
Viorel Preoteasa

Mechanical Verification of Recursive Proce-
dures Manipulating Pointers using Separa-
tion Logic

TUCS Technical Report
No 753, April 2006

Mechanical Verification of Recursive Proce-
dures Manipulating Pointers using Separa-
tion Logic

Viorel Preoteasa
Department of Computer Science
Åbo Akademi University and
Turku Centre for Computer Science
DataCity, Lemminkäisenkatu 14A
Turku 20520, Finland

TUCS Technical Report

No 753, April 2006

Abstract

Using a predicate transformer semantics of programs, we introduce state-
ments for heap operations and separation logic operators for specifying pro-
grams that manipulate pointers. We prove consistent Hoare total correctness
rules for pointer manipulating statements according to the predicate trans-
former semantics. We prove the frame rule in the context of a programming
language with recursive procedures with value and result parameters and lo-
cal variables, where program variables and addresses can store values of any
type of the theorem prover. The theory, including the proofs, is implemented
in the theorem prover PVS.

Keywords: Pointer Programs. Separation Logic. Recursive Procedures.
Predicate Transformers Semantics. Mechanical Verification of Programs.

TUCS Laboratory
Software Construction

1 Introduction

Separation logic [10, 7, 13] is a powerful tool for proving correctness of imper-
ative programs that manipulate pointers. However, without theorem prover
support, such tasks are unfeasible. By employing Isabelle/HOL [6] theorem
prover and separation logic, Weber [12] implements relatively complete Hoare
[4] logics for a simple while programming language extended with heap opera-
tions. Nevertheless, his implementation does not treat (recursive) procedures
and local variables.

In this paper, we introduce a predicate transformer semantics for imper-
ative programs with pointers and define separation logic constructs. Based
on this semantics, we prove Hoare total correctness rules for heap operations
(new, dispose, lookup, and update). Our work is implemented in the theorem
prover PVS [8] and it is based on a previous formalization [1] of Refinement
Calculus [2] with recursive procedures.

Even if possible, we have chosen not to implement address arithmetic [10]
in our calculus. Unlike approaches presented by Reynolds [10] or Weber [12],
where memory addresses are integers and can store only integer values, our
work allows addresses to store values of any type available in the theorem
prover.

The main contribution of this work is the formal proof of the frame rule,
[5, 13], in the context of a programming language with recursive procedures
with value and result parameters and local variables, where program variables
and addresses can store values of any type of the theorem prover.

2 Preliminaries

We use higher-order logic [3] as the underlying logic. In this section we recall
some facts about refinement calculus [2] and about fixed points in complete
lattices.

Let Σ be the state space. Predicates, denoted Pred, are the functions
from Σ → bool. We denote by ⊆, ∪, and ∩ the predicate inclusion, union,
and intersection respectively. The type Pred together with inclusion forms a
complete boolean algebra.

MTran is the type of all monotonic functions from Pred to Pred. Programs
are modeled as elements of MTran. If S : MTran and p : Pred, then S.p : Pred
are all states from which the execution of S terminates in a state satisfying
the postcondition p. The program sequential composition denoted S ; T is
modeled by the functional composition of monotonic predicate transformers,
i.e. (S ; T).p = S.(T.p). We denote by v, t, and u the pointwise extension of
⊆, ∪, and ∩, respectively. The type MTran, together with the pointwise ex-
tension of the operations on predicates, forms a complete lattice. The partial
order v on MTran is the refinement relation [2]. The predicate transformer

1

S uT models nondeterministic choice – the choice between executing S or T
is arbitrary.

Often we work with predicate transformers based on functions or rela-
tions. A deterministic program can be modeled by a function f : Σ → Σ
where the interpretation of f.σ is the state computed by the program repre-
sented by f starting from the initial state σ. We can model a nondeterministic
program by a relation on Σ, i.e. a function R : Σ→ Σ→ bool. The state σ′

belongs to R.σ if there exists an execution of the program starting in σ and
ending in σ′.

If p, q : Pred, R : Σ→ Σ→ bool, f : Σ→ Σ, then we define

[f] : MTran =̂ λq, s • q(f(s)) – the monotonic predicate transformer corre-
sponding to the function f .

[R] : MTran =̂ λq, s • ∀s′ •R(s)(s′)⇒ q(s′) – the monotonic predicate trans-
former corresponding to the nondeterministic choice given by R.

{p} : MTran =̂ λq • p ∩ q – the assert statement.

if p then S else T endif : MTran =̂ ({p} ; S) t ({¬p} ; T) – the conditional
statement.

If L is a complete lattice and f : L → L is monotonic, then the least
fix-point of f , denoted µ f , exists [11]. If b ∈ Pred and S ∈ MTran, then the
iterative programming construct is define by:

while b do S od =̂ (µX • if b then S ; X else skip fi)

Lemma 1 (Fusion lemma) If f and g are monotonic functions on com-
plete lattices L and L′ and h : L→ L′ is continuous then

1. if h ◦ f ≤ g ◦ h then h.(µf) ≤ µg

2. if h ◦ f = g ◦ h then h.(µf) = µg

Proof. See Theorem 19.5, page 322 from [2]

Lemma 2

while b do S od.q = (µX • (b ∩ S.X) ∪ (¬b ∩ q))

Proof.

while b do S od.q = (µX • (b ∩ S.X) ∪ (¬b ∩ q))
⇐ {Lemma 1 using h.X = X.q}

h.({b} ; S ; X t {¬b}) = b ∩ S.(h.X) ∪ ¬b ∩ q

2

⇔ {Definitions}
(b ∩ S.(X.q)) ∪ (¬b ∩ q) = (b ∩ S.(X.q)) ∪ (¬b ∩ q)

⇔ {Equality}
true

Lemma 3 If f : L → L is a monotonic function on the complete lattice L
and h : L→ bool satisfies:

1. h.x⇒ h.(f.x) and

2. (∀i ∈ I • h.xi)⇒ h.(
∨
i∈I xi)

then h.(µf) is true.

Proof. We will use transfinite induction on ordinals to prove this lemma. We
define an ordinal indexed collection of functions:

f 0.x =̂ x,
fa+1.x =̂ f.(fa.x) for arbitrary ordinals a,
fa.x =̂

∨
b<a f

b.x for nonzero limit ordinals a.

From [2], Theorem 19.3, page 321, we know that there exists an ordinal c
such that µf = f c.⊥, where ⊥ is the smallest element of the lattice L. It can
be easily proved by transfinite induction that h.(fa.⊥) is true for all ordinals
a. Therefore h.(µ f) holds.

Corollary 4 If L′ ⊆ L is a complete sublattice of L and if f : L → L is
monotonic such that f.L′ ⊆ L′ then µL f ∈ L′, and µL f = µL′ f .

3 Program variables, addresses, constants, &

expressions

We assume that we have a type value that contains all program variables,
program addresses, and constants. We assume that we have the disjoint sub-
types location and constant of value, and the element nil ∈ constant. Moreover
we assume that variable, and address are disjoint subtypes of location. The
elements of variable, address, and constant represents the program variables,
program addresses, and program constants respectively. The element nil rep-
resents the null address. For example, the type of integer numbers, int, is a
subtype of constant.

For all x ∈ location, we introduce the type of x, denoted T.x, as an
arbitrary subtype of value. T.x represents all values that can be assigned to

3

x. For a type X ⊆ value we denote by Xnil the type X ∪ {nil} and we define
the subtypes V.X ⊆ variable, A.X ⊆ address, and B.X ⊆ addressnil by

V.X =̂ {x ∈ variable | T.x = X}
A.X =̂ {x ∈ address | T.x = X}
B.X =̂ (A.X)nil

The type V.X represents the program variables of type X. The elements of
A.X are the addresses that can store elements of type X. An element of B.X
is either nil or is an address that can store an element of type X. For example
the type of the program variables of type addresses to natural numbers is
defined by V.(B.nat).

In the C++ programming language, and in most imperative programming
languages, a binary tree structure will be defined by something like:

struct btree{
int label;
btree ∗left;
btree ∗right}

(1)

In our formalism, binary trees, labeled with elements from an arbitrary type
A, are modeled by a type ptree.A. Elements of ptree.A are records with three
components: a : A, and p, q : B.ptree.A. Formally the record structure on
ptree.A is given by a bijective function ptree : A×B.(ptree.A)×B.(ptree.A)→
ptree.A. If a : A, and p, q : B.ptree, then ptree.(a, p, q) is the record con-
taining the elements a, p, q. The inverse of ptree has three components
(label, left, right), label : ptree.A → A and lef, right : ptree.A → B.(ptree.A).
The type ptree.int corresponds to btree from definition (1) and the type
B.(ptree.int) corresponds to (btree ∗) from (1).

We access and update program locations using two functions.

val.x : Σ→ T.x

set.x : T.x→ Σ→ Σ

For x ∈ location, σ ∈ Σ, and a ∈ T.x, val.x.σ is the value of x in state σ, and
set.x.a.σ is the state obtained from σ by setting the value of location x to a.

Local variables are modeled using two statements (add and del), which
intuitively correspond to stack operations – adding a location to the stack
and deleting it from the stack. Of the two statements, only del is a primitive
in our calculus, whereas add is defined as the relation inverse of del

del.x : Σ→ Σ

The behavior of the primitives val, set and del is described using a set of
axioms [1].

4

Program expressions of type A are functions from Σ to A. We denote by
Exp.A the type of all program expressions of type A. We lift all operations
on basic types to operations on program expressions. For example if ⊕ :
A×B → C is an arbitrary binary operation, then⊕ : Exp.A×Exp.B → Exp.C
is defined by e ⊕ e′ =̂ (λσ • e.σ ⊕ e′.σ). To avoid confusion, we denote by
(e

.
= e′) the expression (λσ • e.σ = e′.σ).
For a parametric boolean expression (predicate) α : A → Σ → bool, we

define the boolean expressions

∃∃ .α =̂ λσ • ∃a : A • α.a.σ
∀∀.α =̂ λσ • ∀a : A • e.a.σ

and we denote by ∃∃ a •α.a and ∀∀a •α.a the expressions ∃∃ .α and ∀∀.α respec-
tively.

If e ∈ Exp.A, x ∈ variable, and e′ ∈ Exp.(T.x), then we define e[x := e′],
the substitution of e′ for x in e by e[x := e′].σ = e.(set.x.(e′.σ).σ).

We also introduce the notion of x–independence for an expression e ∈
Exp.A, as the semantic correspondent of the syntactic condition that x does
not occur free in e. If f ∈ Σ → Σ and e ∈ Exp.A, then we say that e
is f–independent if f ; e = e. We say that e is set.x–independent if e is
set.x.a–independent for all a ∈ T.x.

The program expressions defined so far may depend not only on the
current values of the program variables, but also on the values from the
stack. For example del.x ; val.x does not depend on any program variable
value (changing any variable, including x, does not change the value of this
expression), but it depends on the top value stored in the stack. We define
the subclass of program expression which depends only on the current values
of the program variables. Two states σ and σ′ are val–equivalent if for all
program variables x, val.x.σ = val.x.σ′. A program expression e ∈ Exp.A is
called val–determined if for all σ and σ′ val–equivalent we have e.σ = e.σ′.

3.1 Program statements and Hoare total correctness
triples

In this subsection we introduce the program statements for assignment and
handling local variables and we will also give the Hoare total correctness rules
to work with these statements.

Let x, y ∈ variable such that T.x = T.y and e ∈ Exp.(T.x). We recall the
definition of the assignment statement from [2] and the definition of local
variables manipulation statements from [1].

• x := e =̂ [λσ • set.x.(e.σ).σ] – assignment

• add.x =̂ (λσ, σ′ • σ = del.x.σ′) – add local variable

5

• Add.x =̂ [add.x] – add local variable statement

• add.x.e =̂ (λσ, σ′ • ∃σ0 • σ = del.x.σ0 ∧ set.x.(e.σ).σ0 = σ′) – add and
initialize local variable

• Add.x.e =̂ [add.x.e] – add and initialize local variable statement

• Del.x =̂ [del.x] – delete local variable statement

• del.x.y =̂ (λσ • set.y.(val.x.σ).(del.x.σ)) – save and delete local variable

• Del.x.y =̂ [del.x.y] – save and delete local variable statement

See [1] for detailed explanations of these program constructs.
If α and β are predicates and S is a program, then a Hoare total correct-

ness triple, denoted α {|S |} β is true if and only if α ⊆ S.β.

Theorem 5 If x, y are lists of program variables, α and β are predicates,
and e is a program expression then

(i) (∃∃ a • α.a) {|S |} β ⇔ (∀a • (α.a {|S |} β))

(ii) (del.x ; α) {|Del.x |} α
(iii) α {|Add.x |} (del.x ; α)

(iv) α {|Add.x.e |} (del.x ; α)

(v) α is val–determined ⇒ α[x := e] {|Add.x.e |} α
(vi) α is set.y–independent⇒ (del.x ; α) {|Del.x.y |} α

(vii) α is val–determined and set.(x− y)–independent ⇒
α[y := x] {|Del.x.y |} α

4 Heap operations and separation logic

So far we have introduced the mechanism of accessing and updating ad-
dresses, but we need also a mechanism for allocating and deallocating them.
We introduce the type allocaddr =̂ Pfin(address), the finite powerset of
address; and a special program variable alloc ∈ variable of type allocaddr
(T.alloc = allocaddr). The set val.alloc.σ contains only those addresses allo-
cated in state σ. The heap in a state σ is made of the allocated addresses in
σ and their values.

For A,B ∈ allocaddr we denote by A − B the set difference of A and B.
We introduce two more functions: to add addresses to a state and to delete
addresses from a state.

addaddr.A.σ =̂ set.alloc.(val.alloc.σ ∪ A).σ

dispose.A.σ =̂ set.alloc.(val.alloc.σ − A).σ

6

Based on these elements we build all heap operations and separation logic
operators.

4.1 Separation logic operators

Definition 6 If e, f : Pred, r : Σ→ B.X, and g : Σ→ X, then we define

emp.σ : bool =̂ (val.alloc.σ = ∅)
(e ∗ f).σ : bool =̂ ∃A ⊆ val.alloc.σ • e.(set.alloc.A.σ) ∧ f.(dispose.A.σ)

(r 7→ g).σ : bool =̂ val.(r.σ).σ = g.σ ∧ val.alloc.σ = {r.σ}
(r 7→) : Pred =̂ ∃∃ g : X • r 7→ g

Lemma 7 The following relations hold

1. α ∗ emp = α

2. α ∗ β = β ∗ α
3. α ∗ (β ∗ γ) = (α ∗ β) ∗ γ
4. (∃∃ a • α ∗ β.a) = α ∗ (∃∃ β)

5. If γ is set.alloc–independent then α ∗ (β ∧ γ) = (α ∗ β) ∧ γ
6. (

⋃
i∈I pi) ∗ q =

⋃
i∈I(pi ∗ q)

7. (
⋂
i∈I pi) ∗ q ⊆

⋂
i∈I(pi ∗ q)

8. del.x ; emp = emp

9. del.x ; (α ∗ β) = (del.x ; α) ∗ (del.x ; β)

10. If e is set.alloc–independent then (α ∗ β)[x := e] = α[x := e] ∗ β[x := e]

11. If e is set.alloc–independent then (r 7→ g)[x := e] = r[x := e] 7→ g[x := e]

In [10] a subset of program expressions called pure are defined. These
are expressions which does not depend on the heap and are the usual pro-
gram expressions built from program variables, constants and normal (non
separation logic) operators. In our framework we use two different concepts
corresponding to pure expressions. If an expression is set.alloc–independent
then its value does not depend on what are the allocated addresses. An ex-
pression e is called set address independent if e does not depend on the value
of any (allocated or not) address, formally

(∀u : address, a : T.u • e is set.u.a–independent).

7

The pure expressions from [10] correspond to set.alloc–independent and set
address independent expressions in our framework.

We need also another subclass of program expressions. An expression e
is called non-alloc independent if e does not depend on the values of non
allocated addresses:

∀σ • ∀u 6∈ val.alloc.σ • ∀a ∈ T.u • e.(set.u.a.σ) = e.σ.

These expressions include all expressions obtained from program variables
and constants using all operators (including separation logic operators).

4.2 Specifying binary trees properties with separation
logic

Let atreecons be the type of nonempty abstract binary trees with labels
from a type A. We assume that nil denotes the empty tree and we take
atree = atreecons ∪ {nil}. The abstract tree structure on atree is given by an
injective function

atree : A→ atree→ atree→ atreecons

which satisfies the following induction axiom:

∀P : atree→ bool • P.nil ∧ (∀a, s, t • P.s ∧ P.t⇒ P.(atree.a.s.t))⇒ ∀t • P.t
Using this axiom we can prove that the function atree is also surjective

and we denote by label : atreecons→ A and left, right : atreecons→ atree the
components of atree inverse.

Abstract binary trees are very convenient to specify and prove properties
involving binary trees. However imperative programming languages repre-
sent binary trees using pointers. We introduce a predicate tree : atree →
B.ptree→ Pred. The predicate tree.t.p will be true in those states σ in which
address p stores the tree t. The predicate tree.t.p is defined by structural
induction on t.

tree.nil.p.σ =̂ p = nil ∧ emp

tree.(atree(a, t1, t2)).p =̂ (∃∃ p1, p2 • p 7→ ptree(a, p1, p2) ∗ tree.t1.p1 ∗ tree.t2.p2)

We extend the predicate tree to programs expressions, tree : (Σ → atree) →
(Σ→ B.ptree)→ Pred, by tree.e.f.σ =̂ tree.(e.σ).(f.σ).σ.

Lemma 8 If a : Σ→ atree and p : Σ→ B.ptree then

tree.a.p∧p 6 .= nil ⊆ (∃∃ a1, a2, c, t1, t2•(p 7→ ptree.(c, t1, t2))∗tree.a1.t1∗tree.a2.t2)

Lemma 9 If e and f are two expressions of appropriate types then

8

1. del.x ; tree.a.p = tree.(del.x ; a).(del.x ; p)

2. If e is set.alloc–independent then

(tree.a.p)[x := e] = tree.(a[x := e]).(p[x := e])

4.3 Pointer manipulation statements

We introduce in this subsection the statements for pointer manipulation and
their Hoare total correctness rules.

Definition 10 If X ⊆ value, x ∈ V.(B.X), e : Σ → X, r : Σ → B.X,
y ∈ V.X, and f : X → T.y then we define

New.X.(x, e) : MTran =̂ [λσ, σ′ • ∃a : A.X • ¬alloc.σ.a ∧
σ′ = set.a.(e.σ).(set.x.a.(addaddr.a.σ))]

Dispose.r : MTran =̂ {λσ • alloc.σ.(r.σ)} ; [λσ • dispose.(r.σ).σ]

y := r → f : MTran =̂ {λσ • alloc.σ.(r.σ)} ; [λσ • set.y.(f.(val.(r.σ).σ)).σ]

[r] := e : MTran =̂ {λσ • alloc.σ.(r.σ)} ; [λσ • set.(r.σ).(e.σ).σ]

The statement New.X.(x, e) allocates a new address a of type X, sets the
value of x to a, and sets the value of a to e. This statement assumes that
there is always an address of type X available for allocation. The statement
Dispose.r deletes the address r from allocated addresses. The lookup state-
ment, y := r → f , assigns to y the value of the field f of the record stored
at address r. The update statement, [r] := e, sets the value of address r to
e. If in dispose, lookup, or update statements r is not an allocated address,
then these statements do not terminate.

Next we introduce Hoare correctness rules for these statements

Lemma 11 If X ⊆ value, x ∈ V.(B.X), a ∈ B.X, e : Σ → X is set.alloc–
independent and non-alloc independent then

1. val.x
.
= a ∧ emp {|New.X.(x, e) |} val.x 7→ e[x := a]

2. e is set.x–independent ⇒ emp {|New.X.(x, e) |} val.x 7→ e

3. emp {|New.X.(x, e) |} (∃∃ a • val.x 7→ e[x := a])

Lemma 12 Let r : Σ → addressnil and α : Σ → Pred, if r is set.alloc–
independent then

r 7→ {|Dispose.r |} emp

Lemma 13 If a : T.x, r : Σ → B.X is set.alloc–independent, f : X → T.x,
and e : Σ→ X is set.alloc–independent then

9

1. val.x
.
= a∧(r 7→ e) {|x := r → f |} val.x

.
= f ◦e[x := a]∧(r 7→ e)[x := a]

2. e, r, and e are set.x–independent ⇒
r 7→ e {|x := r → f |} val.x

.
= f ◦ e ∧ r 7→ e

Lemma 14 If r : Σ→ B.X and e : Σ→ X are set address independent then

r 7→ {| [r] := e |} r 7→ e

5 Recursive procedures

In this subsection we recall some facts about recursive procedures from [1]
and we introduce a modified version of the recursive procedure correctness
theorem.

A procedure with parameters from A or simply a procedure over A, is
an element from A → MTran. We define the type Proc.A = A → MTran,
the type of all procedures over A. The type A is the range of the proce-
dure’s actual parameters. A call to a procedure P ∈ Proc.A with the actual
parameter a : A is the program P.a.

Every monotonic function F from Proc.A to Proc.A defines a recursive
procedure P ∈ Proc.A, P = µF , where µF is the least fixpoint of F . For
example, the recursive procedures that disposes a tree from memory is defined
by

procedure DisposeTree(value-result t : B.ptree)
local x : B.ptree
if val.t 6 .= nil then

x := val.t→ left ;
DisposeTree.x ;
x := val.t→ right ;
DisposeTree.x ;
Dispose(val.t) ;
t := nil

endif

(2)

The procedure DisposeTree can be called by passing a program variable u of
type B.ptree. The procedure call DisposeTree.u disposes the tree stored in u
and sets u to nil. The type of the parameters of the procedure DisposeTree is
A = V.(B.ptree). We use the notation (2) as an abbreviation for the following
formal definition of the procedure DisposeTree.

DisposeTree = µ body−dt

10

where body−dt : Proc.A→ Proc.A is given by

body−dt.P = (λu : A •
Add.t.(val.u) ; Add.x ;
if val.t 6 .= nil then

x := val.t→ left ;
P.x ;
x := val.t→ right ;
P.x ;
Dispose.(val.t) ;
t := nil

endif
Del.x ; Del.t.u)

To be able to state the correctness theorem for recursive procedures we
need to extend all operations on predicates, and programs to parametric
predicates and procedures. For example if B is a type of specification pa-
rameters, p, q : B → A → Pred, and P,Q ∈ Proc.A, then we define the
procedure Hoare total correctness triple by:

p {|P |} q ⇔ (∀b, a • p.b.a {|P.a |} q.b.a)

We assume that all operations on predicates and programs are lifted similarly.
Let W be a non-empty type and pw : B → A → Pred. If < is a binary

relation on W then we define

• p<w =
⋃{pv | v < w}

• p =
∨{pw | w ∈ W}

Theorem 15 If L is a complete sublattice of Proc.A, for all w ∈ W , pw :
B → A → Pred, q : B → A → Pred and body : L → L is monotonic, then
the following Hoare rule is true

(∀w : W, P : L • p<w {|P |} q ⇒ pw {| body.P |} q)
p {|µL body |} q

Proof. The proof of the similar result from [1] (where L = Proc.A) can be
adapted to this case too.

6 Frame rule and recursive procedures

The specification of the procedure DisposeTree is:

(∀a • tree.u.a {|DisposeTree.u |} emp ∧ u = nil) (3)

11

This Hoare total correctness triple asserts that if the heap contains only a
tree with the root in u, after calling DisposeTree.u the heap is empty and the
value of u is nil. However, we cannot use this property in contexts where the
heap contains other addresses in addition to the ones specified by tree.u.a.
For example, in the recursive definition of DisposeTree, the right subtree is
still in the heap while we dispose the left subtree. We would like to derive a
property like:

(∀a • α ∗ tree.u.a {|DisposeTree.u |} α ∧ u = nil) (4)

for all predicates α which does not contain u free. This can be achieved using
the frame rule.

We introduce a new theorem that can be used when proving the cor-
rectness of recursive procedures manipulating pointers. We assume that we
have a non-empty type A of procedure parameters and a nonempty type
X ⊆ A → Pred. The type X denotes those formulas we could add to a
Hoare triple when using the frame rule, and they are in general formulas
which does not contain free variables modified by the procedure. For pro-
cedure DisposeTree the set X is {α : V.(B.ptree) → Pred | (∀u • α.u is
set.u–independent)}. We denote by

ProcX .A = {P ∈ Proc.A | ∀α ∈ X, ∀q ∈ ParamPred.A • α ∗ P.q ⊆ P.(α ∗ q)}

If we are able to prove that procedure DisposeTree belongs to ProcX .A and
satisfies (3) then we can use (4) when proving correctness of programs calling
DisposeTree. The definition of ProcX .A is a generalization to procedures of
the concept “local predicate transformers which modifies a set V” of program
variables from [13].

Lemma 16 ProcX .A is a complete sublattice of Proc.A.

Proof. We need to prove that ProcX .A is closed under arbitrary meets and
joins. Let Pi ∈ ProcX .A for all i ∈ I, then

ProcX .A.(
⊔
i∈I Pi)

= {Definition}
(∀α : X, ∀q • α ∗ (

⊔
i∈I Pi).q ⊆ (

⊔
i∈I Pi).(α ∗ q))

= {Lemma 7}
(∀α : X, ∀q • ⋃i∈I(α ∗ Pi.q) ⊆

⋃
i∈I Pi.(α ∗ q))

⇐ {Complete lattice properties}
(∀i ∈ I • ∀α : X, ∀q • α ∗ Pi.q ⊆ Pi.(α ∗ q))

= {Definition}

12

(∀i ∈ I • ProcX .A.Pi)

For arbitrary intersections we have a similar proof.

Theorem 17 If for all w ∈ W , pw : B → A → Pred, q : B → A → Pred
and body : Proc.A → Proc.A is monotonic, then the following Hoare rule is
true

(∀w : W, P : ProcX .A • p<w {|P |} q ⇒ pw {| body.P |} q)
∧ (∀P : ProcX .A • ProcX .A.(body.P))

(p {|µ body |} q) ∧ ProcX .A.(µ body)

Proof. Using Theorem 15, Corollary 4, and Lemma 16 This theorem lets
us, when proving a recursive procedure, to assume a stronger property (like
(4)), and to prove a weaker property (like (3)). When using the procedure
correctness statement in proving other programs, we can also use a stronger
property (like (4)).

7 Frame rule

In this section we prove the frame rule for the program statements we intro-
duced so far.

Definition 18 If f : Σ→ Σ then we call a relation R ∈ Rel f–independent
if for all σ, σ′ ∈ Σ, R.σ.σ′ ⇒ R.(f.σ).(f.σ′). The relation R is set.alloc–
independent if it is set.alloc.A–independent for all A ⊆ Pfin.address.

The relation R is called address preserving if for all σ, σ′ ∈ Σ, R.σ.σ′ ⇒
val.alloc.σ = val.alloc.σ′.

A function f : Σ→ Σ is called set.alloc–independent (address preserving)
if the relation (λσ, σ′ • f.σ = σ′) is.

Lemma 19 The relations add.x and add.x.e and the functions del.x and
del.x.y are set.alloc–independent and address preserving.

Definition 20 A predicate transformer S is called ∗–super-junctive if for all
predicates α, β ∈ Pred, S.α ∗ S.β ⊆ S.(α ∗ β).

Lemma 21 If R ∈ Rel (f : Σ → Σ) is set.alloc–independent and address
preserving then [R] ([f]) is ∗–super-junctive.

Corollary 22 Add.x, Add.x.e, Del.x, and Del.x.y are ∗–super-junctive.

Theorem 23 (Frame rule for parameters and local variables)

1. if α is set.y–indep and (∀q • (del.x ; α) ∗ S.q ⊆ S.((del.x ; α) ∗ q)) then

(∀q • α ∗ (Add.x.e ; S ; Del.x.y).q ⊆ (Add.x.e ; S ; Del.x.y).(α ∗ q))

13

2. if (∀q • (del.x ; α) ∗ S.q ⊆ S.((del.x ; α) ∗ q)) then

(∀q • α ∗ (Add.x ; S ; Del.x).q ⊆ (Add.x ; S ; Del.x).(α ∗ q))

Proof. Using Lemma 21 and Lemma 5.

Lemma 24 If x ∈ V (B(X)), e ∈ Σ → X such that α is set.x–independent
and is non alloc independent, and e is set.alloc–independent then

α ∗ New(X)(x, e).q ⊆ New(X)(x, e).(α ∗ q)

Lemma 25 If r is set.alloc–independent then

α ∗ Dispose(r).q ⊆ Dispose(r).(α ∗ q)

Lemma 26 If r ∈ Σ → B.B and f : X → T.y such that r is set.alloc–
independent and α is set.y–independent then

α ∗ (y := r → f).q ⊆ (y := [r]→ f).(α ∗ q)

Lemma 27 If r ∈ Σ → B.X and e : Σ → X such that r is set.alloc–
independent, e is set.alloc–independent, and α is non alloc independent then

α ∗ ([r] := e).q ⊆ ([r] := e).(α ∗ q)

Lemma 28 If b is set.alloc–independent and (∀q • α ∗ S.q ⊆ S.(α ∗ q)) then

∀q • α ∗ (while b do S od.q) ⊆ while b do S od.(α ∗ q)

Proof.

α ∗ (while b do S od.q) ⊆ while b do S od.(α ∗ q)
⇔ {Lemma 2}

α ∗ (µX • b ∧ S.X ∨ ¬b ∧ q) ⊆ (µX • b ∧ S.X ∨ ¬b ∧ (α ∗ q))
⇐ {Lemma 1 using h.X = α ∗X}

α ∗ (b ∧ S.X ∨ ¬b ∧ q) ⊆ b ∧ S.(α ∗X) ∨ ¬b ∧ (α ∗ q)
• Subderivation

α ∗ (b ∧ S.X ∨ ¬b ∧ q)
= {Lemma 7}
α ∗ (b ∧ S.X) ∨ α ∗ (¬b ∧ q)

= {b is set.alloc–independent and Lemma 7}
b ∧ (α ∗ S.X) ∨ ¬b ∧ (α ∗ q)

14

= {Assumption}
b ∧ S.(α ∗X) ∨ ¬b ∧ (α ∗ q)

= {subderivation}
true

Although we work at the semantic level we can define the subclass of
programs, denoted Prog, built using the program constructs presented in
this paper where Add and Del statements are only used in pairs, like in the
definition of the procedure DisposeTree. For a program S ∈ Prog we define
by induction on the program structure the set of variables modified by S, in
a usual manner.

Theorem 29 (Frame rule) If S ∈ Prog, V is the set of variables modified
by P , α, q ∈ Pred, and (∀x ∈ V • α is set.x–independent), then

α ∗ S.q ⊆ S.(α ∗ q)

Proof. Using Lemmas 23, 24, 25, 26, 27, 28, and similar results which are
true for assignment statement and sequential composition of programs.

8 Disposing a binary tree from memory

In this section we outline the correctness proof of the procedure DisposeTree
(2). Let X = {α : A→ Pred | α.u is set.u–indep}

Lemma 30 The procedure DisposeTree is an element of ProcX .A and

(∀a, u • tree.(val.u, a) {|DisposeTree(u) |} emp ∧ val.u
.
= nil) (5)

Proof. We apply Theorem 17 for body−dt with

• W = atree

• < on W given by a < b iff a is a subtree of b.

• pw = (λa • λu • tree.(val.u, a) ∧ a < w).

• q = (λa • λu • emp ∧ val.u
.
= nil)

If ProcX .A.P then ProcX .A.(body−dt.P) follows from Theorem 29.
For w ∈ nat, and P : ProcX .A.P we assume

(∀u, a, α : set.u–indep •α ∗ tree.(val.u, a)∧ a < w {|P.u |} α∧ val.u
.
= nil) (6)

15

and we prove

(∀u, a • tree.(val.u, a) ∧ a .
= w {| body-dt.P.u |} emp ∧ val.u

.
= nil) (7)

By expanding the definition of body-dt, (7) becomes:

tree.(val.u, a) ∧ a .
= w

{|
Add.t.(val.u) ; Add.x ;
if val.t 6 .= nil then

x := val.t→ left ;
P.x ;
x := val.t→ right ;
P.x ;
Dispose.(val.t) ;
t := nil

endif ;
Del.x ; Del.t.u

|}
emp ∧ val.u

.
= nil

(8)

We proved (8) in PVS using (6) and the rules presented in this paper.

9 Conclusions and future work

Based on earlier work on local variables and recursive procedures [1], we have
mechanically verified separation logic properties and Hoare total correctness
rules for heap operations. We have proved a frame rule that can be applied
to recursive procedures with value and value–result parameters and local
variables. All results were carried out in the theorem prover PVS.

We have also mechanically verified a more complex example [9] of a collec-
tion of mutually recursive procedures which build the abstract syntax trees of
expressions generated by a LL(1) grammar. In this example we have used the
procedure presented in this paper for disposing a binary tree. This shows the
flexibility of our approach: we can use general procedures like DisposeTree in
specific situations when the type of the tree labels are strings. We can also
use in programs different datatypes: strings, integers, abstract trees, pointer
represented trees.

The program constructs introduced in this paper cover an important sub-
class of programs that can be written in an imperative programming language
like C++. As future work we want to extend the “real world” features of
programming languages by for example adding pointer arithmetic. We plan
also to introduce the separation implication operator and to investigate more
challenging examples.

16

References

[1] R.J. Back and V. Preoteasa. An algebraic treatment of procedure refine-
ment to support mechanical verification. Formal Aspects of Computing,
17:69 – 90, May 2005.

[2] R.J. Back and J. von Wright. Refinement Calculus. A systematic Intro-
duction. Springer, 1998.

[3] A. Church. A formulation of the simple theory of types. J. Symbolic
logic, 5:56–68, 1940.

[4] C.A.R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580, 1969.

[5] S.S. Ishtiaq and P.W. O’Hearn. Bi as an assertion language for mutable
data structures. In POPL ’01: Proceedings of the 28th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 14–
26, New York, NY, USA, 2001. ACM Press.

[6] T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[7] P.W. O’Hearn, J.C. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In CSL ’01: Proceedings of the
15th International Workshop on Computer Science Logic., volume 2142
of Lecture Notes In Computer Science, pages 1–19, London, UK, 2001.
Springer-Verlag.

[8] S. Owre, N. Shankar, J.M. Rushby, and D.W.J. Stringer-Clavert. PVS
language reference. Technical report, Computer Science Laboratory, SRI
International, dec 2001.

[9] V. Preoteasa. Mechanical verification of mutually recursive procedures
for parsing expressions generated by a LL(1) grammar using separation
logic. In Preparation. 2006.

[10] J. Reynolds. Intuitionistic reasoning about shared mutable data struc-
ture. In Millenial Perspectives in Computer Science, 2000.

[11] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific J. Math., 5:285–309, 1955.

[12] Tjark Weber. Towards mechanized program verification with separation
logic. In Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer
Science Logic – 18th International Workshop, CSL 2004, 13th Annual

17

Conference of the EACSL, Karpacz, Poland, September 2004, Proceed-
ings, volume 3210 of Lecture Notes in Computer Science, pages 250–264.
Springer, September 2004.

[13] H. Yang and P.W. O’Hearn. A semantic basis for local reasoning. In
FoSSaCS ’02: Proceedings of the 5th International Conference on Foun-
dations of Software Science and Computation Structures, volume 2303 of
Lecture Notes In Computer Science, pages 402–416, London, UK, 2002.
Springer-Verlag.

18

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematics

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 952-12-1697-2
ISSN 1239-1891

