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Abstract

It is shown that the square tiling problem of Garey, Johnson and Papadimitrou is
NP-complete even if the given tile set is deterministic by any two sides, i.e. the
colors of any two sides uniquely determine a tile within the given tile set.
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1 Introduction

A Wang tile is simply a unit square with colored edges. The edges of a Wang tile
are called north-, east-, west- and south-edges in a natural way. A Wang tile set
T is a finite set containing Wang tiles. A tiling is a mapping f : Z

2 → T , which
assigns a unique Wang tile for each integer pair of the plane. A tiling f is said to
be valid, if for every pair (x, y) ∈ Z

2 the tile f(x, y) ∈ T matches its neighboring
tiles (i.e. the south side of tile f(x, y) has the same color as the north side of tile
f(x, y − 1) etc.).

A Wang tile set T is said to be NW-deterministic, if within the tile set there
does not exist two different tiles with the same colors on the north- and west-
sides. In general, a Wang tile set is XY-deterministic, if the X- and Y-sides uniquely
determine a tile in the given Wang tile set. A Wang tile set is 4-way deterministic,
if it is NE-, NW-, SE- and SW-deterministic.

The tiling problem is the following: “Does there exist a valid tiling of the plane
for the given tile set?” It was shown by Berger [2], that the tiling problem is
undecidable. It was shown by Kari [5], that the tiling problem is undecidable even
when restricted to NW-deterministic tile sets. It is not known whether the tiling
problem is decidable for 4-way deterministic tile sets. It is known that there does
exist a 4-way deterministic tile set, which is aperiodic [6].

The square tiling problem is defined as follows [4]: “Given an integer N and a
set of Wang tiles T with at least N different colors, does there exist a valid tiling
of an N × N -square by these given tiles?”

Theorem 1.1 (Garey, Johnson, Papadimitrou, 1977 [4]). The square tiling prob-
lem is NP-complete.

In this article it is shown that the square tiling problem given in [4] is NP-
complete even if the given tile set is 4-way deterministic, or even when it is de-
terministic by any two sides. The construction is based on the tile set given by
Aggarwal et al. [1], which again is based on the construction of Lagoudakis and
LaBean [8].

2 Determinism by adjacent sides

In this section it is shown that the NP-complete 3-satisfiability problem can be
reduced to the square tiling problem for 4-way deterministic tile sets.

A boolean variable xi is a variable that contains either value ’true’ (denoted by
>) or value ’false’ (denoted by ⊥). A positive literal is an expression of the form
xi for some boolean variable xi. A negative literal is an expression of the form
¬xi for some boolean variable xi. A clause is an expression li1 ∨ li2 ∨ li3 where
for every literal li either li = xi or li = ¬xi holds. A valuation is a mapping

f : {x1, . . . , xn} → {>,⊥}

assigning a truth value for every boolean variable.
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The 3-satisfiability problem (3SAT for short) is the following: “Given a boolean
formula

m∧

i=1

(li,1 ∨ li,2 ∨ li,3) , (1)

where li,j ∈ {xk,¬xk} for every i and j (and some k depending on i and j), does
there exist such a valuation that formula (1) gets value true?”

Theorem 2.1 (Cook, 1971 [3]). The 3SAT problem is NP-complete.

2.1 The tile set for 3SAT

In the following, the variables are denoted by xi and the clauses are denoted by Ci.
The construction of the Wang tile set is done as follows:

1. First add the seed tile in figure 1, and for every clause Ci add the clause tile
shown in figure 2. These tiles are simply used as auxiliary tiles. The clauses
are represented by the columns in the rectangle to be assembled.

x1

C
1

∅

∅

Figure 1: The seed tile.
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Figure 2: The clause tile for clause Ci.

2. For every variable xi in the given instance of 3SAT, add the valuation tiles
in figure 3. A column of these tiles is used to represent all the possible valu-
ations. The tile with the color (xi,>) on its west edge represents valuation
xi = > and the tile with the color (xi,⊥) on its west edge represents valua-
tion xi = ⊥. Each of the variables is represented by a row in the rectangle.

3. For every clause Ci, where 1 ≤ i ≤ m, and variable xj , where 1 ≤ j < n,
add only one set of the tiles from figures 4, 5 and 6. For every clause Ci,
where 1 ≤ i ≤ m, and for the last variable xn, add only those tiles (from
one of the figures 4, 5 and 6), which have north side colors different from
(Ci, 0). This restriction is set to force the uppermost row to be tiled if, and
only if, all the clauses (i.e. columns) have a literal, which is true in the
arbitrary valuation given by the valuation tiles in the first column.
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Figure 3: The valuation tiles for variable xi.

The rectangle is constructed upwards so that the tile corresponding to vari-
able xj in clause Ci has color (Ci, k + 1) on its north side if it has color
(Ci, k) (with k > 0) on its south side. The north side color is (Ci, 1) if
the corresponding literal gets value true in the valuation and the southside
color is (Ci, 0). Otherwise the north side color of the tile is (Ci, 0). In other
words, the first literal in clause Ci that gets value > initiates a counter, which
is incremented by 1 on every row above.

The west side color (Ci, xj ,>) represents value xj = > for the tile in the
row that represents clause Ci. Likewise, the color (Ci, xj ,⊥) represents
value xj = ⊥.

(a) If the positive literal xj belongs to clause Ci, add the tiles in figure
4. If the south side color is (Ci, k) where k 6= 0, the north color is
(Ci, k + 1). If the south side color is (Ci, k) and xj = > (west side
color is (Ci, xj ,>)) the north side color is (Ci, 1). Otherwise the north
side color is (Ci, 0).
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Figure 4: The tiles for positive literals xj in clause Ci.

(b) If the negative literal ¬xj belongs to clause Ci, add the tiles in figure
5. If the south side color is (Ci, k) where k 6= 0, the north color is
(Ci, k +1). If the south side color is (Ci, k) and xj = ⊥ the north side
color is (Ci, 1). Otherwise the north side color is (Ci, 0).
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Figure 5: The tiles for negative literals ¬xj in clause Ci.
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(c) If neither the positive literal xj nor the negative literal ¬xj belongs
to clause Ci, add the tiles in figure 6. These tiles simply move the
information on the truth state of the clause upwards. If the south side
color is (Ci, k) where k 6= 0, the north color is (Ci, k +1). If the south
side color is (Ci, 0) then also the north side color is (Ci, 0).
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Figure 6: The tiles for literals xj not in clause Ci.

Theorem 2.2. The square tiling problem is NP-complete even for instances with a
4-way deterministic tile set.

Proof. It is quite obvious that the tile set constructed above is 4-way deterministic.
All the tiles are determined uniquely by any two adjacent sides. The only case that
is not as obvious is the uniqueness within the tiles in figures 4, 5 and 6. However,
for every clause Ci and variable xj only one of these sets is chosen and within each
of these sets the tile is uniquely determined.

It is not necessary to show that a square can be tiled with the given tile set.
For every instance of 3SAT it is possible to add dummy variables that belong to no
clause so that the number of variables and the number of clauses are the same.

It remains to be shown that an instance of 3SAT with m clauses and n variables
has a solution if, and only if, an (m + 1) × (n + 1)-rectangle can be tiled with the
tile set corresponding to the instance.

It can be seen from the colors of the east and west sides of the tiles, that only
rows of length m + 1 at most can be constructed. In a row of length m + 1 there
has to be a valuation tile or a seed tile at the left end of the row. On the other hand,
n + 1 such rows are required to construct an (m + 1) × (n + 1)-rectangle. These
rows must match everywhere, so the only way to place one row atop another is to
have their leftmost tiles match. This happens only if the leftmost column consists
of the seed tile and all the valuation tiles in the correct order. Hence, a correctly
tiled rectangle must have a column consisting of the seed tile and the valuation tiles
as its leftmost column. Likewise, its lowermost row must consist of the seed tile
and all the clause tiles in correct order.

By the construction, it is always possible to construct all the rows (excluding
the uppermost row) so that they match their neighboring rows. The uppermost row
can be tiled to match the row below if, and only if, the valuation represented by the
valuation tiles is a positive solution for the given instance of 3SAT. Therefore, the
rectangle can be tiled if, and only if, the given instance of 3SAT has a solution.

The reduction from the given instance of 3SAT to a 4-way deterministic tile
set can clearly be done in polynomial time. Hence, the square tiling problem is
NP-complete for 4-way deterministic tile sets.
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Figure 7: A valid tiling of a rectangle for formula (x1∨x2∨x3)∧ (x1 ∨x2∨x4)∧
(x1 ∨ ¬x2 ∨ ¬x4) ∧ (¬x1 ∨ x3 ∨ x4) with values x1 = ⊥, x2 = >, x3 = ⊥ and
x4 = ⊥.
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Figure 8: An incomplete tiling of a rectangle for formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨
x2 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ ¬x4) ∧ (¬x1 ∨ x3 ∨ x4) with values x1 = ⊥, x2 = >,
x3 = ⊥ and x4 = >. There is no matching tile for the negative literal ¬x4 in the
third clause.
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Figures 7 and 8 present examples of a valid tiling of a rectangle and an incom-
plete tiling of a rectangle. In figure 7 the valuation (i.e. the leftmost column) is
such that the rectangle can be completed. In figure 8 the valuation is such that the
column representing the third clause cannot be tiled.

2.2 The tile set for one-in-three 3SAT

A variant of the 3SAT problem is the one-in-three 3SAT: “Given a boolean formula
of form (1), does there exist such a valuation that the given formula gets value true
and every clause has exactly one true literal?”

Theorem 2.3 (Schaefer, 1978 [9]). The one-in-three 3SAT problem is NP-
complete. The problem remains NP-complete even if the given formula does not
contain negative literals.

The reduction from one-in-three 3SAT to the square tiling problem can be done
in a similar way as in the case of simple 3SAT. Instead of using the tiles in figures
4, 5 and 6 for tile set construction, the tiles in figures 9 and 10 are used.

For every positive literal xj in the clause Ci only the tiles in figure 9 are added
to the tile set. For the last variable xn the second tile in figure 9 is left out of the
tile set.

By theorem 2.3 it is reasonable to assume that the instance of one-in-three
3SAT contains no negative literals, so no tiles are needed for negative literals.

For every literal xj not in clause Ci the tiles in figure 10 are added to the tile
set. For the last variable xn the first and the third tile in figure 9 are left out of the
tile set.
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Figure 9: The tiles for literals xj in clause Ci.
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Figure 10: The tiles for literals xj not in clause Ci.

It is quite straightforward to see that a rectangle can be tiled with this new tile
set if, and only if, the given formula has a positive solution. Furthermore, also this
new tile set is 4-way deterministic. The only minor difference is that the possible
tiling error may occur also on other rows instead of only the uppermost row in the
rectangle.
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3 Determinism by opposite sides

In this section it is shown that the square tiling problem is NP-complete even if a
tile is uniquely determined in the given tile set by any two of its sides.

A corner tile is a unit square, which is divided into four colored corners as in
figure 11. Corner tiles are also Wang tiles, since the color of an edge is determined
by corner colors of that particular edge. The notions concerning determinism can
be extended to corner tile sets by considering them as Wang tile sets in the sense in
figure 11. The concept of corner tiles was introduced in [7].

12

3 4

(2, 1)

(1
,4

)

(2
,3

)

(3, 4)

Figure 11: A corner tile and the corresponding Wang tile.

Every Wang tile set can be converted into a corner tile set, which admits a valid
tiling of a square if, and only if, the original Wang tile set admits a valid tiling of
a square. This can be done by dividing each Wang tile into four corner tiles (as
quadrants) as in figure 12. The corners are colored so that the neighboring corner
tiles match if, and only if, they correspond to the same original Wang tile or their
corresponding original Wang tiles match. It is done simply by introducing a new
color uniquely identifying the original tile and coloring the corners according to
the side colors of the original tile. The technique of figure 12 has been used earlier
in converting arbitrary aperiodic Wang tile set to corner tile sets [7].
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Figure 12: From Wang tiles to corner tiles. Color t is a unique new color repre-
senting the old Wang tile.

Lemma 3.1. If the given Wang tile set T is XY-deterministic, then also the corner
tile set (considered as a Wang tile set in the sense of figure 11), which is constructed
from set T by the operation in figure 12, is XY-deterministic.

Proof. A corner tile set is always deterministic with respect to any two opposite
sides and therefore it is enough to consider only determinism by adjacent sides.
Assume that the given tile set is SW-deterministic.
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Figure 13: The new corner tiles for Wang tile t.

The first one of the new tiles in figure 13 is uniquely defined by both its south-
side and its west-side, since no other corner tile has color t in its SW-corner. The
second tile is uniquely defined by its south-side, since no other corner tile has color
t in its SE-corner. The third tile is uniquely defined by its south-side and west-side,
since the original Wang tile set was assumed to be SW-deterministic. The fourth
tile is uniquely defined by its west-side, since no other corner tile has color t in its
NW-corner.

Argumentation for NW-, NE- and SE-determinism is similar.

Theorem 3.2. The square tiling problem is NP-complete even if the given tile set
is deterministic with respect to any two sides.

Proof. A tile set that is deterministic by any two sides can be constructed by ap-
plying the operation depicted in figure 12 to the tile set of theorem 2.2. This new
tile set can tile a 2(m + 1) × 2(n + 1)-rectangle if, and only if, the given instance
of 3SAT with m clauses and n variables has a positive solution.

4 Conclusions

It was noted that the so-called square tiling problem is NP-complete even when
any two sides uniquely determine a tile in the given tile set. The reduction was
done from 3SAT and used a small observation concerning corner tiles. Also an
alternative method of reduction from one-in-three 3SAT was described.

Open question: Is the (infinite) tiling problem undecidable for 4-way determin-
istic tile sets?

Open question: What kind of patterns can be tiled with a 4-way deterministic
tile set when a unique color is assigned to each of the tiles?
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