the class. If the number of the equivalence classes is
finite, the relations is said to be of finite index. An equivalence relation is said to
be right-invariant if for any u, v, w ∈ Σ∗ we have

u ∼ v =⇒ uw ∼ vw.

Such a relation is also called a right congruence. A particularly important equiv-
alence relation related to an arbitrary language L ⊆ Σ∗, called Myhill-Nerode
equivalence, is defined by

u ∼L v ⇐⇒ u−1L = v−1L.

It is easily seen to be right-invariant:

u ∼L v =⇒ u−1L = v−1L

=⇒ w−1(u−1L) = w−1(v−1L)

=⇒ (uw)−1L = (vw)−1L

=⇒ uw ∼L vw.

12

Another equivalence relation related to the regular language L(M), via the DFA
M = (Q, Σ, δ, q0, F), is defined by

u ∼M v ⇐⇒ δ(q0, u) = δ(q0, v).

Since δ(q0, uw) = δ(δ(q0, u), w) = δ(δ(q0, v), w) = δ(q0, vw) for equivalent
words u, v and for all w ∈ Σ∗, also ∼M is right invariant. Actually, for a regular
language L = L(M) the relation ∼M is a refinement of ∼L, i.e. the equivalence
classes of ∼L are unions of equivalence classes of ∼M as stated in the following
lemma.

Lemma 2. Let L = L(M) for a DFA M = (Q, Σk, δ, q0, F). Then for all
u, v ∈ Σ∗ :

u ∼M v =⇒ u ∼L v.

Proof. Because L = L(M), we have

u−1L = {w | uw ∈ L}

= {w | δ(q0, uw) ∈ F}

= {w | δ(δ(q0, u), w) ∈ F}.

Clearly, the claim follows from the definitions of the two equivalence relations.

For each language L ⊆ Σ∗ such that ∼L is of finite index, we define a DFA
ML = (QL, Σ, δL, iL, FL) as follows:

QL = {u−1L | u ∈ Σ∗},

iL = ε−1L = L,

FL = {u−1L | u ∈ L} and

δL(u−1L, a) = a−1(u−1L) = (ua)−1L.

This automaton has an important role in the sequel. We are now ready for the
Myhill-Nerode Theorem.

Theorem 12. The following statements are equivalent.

(a) L is a regular language;
(b) There exists a right-invariant equivalence relation ∼ of finite index

such that L is the union of some of its equivalence classes;
(c) The Myhill-Nerode equivalence relation ∼L is of finite index

and L is the union of some of its equivalence classes.

Proof. First, suppose that L is accepted by a DFA M = (Q, Σ, δ, q0, F). Now
the equivalence relation ∼M satisfies the statement (b). It is seen to be right-
invariant and the number of equivalence classes is clearly bounded by the number
|Q| of states. Also, L =

⋃

δ(q0,w)∈F [w].

13

Next, suppose that an equivalence relation ∼ satisfies the conditions (b). In
order to prove that the Myhill-Nerode equivalence relations is of finite index it
suffices to show that ∼ is a refinement of ∼L. Let u ∼ v and x ∈ u−1L. Then,
by definition, ux ∈ L. Since L is a union of some equivalence classes of ∼, we
must have [ux] ⊆ L. Now vx belongs to [ux] ⊆ L by the right-invariance of the
equivalence relation. Thus x ∈ v−1L and we have proved that u−1L ⊆ v−1L.
By symmetry, u−1L = v−1L, which means that u ∼L v. Also, L is a union of
some of the equivalence classes of ∼L. Namely, if u ∈ L and u ∼L v, then
ε ∈ u−1L = v−1L, which means that v ∈ L. Thus [u] ⊆ L.

Finally, suppose that ∼L is of finite index. We prove that L is a regular lan-
guage. Consider the automaton ML defined above. This DFA accepts L, since

w ∈ L(ML) ⇐⇒ δL(L,w) ∈ FL

⇐⇒ w−1L ∈ {u−1L | u ∈ L}

⇐⇒ ∃u ∈ L : w−1L = u−1L

⇐⇒ w ∈ L.

The last equivalence is based on the fact that u ∈ L if and only if ε ∈ u−1L.

The connection between the previous theorem and minimization is established
in the following theorem.

Theorem 13. ML is the unique (up to renaming of states) DFA accepting L with
minimal number of states.

Proof. Let L be accepted by a DFA M = (Q, Σ, δ, q0, F). We may suppose that
the automaton M is connected, i.e. each state is reachable from the initial state by
some word w. Removing from M those states which are not reachable from the
initial state does not affect to the language accepted by the DFA.

Define a mapping ν : Q→ QL by setting:

ν(q) = u−1L, where q = δ(q0, u).

We prove that the mapping is well defined. Let δ(q0, u) = q = δ(q0, v) for
u, v ∈ Σ∗. It follows from Lemma 2 that u−1L = v−1L. The definition of ν is
therefore independent of the choice of the word u.

Clearly, ν is surjective. This means that any DFA accepting L must have at
least |QL| states. Thus ML is minimal.

Assume now that also M is minimal. Then it has the same number of states as
ML and therefore ν is one-to-one. The initial state of M is mapped to the initial
state of ML:

ν(q0) = ν(δ(q0, ε)) = ε−1L = L = iL. (3)

Moreover, q ∈ F if and only if ν(q) ∈ FL. Namely,

q ∈ F ⇐⇒ ∃u ∈ L : δ(q0, u) = q

⇐⇒ ∃u ∈ L : ν(q) = u−1L (4)

⇐⇒ ν(q) ∈ FL.

14

The first implication is based on the fact that the minimal automaton M is con-
nected. Now the uniqueness of the minimal automaton follows from the following
diagram expressing the renaming of states.

q
a

−−−→ q′

ν

y

y

ν

u−1L
a

−−−→ (ua)−1L

Let δ(q0, u) = q and δ(q, a) = q′. Then

δL(ν(q), a) = δL(u−1L, a) = (ua)−1L = ν(q′) = ν(δ(q, a)) (5)

proving the diagram.

There are many practical algorithms for the minimization of deterministic au-
tomata. For example, Moore’s and Hopcroft’s algorithms are based on consecutive
refinements of partitions of the set of states by means of Myhill-Nerode equiva-
lence relation [17, 14]. Brzozowski’s algorithm minimizes an automaton by per-
forming reversal and determinization twice [6]. Intuitively basic algorithm due to
Moore computes the minimal automaton in time O(n3k), where n is the number
of states of the given automaton and k is the size of the input alphabet. The best
known complexity O(n log n) is obtained by Hopcroft’s algorithm. Brzozowski’s
algorithm has exponential complexity, since determinization may produce expo-
nential number of states, but in practice the algorithm seems to have exceptionally
good performance; see [32]. The implementation of Hopcroft’s and Brzozowski’s
algorithms can be found, for example, in Grail+, which is a symbolic computation
environment; see http://www.csd.uwo.ca/research/grail/.

Finally, we show how minimization can be applied to finite automata with out-
put. A DFAO with a finite-state function f is called minimal if it has the smallest
possible number of states among all DFAOs generating this finite-state function.
Suppose that a finite-state function f is defined by an automaton
Mf = (Q, Σ, δ, q0, ∆, τ). Our aim is to modify the DFAO Mf to a DFA M ,
minimize M to ML and modify this minimal DFA to a minimal DFAO M f :

DFAOMf 7−→ DFAM 7−→ DFAML 7−→ DFAOM f

First we show how these automata are constructed. Let |∆| ≥ 2. Otherwise
the function and the automaton are trivial. Assume also that Σ ∩ ∆ = ∅ by
renaming the symbols if needed. Furthermore, let Mf be connected. We now
define a DFA

M = (Q ∪ {f, g}, Σ ∪ ∆, δ′, q0, { f}),

where f is a new special accepting state and g is a new garbage state. The transi-

15

tion function δ′ is defined by

δ′(g, a) = g,

δ′(f, a) = g,

δ′(q, a) =

δ(q, a) if a ∈ Σ,
f if a ∈ ∆ and τ(q) = a,
g if a ∈ ∆ and τ(q) 6= a

for all a ∈ Σ ∪ ∆ and for q ∈ Q. Note that also M is connected. Let L = L(M).
Clearly, the language L consists of words of the form wd, where w ∈ Id(M) and
d ∈ ∆. In other words,

L =
⋃

d∈∆

Id(M){d}.

The minimal automaton accepting the language L is denoted by

ML = (QL, Σ ∪ ∆, δL, iL, FL).

Note that QL = ν(Q ∪ {f, g}). Also FL = {ν(f)} by the equalities in (4). We
convert this DFA ML to a DFAO

M f = (Q, Σ, δ, iL, ∆, τ)

as follows. The set of states Q is ν(Q). For every state q ∈ Q and every letter
a ∈ Σ, we define δ(q, a) = δL(q, a). Finally we define that τ(q) = a, where
a ∈ ∆ is the unique symbol satisfying δL(q, a) = ν(f).

Next we prove that M f is well-defined. This concerns the definitions of func-
tions δ and τ . Since, for every a ∈ Σ and q ∈ Q, δ ′(q, a) belongs to Q, we have,
by (5),

δL(ν(q), a) = ν(δ′(q, a)) ∈ ν(Q).

Thus δ is a mapping from Q×Σ to Q. In addition, we have to show that for every
q ∈ ν(Q) there always exists a unique symbol a ∈ ∆ such that δL(q, a) = ν(f).
Suppose that q = ν(q) for some q ∈ Q and δL(q, a) = δL(q, b) = ν(f), where
a, b ∈ ∆ and a 6= b. Now using (5) we have

δL(ν(q), a) = ν(f) ⇐⇒ ν(δ′(q, a)) = ν(f) ⇐⇒ δ′(q, a)) = f,

where the last equivalence is based on the fact that ν−1(ν(f)) = {f} following
from (4). Thus δ′(q, a) = f and δ′(q, b) = f . By the structure of M , this is
a contradiction and hence τ is well-defined. We may now state the following
theorem.

Theorem 14. M f is the unique (up to renaming of states) minimal DFAO with
finite-state function f .

16

Proof. First we have to prove that M f is an automaton with finite-state function
f . Suppose that f(w) = a for a word w ∈ Σ∗ and letter a ∈ ∆. This means that
wa belongs to the language L. By the definition of M , δ(q, a) = f for a state
q = δ(q0, w). Using (3) and (5) it follows that δL(iL, w) = ν(q) ∈ ν(Q) and
δL(ν(q), a) = ν(f). Thus τ (δ(iL, w)) = τ (ν(q)) = a.

Let us then consider the number of states in M f . Since ν(q) is the language
consisting of those words w such that δ ′(q, w) ∈ F , we have ν(f) = { ε}, ν(g) =
∅ and, for every q ∈ Q, there exists a letter a ∈ ∆ such that a ∈ ν(q). Thus
Q = ν(Q) = QL \ {ν(f), ν(q)} and |Q| = |QL|− 2. Suppose now that |QL| = n.
If Mf were not minimal, then there would exist an automaton M ′

f with less than
n − 2 states. Using the procedure above we would obtain a DFA M ′ accepting
the language L with less than n states. This contradicts with the minimality of
ML. The uniqueness of M f can be seen similarly as in Theorem 13. Namely, a
state q ∈ Q is mapped to a state ν(q) ∈ Q and a transition δ(q, a), where a ∈ Σ,
corresponds to a transition δ(ν(q), a).

17

2 Automatic sequences

In this section we define automatic sequences, consider a couple of examples and
prove some basic properties of these sequences. In Sections 2.2–2.4 we give three
different characterizations of automatic sequences, which connect them to uni-
form morphisms and regular languages. In the last two subsections we prove
some important closure properties and consider the subword complexity of auto-
matic sequences.

2.1 Definition and examples

Let k ≥ 2 be an integer. Recall that a deterministic automaton with output is a
k-DFAO if the input alphabet is Σk = {0, 1, . . . , k− 1}. Recall also the notations
(n)k and [w]k defined by the equations (1) and (2).

Definition 1. A sequence (an)n≥0 over a finite alphabet ∆ is k-automatic if there
exists a k-DFAO M = (Q, Σk, δ, q0, ∆, τ) such that an = τ(δ(q0, w)) for all
n ≥ 0 and for all w ∈ Σ∗

k with [w]k = n.

The automaton M is said to generate the sequence (an)n≥0. This means that
any digit an can be computed using M . We feed the k-DFAO with the base-k
representation of an integer n starting from the most significant digit and get an as
an output. Note that the automaton functions properly also in the case when there
are extra zeros in the beginning of the representation. In this sense Definition 1 is
robust. The set of automatic sequences could equivalently be defined so that only
normalized representations were considered. Suppose that (an)n≥0 is generated
by a k-DFAO M = (Q, Σk, δ, q0, ∆, τ) such that an = τ(δ(q0, (n)k)) for all
n ≥ 0. The sequence is seen to be automatic by slightly modifying M . We add
a new state q′0 such that δ(q′0, 0) = q′0 and δ(q′0, i) = δ(q0, i) for i 6= 0. The
output is defined by τ(q′0) = τ(q0). Now τ(δ(q′0, 0

i(n)k)) = τ(δ(q0, (n)k)) for all
i ≥ 0. Hereby, we may always assume that δ(q0, 0) = 0. Another relaxation in
the definition of automatic sequences concerns the way of processing input digits.
Namely, the input can be read starting from the least significant digit as well. As
a consequence of Theorem 11 we obtain:

Theorem 15. The sequence (an)n≥0 is k-automatic if and only if there exists a
k-DFAO M = (Q, Σk, δ, q0, ∆, τ) such that an = τ(δ(q0, w

R)) for all n ≥ 0
and all w ∈ Σ∗

k with [w]k = n.

Many sequences of mathematical interest can be shown to be k-automatic. We
give a few famous examples.

Example 2. (The Thue-Morse sequence) This sequence t = (tn)n≥0 counts the
number of 1’s (mod 2) in the base-2 representation of n. The first few terms of the
Thue-Morse sequence are

t = 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 · · ·

19

For example, (5)2 = 101 and |101|1 = 2. Thus |(5)2|1 ≡ 0 (mod 2) and t5 = 0. It
is easy to see that the Thue-Morse sequence is generated by the DFAO in Figure 4.

q0/0 q1/1

0
1

0

1

Figure 4: Automaton generating the Thue-Morse sequence

The state q0 corresponds to an even number of 1’s and q1 to an odd number
of 1’s. If 1 occurs in the input, the parity of the number of 1’s changes and the
transition is from the current state to the other. If the input is 0, then the parity
remains unchanged and the transition is from the state into itself. Note that t is
a special case of sequences (sk(n) (mod m))n≥0, where (n)k = b0b1 · · · br and
sk(n) =

∑r
i=0 bi. Clearly, t = (s2(n) (mod 2)). In general, the sequence (sk(n)

(mod m))n≥0 is k-automatic for k ≥ 2, m ≥ 1. The generating automaton is
Am = (Qm, Σk, δm, q0,Σm, τm), where

Qm = {qi | i = 0, 1, . . . , m− 1},

δ(qi, a) = qj,where j = i + a (mod m),

τ(qi) = i.

The Thue-Morse sequence occurs in many areas of mathematics: combina-
torics on words, differential geometry, number theory and mathematical physics;
see [3]. We mention here as an example the multigrades problem of Prouhet [24]:
Given positive integer t, is it possible to partition the set {0, 1, 2, · · · , 2N −1} into
two disjoint sets A and B such that

∑

a∈A

ai =
∑

b∈B

bi

for all i = 0, 1, . . . , t? By convention, 00 = 1. The Thue-Morse sequence gives
an answer for the case N = t+ 1. Namely, choose

A = {0 ≤ j < 2t+1 | tj = 0},

B = {0 ≤ j < 2t+1 | tj = 1}.

For example, 0i + 3i + 5i + 6i = 1i + 2i + 4i + 7i for i = 0, 1, 2.

20

Example 3. (The Rudin-Shapiro sequence) Another famous 2-automatic se-
quence is the Rudin-Shapiro sequence r = (rn)n≥0, where rn = (−1)e2,11(n) and
e2,11(n) is the number of (possibly overlapping) occurrences of 11 in the canonical
base-2 representation of n. The sequence begins by

r = 1 1 1 -1 1 1 -1 1 1 1 1 -1 · · · .

The 2-DFAO generating the sequence is represented in Figure 5. The states are
labeled by words ab, where a denotes the parity of the number of occurrences of
the pattern 11 seen so far and b is the last digit symbol. The output of a state ab
is (−1)a. The transitions are easily obtained with the help of this interpretation.
This sequence is related, for example, to harmonic analysis; see [31].

00/1 01/1 11/-1 10/-1

0 0

1 1 0

110

Figure 5: Automaton generating the Rudin-Shapiro sequence

Not all automatic sequences with mathematical interest are 2-automatic. As
an example, consider the following 3-automatic sequence.

Example 4. (The Schröder numbers) Let Sn be the nth Schröder number, i.e. the
number of paths in Z×Z from (0, 0) to (n, n) composed of steps {(0, 1), (1, 0), (1, 1)}
and containing no points above the line x = y.
The sequence s = (Sn mod 3)n≥0 is 3-automatic. The automaton generating it is
represented in Figure 7. The few first terms of this sequence are

s = 1 2 0 1 0 1 0 2 0 1 0 0 0 0 0 0 0 1 0 2 0 · · · .

See the solutions of a problem in [33] for detailed analysis of this sequence.

For other examples of automatic sequences see the survey by J.-P. Allouche
[2]. We notice that there exist also sequences, which are not automatic in any
base k ≥ 2. For example, the characteristic sequence of squares and the char-
acteristic sequence of primes are such sequences. For more details about these
nonautomatic sequences; see [5, 20, 27].

21

�

�

x

y
(6, 6)

Figure 6: An example of a Schröder path from (0,0) to (6,6).

q0/1

q1/0

q2/2

q3/1

q4/1

q5/0

0

0,2 0

2

0,1,2

2

1

1 0

2

1

1,2

0,1

Figure 7: Automaton generating the Schröder numbers modulo 3

2.2 Fibers

In this subsection we give the first alternative characterization of automatic se-
quences. It establishes a relation between automatic sequences and regular lan-
guages. Recall that a language is regular if and only if it is rational by Kleene’s
result (Theorem 2). Let a = (an)n≥0 be a sequence over ∆, let k ≥ 2 be an integer
and d ∈ ∆. We consider the sets Ik(a, d) = {(n)k | an = d}, which are called
k-fibers.

22

Theorem 16. Sequence a = (an)n≥0 is k-automatic if and only if each of the
fibers Ik(a, d) is a regular language for all d ∈ ∆.

Proof. Let (an)n≥0 be generated by the k-DFAO M = (Q, Σk, δ, q0, ∆, τ). By
Theorem 9, the language Id(M) = {w ∈ Σ∗

k | τ(δ(q0, w)) = d} is regular. Recall
that Ck = {ε} ∪ (Σk\{0})Σ

∗. Now Ik(a, d) = Id(M) ∩ Ck and it is regular by
Theorem 3.

Conversely, suppose that Ik(a, d) is regular for all d ∈ ∆. Then also I ′k(d) =
0∗Ik(a, d) is regular. Let d, d′ ∈ ∆ and d 6= d′. If w ∈ I ′k(d) ∩ I ′k(d

′), then
d = τ(δ([w]k)) = d′. This is impossible. Thus the sets I ′k(d) are disjoint and they
partition Σ∗. We conclude that (an)n≥0 is k-automatic using Theorem 10.

We give a short example.

Example 5. Consider the fiber I2(t, 1) of the Thue-Morse sequence t. It is the
language consisting of the words in the binary alphabet {0, 1} with an odd number
of ones. It is regular by the previous theorem. Actually, I2(t, 1) = 0∗1(10∗1 +
0∗)∗ = 0∗10∗(10∗1)∗0∗.

Let L ⊆ Σ∗
k be a regular language. We modify it by the representation of a

single number n, more precisely by the language 0∗(n)k. By Theorem 3, also the
languages L∪0∗(n)k and L\0∗(n)k are regular. Thus applying a finite number of
such modifications by languages 0∗(n)k to fibers Ik(a, d) we obtain the following
corollary.

Corollary 2. If a sequence (bn)n≥0 differs only in finitely many digits from a k-
automatic sequence (an)n≥0, then it is k-automatic.

2.3 Kernels

The next characterization is due to Eilenberg [10, Prop. V.3.3]. The proof is
represented in [4, Theorem 6.6.2].

Definition 2. Let u be an infinite sequence. The k-kernel of u is the set of subse-
quences

Kk(u) = {(u(kin+ j))n≥0 | i ≥ 0, 0 ≤ j < ki}.

Theorem 17. Let k ≥ 2. The sequence u is k-automatic if and only if Kk(u) is
finite.

Proof. Suppose that u is k-automatic. By Theorem 15 there exists a k-DFAO
M = (Q, Σk, δ, q0, ∆, τ) such that u(n) = τ(δ(q0, (n)R

k 0t)) for all t ≥ 0. Thus
the output does not depend on the number of zeros in the end of the input. Let

23

q = δ(q0, w
R), where w = 0t(j)k for some nonnegative integers t and j. Denote

|w| = i. For n > 0 we have

δ(q0, (k
i · n+ j)R

k) = δ(q0, ((n)kw)R)

= δ(δ(q0, w
R), (n)R

k)

= δ(q, (n)R
k).

Secondly, suppose that n = 0. Then

δ(q0, (k
i · n+ j)R

k) = δ(q0, (j)
R
k) = δ(q0, (j)

R
k 0t)

= δ(q0, w
R) = q

= δ(q, ε) = δ(q, (0)R
k).

Hence u(ki · n + j) = τ(δ(q0, (k
i · n + j)R

k) = τ(δ(q, (n)R
k) for all n ≥ 0. Since

there are only finitely many choices of q, the k-kernel Kk(u) must be finite.
Conversely, suppose that Kk(u) is finite. Define a relation

w ∼ v ⇐⇒ u(k|w| · n+ [w]k) = u(k|v| · n+ [v]k)

for all n ≥ 0. This relation is clearly an equivalence relation. By the assumption,
it partitions Σ∗ into a finite number of equivalence classes [w]. Define a k-DFAO
as follows:

Q = {[w] | w ∈ Σ∗
k},

δ([w], a) = [aw],

τ([w]) = u([w]k),

q0 = [ε].

We prove that this automaton is well-defined, i.e. independent of the choice of
representatives. Assume that [w] = [v]. We have to show that

(1) δ([w], a) = δ([v], a) for each a ∈ Σk and

(2) τ([w]) = τ([v]).

Substituting n = km+ a into the definition of the equivalence relation we obtain

u(k|aw| ·m+ [aw]k) = u(k|av| ·m+ [av]k)

for all m ≥ 0. Therefore (1) is true, and (2) follows by substituting n = 0. Next
we prove by induction on the length of w that δ(q0, w

R) = [w]. The case w = ε
is trivial. Assume now that the claim holds for all the words of length n. Suppose
that w = av, where |v| = n. Then δ(q0, wR) = δ(δ(q0, v

R), a) = δ([v], a) = [av].
By the definition of τ we therefore have τ(δ(q0, wR)) = u([w]k). It follows from
Theorem 15 that u is a k-automatic sequence.

24

Example 6. We count the 2-kernel of the Rudin-Shapiro sequence r = (rn)n≥0

of Example 3. Consider the subsequences (r2in+j)n≥0. We can find equal sub-
sequences by considering the number of occurrences of 11 in the presentations
of (n)k and (2in + j)k. For example, (4n)2 = (n)200 and therefore r4n = rn.
Similarly, since (2n + 1)2 = (n)21 and (8n + 5)2 = (n)2101, the number of fac-
tors 11 is equal and thus r2n+1 = r8n+5. In this way we finally obtain the kernel
K2(r) = {(rn)n≥0, (r2n+1)n≥0, (r4n+3)n≥0, (r8n+3)n≥0}.

2.4 Uniform morphisms

Automatic sequences are closely related to fixed points of uniform morphisms.
First we recall some basic concepts. Let ϕ : Σ∗ → Σ∗ be a morphism on Σ∗. A
finite or infinite word w satisfying ϕ(w) = w is said to be a fixed point of ϕ. If
there exists a letter a ∈ Σ such that ϕ(a) = ax and ϕk(x) 6= ε for all k ≥ 0, we
say that ϕ is prolongable on a. In this case, we can define an infinite sequence
ϕω(a) := axϕ(x)ϕ2(x) · · · , which clearly is a fixed point of ϕ. If w = ϕω(a),
then we call w a pure morphic sequence and say that w is generated by ϕ. If there
is a coding τ : Σ∗ → ∆∗ and w = τ(ϕω(a)), then we call w a morphic sequence
generated by ϕ and τ . If the morphism ϕ is uniform, then we talk about uniformly
morphic sequences.

A useful characterization of automatic sequences in terms of k-uniform mor-
phisms and codings is known as (the second) Cobham’s theorem. Another famous
theorem by Cobham is presented in Section 3. We begin by a technical lemma.

Lemma 3. Suppose that w = ϕ(w) = a0a1a2 · · · for some k-uniform morphism
ϕ. Then ϕ(ai) = akiaki+1 · · ·aki+k−1.

Proof. Since ϕ(w) = w and ϕ is k-uniform, then

ϕ(a0a1 · · ·ai) = a0a1 · · ·aki+k−1.

Hence ϕ(ai) must be the last k letters of ϕ(a0a1 · · ·ai), i.e. ϕ(ai)(j) = aki+j for
all 0 ≤ j ≤ k − 1.

Theorem 18. (Cobham) Let k ≥ 2. Then a sequence u = (un)n≥0 is k-automatic
if and only if it is the image, under a coding, of a fixed point of a k-uniform
morphism.

Proof. Suppose that u = τ(w), where τ : Σ∗ → ∆∗ is a coding, and w =
ϕ(w) = w0w1w2 · · · , where ϕ : Σ∗ → Σ∗ is a k-uniform morphism. Define a
k-DFAO M = (Σ, Σk, δ, w0, ∆, τ), where δ(q, b) = ϕ(q)(b), i.e. the (b + 1)th
letter of the word ϕ(q). We claim that wn = δ(w0, (n)k) for all n ≥ 0. This is
proved by induction on n. The case n = 0 is clear. Suppose that the claim holds
for all nonnegative integers i < n. We prove it for n. Let (n)k = n0n1 · · ·nt,

25

where n0n1 · · ·nt−1 = (n′)k and n = n′k + nt. Then

δ(w0, (n)k) = δ(w0, n0n1 · · ·nt)

= δ(δ(w0, n0n1 · · ·nt−1), nt)

= δ(δ(w0, (n
′)k), nt)

= δ(wn′, nt) (by the induction hypothesis)

= ϕ(wn′)(nt)

= wkn′+nt
(by Lemma 3)

= wn.

Thus un = τ(wn) = τ(δ(w0, (n)k)), and therefore u is k-automatic.
Conversely, suppose that u is generated by a k-DFAO M

= (Q, Σk, δ, q0, ∆, τ). As was noted in the beginning of Section 2.1 we may
assume without loss of generality that δ(q0, 0) = q0. Now define the morphism ϕ
as follows:

ϕ(q) = δ(q, 0)δ(q, 1) · · · δ(q, k − 1),

for each q ∈ Q. Since δ(q0, 0) = q0, the morphism ϕ is prolongable on q0, and
hence the fixed point ϕω(q0) = w = w0w1w2 · · · exists. We prove by induction
on |x| that δ(q0, x) = w[x]k for all x ∈ Σ∗

k. If |x| = 0, then δ(q0, ε) = q0 = w0 =
w[ε]k . Secondly, suppose that the claim holds for all words y ∈ Σ∗

k, where |y| < n.
Let x = ya be a word, where y belongs to Σn−1

k and a ∈ Σk. Then

δ(q0, x) = δ(q0, ya)

= δ(δ(q0, y), a)

= δ(w[y]k, a) (by the induction hypothesis)

= ϕ(w[y]k)(a) (by the definition of ϕ)

= wk·[y]k+a (by Lemma 3)

= w[ya]k

= w[x]k.

Since [(n)k]k = n, we have un = τ(δ(q0, (n)k)) = τ(wn) and u = τ(ϕω(q0)).

Using the construction of the previous theorem we have the following example.

Example 7. We represent the sequence (Sn mod 3)n≥0, where Sn is the nth
Schröder number, as a fixed point of a 3-uniform morphism ϕ under a coding τ .
From the automaton of Example 4, see page 21, we have in a new alphabet
{A,B, . . . , F}

ϕ : A 7→ ABC τ : A 7→ 1
B 7→ DEF B 7→ 2
C 7→ CBC C 7→ 0
D 7→ DEE D 7→ 1
E 7→ EEE E 7→ 0
F 7→ EEF F 7→ 1

26

and the fixed point is

τ(ϕω(A)) = τ(ABC DE F C B C DE E · · ·) = 1 2 0 1 0 1 0 2 0 1 0 0 · · · ,

which is exactly the sequence s.

By applying the morphic characterization of Theorem 18 and the k-fiber char-
acterization of Section 2.2 we have the following theorem.

Theorem 19. For all m ≥ 1, a sequence u = (un)n≥0 is k-automatic if and only
if it is km-automatic.

Proof. Suppose first that u is k-automatic. By Theorem 18 we may write it in the
form

u = τ(ϕω(a)),

where τ is a coding, ϕ is a k-uniform morphism and a is a letter. Now define
φ = ϕm. Clearly,

u = τ(φω(a)).

Since φ is km-uniform, also u is km-automatic by Theorem 18.
Assume conversely that u = (un)n≥0 is km-automatic. By Theorem 16, the

language
Ikm(u, d) = {(n)km | un = d}

is regular for all d ∈ ∆. Now define morphism β : Σ∗
km → Σ∗

k such that for each
0 ≤ j ≤ km − 1, β(j) = w, where |w| = m and [w]k = j. By induction on
the length of w we see that for any nonnegative integer n, [β((n)km)]k = n. If
|(n)km| = 1, then (n)km = n and the claim follows from the definition of β.
Suppose that (n)km = n0n1 · · ·nl, where n0 · · ·nl−1 = (n′)km , n = n′km + nl

and [β((n′)km)]k = n′. Since the length of the image β(j) is always m, we have
[β((n)km)]k = [β((n′)km)β(nl)]k = [β((n′)km)]k ·k

m+[β(nl)]k = n′·km+nl = n.
Recall that Ck = {ε} ∪ (Σk \ { 0}) Σ∗

k. By Theorem 5, β(Ikm(u, d)) is regular for
all d, and hence

(0∗)−1β(Ikm(u, d)) ∩ Ck = {(n)k | un = d}

is also regular. By Theorem 16, u is k-automatic.

Sequences which are both k- and l-automatic, for two bases k and l, are con-
sidered in more details with respect to subword complexity and periodicity in
Section 2.6 and also in Section 3.

2.5 Closure properties

In the article [8] Cobham mentions several closure properties of automatic se-
quences. The class of k-automatic sequences is closed, for example, under shift,
periodic deletion, q-block substitution and q-block deletion. We follow here the

27

formulation of closure properties by Allouche and Shallit [4]. In the end of this
subsection we show how these properties can be easily used to prove Cobham’s
closure results.

The next two theorems concern subsequences of automatic sequences. They
are kind of converses to each other.

Theorem 20. Let u = (un)n≥0 be a k-automatic sequence. Then for all integers
a, b ≥ 0 the subsequence (uan+b)n≥0 is also k-automatic.

Proof. The case a = 0 is trivial, since then (uan+b)n≥0 = (ub)n≥0 is a sequence in
one letter alphabet and clearly automatic. Let a ≥ 1. We use the characterization
of Theorem 17. Suppose that the finite k-kernel of u is

Kk(u) = {u1,u2, . . . ,ur}

for some r ≥ 1. Next we define a finite set

S = {(ui(an+ c))n≥0 | 1 ≤ i ≤ r, 0 ≤ c < a + b}.

Our aim is to prove that the k-kernel of v = (u(an + b))n≥0 is a subset of S.
Consider a sequence (v(ken + j))n≥0, where 0 ≤ j < ke and e ≥ 0. Using the
division algorithm we can find nonnegative integers d and f such that

ja+ b = dke + f, (6)

where 0 ≤ f < ke. In addition, the inequality ja + b < kea + b ≤ ke(a + b)
implies that 0 ≤ d < a+ b. Now, for all n ≥ 0, using equation (6) we have

v(ken+ j) = u(a(ken+ j) + b) = u(kean+ ja+ b) = u(ke(an+ d)+ f). (7)

By the definition of the k-kernel,

(u(kem + f))m≥0 = (ui(m))m≥0 (8)

for some i, 1 ≤ i ≤ r. Hence combining (7) and (8) with m = an + d we get

(v(ken + j))n≥0 = (u(ke(an + d) + f))n≥0 = (ui(an + d))n≥0 ∈ S.

Hence Kk(v) ⊂ S is finite and, by Theorem 2.2, v is automatic.

Theorem 21. Let a be a positive integer, and let (un)n≥0 be a sequence such that
(uan+i)n≥0 is k-automatic for 0 ≤ i < a. Then (un)n≥0 is itself k-automatic.

Proof. By Theorem 16, the fiber

{(n)k | uan+i = d}

is a regular language for each d ∈ ∆ and 0 ≤ i < a. Using Theorem 8 and
Corollary 1 we see that also the language

Xi,d = {(an + i)k | uan+i = d}

28

is regular. Since finite unions of regular languages are regular (Theorem 3),

Yd =

a−1
⋃

i=0

Xi,d = {(n)k | un = d}

is regular for each d ∈ ∆. Using again the k-fiber characterization (Theorem 16)
we conclude that (un)n≥0 is k-automatic.

Let us proceed by considering automatic sequences under different mappings.
We start with an easy theorem.

Theorem 22. Let u = (un)n≥0 be a k-automatic sequence and let ρ be a coding.
Then the sequence ρ(u) is also k-automatic.

Proof. Replace the output function τ of the automaton generating u by the func-
tion ρ ◦ τ .

As a consequence of the previous theorems we have

Corollary 3. Let u = (un)n≥0 be a k-automatic sequence, and let ψ be an l-
uniform morphism for some l ≥ 1. Then ψ(u) is also k-automatic.

Proof. Suppose that u is a k-automatic sequence over the alphabet ∆ and ψ : ∆∗ →
(∆′)∗ is an l-uniform morphism. We define a coding ψi by the rule

ψi(a) = ψ(a)(i).

for each 0 ≤ i ≤ l − 1. By the previous theorem, the sequences ψi(u) are k-
automatic. Clearly, for 0 ≤ i < l and n ≥ 0, ψ(u)(ln + i) = ψ(un)(i) = ψi(un),
and thus (ψ(u)(ln + i))n≥0 = ψi(u). The result follows then from Theorem 21.

Consider next cartesian products of automatic sequences.

Theorem 23. Suppose that a sequence ai over an alphabet ∆i is k-automatic for
each i = 1, 2, . . . , l. Let f be any function from ∆1×∆2×· · ·×∆l to an alphabet
∆′. Then the sequence (f(a1(n), a2(n), . . . , al(n)))n≥0 is k-automatic.

Proof. Suppose that ai is generated by a DFAOMi = (Qi, Σk, δi, q0i, ∆i, τi) for
1 ≤ i ≤ l. Then M ′ = (Q1 × Q2 × · · · × Ql, Σk, δ

′, (q01, q02, . . . , q0l), ∆′, τ ′)
generates (f(a1(n), a2(n), . . . , al(n)))n≥0, where

δ′((q1, q2, . . . , ql), c) = (δ1(q1, c), δ2(q2, c), . . . , δl(ql, c)),

τ ′((q1, q2, . . . , ql)) = f((τ1(q1), τ2(q2), . . . , τl(ql))),

for all qi ∈ Qi and c ∈ Σk.

The class of automatic sequences is also closed under the so called right-shifts.

29

Theorem 24. Let u = (un)n≥0 be a k-automatic sequence. Then so is v =
(vn)n≥0 defined by

vn =

{

un−1 if n ≥ 1,
a if n = 0,

where a ∈ Σk.

Proof. Suppose that, for some r ≥ 1, Kk(u) = {u1,u2, . . . ,ur} is the k-kernel
of u. Define vi by the rule

vi(n) =

{

ui(n− 1) if n ≥ 1,
a if n = 0.

We prove that the k-kernel of v is finite by showing that

Kk(v) ⊂ {u1, . . . ,ur,v1, . . . ,vr}.

Consider the sequence (v(ken + j))n≥0, where e ≥ 0 and 0 ≤ j < ke. If
j ≥ 1, then (v(ken + j))n≥0 = (u(ken + j − 1))n≥0 = (ui(n))n≥0 for some i,
0 ≤ i ≤ r. Suppose then that j = 0. For some i and for all n ≥ 0, we have now
u(ken+ke−1) = ui(n). Hence ui(n−1) = u(ke(n−1)+ke−1) = u(ken−1)
for all n ≥ 1. It follows that

v(ken) =

{

u(ken− 1) if n ≥ 1,
a if n = 0

=

{

ui(n− 1) if n ≥ 1,
a if n = 0

= vi(n).

Thus Kk(v) is finite and the result follows from Theorem 17.

We are ready to prove the closure properties mentioned by Cobham in [8].
We begin by defining shifts S i of infinite sequences. If u = u0u1u2 · · · , then
the shifted sequence S(u) is the word u1u2u3 · · · . Similarly, for i ≥ 0, S i(u) =
uiui+1ui+2 · · · . For i < 0, S i

w(u) = wu for a word w of length i.

Theorem 25. The class of k-automatic sequences is closed under shifts.

Proof. Suppose that u = (un)n≥0 is a k-automatic sequence. For i ≥ 0, S i(u) =
(un+i)n≥0 is k-automatic by Theorem 20. For i < 0, we apply Theorem 24 i
times.

We say that an infinite sequence b is obtained from a sequence a by periodic
deletion if there exist integers p, q, j0, . . . , jp−1 with 1 ≤ p < q and
0 ≤ j0 < · · · < jp−1 < q such that b(pn + i) = a(qn + ji) for all 0 ≤ i ≤ p− 1
and for all n ≥ 0.

Theorem 26. The class of k-automatic sequences is closed under periodic dele-
tion.

30

Proof. Suppose that a is a k-automatic sequence. By Theorem 20,
(a(qn+ ji))n≥0 is k-automatic for any q ≥ 0 and ji ≥ 0. Define a sequence
b by the rule b(pn + i) = a(qi + ji). Thus (b(pn + i))n≥0 is k-automatic for
0 ≤ i ≤ p− 1 and the sequence b is k-automatic by Theorem 21.

The sequence b is obtained from a by q-block substitution if b = f(a), where
f is a q-uniform morphism. It means that b(qi+j) = f(a(i))(j) for 0 ≤ j ≤ q−1.
Hence Corollary 3 can be reformulated as follows:

Theorem 27. Let q ≥ 1. The class of k-automatic sequences is closed under
q-block substitution.

By q-block compression we mean the following. Suppose that a is a sequence
over ∆ and let q be a positive integer. We group the successive symbols of a into
q-blocks starting from the left and consider these blocks as single symbols. This
q-block compressed sequence is an infinite word over the alphabet ∆q.

Theorem 28. Let q ≥ 1. The class of k-automatic sequences is closed under
q-block compression.

Proof. Suppose that a is a k-automatic sequence. By Theorem 20, the sequences
(a(qn+ i))n≥0 are k-automatic for 0 ≤ i ≤ q − 1. The result follows now by
applying Theorem 23 to these sequences and to the function f : ∆×· · ·×∆ → ∆q,
defined by f((a0, a1, . . . , aq−1)) = a0a1 · · ·aq−1.

2.6 Subword complexity

As it was already mentioned in the introduction, complexity of a sequence is an
interesting mathematical notion related to number theory. We formulate this more
precisely in the following.

Definition 3. The subword complexity function pw of a word w is a function on
nonnegative integers N defined by pw(n) = #Ln(w), i.e. pw(n) is the number of
different factors of length n in w.

Ultimately periodic sequences, i.e. sequences of the form xyω, where x, y ∈ Σ∗,
y 6= ε, are highly ordered and their complexity function is bounded. There are
also sequences with maximal complexity, i.e. pw(n) = |Σ|n. Consider, for exam-
ple, the Champernowne word c [23, A030190] obtained by catenating the binary
expansions of all positive integers in order.

c = 0 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 · · ·

It is easy to see that pc(n) = 2n.
In this subsection we show that there is a linear upper bound on the subword

complexity of automatic sequences. We begin by describing the relationship be-
tween automatic and periodic sequences, which continues in the next section. First
we give a characterization of ultimately periodic sequences by Hedlund and Morse
[13].

31

Theorem 29. Let w be an infinite word. The following are equivalent:

(i) w is ultimately periodic,
(ii) pw(n) = pw(n+ 1) for some n,

(iii) pw(n) < n+ k − 1 for some n ≥ 1, where k is the number of
different letters appearing in w,

(iv) pw(n) is bounded.

Proof. Suppose first that w is of the form xyω. Every factor of length n is con-
tained in the set of factors of length n starting from the first |xy| letters of w.
Thus (i) implies (iv). The implication (iv) =⇒ (iii) is clear. Suppose next
that pw(m) < m + k − 1 for some m ≥ 1 and k = pw(1). We may suppose
that k ≥ 1; for otherwise, pw(n) = 1 for all n ≥ 1. Since the function pw(n)
is nondecreasing, we must have pw(n) = pw(n + 1) for some n < m; other-
wise pw(m) ≥ m + k − 1. Thus we have proved (iii) =⇒ (ii). Suppose
now that pw(n) = pw(n + 1) for some n. This means that each factor of length
n can be extended uniquely to a factor of length n + 1. Consider a word v of
length n that occurs at least twice in the word w. Denote by u the word between
these two occurrences, i.e. vuv is a factor of w. Since the letters that follow v are
uniquely determined by u, vuvu must be a factor of w. Repeating this argument
we see that (vu)ω is a suffix of w. Thus w is ultimately periodic, and so also
(ii) =⇒ (i).

We may modify the above result to concern only recurrent factors, i.e. factors
occurring infinitely often in w. Let rw(n) denote the number of distinct recurrent
factors of length n in w. Using similar argumentation as above we may prove

Theorem 30. Theorem 29 holds for rw(n) in place of pw(n).

Note that pw(n) and rw(n) can differ. Consider, for example, the infinite word
w = baba2ba3b · · ·aib · · · . Words baib are not recurrent. Thus rw(n) < pw(n).

There is the following relation between automatic sequences and ultimately
periodic sequences.

Theorem 31. If (an)n≥0 is an ultimately periodic sequence, then it is k-automatic
for all k ≥ 2.

Proof. By Corollary 2 (page 23) it suffices to consider "purely" periodic sequences,
i.e. sequences with atn+i = ai for some t and for all 0 ≤ i ≤ t− 1 and n ≥ 0. We
define a k-DFAO M = (Σt, Σk, δ, 0, ∆, τ), where

δ(q, a) = kq + a (mod t) and

τ(q) = aq

for all q ∈ Σt and a ∈ Σk. We claim that δ(0, w) = [w]k (mod t) for all w ∈ Σ∗
k.

If |w| = 0, this is clear. Assume then that the claim holds for all words of length

32

n. Suppose that w = a0 · · ·an. Then

δ(0, w) = δ(δ(0, a0 · · ·an−1), an)

= δ([a0 · · ·an−1]k (mod t), an)

= k[a0 · · ·an−1]k + an (mod t)

= [w]k (mod t).

Thus τ(δ(0, w)) = a[w]k (mod t) and the result follows.

The deep Cobham’s theorem presented in the next section gives a kind of con-
verse to the previous theorem. It states that if a sequence is both k-automatic and
l-automatic, and k and l are multiplicatively independent, then the sequence is
ultimately periodic. The following section is devoted to the proof of this beautiful
result. The upper bound for the subword complexity of automatic sequences fol-
lows easily from the characterization using uniform morphisms and codings. First
we prove a useful lemma.

Lemma 4. Let u be an infinite word over Σ. Let ϕ : Σ∗ → ∆∗ be a nonerasing
morphism. Define v = ϕ(u). Then pv(n) ≤ Wpu(n), where W = max{|ϕ(a)| |
a ∈ Σ}.

Proof. Let v = (vn)n≥0 and u = (un)n≥0. Let x be a factor of v of length n,
i.e. x = vivi+1 · · · vi+n−1 for some integer i. Define j to be the maximal index
such that |ϕ(u0u1 · · ·uj−1)| ≤ i. Since ϕ is nonerasing, x must be a factor of
ϕ(w), where w = uj · · ·uj+n−1 . Actually, x is completely determined by the pair
(w, k), where k = i−|ϕ(u0 · · ·uj−1)|. More precisely, x = (ϕ(w)(k))(ϕ(w)(k+
1)) · · · (ϕ(w)(k + n − 1)). Now 0 ≤ k ≤ |ϕ(uj)| − 1 ≤ W − 1. So, there
cannot be more factors of v of length n than there are pairs (w, k). Thus pv(n) ≤
Wpu(n).

Now we are ready to prove the upper bound. Recall that a k-automatic sequence
can be generated by a k-uniform morphism under a coding.

Theorem 32. Let v = τ(ϕω(a)), where ϕ : Σ∗ → Σ∗ is a k-uniform morphism
and τ : Σ∗ → ∆∗ is a coding. Suppose that t = |Σ|. Then pv(n) ≤ kt2n for all
n ≥ 1.

Proof. Let u = ϕω(a) = u0u1u2 · · · and n ≥ 1. Let r be the integer satis-
fying kr−1 ≤ n < kr. For a fixed i, let j = b i

kr c. Then uiui+1 · · ·ui+n−1

is a factor of ujkr · · ·u(j+1)kr · · ·u(j+2)kr−1. Using Lemma 3 we conclude that
ujkr · · ·u(j+2)kr−1 = ϕr(vjvj+1). So, ui · · ·ui+n−1 is completely determined by i
(mod kr), vj and vj+1. There are kr · |Σ|2 different such triplets. Hence pu(n) ≤
krt2 ≤ kt2n, where the last inequality comes from the definition of r. Since
v = τ(u) and max{|τ(a)| | a ∈ Σ} = 1, we have pv(n) ≤ pu(n) ≤ kt2n by the
previous lemma.

33

To end this section, we shortly mention how these results are connected to tran-
scendental number theory. Consider a base-k representation
0.v = 0.v0v1v2 · · · of a real number α. If the sequence v0v1v2 · · · is ultimately
periodic, we know that α is rational. On the other hand, it is conjectured that
the expansion in base k of an irrational algebraic number is normal in the sense
that the expansion contains every block of digits of length n with a frequency
asymptotic to 1/kn. The conjecture implies that numbers with low complexity
expansion are either transcendental or rational. Since bounded subword complex-
ity implies rationality by Theorem 29, the numbers with expansions of low and
unbounded complexity should be transcendental. The first combinatorial result of
this kind showed the transcendence of numbers, where v is Sturmian (for which
pv(n) = n + 1) or Arnoux-Rauzy word (for which pv(n) = 2n + 1) [11]. Some
other classes of sequences of complexity 2n+1 were considered in [15]. The ma-
jor improvement on this field is the resent result of Adamczewski et al. saying that
the complexity function of the base k expansion of an irrational algebraic num-
ber satisfies lim infn→∞

p(n)
n

= +∞ [1]. Thus, if a sequence v is nonperiodic and
satisfies pv(n) = O(n), then α = 0.v is transcendental. Consider then numbers
α = 0.v, where v is an automatic sequence. Such numbers are called automatic.
By the previous upper bound (Theorem 32), we have the following theorem, also
mentioned in [1].

Theorem 33. Algebraic irrational numbers cannot be automatic.

34

3 Cobham’s theorem

In this section we prove the famous Cobham’s theorem [7]. It states that if a se-
quence is both k- and l-automatic for multiplicatively independent integers k and
l, then the sequence is ultimately periodic. Recall that we proved in Theorem 31
that ultimately periodic sequences are k-automatic for all k ≥ 2. This means that
sequences can be divided into three categories:

(i) the sequences, which are automatic for all k ≥ 2:
i.e. ultimately periodic sequences;

(ii) the sequences, which are automatic for powers of fixed k only:
e.g. the Thue-Morse sequence;

(iii) the nonautomatic sequences:
e.g. the characteristic sequence of squares.

Cobham’s theorem is formulated for k-automatic sets instead of sequences. We
first introduce some basic results on these automatic sets. Some number theoret-
ical preliminaries are also considered. Syndetic sets are needed for the first part
of the proof of the main theorem; see Section 3.3. This part of the main proof
is also called le Petit Théorème de Cobham or Hansel’s lemma. In Section 3.4
we consider k- and l-stable equivalence relations, which are also needed for the
proof of Cobham’s theorem presented in the last subsection. This proof is mainly
due to Hansel [12], who first managed to simplify the original complex proof of
Cobham. At present, some other reasonable proofs are known. We mention es-
pecially the proof of Michaux and Villemaire [18], which is based on logic via
Büchi’s theorem. In 1977, Semenov generalized Cobham’s theorem to subsets M
of N

m, m ≥ 1 [28]. We also mention the elegant proof of Muchnik [22] for the
multi-dimensional case; see [5] for the English version.

3.1 Multiplicative independence

In this subsection we prove that the set of quotients {kp/lq | p, q ≥ 0} of multi-
plicatively independent integers k and l is dense in the set of positive real numbers.
This will be proved using number theoretical results of Dirichlet and Kronecker.
We begin by the definitions.

Definition 4. Two integers k and l are said to be multiplicatively dependent if
there exists two integers r, s ≥ 1 such that kr = ls. Otherwise, k and l are said to
be multiplicatively independent.

Definition 5. A set S is dense in an interval I of reals if every open subinterval of
I contains an element of S.

Next we prove the well-known Dirichlet’s approximation theorem.

35

Theorem 34. (Dirichlet) For all real numbers θ and positive integers N , there
exists a positive integer n ≤ N and an integer r such that

|nθ − r| <
1

N
.

Proof. Define {θ} = θ − bθc, the fractional part of the real number θ. Consider
N + 1 numbers {0}, {θ}, {2θ}, . . . , {Nθ} and the N intervals [m

N
, m+1

N
), where

0 ≤ m < N . By the pigeon hole principle, at least two of the numbers fall into
the same interval. Suppose that they are {iθ} and {jθ} with 0 ≤ i < j ≤ N . Then
(j− i)θ = (bjθc−biθc)+({jθ}−{iθ}). Choose n = j− i and r = bjθc−biθc.
By the above construction we clearly have n ≤ N and |nθ − r| < 1

N
.

Using this result it is easy to prove Kronecker’s approximation theorem in one
dimension.

Theorem 35. (Kronecker) Let θ be an irrational number. For all real numbers α
and all ε > 0, there exist integers c, d such that

|cθ − α− d| < ε.

Proof. By Dirichlet’s result (Theorem 34), for all ε < 1, there exist integers a, b
satisfying |aθ − b| < ε. Since θ is irrational, |aθ − b| > 0. Suppose first that
aθ−b > 0 and let k be the greatest integer satisfying 0 ≤ k(aθ−b) < 1. Consider
now the sequence of points 0, {aθ}, {2aθ}, . . . , {kaθ}, 1. Since {iaθ} = iaθ− ib
for all 0 ≤ i ≤ k, we have {iaθ} − {(i− 1)aθ} = aθ − b < ε for i = 1, 2, . . . , k.
Since k(aθ − b) < 1 < (k + 1)(aθ − b), we also have 1 − {kaθ} < ε. Thus we
have proved that

0 < {aθ} < {2aθ} < · · · < {kaθ} < 1 (9)

and the distance between two adjacent points is less than ε. Hence there exists an
integer i ∈ [0, k] such that |{iaθ}− {α}| < ε. In other words, |iaθ−biaθc −α+
bαc| < ε. The result is obtained by choosing c = ia and d = biaθc − bαc.

The case aθ − b < 0 is proved similarly. We have {iaθ} = 1 − i(b − aθ) for
all i satisfying 0 ≤ i(b− aθ) < 1 and equation (9) is changed into the equation

1 > {aθ} > {2aθ} > · · · > {kaθ} > 0. (10)

Note that Kronecker’s theorem can be expressed by saying that the set of frac-
tional parts { {nθ} |n ≥ 0} is dense in the interval [0, 1). Now we are ready to
prove our theorem concerning multiplicatively independent integers.

Theorem 36. If k and l are multiplicatively independent integers, then the set of
quotients {kp/lq | p, q ≥ 0} is dense in the positive reals.

36

Proof. Let x be a positive real number. Define θ = logl k = log k
log l

and α = log x
log l

.
By the assumption of multiplicative independence, we know that θ is irrational.
Namely, if θ = s/r for some integers s and r, then r log k = s log l. Thus kr = ls,
which is a contradiction. Now by Kronecker’s Theorem, for any positive ε, there
exist integers c and d satisfying |cθ − α− d| < ε. Multiplying by log l we have

|c log k − log x− d log l| < ε log l. (11)

This means that c log k − d log l belongs to the interval (log x − ε log l, log x +
ε log l). Thus

kc

ld
∈ (xl−ε, xlε). (12)

By taking ε sufficiently small, we can fit this interval inside any open interval
containing x. Thus the set of quotients {kp/lq | p, q ≥ 0} is dense in the positive
reals.

3.2 Automatic sets

Cobham’s theorem is formulated for automatic sets, not for automatic sequences.
Here we give a short introduction to this related notion.

Definition 6. The set S ⊆ N is called k-automatic if the characteristic sequence
(χS(n))n>0 of S is k-automatic.

By definition, a set S is k-automatic if and only if the language 0∗(S)k = 0∗{(s)k |
s ∈ S} is regular. Thus there exists a k-DFA A accepting 0∗(S)k by Theorem 2.
In that case, we say that the set S is accepted by A. As an example of k-automatic
sets we mention arithmetic progressions of integers. For an arithmetic progression
S, the sequence (χS(n))n>0 is ultimately periodic and we may apply Theorem 31.
The class of k-automatic sets is closed under many operations, e.g. intersection,
union and complement. These follow immediately from Theorem 23. We also
have the following result, which we will need in the proof of Cobham’s theorem.

Theorem 37. If S is a k-automatic set, then for any integers a, b ≥ 0 the set
Ja,b(S) = {n ∈ N | an+ b ∈ S} is also k-automatic.

Proof. This follows easily from the closure properties of k-automatic sequences
(Theorems 25 and 26). Namely, the sequence (χJa,b(S)(n))n>0 is obtained from
the sequence u = (χS(n))n>0 by shifting it b times to the left and then deleting
all the letters except the digits u(n) with n divisible by a. Since (χS(n))n>0 is
k-automatic, the result follows from the above mentioned closure properties.

We note that the previous theorem could also be proved directly by construct-
ing the generating automaton of the sequence (χJa,b(S)(n))n>0. By Theorem 11,
we may assume that the inputs are read starting from the least significant bit. The
desired automaton just simulates the behavior of the generating automaton of the
sequence (χS(n))n>0 with an input (an+ b)k, which we can obtain, digit by digit,
with an automaton performing the school algorithm of multiplication and addi-
tion.

37

3.3 Right dense and syndetic sets

Throughout this subsection k, l ≥ 2 are multiplicatively independent integers.
Assume that X is a set of integers which is both k- and l-automatic. Our aim is
to prove that such a set is syndetic, which means that the distance of consecutive
elements is bounded by a constant. This result is known as le Petit Théorème de
Cobham (cf. [25]) or Hansel’s lemma (cf. [19]). The proof presented here consists
of several lemmas describing how a presentation of an arbitrary integer in either
base k or l can be extended to present a number in X by adding extra digits in the
end. The number of digits needed can be specified in advance. This phenomenon
is related to the notion of right dense sets. The proof is based on the original
proof of Cobham [7], since some of the later proofs of Cobham’s little theorem
are somewhat inadequate (cf. [16]). For different proofs, see also [19, 26]. We
start with the definitions of right dense and syndetic sets.

Definition 7. A set X ⊆ Σ∗ is called right dense if for any word u ∈ Σ∗ there
exists a word v ∈ Σ∗ such that uv belongs to the set X .

In other words, every word appears as a prefix of at least one word in X .

Definition 8. A set X ⊆ N is called d-syndetic if X ∩ [n, n + d) 6= ∅ for
all sufficiently large integers n ≥ 0. A set is syndetic if it is d-syndetic for some
d.

Next we show how these notions are related to each other.

Lemma 5. If X ⊆ N is a syndetic set, then 0∗(X)k is right dense.

Proof. Assume that X is d-syndetic. Suppose that for all n ≥ n0 we have X ∩
[n, n + d) 6= ∅. Choose an integer p such that kp ≥ n0 + d. Then, for all n ≥ 0,
the interval [nkp, (n+ 1)kp) contains an element of X . Hence there exists t such
that nkp + t ∈ X and, for any w ∈ Σ∗

k such that [w]k = n, we have a word u ∈ Σp
k

such that [u]k = t and wu ∈ 0∗(X)k. Thus 0∗(X)k is right dense.

Note that the converse is not true. If 0∗(X)k is right dense, it does not mean
that X is syndetic, not even in the case where X is k-automatic. Consider, for
example, the set of integers with even number of digits in their normalized (be-
ginning zeros ignored) base-k representation. This set X = {x1 < x2 < · · · <
xn < · · · } is clearly k-automatic, but the distance between two consecutive el-
ements can be arbitrarily large, i.e. sup(xn+1 − xn) = ∞. However, automatic
sets are related to right dense sets. This will be formulated more precisely in the
following lemmas. Multiplicatively independent integers play an important role
in these results. Recall especially Theorem 36.

Lemma 6. Suppose that k, l ≥ 2 are multiplicatively independent integers. Let X
be an infinite k-automatic set. Then for any integers c and d such that d ≥ c ≥ 0
and for any word x ∈ Σ∗

l there exists a word y ∈ Σ∗
l such that xy ∈ 0∗(X)l and

|y| ≡ c (mod d).

38

Proof. Since X is k-automatic, the language (X)k is regular. Since X is also
infinite, it contains arbitrarily long words. Thus, by pumping lemma (Lemma 1),
there exist words t, u and v in Σ∗

k such that tu∗v ⊆ (X)k. Let x be a word in Σ∗
l .

Our aim is to find a word y ∈ Σ∗
l such that xy ∈ 0∗(X)l and |y| = dq+ c for some

integer q. For this purpose we use numbers [tupv]k, p ≥ 0, which by previous
considerations belong to X . More precisely, we want to find y ∈ Σ∗

l such that, for
some p ≥ 0,

[xy]l = [tupv]k ∈ X.

Thus we want to find an integer j, 0 ≤ j < ldq+c such that [x]ll
dq+c + j = [tupv]k.

In other words, the following inequality must hold:

[x]ll
dq+c ≤ [tupv]k < ([x]l + 1)ldq+c.

This can be written in the form

[x]ll
dq+c ≤ [v]k + [u]k

(

kgp+h − kh

kg − 1

)

+ [t]kk
gp+h < ([x]l + 1)ldq+c, (13)

where h = |v| and g = |u|. Now we make a common mathematical trick and
reformulate the inequality by adding and subtracting suitable constants. Our aim
is to divide inequality (13) into two parts so that it is possible to find a solution
for one part by the density properties of quotients of multiplicatively independent
integers and the other part is satisfied trivially. First, we divide equation (13) by
ldq+c and get

(

[x]l +
1

4

)

−
1

4
≤

[v]k + [u]k

(

kgp+h−kh

kg−1

)

+ [t]kk
gp+h

ldq+c
<

(

[x]l + 1 −
1

4

)

+
1

4
.

The part depending on multiplicatively independent integers ld and kg is

[x]l +
1

4
≤
kgp

ldq

kh

lc

(

[u]k
kg − 1

+ [t]k

)

< [x]l +
3

4
. (14)

To simplify the notation, let kh

lc

(

[u]k
kg−1

+ [t]k

)

= C. The previous inequality has

a solution, since by Theorem 36, there are arbitrarily large integers p and q such
that

[x]l + 1
4

C
≤
kgp

ldq
<

[x]l + 3
4

C
.

Also, for q large enough, we trivially have

−
1

4
≤

[v]k − [u]k
kh

kg−1

ldq+c
<

1

4
. (15)

Adding inequalities (14) and (15) together we finally obtain the desired result.

As a corollary of the previous lemma we have:

39

Corollary 4. Suppose that k, l ≥ 2 are multiplicatively independent integers. Let
X be an infinite k-automatic set. Then the set 0∗(X)l is right dense.

Next we consider a k-automaton accepting an l-automatic set.

Lemma 7. Suppose that k, l ≥ 2 are multiplicatively independent integers. Let X
be both k- and l-automatic set, and let q be any state in a k-DFA
A = (Q, Σk, δ, q0, F) accepting X . Then the set Xq = {n | δ(q0, (n)k) = q}
is both k- and l-automatic.

Proof. We may assume that A is minimal. Replacing the set of accepting states
F of A by {q} gives a k-automaton accepting Xq = {n | δ(q0, (n)k) = q}. Now
we have to show that Xq is also l-automatic. Let q′ be any state of A different
from q. Thus, by minimality, there exists a word z ∈ Σ∗

k such that only one of
the states δ(q, z) and δ(q′, z) is an accepting state. If δ(q, z) is an accepting state,
then define T (q′) = {n ∈ N |nk|z| + [z]k ∈ X}; otherwise, T (q′) = {n ∈
N |nk|z| + [z]k 6∈ X}. In both cases, by Theorem 37, T (q ′) is l-automatic, since
X is. Suppose now that δ(q0, x) = q. Then δ(q0, xz) = δ(δ(q0, x), z) = δ(q, z).
Since [xz]k = [x]kk

|z| + [z]k, we see that [x]k ∈ T (q′) in either cases. Similarly,
if δ(q0, x) = q′, then [x]k 6∈ T (q′). Define now T =

⋂

q′ 6=q T (q′), where the
intersection is over finitely many states of A different from q. As an intersection
of l-automatic sets T is l-automatic and [x]k ∈ T if and only if δ(q0, x) = q. Hence
the set {[x]k | δ(q0, ([x]k)k) = q} is l-automatic and the lemma follows.

Before proving Lemma 9, which in fact implies Hansel’s lemma, we still need
a couple of definitions and a small number theoretical lemma.

Definition 9. Let A = (Q, Σk, δ, q0, F) be a DFA. A state q ∈ Q is recurrent
if δ(q, x) = q for some x ∈ Σ+

k . It is properly recurrent if also δ(q0, y) = q for
some y ∈ Σ∗

k\0
∗.

Lemma 8. Suppose that gcd(p1, p2, . . . , pk) = 1, where k ≥ 2. Then there exists
an integer N such that any n ≥ N can be represented as a sum

∑k
j=1 ajpj, where

the integers ai are nonnegative.

Proof. We prove the claim by induction on k. Suppose first that k = 2, i.e.
gcd(p1, p2) = 1. Then for all i there exists an integer m ∈ {0, 1, . . . , p1 − 1}
such that mp2 ≡ i (mod p1). Otherwise, there exists integers m and m′ such that
0 ≤ m′ < m ≤ p1 − 1 and mp2 −m′p2 ≡ 0 (mod p1). Since gcd(p1, p2) = 1,
this implies that p1 dividesm−m′. But this is impossible, since m−m′ ≤ p1−1.
Now, if n ≥ (p1 − 1)p2, then n = a1p1 + a2p2, where a2 ∈ {0, 1, . . . , p1 − 1} is
chosen so that a2p2 ≡ n (mod p1) and a1 = (n−a2p2)/p1 is clearly nonnegative.

Suppose now that the claim holds for k = l − 1. We prove it for k = l. Now
gcd(p1, p2, . . . , pl) = gcd(p1, gcd(p2, . . . , pl)) = 1. Suppose that
gcd(p2, . . . , pl) = d. Thus gcd(p2/d, . . . , pl/d) = 1. By the induction hypoth-
esis, if d = 1 the case is clear. Otherwise there exists an integer N ′ such that for

40

any n ≥ N ′, n =
∑l

j=2 bj(pj/d), where all bi are nonnegative integers. Hence

nd =

l
∑

j=2

bjpj. (16)

Define now s to be the smallest integer satisfying sp1 ≥ N ′. Using the same argu-
mentation as above, we see that for all i, there exists integer
m ∈ {sp1, sp1 + 1, . . . , (s+ 1)p1 − 1} such that md ≡ i (mod p1). Suppose
now that n ≥ ((s + 1)p1 − 1)d. Then n = a1p1 + a2d, where a2 is an inte-
ger in the set {sp1, sp1 + 1, . . . , (s + 1)p1 − 1} satisfying a2d ≡ n (mod p1)
and a1 = (n − a2d)/p1. Because of the conditions on the size of n and a2, we
see that a1 is a nonnegative integer and a2d can be presented in the form of equa-
tion (16).

Lemma 9. Suppose that k, l ≥ 2 are multiplicatively independent integers. Let
A = (Q, Σk, δ, q0, F) be a k-automaton accepting an infinite l-automatic set X .
Then there exists a constant N such that for any integer n ≥ N , for any properly
recurrent state q ∈ Q, and for any word x ∈ Σ∗

k, there exists z ∈ Σ∗
k for which

|z| = n and δ(q0, xz) = q.

Proof. Let Xq = {n | δ(q0, (n)k) = q} for a properly recurrent state q ∈ Q.
Then Xq is infinite and, by Lemma 7, it is both k- and l-automatic. Suppose that
δ(q0, x1) = q and denote

dq = gcd{|y| | δ(q, y) = q}.

We apply Lemma 6 to the infinite l-automatic set Xq with d = dq and c = 1.
Thus there exists x2 ∈ Σ∗

k such that δ(q0, x1x2) = q and |x2| ≡ 1 (mod dq).
On the other hand, δ(q, x2) = q, which implies that dq divides |x2|, i.e. |x2| ≡ 0
(mod dq). This means that dq = 1. Thus there exists a finite subset {|y1|, . . . , |yk|}
of the set {|y| | δ(q, y) = y} such that gcd(|y1|, . . . , |yk|) = 1. It follows from
Lemma 8 that there exists also a constant Nq such that any n ≥ Nq can be writ-
ten in the form

∑k
j=1 aj|yj|. Thus, for any n ≥ Nq, there is a word y for which

|y| = n and δ(q, y) = q. Namely we may choose y = ya1
1 · · · yak

k . Choose now
N = |Q|+ max(Nq), where the maximum is taken over the set of properly recur-
rent states of Q.

Let x be an arbitrary word in Σ∗
k and q an arbitrary properly recurrent state

of Q. Again, Lemma 7 and Lemma 6 show the existence of a word z1 such that
δ(q0, xz1) = q. By using the pumping lemma (Lemma 1) we may assume that
|z1| ≤ |Q|. Then, for n ≥ N , we have Nq ≤ N − |Q| ≤ n − |z1|. By the above
considerations there exists z2 ∈ Σ∗

k such that δ(q, z2) = q and |z2| = n − |z1|.
Thus, for z = z1z2, we have |z| = n and δ(q0, xz) = q.

As a corollary of the previous lemma we finally have

Theorem 38. (Hansel) Suppose that k, l ≥ 2 are multiplicatively independent
integers. If an infinite set of integers is both k- and l-automatic, then it is syndetic.

41

Proof. LetX be an infinite set of integers which is both k- and l-automatic and let
A = (Q, Σk, δ, q0, F) be a k-automaton accepting 0∗(X)k. Since X is infinite,
there exists a properly recurrent accepting state q ∈ Q. By Lemma 9, there is a
constant N = kp such that for any word x ∈ Σ∗

k, there exists a word y of length
N with δ(q0, xy) = q ∈ F . Thus xy ∈ 0∗(X)k. Suppose that x = (n)k. Then
[xy]k = nkp + [y]k ∈ X . This means that for any integer n there exists an integer
t, 0 ≤ t < kp, such that nkp + t ∈ X . Hence X is 2kp-syndetic, since the distance
between two consecutive elements of X must be less than 2kp.

As a final result on syndetic sets we prove a technical lemma needed in the
sequel.

Lemma 10. Let X be a d-syndetic set of integers. Then for all positive integers
K, L, h and each real a > 0 such that K < L < K + a, there exist x ∈ X and
an integer y such that yL ≤ xK + h ≤ yL+ da.

Proof. Let r be the smallest integer such that rK + h < rL. Then for all integers
i ≥ 1, we have (r − i)L ≤ (r − i)K + h by the minimality of r and also

(r − i)K + h = rK + h− iK < rL− iK < rL− i(L− a) = (r − i)L+ ia.

Especially, for 1 ≤ i ≤ d, we have

(r − i)L ≤ (r − i)K + h < (r − i)L+ da. (17)

Adding jKL to (17) we obtain

(jK + r − i)L ≤ (jL + r − i)K + h < (jK + r − i)L+ da

for all i, 1 ≤ i ≤ d. Since X is d-syndetic, for sufficiently large j and for some i
with 1 ≤ i ≤ d the number (jL+r−i) belongs toX . Thus choosing x = jL+r−i
and y = jK + r − i completes the proof.

3.4 Equivalence relations

We consider now equivalence relations needed in the theorems that follow. We
deal with relations on the set on natural numbers as well as on the set Σ∗

k. Namely,
any equivalence relation ∼ on Σ∗

k induces an equivalence relations on N. Let
x, y ∈ N. Using base-k representations of integers we define

x ∼k y ⇐⇒ (x)k ∼ (y)k.

A notion corresponding to right-invariance is called k-stability.

Definition 10. An equivalence relation ∼ on N is k-stable if

x ∼ y =⇒ xkj + t ∼ ykj + t

for all j ≥ 0 and 0 ≤ t < kj.

42

Lemma 11. Let ∼ be an equivalence relation on Σ∗
k. The equivalence relation

∼k is k-stable if and only if ∼ is right invariant.

Proof. Suppose first that ∼ is right invariant. Let x ∼k y. Then (x)k ∼ (y)k.
Now (xkj + t)k = (x)kz and (ykj + t)k = (y)kz, where z ∈ Σj . Since ∼ is
right-invariant, (x)kz ∼ (y)kz. Hence xkj + t ∼k yk

j + t. The converse statement
can be proved similarly.

Recall the equivalence relation introduced in Section 1.4. The Myhill-Nerode
equivalence related to arbitrary language L is defined by

u ∼L v ⇐⇒ u−1L = v−1L.

Denote the equivalence relation of natural numbers obtained from the Myhill-
Nerode equivalence relation by ∼L,k. More precisely,

x ∼L,k y ⇐⇒ (x)k ∼L (y)k.

Note that the relation ∼L,k is k-stable according to the previous lemma and right-
invariance of ∼L.

We give a short note on the quotient sets, on which the Myhill-Nerode relation
is based. A regular language L can be characterized by the finiteness of the set
{u−1L | u ∈ Σ∗} (Theorem 12). This is actually true also for the set {Lu−1 | u ∈
Σ∗} and it is proved as Theorem III.8.1 in [10].

Lemma 12. Let L ⊆ Σ∗. The set {u−1L | u ∈ Σ∗} is finite if and only if
{Lu−1 | u ∈ Σ∗} is finite.

Proof. Suppose first that {Lu−1 | u ∈ Σ∗} is finite. This implies that also
{(uR)−1LR | uR ∈ Σ∗} is finite, since (Lu−1)R = {wR |wu ∈ L} = (uR)−1LR.
Therefore, by Theorem 12, LR is regular. Hence L is regular by Theorem 6. Using
again Theorem 12 we see that also the set {u−1L | u ∈ Σ∗} is finite. The converse
statement is true by symmetry.

3.5 Proof of Cobham’s theorem

Theorem 39. Suppose that k, l ≥ 2 are multiplicatively independent integers. If
a set of integers X is both k- and l-automatic, then its characteristic sequence is
ultimately periodic.

Proof. IfX is finite, then the characteristic sequence consists of zeros after a finite
prefix. Thus we may assume that X is infinite. Suppose that the characteristic
sequence of X is

c = c0c1c2 · · · .

Before going into the details of the proof we describe shortly the idea in it. In
the sequel we modify c with the equivalence relations of the previous chapter.

43

The idea is to construct an ultimately periodic sequence v so that its periodicity
implies the periodicity of c. The proof that the modified sequence is ultimately
periodic is based on Theorem 30 dealing with the number of recurrent factors.

Let us first construct v. Since X is k-automatic, the set (X)k is a regular
language. According to Theorem 12 the relation ∼(X)k

is of finite index and (X)k

is a union of some equivalence classes of the relation. Thus also ∼(X)k ,k is of
finite index and X is a union of some equivalence classes of ∼(X)k ,k. This means
that we may define an infinite word v = v0v1v2 · · · , where vn is the equivalence
class of n with respect to the relation ∼(X)k ,k. Since X is a union of some of the
equivalence classes of ∼(X)k ,k, we conclude that if v is ultimately periodic, so is
also c.

Next we show that there exists an integer m such that the number of recurrent
factors of length m of v is bounded by m. The periodicity of v follows then
from Theorem 30. For the proof we need to modify v by an l-stable equivalence
relation which is a refinement of ∼(X)k ,k. First we show that an equivalence class
of ∼(X)k ,k is both k- and l-automatic. Suppose that E is an equivalence class of
∼(X)k ,k and let x ∈ E. We prove that

E =
⋂

x∈Ejt

Ejt \
⋃

x6∈Ejt

Ejt, (18)

where
Ejt = {y ∈ N | ykj + t ∈ X}

for all j ≥ 0 and 0 ≤ t < kj . Namely, if x ∼(X)k ,k y then for all
j ≥ 0 and 0 ≤ t < kj we have x ∈ Ejt if and only if y ∈ Ejt. Thus
y ∈

⋂

x∈Ejt
Ejt \

⋃

x6∈Ejt
Ejt. Conversely, suppose that y belongs to the right

side of (18). Let z be an arbitrary word in Σ∗
k. Then

(y)kz ∈ (X)k ⇐⇒ y ∈ E|z|,[z]k ⇐⇒ x ∈ E|z|,[z]k ⇐⇒ (x)kz ∈ (X)k.

Thus (y)k ∼(X)k
(x)k, which implies that y ∼(X)k ,k x. Hence y ∈ E and iden-

tity (18) is hereby proved. Consider then the sets Ejt more closely. They are both
k- and l-automatic by Theorem 37. Let now u ∈ Σ∗

k be a word such that |u| = j
and [u]k = t. We have

(Ejt)k = (X)ku
−1.

Combining Theorem 12 and Lemma 12 we know that there exists only finitely
many sets (X)ku

−1. Hence there is only a finite number of setsEjt = [(X)ku
−1]k.

Now E is a finite boolean combination of l-automatic sets and therefore itself l-
automatic. Similarly we conclude that E is also k-automatic.

Next we make an l-stable refinement of ∼(X)k ,k. As mentioned earlier there
is only a finite number N of equivalence classes Ei of ∼(X)k ,k. Each of these
classes Ei, 0 ≤ i ≤ N , is l-automatic, which means that each (Ei)l is regular.
By Theorem 12, there exists a finite index right-invariant equivalence relation of
(Ei)l. Using Lemma 11 we obtain an l-stable equivalence relation of Ei such that

44

it partitions the set Ei into a finite number Ni of equivalence classes Eij. These
sets Eij with 0 ≤ i ≤ N and 0 ≤ j ≤ Ni partition X and define an equivalence
relation ∼l which is clearly a refinement of ∼(X)k ,k. Let u be the infinite sequence
u = u0u1u2 · · · , where un is the equivalence class of n with respect to the relation
∼l.

Now consider a recurrent factor w = w1w2 of length two of v. Since all equiv-
alence classes of ∼(X)k ,k are k- and l-automatic, the set
Sw1 = {n ∈ N | vn = w1} is both k- and l-automatic. Using Theorem 37 we also
conclude that {n ∈ N | vn+1 = w2} = {n ∈ N |n + 1 ∈ Sw2} is both k- and
l-automatic. Thus so is their intersection Sw = {n ∈ N | vn = w1, vn+1 = w2}.
We may then use Hansel’s lemma (Theorem 38) to conclude that Sw is syndetic
for any recurrent factor w. Hence there exists a positive integer d such that the
distance between two occurrences of any recurrent subword of length 2 is at most
d.

The final part of the proof is quite technical. The idea in it is the following.
With the help of the syndetic result above we show that, for some positive integers
p and q, each recurrent factor of v of fixed length m satisfying m < lq < 2kp

occurs inside some lq-block and not very far from the beginning of the block. We
count the number of lq-blocks of v using the l-stability related to u. This enables
us to estimate the number of recurrent factors of length m precisely enough.

We showed earlier that the number of equivalence classes of ∼l is finite. Let
c be this number and recall the definition of d from above. Then choose a real
number ε such that

0 < ε < 1 and
cε

1 − ε
<

1

2
. (19)

By Theorem 36, we can find integers p, q > 0 such that

1 <
lq

kp
< 1 +

ε

d
. (20)

In order to simplify the notation, we denote L = lq, K = kp and m = bK(1− ε)c.
We claim that for any recurrent factor w of length m of v, there exists an integer
y such that

vyLvyL+1 · · · v(y+1)L−1 = swt, (21)

where |s| ≤ εK.
To see this, we use the pigeon hole principle to conclude that a word w of

length at most K must appear infinitely often at the same position in factors of
the form vxKvxK+1 · · · v(x+2)K−1. Since the equivalence relation ∼(X)k ,k is k-
stable, we note that vxKvxK+1 · · · v(x+2)K−1 is completely determined by the factor
vxvx+1. Namely, if vx = vx′ , then x ∼(X)k ,k x′ and
xK + t ∼(X)k ,k x′K + t for any 0 ≤ t < K. Thus vxK+t = vx′K+t for any
0 ≤ t < K. By the definition of d, every recurrent factor of length 2 of v

has a second occurrence at a distance at most d. So there exists an infinite set
X = {x1 < x2 < · · · < xn < · · · } satisfying xn+1 − xn ≤ d and

vxnKvxnK+1 · · · v(xn+2)K = w′ww′′.

45

Let h = |w′|. Applying Lemma 10 with a = εK/d to the d-syndetic set X we
find integers xn and yn such that

ynL ≤ xnK + h ≤ ynL+ ad = ynL+ εK.

Thus we have a situation as in Figure 8, since also

xnK + h +m ≤ ynL +Kε +K(1 − ε) = ynL +K < (yn + 1)L.

Hence equation (21) is satisfied with y = yn and |s| ≤ εK.

w

ws

w′

t

w′′

?

6 6

xnK + h ≤ ynL+Kε

ynL (yn + 1)L

Figure 8: Illustration related to the proof

Now consider the number of factors of the form vynLvynL+1 · · · v(yn+1)L−1. It
must be bounded by the number of factors of the form
uynLuynL+1 · · ·u(yn+1)L−1, since ∼l is a refinement of ∼(X)k ,k. But ∼l is also l-
stable, so we conclude as above that a word of the form
uynLuynL+1 · · ·u(yn+1)L−1 is entirely determined by uyn

, i.e. by the equivalence
class of yn. Thus the number of recurrent factors vynLvynL+1 · · · v(yn+1)L−1 is
bounded by c and the word w may start from any of the εK first letters of such a
word. Hence the number of recurrent factors of length m of v is at most equal to

(εK)c ≤
1

2
K(1 − ε) ≤

1

2
(m + 1) ≤ m,

where the first inequality comes from equation (19). Thus, by Theorem 30, v is
ultimately periodic.

As a corollary, we finally get

Theorem 40. Let l, k ≥ 2 be multiplicatively independent integers, and suppose
that the sequence s = (sn)n≥0 is both k- and l-automatic. Then s is ultimately
periodic.

46

Proof. We may suppose that s ∈ ∆∗ = Σ∗
e for some integer e ≥ 2. For each

a ∈ Σe, consider the set Sa = {n ∈ N | sn = a}. Since s is both k- and l-
automatic, so is each set Sa by Theorem 16. From Cobham’s theorem it now
follows that the characteristic sequence wa of Sa is ultimately periodic. Suppose
that wa = xa(ya)

ω for each a ∈ Σe. Let c = max{|xa| | a ∈ Σe} and let ua be
the prefix of wa of length c. We may then write wa = ua(y

′
a)

ω. Let d be the
least common multiple of the lengths |y ′a|. Suppose that va = (y′a)

d/|y′

a|. Now
wa = ua(va)

ω, where |va| = d. Thus s is ultimately periodic, since it is of the
form uvω, where |v| = d, the letters v(i) satisfy

v(i) =
∑

a∈Σe

ava(i)

for i = 0, 1, . . . , d− 1 and u is the prefix of length c of s.

47

4 Shuffles of automatic sequences

In this section we consider shuffles of automatic sequences from the algorithmic
point of view. We have already proved some closure properties concerning subse-
quences in Theorems 20 and 21. They imply that automatic sequences are closed
under so called regular shuffles. Now our aim is to construct algorithms for the
calculation of generating morphisms and codings of the shuffles in order to make
these objects of discrete mathematics more concrete and pragmatic. This calcu-
lation of the morphisms and codings can, of course, be accomplished using the
different stages of the constructive proofs presented in the previous sections, but
the idea here is to make it in a more straightforward manner. For example, no
reversing of automata, which in general is quite a complex operation, is needed
in the algorithms. As an application we consider the construction of a generating
automaton for Schröder numbers modulo 3. A short complex analysis and some
generalizations are given in the end.

4.1 Definitions

Denote by uan+b = (uan+b)n≥0 the subsequence of u for integers a, b ≥ 0. We de-
fine regular m-shuffles of sequences u

(0), . . . ,u(m−1) with respect to a given rule
α, where α = r0r1 · · · rN−1 is a word over Σm and |α|i > 0 for i = 0, 1, . . . , m−1.
Let also αi = r0r1 · · · ri−1 for i = 1, 2, . . . , N and let α0 = ε. A sequence u is the
regular shuffle of u

(0), . . . ,u(m−1) by the rule α, if

uNn+i = u
(ri)
|α|ri

n+|αi|ri

for i = 0, 1, . . . , N − 1. For example, suppose that m = 3 and α = 01120. This
means that the shuffle u can be defined by blocks of lengthN = |α| = 5. Namely,

u = u
(0)
0 u

(1)
0 u

(1)
1 u

(2)
0 u

(0)
1 u

(0)
2 u

(1)
2 u

(1)
3 u

(2)
1 u

(0)
3 · · ·

From now on, we restrict ourselves to automatic sequences.

Theorem 41. Each regular m-shuffle of k-automatic sequences is k-automatic.
Conversely, if a regularm-shuffle of sequences u

(0),u(1), . . . ,u(m−1) is k-automatic,
then u

(i) is k-automatic for each i = 0, 1, . . . , m− 1.

Proof. Let the sequences u
(0), . . . ,u(m−1) be k-automatic. Then by

Theorem 20 the sequences uNn+i = u
(ri)
|α|ri

n+|αi|ri

are k-automatic for
i = 0, 1, . . . , N − 1. Thus applying Theorem 21 with a = N we conclude that a
regular m-shuffle of k-automatic sequences is k-automatic. For the converse, let
u be k-automatic. By the definition of the shuffle, each sequence u

(i)
|α|in+j, where

i = 0, . . . , m − 1 and j = 0, . . . , |α|i − 1, is a subsequence of u of the form
(uan+b)n≥0 for some a, b ≥ 0, and therefore k-automatic by Theorem 20. Thus
every sequence u

(i) is k-automatic by Theorem 21 with a = |α|i.

49

Note that an m-shuffle of k-automatic sequences is a k-uniformly morphic se-
quence by Theorem 18. This means that there exist a morphism ϕ : Γ∗ → Γ∗ and
a coding τ : Γ∗ → ∆∗ such that u = τ(ϕω(q0)) for a letter q0 in a suitable alpha-
bet Γ. Our aim is to find a simple algorithm for the calculation of such a triplet
(τ, ϕ, q0). As an input the algorithm gets triplets (τi, ϕi, q0i) generating the se-
quences u

(i) = τi(ϕ
ω
i (q0i)) which should be shuffled. We divide the examination

into three parts starting from some special cases.

4.2 Perfect shuffles

We say that u is the perfect m-shuffle of sequences u
(0), . . . ,u(m−1) if

umn+i = u
(i)
n

for i = 0, 1, . . . , m − 1. Thus it is a regular m-shuffle with the rule
α = 01 · · ·m− 1. For example, if m = 3 then u = u

(0)
0 u

(1)
0 u

(2)
0 u

(0)
1 u

(1)
1 u

(2)
1 · · · .

In the following, we are going to present two algorithms. The first one gives
a generating morphism and a coding of a perfect m-shuffle of k-automatic se-
quences in the special case m = k and the second algorithm suits for any m.

4.2.1 Perfect k-shuffle of k-automatic sequences

Before presenting the algorithm, we fix some notation. Suppose that
u

(i) = (u
(i)
n)n≥0 is a k-automatic sequence for i = 0, 1, . . . , k − 1, and let u

(i)

be generated by a k-DFAO Mi = (Γi,Σk, δi, qi0,∆i, τi). By Theorem 18, we may
also write u

(i) = τi(ϕ
ω
i (qi0)), where ϕi : Γ∗

i → Γ∗
i is a k-uniform morphism and

τi : Γ∗
i → ∆∗

i is a coding. Suppose that Γi = {qi0, qi1, . . . , qi(mi−1)}, where mi is
the size of the alphabet Γi. The output alphabet of the shuffle is ∆ =

⋃k−1
i=0 ∆i.

We also define the cartesian product of k-uniform morphisms ϕi : Γ∗
i → Γ∗

i for
i = 0, 1, . . . , l. It is a morphism

ϕ0 × ϕ1 × · · · × ϕl : (Γ0 × Γ1 × · · · × Γl)
∗ → (Γ0 × Γ1 × · · · × Γl)

∗

such that

(ϕ0 × ϕ1 × · · · × ϕl)(a0, a1, . . . , al)
= (a00, a10, . . . , al0) · · · (a0(k−1), a1(k−1), . . . , al(k−1)),

where ai is a letter in Γi and ϕi(ai) = ai0ai1 · · ·ai(k−1) for i = 0, 1, . . . , l. Now
we are ready to give the desired algorithm.

PERFECT_SHUFFLE_1

INPUT: (τ0, ϕ0, q00), . . . , (τk−1, ϕk−1, q(k−1)0)

50

1. For each i = 0, 1, . . . , k − 1:

Let Γi = {(a, b) | a ∈ Γi, b = ϕi(a)(i)} and Γ′
i = Γi ∪ Γi. Define

a morphism ϕ′
i : Γ′∗

i → Γ′∗
i by the image of each letter qij ∈ Γi and

(qij, b) ∈ Γi: Suppose that ϕi(qij) = a0 · · ·ak−1. Then

ϕ′
i(qij) = a0 · · ·ai−1(qij, ai)ai+1 · · ·ak−1,

ϕ′
i((qij, ai)) = ϕ′

i(ai).

2. Form the cartesian product

ϕ = ϕ′
0 × · · · × ϕ′

(k−1).

3. Suppose that (b0, . . . , b(k−1)) ∈ Γ′
0 × · · · × Γ′

k−1. Define

τ((b0, . . . , bk−1)) = τi(qij),

if there exists a unique index i such that bi = (qij, b) ∈ Γi for some qij ∈ Γi,
(and τ((b0, . . . , bk−1)) = τ0(b0), otherwise.)

4. Define q0 = (q00, . . . , q(k−1)0).

OUTPUT: (τ, ϕ, q0)

We prove that the previous algorithm produces a generating morphism and a cod-
ing of the shuffle u.

Theorem 42. Suppose that u
(i) = (u

(i)
n)n≥0 = τi(ϕ

ω
i (qi0)) for i = 0, . . . , k − 1,

where ϕi : Γ∗
i → Γ∗

i is a k-uniform morphism and τi : Γ∗
i → ∆∗

i is a coding.
Let u = (un)n≥0 be the perfect shuffle of sequences u

(i). Then the algorithm
PERFECT_SHUFFLE_1 with input (τ0, ϕ0, q00), · · · , (τk−1, ϕk−1, q(k−1)0) gives
a triplet (τ, ϕ, q0) such that u = τ(ϕω(q0)).

Proof. We prove the theorem using the connection between automatic and uni-
formly morphic sequences (Theorem 18). Instead of generating morphisms of
u

(i) we consider corresponding k-DFAOs Mi = (Γi,Σk, δi, q0i,∆i, τi). The idea
is to construct a k-DFAOM = (Γ,Σk, δ, q0,∆, τ) such that ukn+i = τ(δ(q0, (kn+

i)k)) = τi(δi(q0i, (n)k)) = u
(i)
n . The Phase 1 of the algorithm

corresponds to a construction of a modified automata
M ′

i = (Γ′
i, Σk, δ

′
i, qi0, ∆i, τ

′
i) for each i = 0, 1, . . . , k − 1. Now Γ′

i = Γi ∪ Γi,
where Γi = {(a, b) | a ∈ Γi, b = δi(a, i)}. The transitions are

δ′i(qij, l) = δi(qij, l), if l 6= i,
δ′i(qij, i) = (qij, δi(qij, i)),
δ′i((qij, b), l) = δ′i(b, l)

51

for l = 0, 1, . . . , k − 1.
First, we claim that if δi(qi0, w0 · · ·wl−1) = a and δi(qi0, w0 · · ·wl−1wl) = b

for any word w0 · · ·wl−1wl ∈ Γ∗
i , then

δ′i(qi0, w0 · · ·wl−1wl) =

{

b if wl 6= i,
(a, b) if wl = i.

This can be easily proved by induction on l. The case l = 0 is clear. Otherwise,
we have four different cases:

(a) wl−1, wl 6= i,
(b) wl−1 6= i, wl = i,
(c) wl−1 = i, wl 6= i,
(d) wl−1 = wl = i.

Suppose that the claim holds for l = n with δi(qi0, w0 · · ·wn−1) = a′ and
δi(qi0, w0 · · ·wn−1wn) = a. Assume that δi(qi0, w0 · · ·wnwn+1) = b. For ex-
ample, if w = w0 · · ·wn−1ii, then using the induction assumption we see that
δ′i(qi0, w) = δ′i(δ

′
i(qi0, w0 · · ·wn−1i), i) = δ′i((a

′, a), i) = δ′i(a, i) = (a, δi(a, i)) =
(a, b). Thus the claim holds for l = n + 1 in the case (d). The other cases are
proved similarly.

Now, if the final state of Mi is qij for input (n)k = w0w1 · · ·wl we claim that
the final state of the modified automaton M ′

i with input (kn+ i)k = w0w1 · · ·wli
is (qij, δi(qij, i)). This follows immediately from the previous claim. Phase 1 of
the algorithm does not concern codings, they are inessential at this point (e.g. τ ′i
could be chosen to be the identity mapping on Γ′

i).
In the next two phases we make a union M = (Γ,Σk, δ, q0,∆, τ) of the au-

tomata M ′
i . Define

Γ = Γ′
0 × · · · × Γ′

k−1,

∆ =
k−1
⋃

i=0

∆i and

δ((b0, . . . , bk−1), j) = (δ′0(b0, j), . . . , δ
′
k−1(bk−1, j)).

Suppose now that L′
i = {n ∈ N | δ′i(qi0, (n)k) ∈ Γi} for i = 0, . . . , k − 1. We

claim that sets L′
i partition N. Let (n)k = w0w1 · · ·wl, where wl = n (mod k)

is unique. By the definition of the modified automaton M ′
i the only transitions to

the states in Γi are of the form δ′i(x, i) and also every δ′i(x, i) ∈ Γi. Thus i = n
(mod k) is the only index such that with input (n)k the final state of M ′

i is in Γi.
This proves that the latter part of the definition of τ in Phase 3 is never applied
when generating the fixed point.

We have actually proven that in each letter (b0, . . . , bk−1) of the fixed point of
ϕ there exists only one index i such that bi ∈ Γi. We have also shown that, if
δi(qi0, (n)k) = qij , then δ′i(qi0, (kn + i)k)) = (qij, δ(qij, i)). Thus we conclude

52

that, if δi(qi0, (n)k) = qij, then

τ(δ(q0, (kn+ i)k)

= τ(δ′0(q00, (kn+ i)k), . . . , δ
′
(k−1)(q(k−1)0, (kn+ i)k))

= τ(. . . , δ′i(qi0, (kn+ i)k), . . .)

= τ(. . . , (qij, δi(qij, i)), . . .)

= τi(qij)

= τi(δi(qi0, (n)k)).

In other words, (ukn+i)n≥0 = (u
(i)
n)n≥0.

As an example, we apply the algorithm to the Thue-Morse sequences u
(0) =

u
(1) = t. Using Theorem 18 to the automaton of Example 2 we see that t can be

obtained by iterating the 2-uniform morphism h : Σ2 → Σ2:

0 7−→ 01

1 7−→ 10

Now we simulate PERFECT_SHUFFLE_1 with input (id, h, 0), (id, h, 0) to ob-
tain the generating morphism of the perfect shuffle of two Thue-Morse sequences.
After the first phase we have the following morphisms:

ϕ′
0: 0 7→ (0, 0)1 ϕ′

1: 0 7→ 0(0, 1)
1 7→ (1, 1)0 1 7→ 1(1, 0)
(0, 0) 7→ (0, 0)1 (0, 1) 7→ 1(1, 0)
(1, 1) 7→ (1, 1)0 (1, 0) 7→ 0(0, 1)

In Phase 2 we can minimize the cartesian product by presenting only the images
of those alphabets that are needed for the iteration of ϕω((0, 0)). Thus we have
ϕ :

(

0, 0
)

7→
(

(0, 0), 0
)(

1, (0, 1)
)

(

(0, 0), 0
)

7→
(

(0, 0), 0
)(

1, (0, 1)
)

(

1, (0, 1)
)

7→
(

(1, 1), 1
)(

0, (1, 0)
)

(

(1, 1), 1
)

7→
(

(1, 1), 1
)(

0, (1, 0)
)

(

0, (1, 0)
)

7→
(

(0, 0), 0
)(

1, (0, 1)
)

In order to simplify the notation we represent the morphism ϕ in another alphabet
{A,B,C,D,E}:

53

ϕ : A 7→ BC
B 7→ BC
C 7→ DE
D 7→ DE
E 7→ BC

In Phase 3 we define the coding τ as follows:

τ : A 7→ 0
B 7→ 0
C 7→ 0
D 7→ 1
E 7→ 1

Thus we can now easily verify that

ϕω(A) = BCDEDEBCDEBCBCDEDEBCBCDEBCDEDE · · ·

and
τ(ϕω(A)) = 001111001100001111000011001111 · · · ,

which clearly is the perfect shuffle of two Thue-Morse sequences. Note that in
this example the morphism ϕ obtained by the algorithm is not prolongable on the
letterA, nevertheless the fixed point ϕω(A) exists. This is guaranteed by Theorem
42.

As a final remark we note that for finding a generating morphism and a coding
of a k-shuffle of k-automatic sequences we also could apply a related but different
construction given by F. Durand [9, Prop. 3.1].

4.2.2 Perfect m-shuffle of k-automatic sequences

Suppose now that we have m k-automatic sequences u
(0), . . . ,u(m−1), where m

may be different from k. We use the notation of the previous subsection. For
general perfect shuffles we have the following algorithm:

PERFECT_SHUFFLE_2

INPUT:(τ0, ϕ0, q00), . . . , (τm−1, ϕm−1, q(m−1)0)

1. For each i = 0, 1, . . . , k − 1:

Let Γ′
i = Γi × {0, . . . , m − 1}. Define ϕ′

i : Γ′∗
i → Γ′∗

i as follows:
Suppose that ϕi(a) = a0a1 · · ·ak−1. For j = 0, 1, . . . , m− 1

ϕ′
i(a, j) = b0b1 · · · bk−1,

where for l = 0, 1, . . . , k − 1

bl = (ab(kj+l)/mc, kj + l (modm)).

54

2. Form the cartesian product ϕ = ϕ′
0 × · · · × ϕ′

m−1

3. Suppose that (b0, . . . , bm−1) ∈ Γ′
0 × · · · × Γ′

m−1. Define

τ((b0, . . . , bm−1)) =

{

τi(a) if bi = (a, i) for exactly one i,
τ0(b0) otherwise.

4. Define q0 = ((q00, 0), . . . , (q(m−1)0, 0)).

OUTPUT: (τ, ϕ, q0)

We prove that the algorithm acts correctly.

Theorem 43. Let u
(i) = (u

(i)
n)n≥0 = τi(ϕ

ω
i (q

(i)
0)) for i = 0, 1, . . . , m − 1,

where ϕi : Γ∗
i → Γ∗

i is a k-uniform morphism and τi : Γ∗
i → ∆∗

i is a coding.
Let u = (un)n≥0 be the perfect shuffle of the sequences u

(i). Then the algorithm
PERFECT_SHUFFLE_2 with input (τ0, ϕ0, q00), . . . , (τm−1, ϕm−1, q(m−1)0) gives
a triplet (τ, ϕ, q0) such that u = τ(ϕω(q0)).

Proof. Instead of generating morphisms of the sequences u
(i) we consider

again corresponding k-DFAOs Mi = (Γi,Σk, δi, q0i,∆i, τi). Suppose that
M ′

i = (Γ′
i,Σk, δ

′
i, (q0i, 0),∆i, τ

′
i) is a k-DFAO such that

δ′i((a, j), l) = (δi(a, b(kj + l)/mc), kj + l (modm)).

As in the proof of Theorem 42 the coding τ ′i is inessential. The automaton M ′
i

corresponds to the morphism ϕ′
i by Theorem 18.

We claim first that δ′i((qi0, 0), (mn+i)k) = (δi(qi0, (n)k), i). The new automa-
ton simulates the school algorithm of division by m in base k. Consider two states
(a, j) and (a′, j ′) in Γ′

i and a transition δi((a, j), l) from the former state to the
latter. The second component j of the state (a, j) ∈ Γ′

i corresponds to the current
remainder modulom. In the school algorithm we get the next digit of the quotient
by reading the new digit l of the dividend and calculating b(kj + l)/mc. The new
remainder j ′ is kj + l mod m, which is by definition the second component of
(a′, j ′). The change of the first components corresponds the transition in Mi from
a to the state a′, when the digit b(kj + l)/mc is read. Let (N)k be the input of
M ′

i . Thus in the first components of Γ′
i we simulate the original automaton Mi

with input (bN/mc)k. If N = mn + i, then the first component of the final state
is the final state of Mi with input (n)k, i.e. the state δi(qi0, (n)k), and the second
component is i. Thus δ′i((qi0, 0), (mn+ i)k) = (δi(qi0, (n)k), i).

As in Theorem 42 we form the union M = (Γ,Σk, δ, q0,∆, τ) of the automata

55

M ′
i . This corresponds to Phases 2 and 3 of the algorithm. We have

Γ = Γ′
0 × · · · × Γ′

m−1,

∆ =

k−1
⋃

i=0

∆i,

δ((b0, . . . , bm−1), j) = (δ′0(b0, j), . . . , δ
′
m−1(bm−1, j)),

where bi ∈ Γ′
i. The coding τ is defined as in Phase 3. As in Theorem 42 we show

that the latter part of the definition of τ is never applied when generating the fixed
point. Suppose that

Li = {n ∈ N | δ′i((qi0, 0), (n)k) = (a, i) for some a ∈ Γi}

for i = 0, 1, . . . , m− 1. Since there exists a unique i ∈ {0, . . . , m− 1} such that
n ≡ i (mod m), the sets Li partition N and in each letter (b0, . . . , bm−1) of the
fixed point of ϕ there exists only one index i such that bi = (a, i) for some a ∈ Γi.
Thus, by the previous calculations,

τ(δ(q0, (mn + i)k)

= τ(δ′0((q00, 0), (mn+ i)k), . . . , δ
′
m−1((q(m−1)0, 0), (mn+ i)k))

= τ(. . . , δ′i((qi0, 0), (mn+ i)k), . . .)

= τ(. . . , (δi(qi0, (n)k), i), . . .)

= τi(δi(qi0, (n)k)).

Since by Theorem 18 the automaton M corresponds to the morphism ϕ and
the coding τ with respect to the generation of the automatic sequence, the previous
calculation implies that umn+i = u

(i)
n , where u = τ(ϕω(q0)). Thus the algorithm

gives the desired triplet.

As an example, we apply the algorithm to the Thue-Morse sequence, the dual
Thue-Morse sequence obtained by interchanging 0 and 1 in t and the sequence of
2’s. So we have

u
(0) = t = hω(0),

u
(1) = t = 10010110011010010110 · · · = hω(1) and

u
(2) = 222 · · · = ϕω

2 (2),

where morphism h is like in the previous example and ϕ2(2) = 22. In Phase 1 we
get

56

ϕ0 : (0, 0) 7→ (0, 0)(0, 1)
(0, 1) 7→ (0, 2)(1, 0)
(0, 2) 7→ (1, 1)(1, 2)
(1, 0) 7→ (1, 0)(1, 1)
(1, 1) 7→ (1, 2)(0, 0)
(1, 2) 7→ (0, 1)(0, 2)

ϕ1: (1, 0) 7→ (1, 0)(1, 1)
(1, 1) 7→ (1, 2)(0, 0)
(1, 2) 7→ (0, 1)(0, 2)
(0, 0) 7→ (0, 0)(0, 1)
(0, 1) 7→ (0, 2)(1, 0)
(0, 2) 7→ (1, 1)(1, 2)

ϕ2: (2, 0) 7→ (2, 0)(2, 1)
(2, 1) 7→ (2, 2)(2, 0)
(2, 2) 7→ (2, 1)(2, 2)

For example, the last row of ϕ1 is calculated in the following way. The number
of sequences to be shuffled is 3 and we deal with 2-uniform sequences. Thus
m = 3, k = 2 and (a, j) = (0, 2). Then ϕ1(a) = ϕ1(0) = a0a1 = 01. If
l = 0, then kj + l = 2 · 2 + 0 = 4, b(kj + l)/mc = b4/3c = 1 and kj + l
(mod 3) = 1. The first letter is b0 = (a1, 1) = (1, 1). Similarly, with l = 1, we
have kj + l = 2 · 2 + 1 = 5, b(kj + l)/mc = b5/3c = 1 and kj + l (mod 3) = 2.
The second letter is b1 = (a1, 2) = (1, 2).

We minimize the representation of the cartesian product of the morphisms of
Phase 1 as before. Note that for the calculation of the fixed point u we need only
cartesian products of the form

(

(b0, j), . . . , (bm−1, j)
)

, where j = 0, . . . , m− 1 is
the same for all coordinates. The morphisms ϕ is

(

(0, 0), (1, 0), (2, 0)
)

7→
(

(0, 0), (1, 0), (2, 0)
)(

(0, 1), (1, 1), (2, 1)
)

(

(0, 1), (1, 1), (2, 1)
)

7→
(

(0, 2), (1, 2), (2, 2)
)(

(1, 0), (0, 0), (2, 0)
)

(

(0, 2), (1, 2), (2, 2)
)

7→
(

(1, 1), (0, 1), (2, 1)
)(

(1, 2), (0, 2), (2, 2)
)

(

(1, 0), (0, 0), (2, 0)
)

7→
(

(1, 0), (0, 0), (2, 0)
)(

(1, 1), (0, 1), (2, 1)
)

(

(1, 1), (0, 1), (2, 1)
)

7→
(

(1, 2), (0, 2), (2, 2)
)(

(0, 0), (1, 0), (2, 0)
)

(

(1, 2), (0, 2), (2, 2)
)

7→
(

(0, 1), (1, 1), (2, 1)
)(

(0, 2), (1, 2), (2, 2)
)

We represent the morphism in another alphabet {A,B, . . . , F} and in Phase 3 we
define the coding τ .

ϕ : A 7→ AB
B 7→ CD
C 7→ EF
D 7→ DE
E 7→ FA
F 7→ BC

τ : A 7→ 0
B 7→ 1
C 7→ 2
D 7→ 1
E 7→ 0
F 7→ 2

For example, let E =
(

(1, 1), (0, 1), (2, 1)
)

. Now b1 = (0, 1) is the unique letter
such that bi = (a, i). Thus τ(E) = τ1(0) = id(0) = 0.

Iterating the morphism ϕ we have

ϕω(A) = ABCDEFDEFABCDEFABCABCDEFDEFABC · · ·

and
τ(ϕω(A)) = 012102102012102012012102102012 · · · ,

57

which is the perfect shuffle of the sequences t, t and u2. Note that the algorithm
PERFECT_SHUFFLE_2 does not always give the minimal representation of the
generating morphism with respect to the number of letters. This is the case, for
example, in the calculations of Section 4.4.

4.3 Regular shuffles

Consider now a general regular m-shuffle u of k-automatic sequences
u

(0), . . . ,u(m−1) shuffled by a rule α = r0r1 · · · rN−1. In order to find a generating
morphism and a coding for u we may use the algorithms of the previous subsec-
tion. The idea is to construct first a new set of sequences v

(i), i = 0, . . . , N−1, so
that the perfect shuffle v of v

(i), i.e. the N -shuffle by the rule α′ = 01 · · ·N − 1,
corresponds to u. This means that

v
(i) = vNn+i = uNn+i = u

(ri)
|α|ri

n+|αi|ri

for i = 0, 1, . . . , N − 1. In other words, we have to construct an algorithm which
gives a triplet (τ ′, ϕ′, q′0) for the subsequence of the form u

(i)
an+b when a triplet

(τ, ϕ, q0) for u
(i)
n is given as input. Using automata this means the following:

Suppose that A = (Γ, Σk, δ, q0, ∆, τ) is a k-DFAO, which generates u
(i). We

have to construct a k-DFAO Mab = (Γab, Σk, δab, q0ab, ∆, τab) generating u
(i)
an+b

such that for input (n)k it simulates the behavior of A with input (an + b)k. By
definition of automatic sequences we are obliged to read the input (n)k from left
to right. Performing constant multiplication and addition starting from the most
significant digit makes the algorithm somewhat complicated. By Theorem 11,
we could construct first automaton M ′

ab which uses constant multiplication and
addition from right to left and then calculate automaton M ′R

ab for the reversed
finite-state function. But in that case we possibly need an exponential number
of states compared to the number of states of Mab and consequently compared
to the number of states of the original automaton A. Thus we would end up in
complex calculations. In the following we try to do this task in a simpler and
more straightforward manner.

Let us first consider the school algorithm for multiplication (Figure 9). Sup-
pose that we have input (n)k = n0n1 · · ·nln , constant (a)k = a0a1 · · ·al and
output p0p1 · · · pln+l+1 ∈ Σ∗

k such that [p0p1 · · · pln+l+1]k = p = na. Indeed, we
may need ln + l+ 2 digits to represent the product, since the greatest possible p is
(kl+1 − 1)(kln+1 − 1) = kln+l+2 − kln+1 − kl+1 + 1. In order to keep our notation
simple we allow zeros in the beginning of the output. In the school algorithm
the idea is to divide the multiplication into partial products and then add these by
associativity:

na = (

ln
∑

i=0

nik
ln−i) · a =

ln
∑

i=0

(ni · a)k
ln−i.

In practice, this means that we calculate first the products ri = ni · a. The base-k
representations ri0ri1 · · · ri(l+1) of products ri are called multiplication rows. Note

58

that l + 1 is the greatest possible nonzero power of k in the representation of ri,
since the greatest value of ri is (k − 1)(kl+1 − 1) = kl+2 − kl+1 − k + 1. In
the school algorithm we write these rows under each other so that all the digits
rij where i + j = k are in a same column. This corresponds to multiplication
of the partial products ri by kln−i. Finally, we perform the addition using school
algorithm with carries ci. Thus

pj = cj +
∑

i+k=j

rik (mod k) and

cj−1 =
1

k

((

cj +
∑

i+k=j

rik

)

− pj

)

,

for i = ln + l+1, . . . , 1, and cln+l+1 = 0. Note that carries are counted from right
to left in this procedure.

a0 · · · a
l−1

a
l

× n0 n1 · · · n
ln−1

n
ln

c0 c1 . . . cl cl+1 . . . cl+ln
cl+ln+1

r
ln0

r
ln1

· · · r
lnl

r
ln(l+1)

r
(ln−1)0

r
(ln−1)1

r
(ln−1)2

· · · r
(ln−1)(l+1)

. .
.

. .
.

. .
.

. .
.

. .
.

r10 · · · r
1l

r
1(l+1)

+ r00 r01 · · · r
0(l+1)

p
0
p

1
· · · p

l+1
p

l+2
· · · p

l+ln+1

Figure 9: Multiplication by school algorithm

Now our idea is to modify this school algorithm represented in Figure 9 so that
the calculations are performed from left to right. The problem in multiplication
from left to right is the control of the carries. In order to minimize values of the
carries we use intermediate sums si. We start calculating multiplication rows and
intermediate sums from left to right, i.e. starting from the bottom in Figure 10.
Intermediate sums

si = ri + (si−1 (mod kl+1)) · k

are represented by cisi0si1 · · · si(l+1) ∈ Σ∗
k for i = 0, . . . , ln. The initial value

s(-1) = 0. This corresponds to line c(-1)s(-1)0s(-1)1 · · · s(-1)(l+1) = 0l+3.
Consider now the greatest value for si. Clearly we have

si ≤ (kl+2 − kl+1 − k + 1) + (kl+1 − 1)k = 2kl+2 − kl+1 − 2k + 1.

This means that either ci = 0 or ci = 1. Define c′i = b(si0 + ci+1 + c′i+1)/kc for
i = 1, . . . , ln − 1 and c′ln = 0. Considering all possible values of ci+1 and si0 it is

59

easy to prove by induction that c′i ≤ 1 for all i. Comparing now Figures 9 and 10
we see that the correct value for pi, where i = −1, . . . , ln − 1, is si0 + ci+1 + c′i+1

(mod k) and, for i = ln, . . . , ln + l + 1, pi = s(ln)i. Note that there are a lot of
extra zeros in Figure 10. Namely ln + l+2 digits are enough for the representation
of the result p. Thus in addition to zeros c(-1)s(-1)0s(-1)1 · · · s(-1)(l+1) we have c0 =
c′0 = p−1 = 0. These zeros are needed in the sequel in the construction of an
automaton based on this algorithm.

In other words, during the calculation of the intermediate sums we do not know
the right values for c′i. But after calculating the digits of the last intermediate sum
sln we can start to calculate carries c′i and digits pi from right to left. From another
viewpoint, after the calculation of each si we could guess whether c′i = 0 or c′i = 1
and calculate the value of pi−1. Thus the digits pi could be calculated from left to
right and in the end we could verify the correctness of our guesses. This algorithm
seems to be nondeterministic because of the guesses, but actually it can be quite
easily modified to a deterministic one. In addition, we can easily modify this
algorithm to perform calculations of the form an+b, where b = 0, 1, . . . , a−1. We
just replace the definition of rln with rln = nln ·a+ b. Since b ≤ a−1 ≤ kl+1−2,
then sln ≤ (2kl+2 − kl+1 − 2k + 1) + (kl+1 − 2) = 2kl+2 − 2k − 1 and we have
cln ≤ 1. Thus c′i ≤ 1 for all i and, as before, the result p = na + b can contain
only ln + l + 2 digits.

a0 · · · a
l−1

a
l

× n0 n1 · · · n
ln−1

n
ln

c′
ln
c

ln
s

ln0
s

ln1
· · · s

lnl
s

ln(l+1)

r
ln0

r
ln1

· · · r
lnl

r
ln(l+1)

c′
ln−1
c

ln−1
s

(ln−1)0
s

(ln−1)1
s

(ln−1)2
· · · s

(ln−1)(l+1)

. .
.

. .
.

. .
.

. .
.

. .
.

c′
1
c

1
s

10
· · · s

1l
s

1l
s

1(l+1)

r10 · · · r
1(l−1)

r
1l

r
1(l+1)

c′
0
c0 s00 s01 · · · s

0l
s

0(l+1)

r00 r01 · · · r
0l

r
0(l+1)

+ c(-1) s(-1)0 s(-1)1 s(-1)2 · · · s
(-1)(l+1)

p-1 p
0

p
1

· · · p
l

p
l+1

· · · p
l+ln+1

Figure 10: Multiplication from left to right

Recall A = (Γ, Σk, δ, q0, ∆, τ) and Mab = (Γab,Σk, δab, q0ab,∆, τab). Next
we defineMab with the help of the multiplication algorithm described above. Note
that this automaton is deterministic regardless of the guesses of the carries in the
above formulation. Suppose that [a0 · · ·al]k = a, [b0 · · · bl]k = b and 0 ≤ b < a.

60

The set of states of the automaton is

Γab = {(q, q′, s)| q, q′ ∈ Γ, s = s0s1 · · · slsl+1 ∈ Σl+2
k }

and the initial state is q0ab = (q0, q0, 0
l+2). The first two coordinates q and q′

correspond to carries c′i = 0 and c′i = 1, respectively. Thus we will use the
notations q = q(0) and q′ = q(1) in the following.

Let x be an integer in {0, 1, . . . , k − 1} and s = s0s1 · · · sl+1. Define cs =
cs0s1 · · · sl+1, c0d0 and c1d1 to be the unique words satisfying
[cs0s1 · · · sl+1]k = [s1 · · · sl+1]kk+ax, [c0d0]k = s0+c+0 and [c1d1]k = s0+c+1.
Then the transition function is

δab((q
(0), q(1), s), x) = (q(0), q(1), s), where

q(0) =

{

δ(q(0), d0) if c0 = 0,
δ(q(1), d0) if c0 = 1,

q(1) =

{

δ(q(0), d1) if c1 = 0,
δ(q(1), d1) if c1 = 1.

Suppose also that c′′s′′ = c′′s′′0s
′′
1 · · · s

′′
l+1 is the word satisfying

[c′′s′′]k = [s]k + b.

Then the output function is defined as follows:

τab((q
(0), q(1), s)) =

{

τ(δ(q(0), s′′) if c′′ = 0,
τ(δ(q(1), s′′) if c′′ = 1.

Now it is easy to see that if the input of the automaton Mab is (n)k, then it
simulates the original automaton A with input (an + b)k. We just establish the
connection between the definition of the automaton and the previous multiplica-
tion algorithm. The nondeterministic guesses of the carries are handled by using
two state coordinates, q(0) and q(1), which correspond to values 0 and 1 of the
carry c′i, respectively. Denote the values of the current state by overlined symbols
and symbols with no overline correspond to the previous state. Now suppose that
we know the correct value of the carry bit c′. It determines the correct carry bit c′

of the previous state. For example, if c′ = 0, then the correct digit of the product p
is (s0 + c+0 (mod k)) = d0. In addition, we know the right value of c′. Namely,
c′ = b(s0 + c+ 0)/kc = c0. Hence we know, which one of the states q(0) and q(1)

was the right guess in the previous state. It was q(1), if c0 = 1, and we calculate
q(0) by the formula δ(q(1), d0).

The third coordinate of the initial state q0ab = (q0, q0, 0
l+2) corresponds to the

digits s(-1)0s(-1)1 · · · s(-1)(l+1) = 0l+2 of Figure 10. Actually, q0ab = (q0, q0, 0
l+2)

is not the only possible choice for the initial state of Mab, since the value of the
second coordinate q(1) can be chosen freely. It does not affect the transitions.
Namely, if [cs]k = [0l+2]kk + ax, then clearly c = 0. Therefore s0 + c + 0 = 0

61

and s0 + c + 1 = 1. Hence c0 = d0 = c1 = 0 and d1 = 1. The first tran-
sition is then δab((q0, q0, 0

l+2), n0) = (δ(q0, 0), δ(q0, 1), s00s01 · · · s0(l+1)). By
the definition of automatic sequences we may assume that δ(q0, 0) = q0. Thus
δab((q0, q0, 0

l+2), n0) = (q0, δ(q0, 1), s00s01 · · · s0(l+1)). The second coordinate
δ(q0, 1) is again meaningless. Namely, c′0 = 0 in Figure 10, which means that
the first coordinate is the correct guess. The meaning of this first transition is a
kind of initialization of the simulation of A.

After reading the whole input we end up to some state of the automaton Mab.
In this final state we have already simulated the multiplication a · n except for
the last l + 2 digits. These digits are pln · · · pln+l+1 = sln0 · · · sln(l+1). For the
multiplication a · n the correctly guessed carry of the final state is 0, the correct
state coordinate is q(0) and the correct simulation of the remaining digits is per-
formed in the transition δ(q(0), sln0 · · · sln(l+1)). But we want also to perform the
addition by b. The output function takes care of this using the same kind of idea
as above. We define that c′′s′′ = c′′s′′0s

′′
1 · · · s

′′
l+1 is the unique word satisfying

[c′′s′′0s
′′
1 · · · s

′′
l+1]k = [s]k + b. The only possible values for c′′ are 0 and 1. If

c′′ = 1, it just means that q(1) is the correctly guessed state coordinate. Thus the
effect of the remaining digits of the base k representations of an + b is formu-
lated as δ(q(1), s′′). If c′′ = 0, then the transition is δ(q(0), s′′). Finally, the output
function τ is used. We summarize this in terms of morphisms and codings.

SUBSEQUENCE

INPUT: (τ, ϕ, q0) and a0 · · ·al, b0 · · · bl ∈ Σl+1
k , where 0 < [b0 · · · bl]k = b <

[a0 · · ·al]k = a

1. Let Γab = {(q(0), q(1), s)| q(0), q(1) ∈ Γ, s = s0s1 · · · slsl+1 ∈ Σl+2
k } and

q0ab = (q0, q0, 0
l+2).

2. Define a morphism ϕab : Γ∗
ab → Γ∗

ab,

ϕab(q
(0), q(1), s0s1 · · · slsl+1) = (q

(0)
0 , q

(1)
0 , s0) · · · (q

(0)
k−1, q

(1)
k−1, s(k−1)),

where using the words cisi = cisi0si1 · · · si(l+1), ci0di0 and ci1di1 satisfying

[cisi]k = [cisi0si1 · · · si(l+1)]k = [s1 · · · sl+1]kk + ai,

[ci0di0]k = s0 + ci + 0 and

[ci1di1]k = s0 + ci + 1

we have

q
(0)
i =

{

ϕ(q(0))(di0) if ci0 = 0,
ϕ(q(1))(di0) if ci0 = 1,

q
(1)
i =

{

ϕ(q(0))(di1) if ci1 = 0,
ϕ(q(1))(di1) if ci1 = 1.

62

3. Define a coding τab : Γ∗
ab → ∆∗ as follows: Suppose that

c′′s′′ = c′′s′′0s
′′
1 · · · s

′′
l+1 is the unique word satisfying [c′′s′′]k = [s]k + b.

Then

τab((q
(0), q(1), s) =

{

τ(ϕ(· · ·ϕ(ϕ(q(0))(s′′0))(s
′′
1) · · ·)(s

′′
l+1)) if c′′ = 0,

τ(ϕ(· · ·ϕ(ϕ(q(1))(s′′0))(s
′′
1) · · ·)(s

′′
l+1)) if c′′ = 1.

OUTPUT: (τab, ϕab, q0ab)

By the above considerations we conclude

Theorem 44. Suppose that u = (un)n≥0 = τ(ϕω(q0)), where ϕ : Γ∗ → Γ∗ is a
k-uniform morphism and τ : Γ∗ → ∆∗ is a coding. Let a0 · · ·al and b0 · · · bl be
words over Σk such that 0 < [b0 · · · bl]k = b < [a0 · · ·al]k = a for some integers a
and b. Then the algorithm SUBSEQUENCE with input (τ, ϕ, q0), a0 · · ·al, b0 · · · bl
gives a triplet (τab, ϕab, q0ab) such that uan+b = τab(ϕ

ω(q0ab)).

As an example, we consider once again the Thue-Morse sequence, i.e. (τ, ϕ, q0) =
(h, id, 0). Suppose that a = 3 = [11]2 and b = 1 = [01]2. In this case we
may reduce the lengths of multiplication rows and intermediate sums by one, i.e.
l + 1 = 1. The reason is that in base 2 the largest value of any multiplication
rows is 1 · a. Thus only |a| digits are needed. In order to simplify the notation, we
denote (q(0), q(1), s) by [q(0)q(1)s0 · · · sl]2. For example, (0, 1, 10) = [0110]2 = 6.
Using the algorithm SUBSEQUENCE we have the following morphism ϕab and
coding τab:

ϕab : 0 7→ 4 · 7 τab : 0 7→ 1
1 7→ 6 · 9 1 7→ 1
2 7→ 8 · 11 2 7→ 0
3 7→ 10 · 5 3 7→ 0
4 7→ 4 · 7 4 7→ 1
5 7→ 6 · 13 5 7→ 1
6 7→ 12 · 15 6 7→ 0
7 7→ 14 · 9 7 7→ 1
8 7→ 8 · 11 8 7→ 0
9 7→ 10 · 1 9 7→ 0

10 7→ 0 · 3 10 7→ 1
11 7→ 2 · 5 11 7→ 0
12 7→ 8 · 11 12 7→ 0
13 7→ 10 · 5 13 7→ 0
14 7→ 4 · 7 14 7→ 1
15 7→ 6 · 9 15 7→ 1

For example, consider the state (0, 0, 11) = 3. We calculate

s0s1 = 11,
([s1 · · · sl+1]kk + a · 0)2 = (1 · 2 + 3 · 0)2 = 010 = c0s00s01,
(s0 + c0 + 0)k = (1 + 0 + 0)2 = 01 = c00d00,
(s0 + c0 + 1)k = (1 + 0 + 1)2 = 10 = c01d01,
([s1 · · · sl+1]kk + a · 1)2 = (1 · 2 + 3 · 1)2 = 101 = c1s10s11,
(s0 + c1 + 0)k = (1 + 1 + 0)2 = 10 = c10d10,
(s0 + c1 + 1)k = (1 + 1 + 1)2 = 11 = c11d11

63

and
q
(0)
0 = ϕ(q(0))(d00) = h(0)(1) = 1, since c00 = 0,

q
(1)
0 = ϕ(q(1))(d01) = h(0)(0) = 0, since c01 = 1,

q
(0)
1 = ϕ(q(1))(d10) = h(0)(0) = 0, since c10 = 1,

q
(1)
1 = ϕ(q(1))(d11) = h(0)(1) = 1, since c11 = 1.

Thus
3 = (0, 0, 11) 7→ (1, 0, 10)(0, 1, 01) = 10 · 5.

Now ([s]k + b)k = ([11]2 + 1)2 = (4)2 = 100 = c′′s′′ = c′′s′′0s
′′
1. Since c′′ = 1, the

output is τab(0, 0, 11) = τ(ϕ(ϕ(q(1))(s′′0))(s
′′
1)) = id(h(h(0)(0))(0)) = 0.

By using minimization (see Section 1.4) to the automata Mab we get simpler
morphisms and codings. The minimized form of the previous example is pre-
sented in the following.

ϕ : 0 7→ 0 · 1 τ : 0 7→ 1
1 7→ 0 · 2 1 7→ 1
2 7→ 1 · 3 2 7→ 0
3 7→ 4 · 2 3 7→ 1
4 7→ 5 · 3 4 7→ 0
5 7→ 5 · 4 5 7→ 0

Iterating morphism ϕ we have

ϕω(0) = 010201130102024201020113011353130102 · · ·

and
τ(ϕω(0)) = 111011111110100011101111111101111110 · · · .

Comparing this sequence to the Thue-Morse sequence, we see that it is t3n+1.

t = 01101001100101101001011001101001100101100

110100101101001100101101001011001101001011

010011001011001101001100 · · · .

To summarize, by combining the algorithm SUBSEQUENCE with the algorithm
PERFECT_SHUFFLE_2, we are able to calculate triplets (τ, ϕ, q0) for regular
shuffles of k-automatic sequences with any given rule α.

4.4 Applying algorithms to Schröder numbers

In this section we consider Schröder numbers introduced in Example 4; see page 21.
We show, how the automaton of Figure 7 is obtained. For the construction we use
shuffling algorithm PERFECT_SHUFFLE_2.

Let us denote the sequence of Schröder numbers by (Sn)n≥0. We have

(Sn)n≥0 = 1, 2, 6, 22, 90, 394, 1806, 8558, 41586, . . . ,

64

where the commas are only for clarification. This is the sequence A006318 in
Sloane’s On-Line Encyclopedia of Integer Sequences [23]. It satisfies the recur-
rence relation

Sn+1 = 3Sn +

n−1
∑

k=1

SkSn−k

for n ≥ 1 with S0 = 1 and S1 = 2. Consider first the sequence
s2n = (S2n (mod 3))n≥0. It can be proved that Sn is divisible by 3 for every
positive even integer n [30]. Thus

s2n = 1 0 0 0 · · ·

and it is clearly a fixed point ϕω
0 (1), where ϕ0 is a 3-uniform morphism

1 7→ 100

0 7→ 000.

The residue modulo 3 of Schröder numbers with odd index gives a little more
complicated sequence:

s2n+1 = (S2n+1 (mod 3))n≥0 = 2 1 1 2 1 0 0 0 1 · · ·

We construct an automaton generating this sequence starting from the formula

S2n−1 (mod 3) =

{

0 if 2 ∈ L1((bm/3c)3),
1 if 2 6∈ L1((bm/3c)3) and m 6≡ 1 (mod 3),
2 if 2 6∈ L1((bm/3c)3) and m ≡ 1 (mod 3),

for all n ≥ 1 [33]. Recall that L1(w) denotes the set of the factors of w of length
1. This formula gives the automatonM2n−1 = (Q, Σ3, δ, q0, Σ3, τ) in Figure 11.

Next we convert this to an automatonM2n+1 = (Q′, Σ3, δ
′, q′0, Σ3, τ

′) gener-
ating (S2n+1 (mod 3))n≥0. With input (n)3 we just have to simulate the previous
automaton with input (n+1)3, since 2(n+1)−1 = 2n+1. The idea is to guess the
digit where the ternary representations of n and n + 1 differ. After the difference
the representations of n and n + 1 must consist only of 2’s and 0’s, respectively.
This simulation is done by denoting the state by a pair xy, where x is the state of
M2n−1 with input (n)3 and y is the state with input (n + 1)3. The initial state is
q0q1 and the transitions are defined by the rule

δ′(xy), a) =

{

δ(x, a)δ(y, 0) if a = 2,
δ(x, a)δ(x, a+ 1) otherwise.

The output is the output of the second coordinate τ ′(xy) = τ(y). We obtain
the automaton presented in Figure 12, which is minimized (see Section 1.4) in
Figure 13.
The corresponding 3-uniform morphism ϕ1 on the alphabet {a, b, c, d} and the
coding τ1 are

65

q0/1

q1/2

q2/1 q3/0

0

1

0,1,2

1

0
2

2

0,1,2

Figure 11: Automaton generating (S2n−1 (mod 3))n≥1

q0q1/2 q1q2/1

q2q0/1 q3q3/0

q2q3/0

q3q0/1

0 1

2

0,1,2

1

0

2

2

2

0,1

0,1

0,1,2

Figure 12: Automaton generating (S2n+1)n≥0

ϕ1 : a 7→ abc τ1 : a 7→ 2
b 7→ abd b 7→ 1
c 7→ ddc c 7→ 1
d 7→ ddd d 7→ 0

66

a/2 b/1

c/1 d/0

0 1

2 0,1,2

1

0

2 2

0,1

Figure 13: Minimized automaton generating (S2n+1)n≥0

Next we make the perfect shuffle of these sequence s2n and s2n+1 in order to ob-
tain the sequence s = (Sn)n≥0. We use the algorithm PERFECT_SHUFFLE_2.
Phase 1 gives the following morphisms:

ϕ′
0 : (1, 0) 7→ (1, 0) (1, 1) (0, 0) ϕ′

1 : (a, 0) 7→ (a, 0) (a, 1) (b, 0)
(1, 1) 7→ (0, 1) (0, 0) (0, 1) (a, 1) 7→ (b, 1) (c, 0) (c, 1)
(0, 0) 7→ (0, 0) (0, 1) (0, 0) (b, 0) 7→ (a, 0) (a, 1) (b, 0)
(0, 1) 7→ (0, 1) (0, 0) (0, 1) (b, 1) 7→ (b, 1) (d, 0) (d, 1)

(c, 0) 7→ (d, 0) (d, 1) (d, 0)
(c, 1) 7→ (d, 1) (c, 0) (c, 1)
(d, 0) 7→ (d, 0) (d, 1) (d, 0)
(d, 1) 7→ (d, 1) (d, 0) (d, 1)

Only the images of the letters needed for the generation of the fixed point of the
cartesian product ϕ′

0 × ϕ′
1 are presented in the following.

67

(

(1, 0), (a, 0)
)

7→
(

(1, 0), (a, 0)
)(

(1, 1), (a, 1)
)(

(0, 0), (b, 0)
)

(

(1, 1), (a, 1)
)

7→
(

(0, 1), (b, 1)
)(

(0, 0), (c, 0)
)(

(0, 1), (c, 1)
)

(

(0, 0), (b, 0)
)

7→
(

(0, 0), (a, 0)
)(

(0, 1), (a, 1)
)(

(0, 0), (b, 0)
)

(

(0, 1), (b, 1)
)

7→
(

(0, 1), (b, 1)
)(

(0, 0), (d, 0)
)(

(0, 1), (d, 1)
)

(

(0, 0), (c, 0)
)

7→
(

(0, 0), (d, 0)
)(

(0, 1), (d, 1)
)(

(0, 0), (d, 0)
)

(

(0, 1), (c, 1)
)

7→
(

(0, 1), (d, 1)
)(

(0, 0), (c, 0)
)(

(0, 1), (c, 1)
)

(

(0, 0), (a, 0)
)

7→
(

(0, 0), (a, 0)
)(

(0, 1), (a, 1)
)(

(0, 0), (b, 0)
)

(

(0, 1), (a, 1)
)

7→
(

(0, 1), (b, 1)
)(

(0, 0), (c, 0)
)(

(0, 1), (c, 1)
)

(

(0, 0), (d, 0)
)

7→
(

(0, 0), (d, 0)
)(

(0, 1), (d, 1)
)(

(0, 0), (d, 0)
)

(

(0, 1), (d, 1)
)

7→
(

(0, 1), (d, 1)
)(

(0, 0), (d, 0)
)(

(0, 1), (d, 1)
)

Coding τ is obtained using the rule of the algorithm. Thus simplifying the notation
we have:

ϕ : A 7→ ABC τ : A 7→ 1
B 7→ DEF B 7→ 2
C 7→ GHC C 7→ 0
D 7→ DIJ D 7→ 1
E 7→ IJI E 7→ 0
F 7→ JEF F 7→ 1
G 7→ GHC G 7→ 0
H 7→ DEF H 7→ 2
I 7→ IJI I 7→ 0
J 7→ JIJ J 7→ 0

The fixed point

τ(ϕω(A)) = 1 2 0 1 0 1 0 2 0 1 0 0 0 0 0 0 0 1 0 2 0 · · ·

is (Sn (mod 3))n≥0. For example, S17 = 111818026018 ≡ 1 (mod 3).
Now using Theorem 18 we can construct a 3-DFAO from the 3-uniform mor-

phism and the coding above. Minimizing this automaton leads to the automaton
represented in the Figure 7. Note that in this case the algorithm
PERFECT_SHUFFLE_2 did not give the simplest morphism with respect to the
number of letters.

4.5 On complexities of the algorithms

In this subsection we consider complexities of the previous algorithms. First we
define what we mean by complexity. In our algorithms the input mainly consist
of triplets (τ, ϕ, q0), where τ : Γ∗ → Σ∗ is a coding, ϕ : Γ∗ → Γ∗ is a k-uniform
morphism and q0 is the first symbol of the considered fixed point of ϕ. Consider
the size of a representation of such a triplet, which clearly depends on the number
of letters in the alphabet Γ. Suppose that we present the triplet (τ, ϕ, q0) as a

68

composition of triplets (a, ϕ(a), τ(a)) for each letter a ∈ Γ and fix that the first
letter of the first triplet is q0. Thus the size of the representation is |Γ| × (k +
2) symbols. The algorithms PERFECT_SHUFFLE_1, PERFECT_SHUFFLE_2
and SUBSEQUENCE modify such representations and make cartesian products of
these. The number of operations made in each stage of the algorithm is directly
proportional to the size of these presentations. Thus the size of the output triplet
compared to the size of the input is an appropriate measure of complexity. In other
words, the complexity function CX of a given algorithm X is a mapping from N

into N such that CX(n) is the maximal number of letters of the output when n is
the number of letters of the input.

First, we consider the algorithm PERFECT_SHUFFLE_1. Let mi be the
number of letters in Γi for i = 0, 1, . . . , k − 1. The size of the input is n =
(k + 2)

∑k−1
i=0 mi, since all the morphisms ϕ are k-automatic. In state 1 of the

algorithm we make new alphabets Γi. Every letter of Γi induces one new letter.
Thus we double the number of letters, i.e. |Γ′

i| = 2|Γi|. The number of letters in
the output triplet (τ, ϕ, q0) is (k+2)

∏k−1
i=0 (2mi). Denote the complexity function

of this algorithm by C1. We assume that k is fixed. The size of the output satisfies

(k + 2)

k−1
∏

i=0

(2mi) ≤ (k + 2)

(

∑k−1
i=0 2mi

k

)k

= (k + 2)

(

2n

(k + 2)k

)k

.

Thus we have an approximation

C1(n) ≤

(

1

k + 2

)k−1(
2

k

)k

nk.

Secondly, consider the algorithmPERFECT_SHUFFLE_2. Suppose thatmi =
|Γi| for i = 0, 1, . . . , m − 1 like above. The size of the input is now (k +
2)
∑m−1

i=0 mi. In the algorithm we define Γ′
i = Γi × Σm. Hence |Γ′

i| = m ·mi and
the size of the output is (k+2)

∏m−1
i=0 (m ·mi). Denote the complexity function of

PERFECT_SHUFFLE_2 by C2. Using similar considerations as above, we can
prove that

C2(n) ≤

(

1

k + 2

)m−1

nm.

If we compare the two algorithms in the case, where m = k, we note that
PERFECT_SHUFFLE_1 has lower complexity than PERFECT_SHUFFLE_2 if
k > 2. In the case k = 2 they are equal.

Finally, we analyze the complexity of the algorithm SUBSEQUENCE. Let the
size of Γ bem. Then the input consists of the representation of the triplet (τ, ϕ, q0)
with (k + 2)m symbols and 2(l + 1) symbols representing the numbers a and b.
Thus the size of Γab is m2kl+2 and the size of the output triplet (τab, ϕab, q0ab) is
(k + 2)m2kl+2. Suppose that l is fixed and denote the complexity function of this
algorithm by C3. We define

C3(n) = max{(k + 2)m2kl+2},

69

where the maximum is taken over all m ≤ n−2(l+1)
k+2

. Hence we may say that all
the three algorithms have polynomial complexity.

4.6 Final Remarks

Let us consider shuffles of automatic sequences from a couple of other view-
points. To begin with, we study the following problem related to fixed points of
morphisms:

Problem 1. Suppose that w = f2(f
ω
1 (a)), where f1 : Σ∗ → Σ∗ is a k-uniform

and f2 : Σ∗ → ∆∗ is an l-uniform morphism. Represent w in the form f ′
2(f

′ω
1 (a)),

where f ′
1 is still a k-uniform morphism but f ′

2 is a coding.

It follows from Corollary 3 that such a presentation always exists. Finding the
representation is actually equivalent to the question of calculating the generat-
ing triplet of the perfect l-shuffle of k-automatic sequences. Namely, let v =
v0v1v2 · · · = fω

1 (a). Then w = f2(v) = f2(v0)f2(v1)f2(v2) · · · . Define now
codings τi, 0 ≤ i ≤ l − 1 by the rule τi(a) = f2(a)(i) for all a ∈ Σ. By this
definition, we have

f2(v) = τ0(v0)τ1(v0) · · · τl−1(v0)τ0(v1)τ1(v1) · · · τl−1(v1) · · ·

This is the perfect l-shuffle of k-automatic sequences τi(f
ω
1 (a)), 0 ≤ i ≤ l − 1

and our algorithm PERFECT_SHUFFLE_2 with input (τi, f1, a), 0 ≤ i ≤ l − 1
gives the desired triplet (f ′

2, f
′
1, a).

Secondly, we make a generalization to our notion of regular shuffles. Sup-
pose that the shuffle is made according to a special infinite rule called a directive
sequence. This means that we read letter by letter this directive sequence and
all the sequences to be shuffled. The directive sequence tells us from which se-
quence the next letter of the shuffle comes from. More formally, let us shuffle
sequences u

(i) = (u
(i)
n)n≥0, 0 ≤ i ≤ m − 1 according to the directive sequence

α = r0r1r2 · · · over the alphabet Σm. Denote αi = r0r1 · · · ri−1 for i ≥ 1 and let
α0 = ε. The resulting shuffle u = u0u1u2 · · · satisfies the rule

ui = u
(ri)
|αi|ri

.

and it is called the shuffle of the sequences u
(i) with directive sequence α . For

example, suppose that m = 3 and α = 00122201 · · · . Then the shuffle of u
(i),

0 ≤ i ≤ 2 with directives sequence α begins with

u
(0)
0 u

(0)
1 u

(1)
0 u

(2)
0 u

(2)
1 u

(2)
2 u

(0)
2 u

(1)
1

Compare the previous definition to the definition of regular shuffles. The rule
of a regular shuffle, which is a finite word, is now replaced by an infinite word.
In fact, regular shuffles are just shuffles with periodic directive sequence. When
considering automatic sequences we have the following closure property, which
follows directly from Theorem 41.

70

Theorem 45. The shuffle of automatic sequences with periodic directive sequence
is an automatic sequence.

In the theorem we may even replace the periodic directive sequence with an
ultimately periodic sequence since the class of automatic sequences is closed un-
der shifts (Theorem 25). This means that after a finite prefix we may construct
the shuffle according to a periodic directive sequence using suffices of the original
sequences, i.e. shifted automatic sequences. Now we could try to generalize this
result and consider the following question.

Problem 2. Is the shuffle of automatic sequences with automatic directive se-
quence always automatic?

The answer is unfortunately negative. We construct the following counter exam-
ple.

Example 8. Suppose that u
(0) is a sequence of zeros and u

(1) is a characteristic
sequence of powers of 2.

u(1)
n =

{

1 if n = 2k for k ≥ 0,
0 otherwise.

Thus we have
u

(1) = 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 · · ·

Both these sequences u
(0) and u

(1) are clearly 2-automatic. Suppose now that the
directive sequence α is equal to u

(1). Because 1 occurs only in the sequence u
(1)

in the position 2k and letters from sequence u
(1) are only in every 2kth position of

the shuffle u = u0u1u2 · · · , we have

un =

{

1 if n = 22k

for k ≥ 0,
0 otherwise.

But this sequence is not automatic, which can be easily proved by pumping lemma.
Otherwise there would exist an automaton recognizing the language
L = {102j

| j ≥ 0}. By pumping lemma, there exists a word of the form uvw such
that v 6= ε and uviw belongs to L for every i ≥ 0. Now v cannot contain 1, since
words of the language contain only one letter 1. Thus v is of the form 0s. Suppose
that u = 10r , where r ≥ 0. Now uviw = 10r0si02j−(r+s) = 102j+s(i−1) ∈ L for
every i ≥ 0. This means that all numbers 2j + s(i− 1) should be powers of two,
which is clearly impossible.

71

References

[1] B. Adamczewski, Y. Bugeaud, and F. Luca, Sur la complexité des nombres
algébriques. C. R. Acad. Sci. Paris, ser. I 339, 11–14, 2004.

[2] J.-P. Allouche, Automates finis en théorie des nombres. Exposition. Math. 5,
239–266, 1987.

[3] J.-P. Allouche and J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence.
In C. Ding, T. Helleseth, and H. Niederreiter, editors, Sequences and Their
Applications, Proceedings of SETA ’98, 1-16, Springer-Verlag, 1999.

[4] J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications,
Generalizations. Cambridge University Press, 387–391, 2003.

[5] V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire, Logic and p-
recognizable sets of integers. Bull. Belg. Math. Soc. 1, 191–238, 1994. Cor-
rigendum, Bull. Belg. Math. Soc. 1, 577, 1994.

[6] J. A. Brzozowski, Canonical regular expressions and minimal state graphs
for definite events. In Mathematical Theory of Automata, Volume 12 of MRI
Symposia Series, Polytechnic Press, Polytechnic Institute of Brooklyn, N.Y.,
529–561, 1962.

[7] A. Cobham, On the base-dependence of set of numbers recognizable by fi-
nite automata. Math. Systems Theory 3, 186–192, 1969.

[8] A. Cobham, Uniform tag sequences. Math. Systems Theory 6, 164–192,
1972.

[9] F. Durand, A characterization of substitutive sequences using return words.
Discrete Math. 179, no. 1-3, 89–101, 1998.

[10] S. Eilenberg, Automata, Languages, and Machines. Vol. A. Academic Press,
1974.

[11] S. Ferenczi and C. Mauduit, Transcendence of numbers with a low complex-
ity expansion. J. Number Theory 67, 146–161, 1997.

[12] G. Hansel, A propos d’un théorème de Cobham. In D. Perrin, editor, Actes
de la Fête des Mots, Greco de Programmation, CNRS, Rouen, 55–59, 1982

[13] G.A. Hedlund and M. Morse, Symbolic dynamics II: Sturmian trajectories.
Amer. J. Math. 62 1–42, 1940.

[14] J.E. Hopcroft, An n logn algorithm for minimizing the states in a finite au-
tomaton. In Z. Kohavi, editor, The Theory of Machines and Computations,
Academic Press, 189–196, 1971

72

[15] T. Kärki, Transcendence of numbers with an expansion in a subclass of com-
plexity 2n + 1. TUCS Tech. Rep. 654, Turku Centre for Computer Science,
Finland, 1–13, December 2004.

[16] T. Kärki, A note on the proof of Cobham’s theorem. TUCS Tech. Rep. 713,
Turku Centre for Computer Science, Finland, 1–4, September 2005.

[17] M. Lothaire, Applied Combinatorics on Words. Cambridge University Press,
26–35, 2005.

[18] C. Michaux and R. Villemaire, Cobham’s theorem seen through Büchi’s the-
orem. In Proc. 20th Int. Conf. on Automata, Languages, and Programming
(ICALP), Vol. 700 of Lecture Notes in Computer Science, 325–334, Springer-
Verlag, 1993.

[19] C. Michaux and R. Villemaire, Presburger arithmetic and recognizability
of sets of natural numbers by automata: New proofs of Cobham’s and Se-
menov’s theorems. Ann. Pure Appl. Logic 77, 251–277, 1996.

[20] M. Minsky and S. Papert, Unrecognizable sets of numbers. J. Assoc. Com-
put. Mach. 13, 281–286, 1966.

[21] F.R. Moore, On the bounds for state-set size in the proofs of equivalence
between deterministic, nondeterministic and two-way finite automata. IEEE
Trans. Comput. 20, 1211–1214, 1971.

[22] A. Muchnik, Definable criterion for definability in Presburger Arithmetic
and its application. preprint in Russian, Institute of New Technologies, 1991.

[23] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences
http://www.research.att.com/∼njas/sequences/index.html

[24] E. Prouhet, Mémoire sur quelques relations entre les puissances des nom-
bres. C. R. Acad. Sci. Paris, ser. I 33, 225, 1851.

[25] C. Reutenauer, Démonstration du théorème de Cobham sur les ensembles
de nombres reconnaissables par automate fini, d’après Hansel. In Séminaire
d’Informatique Théorique, Année 1983-84, Université Paris 7, Paris, 217–
224, 1984.

[26] M. Rigo and L. Waxweiler, A note on syndeticity, recognizable sets and
Cobham’s theorem. To appear in Bull. EATCS.

[27] R.M. Ritchie, Finite automata and the set of squares. J. Assoc. Comput.
Mach. 10, 528-531, 1963.

[28] A.L. Semenov, Presburgerness of predicates regular in two number sys-
tems (in Russian). Sibirsk. Mat. Zh. 18, 403–418, 1977, English translation,
Siberian Math. J. 18, 289-299, 1997.

73

[29] J. Shallit, Numeration systems, linear recurrences, and regular sets. Inform.
and Comput. 113, no. 2, 331–347, 1994.

[30] L. Shapiro, Elementary problem E 3343. Amer. Math. Monthly 96, 734,
1989. Solution by Carl Schoen and Paolo Ranaldi, Amer. Math. Monthly 98,
368, 1991.

[31] M. Quéffelec, Une nouvelle propriété des suites de Rudin-Shapiro. Annales
de l’institut Fourier 37 no. 2, 115–138, 1987.

[32] B. Watson, Taxonomies and Toolkits of Regular Language Algorithms.
Ph.D. thesis, Department for Mathematics and Computer Science, Eind-
hoven University of Technology, Eindhoven, The Netherlands, 1995.

[33] B.M.M. de Weger, Elementary problem E 3470. Amer. Math. Monthly 98,
955, 1991. Solution by M. Vowe and O.P. Lossers, Amer. Math. Monthly
101, 83-84, 1994. Also see 102, 936, 1995.

74

Index
alphabet, 3
automatic numbers, 34
automatic sequence, 19

block compression, 31
block substitution, 31

cartesian product, 50
catenation, 3
characteristic function, 3
characteristic sequence, 3
coding, 4
complexity function, 69

deterministic finite automaton, 4
deterministic finite automaton with out-

put, 10
DFA, 4
DFAO, 10
directive sequence, 70

factor, 3
fiber, 10
finite-state function, 10
fixed point, 25

intermediate sum, 59

k-fiber, 22
kernel, 23

language, 3
length, 3
letter, 3

minimal automaton, 12
morphic sequence, 25
morphism, 4
multiplication rows, 58
multiplicatively dependent, 35
multiplicatively independent, 35
Myhill-Nerode equivalence, 12

NFA, 5

nondeterministic finite automaton, 5
nonerasing, 4
normalized representation, 7

output function, 10

partial products, 58
perfect m-shuffle, 50
periodic deletion, 30
prefix, 3
prolongable, 25
properly recurrent, 40
pure morphic sequence, 25

rational expression, 6
rational language, 6
recognizable language, 4
recurrence, 32
recurrent state, 40
regular language, 4
regular shuffle, 49
reversal, 3
right congruence, 12
right dense, 38
right-invariant, 12
Rudin-Shapiro sequence, 21

Schröder numbers, 21
shift, 30
stable, 42
subset construction, 6
subword complexity, 31
suffix, 3
syndetic, 38

Thue-Morse sequence, 19
transition function, 4
transition relation, 5

ultimately periodic, 3
uniform morphism, 4
uniformly morphic sequence, 25

word, 3

75

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 952-12-1688-3
ISSN 1239-1891

