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Abstract

The intramolecular model for gene assembly in ciliates considers three operations,ld, hi, anddlad that can assemble any gene pattern through folding and recombina-
tion: the molecule is folded so that two occurrences of a pointer (short nucleotide
sequence) get aligned and then the sequence is rearranged through recombination
of pointers. In general, the sequence rearranged by one operation can be arbitrarily
long and consist of many coding and non-coding blocks. We consider in this paper
simple variants of the three operations, where only one coding block is rearranged
at a time. We characterize in this paper the gene patterns that can be assembled
through these variants. Our characterization is in terms ofsigned permutations and
dependency graphs. Interestingly, we show that simple assemblies possess rather
involved properties: a gene pattern may have both successful and unsuccessful
assemblies and also more than one successful assembling strategy.
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1 Introduction

Ciliates are very old eukaryotic organisms that have developed a very unusual way
of organizing their genomic sequences. In the macronucleus, the somatic nucleus
of the cell, each gene is a contiguous DNA sequence. Genes aregenerally placed
on their own very short DNA molecules. In the micronucleus, the germline nu-
cleus of the cell, the same gene is broken into pieces called MDSs (macronuclear
destined sequences) that are separated by noncoding blockscalled IESs (internally
eliminated sequences). Moreover, the order of MDSs is shuffled, with some of the
MDSs being inverted. The structure is particularly complexin a family of cili-
ates calledStichotrichs– we concentrate in this paper on this family. During the
process of sexual reproduction, ciliates destroy the old macronuclei and transform
a micronucleus into a new macronucleus. In this process, ciliates must assemble
all genes by placing in the orthodox order all MDSs. The complexity of the gene
assembly process is given by the fundamentally different organization of the mi-
cronuclear and the macronuclear genomes.

The macronuclear genes are very short molecules, ranging inthe Sterkiella
nova organisms between 200bp and 3700bp, with an average of 2200 bp in length,
see [23, 19, 4, 5]. Incidentally, these are the shortest DNA molecules known in
Nature, even shorter than those of viruses, see [21]. On the other hand, the mi-
cronuclear genome is organized on very long chromosomes (about 120 chromo-
somes, each with about107 bp in S.nova, see [19]), with coding sequences oc-
cupying as little as 2 - 5% of the genome, see, e.g., [4]. Ciliates thus have to
identify precisely the genetic material and splice it out from the chromosomes.
The real intricacy however is revealed when looking into thegene structure in
micro- and macronucleus. The macronuclear gene is a contiguous sequence of nu-
cleotides. The same gene in the micronucleus is broken into blocks called MDSs
(macronuclear-destined sequences), separated by non-coding blocks called IESs
(internally-eliminated sequences). Moreover, the order of the MDSs is shuffled
and some of them may even be inverted. Here is where the challenge (and the
beauty) of gene assembly lies: ciliates have to identify correctly more than 100
000 MDSs in their genome, see [21], assemble them together inthe orthodox or-
der, and eliminate all IESs. We refer to [12, 19, 25] for more details on ciliates and
gene assembly.

A hint on how ciliates achieve gene assembly is given by the structure of MDSs.
It turns out that ciliates have developed a very ingenious way of organizing their
genomic data as linked lists in the style used in computer science, see [19]. A
short sequence in the end of each MDS is repeated identicallyin the beginning
of the MDS that should follow it in the orthodox order, thus serving as a com-
puter science-like pointer. Moreover, the first MDS starts with a special beginning
marker, while the last MDS ends with a special ending marker.It is currently be-
lieved that ciliates splice together their MDSs on the common pointers to assemble
the gene. There are two main models for gene assembly, see [16, 17] and [8, 22],
that both agree on this generic mechanism.

The intramolecular model for gene assembly, introduced in [8] and [22] con-
sists of three operations:ld, hi, anddlad. In each of these operations, the molecule
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folds on itself so that two or more pointers get aligned and through recombination
two or more MDSs get combined into a bigger composite MDS. Theprocess con-
tinues until all MDSs have been assembled. For details related to ciliates and gene
assembly we refer to [12], [19], [20] and for details relatedto the intramolecular
model and its mathematical formalizations we refer to [6]. For a different inter-
molecular model we refer to [14], [16], [17].

In general there are no restrictions on the number of nucleotides between the
two pointers that should be aligned in a certain fold. However, all available ex-
perimental data is consistent with restricted versions of our operations, in which
between two aligned pointers there is never more than one MDS, see [6] and [7].
We propose in this paper a mathematical model for simple variants ofld, hi, anddlad. The model, in terms of signed permutations, is used to answer the following
question: which gene patterns can be assembled by the simpleoperations? As it
turns out, the question is difficult: the simple assembly is anon-deterministic pro-
cess, with more than one strategy possible for certain patterns and in some cases,
with both successful and unsuccessful assemblies. We completely answer the ques-
tion in terms of sorting signed permutations. Here, a signedpermutation represents
the sequence of MDSs in a gene pattern, including their orientation.

There is rich literature on sorting (signed and unsigned) permutations, both
in connection to their applications to computational biology in topics such as ge-
nomic rearrangements or genomic distances, but also as a classical topic in discrete
mathematics, see, e.g., [1], [2], [9], [13].

A preliminary version of this paper has been published in [10]. We present
here full constructions, complete proofs, and new examples. We also correct some
errors in [10], in connection with defining the notion of dependency graph.

2 Preliminaries

For an alphabet� we denote by�� the set of all finite strings over�. For a stringu we denotedom(u) the set of letters occurring inu. We denote by� the empty
string. For stringsu; v over�, we say thatu is asubstringof v, denotedu � v,
if v = xuy, for some stringsx; y. We say thatu is asubsequenceof v, denotedu �s v, if u = a1a2 : : : am, ai 2 � andv = v0a1v1a2 : : : amvm, for some stringsvi, 0 � i � m, over�. For someA � � we define the morphism�A : �� ! A�
as follows: �A(ai) = ai, if ai 2 A and�A(ai) = � if ai 2 � n A. For anyu 2 ��, we denoteujA = �A(u). We say that therelative positionsof letters from
setA � � are the same in stringsu; v 2 �� if and only if ujA = vjA.

Let �n = f1; 2; : : : ; ng and let�n = f1; 2; : : : ; ng be asigned copyof �n.
For anyp 2 �n we say thatp is aunsigned letter, while p is asigned letter. We
call theidentity mappingand denote it byid the automorphism on(�n[�n)� such
that id(u) = u for any stringu over (�n [ �n). Let k:k be the morphism from(�n [ �n)� to ��n that unsigns the letters: for alla 2 �n, kak = kak = a. For a
stringu over�n [ �n, u = a1a2 : : : am, ai 2 �n [ �n, for all 1 � i � m, we
denote itsinversionby u = am : : : a2a1, wherea = a, for all a 2 �n.

Consider abijective mapping(calledpermutation) � : � ! � over an alpha-
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bet� = fa1; a2; : : : ; alg with the order relationai � aj for all i � j. We often
identify � with the string�(a1)�(a2) : : : �(al). The domain of�, denoteddom(�),
is �. We say that� is (cyclically) sortedif � = ak ak+1 : : : al a1 a2 : : : ak�1, for
some1 � k � l.

A signed permutationover� is a string over�[� such thatk k is a permu-
tation over�. We say that is (cyclically) sortedif  = ak ak+1 : : : al a1 a2 : : :: : : ak�1 or  = ak�1 : : : a2 a1 al : : : ak+1 ak, for some1 � k � l. Equivalently, is sorted if either , or  is a sorted unsigned permutation. In the former case
we say that is sorted in theorthodox orderor that is asorted orthodox permu-
tation, while in the latter case we say that is sorted in theinverted orderor that is asorted inverted permutation.

For basic notions and results on graph theory we refer to [24].

3 The Simple Intramolecular Model

The micronuclear gene structure may be abstracted (by ignoring the non-coding
blocks) as a shuffled sequence of coding blocks called MDSs. During gene assem-
bly, the MDSs are sorted in the orthodox order to yield the assembled macronuclear
gene. This rearrangement is facilitated by the special structure of the MDSs: each
MDS M ends with a short nucleotide sequence that is repeated in thebeginning
of the MDS followingM in the assembled gene. Thus, each MDSM starts with
an incoming pointer, “pointing” to the MDS precedingM in the assembled gene,
and it ends with anoutgoing pointer, “pointing” to the MDS succeedingM in the
assembled gene. Exceptions are the first and the last MDSs from the assembled
gene: the first MDS has abeginning markerrather than an incoming pointer and
the last MDS has anending markerrather than an outgoing pointer.

Three molecular operations,ld, hi anddlad where conjectured in [8] and [22]
for gene assembly, see [6] for a detailed presentation. We consider in this paper
the simple versions of these molecular operations, defined bellow, and investigate
the gene patterns they can assemble. It is important to note that, as observed in
[11], all available experimental data, see [3], is consistent with applications of the
simple operations, although they are not complete: there are signed permutations
(sequences of MDSs) that they cannot sort (assemble).

The effect of theld operation is to combine two consecutive MDSsMiMi+1
into a bigger composite MDSMi;i+1 by eliminating the non-coding sequences be-
tween them. In this paper however, we do not consider the non-coding sequences
separating the MDSs and in this way, assembling the gene simply becomes sort-
ing the MDSs in the orthodox order. Consequently, in this abstraction, we will
effectively ignore theld operation.

The simplehi operation is applicable to an MDS sequenceÆ, if in Æ there are
two consecutive MDSsM andN , both containing one copy of a pointerp, one
being inverted with respect to the other. The operation changesÆ as illustrated in
Figure 1: depending on the incoming/outgoing position ofp, eitherM or N is
inverted.

The simpledlad operation is applicable to an MDS sequenceÆ if in Æ there is
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p q p r shp MqÆ1 r Æ2Npp p Æ2 Æ1 Æ2q rpM 0 N 0M N Æ2Æ1 rÆ1 M 0 N 0 shpq
Figure 1: The MDS structures where the simplehi-rule is applicable: the two
occurrences of pointerp, one inverted, are placed on consecutive MDSs. The MDS
sequence is changed as illustrated in the figure. A rectangledenotes one MDS, with
its two pointers indicated, a straight line indicates that no MDSs occur in that area,
while a jigged line denotes an arbitrary sequence of MDSs;M denotes the inverse
of MDSM andN 0 denotes the inverse ofN 0.
an MDSM flanked by some pointersp andq, where there is no MDS occurring
in Æ between the second occurrence ofp and the second occurrence ofq. The
operation changesÆ as illustrated in Figure 2: MDSM is moved between the
second occurrence ofp and the second occurrence ofq. N N 0L0M 0p q qr1 LNM p r2Æ1 p qr1 r2Æ1sdp;q Æ3Æ2 Æ3 Æ2r1 q p r2p r2 qÆ1 Æ3 Æ2 Æ3M 0 N 0 L0 r1 p qÆ2 sdp;q LÆ1 M
Figure 2: The MDS structures where the simpledlad-rule is applicable: one pair of
pointersp andq is placed on the same MDS, while in between the other pair ofp
andq there is no MDS. The MDS sequence is changed as illustrated inthe figure. A
rectangle denotes one MDS, with its two pointers indicated,a straight line indicates
that no MDSs occur in that area, while a jigged line denotes anarbitrary sequence
of MDSs.

For a detailed presentation of the molecular transformations conjectured to take
place in simplehi and simpledlad, including folding of the DNA molecules and
various recombinations, we refer to [11].

In this paper we consider restricted versions of the simple operations. We con-
sider such simplehi anddlad that rearrange parts of the molecule containing only
non-composite MDSs. For a study on non-restricted simple operations we refer to
[18].

4 Gene Assembly as a Sorting of Signed Permutations

In this paper we represent each MDSMp by symbolp and its inversionMp by
symbolp. In this way, a sequence of MDSs is represented by a signed permutation.
In this paper we choose to ignore theld operation observing that once such an
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operation becomes applicable to a gene pattern, it can be applied at any later step
of the assembly, see [6] for a formal proof. In particular, wecan assume that allld
operations are applied in the last stage of the assembly, once all MDSs are sorted in
the correct order. In this way, the process of gene assembly can indeed be described
as a process of sorting the associated signed permutation, i.e., arranging the MDSs
in the proper order, be that orthodox or inverted.

The simplehi is formalized on permutations through operationsh. For eachp � 1, shp is defined as follows:shp(x p(p+ 1) y) = x p (p+ 1) y; shp(x (p+ 1) p y) = x (p+ 1) p y;shp(x p (p+ 1) y) = x p (p+ 1) y; shp(x (p+ 1) p y) = x (p+ 1) p y;
wherex; y are signed strings over�n. We denoteSh = fshp j 1 � p � ng.

The simpledlad is formalized on permutations through operationsd. For
eachp, 2 � p � n� 1, sdp is defined as follows:sdp(x p y (p� 1) (p+ 1) z) = x y (p� 1) p (p+ 1) z;sdp(x (p� 1) (p+ 1) y p z) = x (p� 1) p (p+ 1) y z;sdp(x (p+ 1) (p� 1) y p z) = x (p+ 1) p (p� 1) y z;sdp(x p y (p+ 1) (p� 1) z) = x y (p+ 1) p (p� 1) z;
wherex; y; z are signed strings over�n. We denoteSd = fsdp j 1 � p � ng.
Definition 1. We define orthodox and inverted operations as follows:� Operationsshp transforming stringsu p (p+ 1) v andu p (p+ 1) v to u p(p+ 1) v we will call orthodoxSh operations;� Operationsshp transforming stringsu (p+ 1) p v andu (p+ 1) p v tou (p+ 1) p v we will call invertedSh operations;� Operationssdp transforming stringsu p v (p� 1) (p+ 1)w andu (p� 1)(p+1) v pw tou v (p�1) p (p+1)w and tou (p�1) p (p+1) v w respectively

we will call orthodoxSd operations;� Operationssdp transforming stringsu p v (p+ 1) (p� 1)w andu (p+ 1) (p� 1) v pw to u v (p+ 1) p (p� 1)w and tou (p+ 1) p (p� 1)v w respectively we will call invertedSd operations.

For a composition of operations� = �k Æ : : : Æ �1 we write�i 2 � for all1 � i � k and we say that�i is usedin � before�j for all 1 � i < j � k.
We say that a signed permutation� over the set of integers�n is sortable if

there is a composition� = �k Æ : : : Æ �1 such that�(�) is a (cyclically) sorted
signed permutation. In this case we say that� sorts� and also, that it is asorting
compositionfor �. Permutation� is Sh-sortableif �1; : : : ; �k 2 Sh and� is Sd-
sortableif �1; : : : ; �k 2 Sd.
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Example 1. (i) Permutation�1 = 34 5 6 1 2 is sortable and a sorting compo-
sition is sh1(sh5(sh3(�1))) = 3 4 5 6 1 2. Permutation�01 = 34 5 6 1 2 is
unsortable. Indeed, noSh operations and noSd operation is applicable to�01.

(ii) Permutation�2 = 13 4 2 5 is sortable and has only one sorting composition:sh4(sd2(�2)) = 1 2 3 4 5.

(iii) There exist permutations with several sorting compositions, even leading to
different sorted permutations. One such permutation is�3 = 35 1 2 4. In-
deed,sd3(�3) = 5 1 2 3 4. At the same time,sd4(�3) = 3 4 5 1 2.

(iv) The simple operations yield a nondeterministic process: there are permuta-
tions having both sorting compositions and non-sorting compositions lead-
ing to unsortable permutations. One such permutation is�4 = 13 5 7 9 2 46 8. Note thatsd3(sd5(sd7(�4))) = 1 9 2 3 4 5 6 7 8 is a unsortable permuta-
tion. However,�4 can be sorted, e.g., by the following composition:sd2(sd4(sd6(sd8(�4)))) = 1 2 3 4 5 6 7 8 9.

(v) Permutation�5 = 13 5 2 4 has both sorting and non-sorting compositions.
Indeed,sd3(�5) = 1 5 2 3 4, a unsortable permutation. However,sd2(sd4(�5)) = 1 2 3 4 5 is sorted.

(vi) Applying a cyclic shift to a permutation may render it unsortable. Indeed,
permutation2 1 4 3 5 is sortable, while5 2 1 4 3 is not.

(vii) Consider the signed permutation�7 = 111 3 9 5 7 2 4 13 6 15 8 10 12 14 16.
Operationsd may be applied to�7 on elements3, 6, 9, 11, 13, and15. Doing
that however leads to a unsortable permutation:sd3(sd6(sd9(sd11(sd13(sd15(�7)))))) = 1 5 6 7 2 3 4 8 9 10 11 12 13 14 15 16:
However, omittingsd3 from the above composition leads to a sorting com-
position for�7: let�07 = sd6(sd9(sd11(sd13(sd15(�7))))) = 1 3 5 6 7 2 4 8 9 10 11 12 13 14 15 16:
Thensd2(sd4(�07)) is a sorted permutation.

The following lemma follows directly from the definition ofsd andsh.

Lemma 1. Let� be a signed permutation over�n andp 2 �n. Then we have the
following properties:

(i) sdp is applicable to� if and only if sdp is applicable to� and in this case,sdp(�) = sdp(�);
(ii) shp is applicable to� if and only if shp is applicable to� and in this case,shp(�) = shp(�);
(iii) k shp(�)k = k�k;
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(iv) If p(p+ 1) � �, then for any composition� of Sh andSd operations appli-
cable to�, p(p+ 1) � �(�);

(v) If p(p+ 1) � �, thensdp, sdp+1, andshp cannot be used in any composition
applicable to�.

Lemma 2. Let� be a signed permutation over�n and� a composition applicable
to �. Then,� is applicable to� as well and we have that�(�) = �(�).
Proof. We prove this by induction on the number of operations in�. The case
when j�j = 1 follows from Lemma 1. Now, assume for any composition� of
lengthk applicable to� we have that� is also applicable to� and�(�) = �(�).
Consider composition�0 = � Æ �, where� is either anSh or anSd operation.
Consider the permutation�0 = �(�). Clearly,� can be applied to�0 and�(�0) =�(�0) by Lemma 1. But,�(�0) = �(�(�)) = �0(�) and�(�0) = �(�(�)) =�(�(�)) = �0(�). In this way�0(�) = �0(�) and so, the lemma is proved.

The following result follows from Lemma 1(iv), (v) and the definition of the
operationssh andsd.

Lemma 3. Let� be a signed permutation over�n andp 2 �n.

(i) sdp�1 andsdp cannot be used in the same composition applicable to�.

(ii) shp�1 andsdp cannot be used in the same composition applicable to�.

(iii) sdp can be used at most once in a composition applicable to�.

(iv) shp can be used at most once in a composition applicable to�.

(v) shp andsdp cannot be used in the same composition applicable to�.

(vi) sd1 andsdn are not applicable in any composition.

(vii) shn cannot be used in any of compositions.

Theorem 4. No permutation� can be sorted both to an orthodox permutation and
to an inverted one.

Proof. Assume that there is a permutation� that can be sorted both to an orthodox
permutation and to an inverted one. We have two cases: either1n �s k�k, orn 1 �s k�k. Assume the first case, as the second one can be reduced to the first one
by Lemma 2. Then there are two sorting compositions�o and�i for � such that�o(�) = 1 2 : : : n and�i(�) = (k � 1) : : : 2 1n : : : (k + 1) k, for somek � 2.
We have now the following two cases:

(i) 1 is unsigned in�. Thensh1 2 �i and so,k � 3. Also, it follows by Lemma 3
thatsd1; sd2 62 �i and so, the relative position of1 and2 does not change in�: 2 1 �s k�k.
Since�o(�) = 1 2 : : : n, it follows that sd2 2 �o and so, by Lemma 3,sd3 62 �o. Then2 1 3 �s k�k.
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If 2 is unsigned in�, thensh2 2 �i, but for sh2 to be applicable,sd3 has to
be applied in�i beforesh2, contradicting Lemma 3.

If 2 is signed in�, then eithersh1 2 �o, or sh2 2 �o. Sincesd2 2 �o, this
contradicts Lemma 3.

(ii) 1 is signed in�. Thensh1 2 �o and so,sd2 62 �o, i.e., the relative position
of 1 and2 does not change through applying�o: 1 2 �s k�k. We have now
two cases as follows:

(ii.1) k � 3: �i(�) = (k � 1) : : : 1n : : : k. In this case,sd2 2 �i and so,sd3 62 �i, i.e.,3 1 2 �s k�k.
If 2 is unsigned in�, i.e., 1 2 �s �, thensh1 2 �i or sh2 2 �i, a
contradiction by Lemma 3 sincesd2 2 �i.
If 2 is signed in�, i.e., 1 2 �s �, thensh2 2 �o and so, to become
applicable,sd3 must be used in�o beforesh2, contradicting Lemma 3.

(ii.2) k = 2: �i(�) = 1n : : : 2.

If 2 is unsigned in�, i.e., 1 2 �s �, then eithersh1 2 �i or sh2 2�i and by Lemma 3,sd1; sd2; sdn 62 �i. Thus,1; 2; n do not change
their relative position through�i and so,1n 2 �s k�k. Consequently,sd2 2 �o, a contradiction by Lemma 3 sincesh1 2 �o.
If 2 is signed in�, i.e.,1 2 �s �, thensh2 2 �o and so, by Lemma 3,sd2; sd3 62 �o. Thus, 1; 2; 3 do not change their relative position
through�o and so,1 2 3 �s k�k. But then, eithersd2 2 �i, orsd3 2 �i, but not both. Thus, eithersd3 62 �i, or sd2 62 �i, i.e., either1, 3, n or 1, 2, n do not change their relative positions through�i, i.e.,
either1n 3 �s k�k or 1n 2 �s k�k. But then, eithersd3 2 �o, orsd2 2 �o, a contradiction by Lemma 3 sincesh2 2 �o.

Lemma 5. Let� be a signed permutation.

(a) � cannot be sorted to an orthodox order if there existsp such that:

(i) (p+ 1) p � �, or

(ii) (p+ 1) p � �, or

(iii) (p+ 1) (p� 1) � �.

(b) � cannot be sorted to an inverted order if there existsq such that:

(iv) q (q + 1) � �, or

(v) q (q + 1) � �, or

(vi) (q � 1) (q + 1) � �.
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Proof. We only prove here part (a) of the result, since part (b) is symmetric with
respect to inversion.

To prove (a.i), assume that(p+ 1) p � � and� may be sorted to an orthodox
order through a composition� of Sh andSd operations. Then eithershp�1 2 �
or shp 2 � and so, by Lemma 3,sdp 62 �. But then,sdp+1 2 � and so,shp 62 �.
Thus,shp�1 2 � andsdp+1 2 �. The contradiction comes from the fact thatshp�1
must be applied beforesdp+1 which in its turn, must be applied beforeshp�1 and
an operation may only be used once in a composition, by Lemma 3.

Claim (a.ii) follows similarly as (a.i).
To prove (a.iii), assume as above that(p+ 1) (p� 1) � � and� is sorted to an

orthodox order by�. Since an orthodox sorted permutation has no signed letters,
it follows that shp; shp�1 2 �. Consequently, throughout the assembly, we must
obtain bothp (p+ 1) and(p� 1) p as substrings. Thus,sdp 2 �, a contradiction
by Lemma 3 sinceshp 2 �.

The following result follows from Lemma 5.

Lemma 6. Let � be a signed permutation. If an orthodox operation onp is ap-
plicable to�, then there is no composition applicable to� containing an inverted
rule onp. Similarly, if an inverted operation onp is applicable to�, then there is
no composition applicable to� containing an orthodox rule onp.
Lemma 7. If both orthodox and inverted operations are applicable to�, then�
cannot be sorted.

Proof. Assume�p is an orthodox and�q is an inverted operation applicable on�.
For inverted�q we have either

(i) (q + 1) q � �, or

(ii) q (q � 1) � �, or

(iii) (q + 1) (q � 1) � � andq is signed in�.

By Lemma 5 we cannot sort any of (i)–(iii) to an orthodox order. Thus,�
cannot be sorted to an orthodox permutation.

For orthodox�p we have either

(iv) (p� 1) p �s �, or

(v) p (p+ 1) �s �, or

(vi) (p� 1) (p + 1) � � andp is unsigned in�.

By Lemma 5 we cannot sort any of (iv)–(vi) to an inverted orderand so, we
cannot sort� to an inverted order.

In this way,� cannot be sorted.
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Corollary 8. Permutation� is sortable to an orthodox order if and only if� is
sortable and no inverted rule is applicable to�.

Proof. Consider� a permutation sortable to an orthodox order and let� be an
operation applicable to�. If � is an inverted rule, then by definition, there isp such
that either(p+ 1) p � �, or (p+1) p � �, or (p+ 1) (p� 1) � �. It follows then
by Lemma 5 that� cannot be sorted to an orthodox permutation, a contradiction.

The reverse implication follows based on similar arguments.

Example 2. (i) Consider the permutation�1 = 13 4 2 5. This permutation is
sorted to an orthodox order. Indeed, we havesh4 Æ sd2 Æ sh3(�1) = 1 2 3 4 5.
Moreover, by Lemma 1�1 should be sorted to an inverted order. By Lemma 2
compositionsh4 Æ sd2 Æ sh3 is applicable to�1 as well and it should sort it to
an inverted order. Indeed,sh4 Æ sd2 Æ sh3(�1) = sh4 Æ sd2 Æ sh3(5 2 4 3 1) =5 4 3 2 1 = sh4 Æ sd2 Æ sh3(�1).

(ii) Consider the permutations�02 = 13 2 5 4 and �002 = 13 2 6 4 5. Orthodoxsd2 and invertedsh4 are applicable to�02, but it is easy to see, that we can
sort �02 neither to an orthodox order nor to an inverted order. Orthodox sd2
and invertedsd5 are applicable to�002 , but �002 can be sorted neither to an
orthodox order nor to an inverted order.

(iii) Consider the permutation�03 = 13 4 6 2 5. Orthodox operationssd2 andsh3
are applicable to�03. By Corollary 8 if�03 is sortable, it should be sorted
to an orthodox order. Let’s try to sort it:sh3 Æ sd2(�03) = 1 2 3 4 6 5. Now
invertedsh5 became applicable. By using it we get permutation1 2 3 4 6 5.
This permutation cannot be sorted. Since there are no other compositions
applicable to�03, it cannot be sorted as well.

Consider the permutation�003 = 13 4 5 2 6. Orthodoxsd2 and sh3 can be
applied to�003 . We can sort�003 . Indeed,sh5 Æ sh3 Æ sd2(�003 ) = 1 2 3 4 5 6.
Thus,�003 is sortable, orthodox operations are applicable and�003 is sorted to
an orthodox order.

5 Sh-sortable permutations

We characterize in this section all signed permutations that can be sorted using onlySh operations. As it turns out, they are easy to describe since theSh operations do
not change the relative positions of the letters in the permutation.

The following result characterizes allSh-sortable signed permutations.

Theorem 9. A signed permutation� over�n is Sh-sortable if and only if

(i) k�k = p (p + 1) : : : n 1 : : : (p � 1), for some1 � p � n and there arer; t,1 � r � p� 1, p � t � n such thatr andt are unsigned letters, or

(ii) k�k = (p � 1) : : : 1n : : : (p + 1) p, for some1 � p � n and there arer; t,1 � r � p� 1, p � t � n such thatr andt are signed letters.
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In Case (i),� sorts top (p + 1) : : : n 1 : : : (p � 1), while in Case (ii),� sorts to(p� 1) : : : 1n : : : (p+ 1) p.

Proof. The conditions of the theorem are clearly sufficient. Consider now aSh-
sortable permutation�. Thus, there is a composition� of operations inSh such
that �(�) = p (p + 1) : : : n 1 : : : (p � 1) for some1 � p � n, or �(�) =(p� 1) : : : 1n : : : (p+ 1) p. Consider the first case – the second one is symmet-
ric with respect to inversion.

Note, that anSh operation does not change the relative order of letters in�, but
only changes one sign. Thus, it follows thatk�k = p (p + 1) : : : n 1 : : : (p � 1)
for some1 � p � n. It is easy to see that to sort a permutation to an orthodox
order by onlySh operations, it is necessary to have at least one unsigned letter infp; p+ 1; : : : ; ng and at least one unsigned letter inf1; 2; : : : ; p� 1g.
Example 3. (i) The permutation�1 = 56 78 1 23 4 is Sh sortable and anSh-

sorting for �1 is sh3(sh2(sh1(sh7(sh5(sh6(�1)))))) = 5 6 7 8 1 2 3 4. Note
that sh5 can be used only aftersh6 and also,sh3 can be used only aftersh2.

(ii) The permutation�2 = 5 6 78 1 2 3 4 is unsortable, since we cannot unsign1,2, 3 and4.

6 Sd-Sortable Permutations

We characterize in this section theSd-sortable permutations. SinceSd operations
do not change the sign of elements, we consider only unsignedpermutations. The
case when all elements are signed is symmetric with respect to inversion. A crucial
role in our result is played by the dependency graph of a permutation.

6.1 The dependency graph

The dependency graph describes for a unsigned permutation� the order in which
orthodoxSd operations can be used in a composition applicable to�. It is in
general a directed graph with self-loops.

Definition 2. For a permutation� over�n we define its dependency graph as the
directed graphG� = (�n; E), whereE =f(p; q) j (q � 1)p(q + 1) �s �; 1 � p � n; 2 � q � n� 1g [f(q; q) j (q + 1)(q � 1) �s � or q = 1 or q = ng:

Intuitively, an edge(p; q) in the dependency graph of a permutation says thatsdq may be used in a composition for� only after sdp was used. A loop(q; q)
means thatsdq can never be used in a composition for�. Note thatG� may also
have a loop on nodeq if (q � 1)q(q + 1) �s �.

Example 4. (i) The graph associated to the permutation�1 = 14 3 6 5 7 2 is
shown in Figure 3(a). It can be seen, e.g., thatsd3 can never be used in
a composition applicable to�, neither cansd5 because of the edge(3; 5).

11



a)

1 2 3

7 6 5

4

b)

1 2 3

5 4

Figure 3: Dependency graphs: (a) associated to�1 = 14 3 6 5 7 2 and (b) associ-
ated to�2 = 14 3 2 5.

Also, the graph suggests thatsd6 should be used beforesd4 and this one
beforesd2. Indeed,sd2(sd4(sd6(�))) = 1 2 3 4 5 6 7.

(ii) The graph associated to the permutation�2 = 14 3 2 5 is shown in Fig-
ure 3(b). Thus, the graph has a cycle with nodes2 and4. Indeed, to usesd2
in a composition for�2, sd4 should be used first and the other way around.

Lemma 10. For any signed permutation over�n and anyp 2 �n, if (p+ 1)(p� 1) �s �, thensdp cannot be used in a composition applicable to�.

Proof. Indeed, to usesdp we need to obtain the substring(p� 1) (p+1) first. But,
for this we need to use eithersdp�1 or sdp+1. However, by Lemma 3 we cannot
usesdp afterwards.

Lemma 11. Let � be a unsigned permutation over�n andG� = (�n; E) its
dependency graph.

(i) If there is a path fromp to q in G�, then in any composition wheresdq is used,sdp is used beforesdq.
(ii) If G� has a cycle containingp 2 �n, thensdp cannot be used in any compo-

sition applicable to�.

Proof. We prove claim (i) by induction along the length of paths fromp to q.
For a path of length1, note that if we have an edge(p; q) in G�, with p 6= q,
then(q � 1)p(q + 1) �s �. Now, sdq can be used only after(q � 1) (q + 1) is
obtained and so,sdp has to be applied beforesdq in any composition applicable
to �. Assume now that the path is of lengthk and is presented by the sequence(p p1 p2 : : : pk�1 q). Clearly sdpk�1 is applied beforesdq and by the induction
hypothesis we have thatsdp is applied beforesdpk�1 .

Claim (ii) follows from (i) and from Lemma 3. Indeed, if thereis a nonempty
path fromp to itself, then we have either:

(a) (p+ 1) (p� 1) �s �, or

12
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14 16 1
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8125

710

Figure 4: The dependency graph associated to� = 111 3 9 5 7 2 4 13 6 158 10 12 14 16. The nodes indicated by white background are used in a sorting com-
position for�.

(b) (p� 1) p (p+ 1) �s �, or

(c) Neither(p+1) (p� 1) �s � nor (p� 1) p (p+1) �s �, but there is a path of
a length greater than1 from p to itself in the graph.

In case (b) and (c) it follows thatsdp should be used twice in a composition
applicable to�, which is impossible by Lemma 3(iii). Case (a) is proved by
Lemma 10.

6.2 The Characterization

We characterize in this subsection theSd-sortable permutations. We first give an
example.

Example 5. Consider the dependency graphG� for � = 111 3 9 5 7 2 4 13 6 15 810 12 14 16, shown in Figure 4. Based on Lemmas 3 and 11 we build a sorting
composition� for �. We label all nodesp for which sdp is used in� byD and
the other nodes byU . Nodes labelled byD are shown with a white background in
Figure 4, while nodes labelled byU are shown with a gray background.

By Lemmas 3 and 11, operationssd1, sd8, sd10 and sd16 cannot be used in
any composition applicable to�. Thus,1; 8; 10; 16 2 U . Now, if we want to
usesd2, the operationsd11 should be used first, since the edge(11; 2) is in G�.
Thus,2; 11 2 D. According to Lemma 3 we cannot usesd2 and sd3 in the same
composition, thus we label3 byU . If we want to usesd4, we need to usesd9 first
because of the edge(9; 4). Thus, we label both4 and9 byD. It follows then by
Lemma 3 that5 2 U . Then6 can be labelled byD and then, necessarily,7 2 U .
Note now, that if12 2 D, since(3; 12) is an edge inG�, then by Lemma 11(ii),3 2 D, which contradicts our labelling of3. Thus,12 2 U . Then13 can be
labelled byD and necessarily,14 2 U . Also,15 can now be labelled byD.
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213

11

4

14 16 1

36

8125

10 15 97

Figure 5: The dependency graph associated to� =111 3 9 5 7 2 4 13 6 15 8 10 12 14 16 and partitionU = f1; 3; 5; 6; 8; 10; 12; 14; 16g,D = f2; 4; 7; 9; 11; 13; 15g.

In this way, we obtainD = f2; 4; 6; 9; 11; 13; 15g andU = f1; 3; 5; 7; 8; 10; 12;14; 16g. Note that, since elements inU do not change their relative positions in the
composition� we are building,�jU has to be sorted:�jU = 13 5 7 8 10 12 14 16.� is a composition of the operationssdp, with p 2 D. The dependency graph
shows the order in which these operations should be used, i.e., sd2 can be used
only aftersd11, sd4 can be used only aftersd9. In this way, we can sort� by using
the following sorting composition:(sd2 Æ sd4 Æ sd6 Æ sd15 Æ sd13 Æ sd11 Æ sd9)(�) =1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16: Clearly, our choice ofD andU is not unique.
For instance, we may have chosenD = f2; 4; 7; 9; 11; 13; 15g andU = f1; 3; 5; 6;8; 10; 12; 14; 16g as shown in Figure 5. Then the sorting composition issd2 Æ sd4 ÆÆ sd7 Æ sd15 Æ sd13 Æ Æ sd11 Æ sd9.

The following result characterizes allSd-sortable permutations.

Theorem 12. Let� be a unsigned permutation. Then� is Sd-sortable if and only
if there exists a partitionf1; 2; : : : ; ng = D[U , such that the following conditions
are satisfied:

(i) �jU is sorted;

(ii) The subgraph induced byD in G� is acyclic;

(iii) If (p; q) 2 G� with q 2 D, thenp 2 D;

(iv) For anyp 2 D, (p� 1)(p+ 1) �s �;

(v) For anyp 2 D, (p� 1); (p+ 1) 2 U .

Proof. Consider a sortable unsigned permutation� and let� = sdpk Æ : : : Æ sdp1
be a sorting composition for�,D = fp1; : : : ; pkg andU = �n nD.

The relative positions of integers inU are not changed throughout the sorting
and so (i) follows. Since� can be applied to�, (ii), (iii), (v) follow from Lemmas 3
and 11. To prove (iv), consider nowp 2 D. Then(p � 1); (p + 1) 2 U and so,
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their relative position does not change throughout the sorting. Since(p�1)(p+1)
is a substring of the permutation whensdp becomes applicable, it follows that(p� 1)(p+ 1) �s �, proving(iv).

We prove the converse implication by induction onjDj. If jDj = 0, then the
claim follows by (i). LetjDj > 0.

By (ii), D induces a directed forest in the dependency graph; letp be a source of
this forest. By (iv),(p�1)(p+1) �s �. If (p�1)(p+1) is not a substring of�, then
there is aq such that(p� 1)q(p+ 1) �s �. But then(q; p) 2 G� and so, by (iii),q 2 D, contradicting the choice ofp as a root. Consequently,(p� 1)(p + 1) � �
and so,sdp is applicable to�. Let �0 = sdp(�): then (p � 1) p (p + 1) � �0.
Consider the partitionD0 = D n fpg, U 0 = U [ fpg. We claim thatD0 andU 0
satisfy conditions(i) - (v) for the permutation�0.

It is easy to see that�0 jU 0 is sorted because�jU is sorted and(p� 1)(p+1) is
a substring of�, proving (i).

Assume now that (iii) does not hold, i.e., there is a dependency (r; t) 2 G0�
((t� 1)r(t+ 1) �s �0) with r 2 U 0, t 2 D0. We claim that(r; t) 2 G�. Indeed, if
this is not the case, then eitherr = p, or t� 1 = p, or t+ 1 = p.

If t � 1 = p, thent = p+ 1 2 U � U 0 and so,t 2 D0 \ U 0; a contradiction.
The case whent + 1 = p is analogous. Now, ifr = p, then eithert � 1 = p� 1
and thust = p, or (t � 1) (p � 1) (t + 1) �s �0. The caset = p is impossible
sincet 2 D0 = D n fpg. Consider then the case(t� 1)(p � 1)(t + 1) �s �0 andt� 1; t+1 6= p. Consequently,(t� 1)(p� 1)(t+1) �s �, i.e.,(p� 1; t) 2 G�. It
follows from Condition (iii) for� thatp� 1 2 D, which contradicts Condition (v)
for �, sincep 2 D. Consequently, (iii) holds for�0.

To prove (iv) considerr 2 D0. Thus,r 2 D and so(r � 1)(r + 1) �s �. Ifr � 1 = p (r + 1 = p, resp.), thenr = p+ 1 (r = p� 1, resp.), i.e.,r 2 U � U 0,
which is impossible. Thus,r� 1 6= p andr+ 1 6= p and so,(r� 1)(r+ 1) �s �0,
i.e., (iv) holds.

Using a similar argument it is easy to show that forr; t 2 D0, (r; t) 2 G0� if
and only if(r; t) 2 G�, thus proving (ii).

Condition (v) follows sinceD0 � D andU � U 0.
Consequently, sincejD0j < jDj, it follows by induction that�0 is sortable.

Then, since�0 = sdp(�), � is also sortable, concluding the proof.

Example 6. Consider the permutation� = 13 8 10 5 7 2 9 11 4 6 12. Its depen-
dency graph is shown in Figure 6. Based only on this graph and using Theorem 12
we deduce a sorting composition for�.

It follows by property (ii) that1; 7; 11; 12 2 U . Then, it follows from prop-
erty (iii) that 3 2 U . Since1; 3 2 U , it follows from property (i) that2 2 D.
Also, since3; 7; 11 2 U , it follows from property (i) that4; 6; 8; 10 2 D and so, by
property (v),5; 9 2 U . We have now a complete labelling forG�:D = f2; 4; 6; 8; 10g; U = f1; 3; 5; 7; 9; 11; 12g:

We represent the elements fromD as white vertices and elements fromU as
gray vertices.
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Figure 6: The dependency graph associated to� = 13 8 10 5 7 2 9 11 4 6 12, U =f1; 3; 5; 7; 9; 11; 12g, D = f2; 4; 6; 8; 10g.
The permutation� may be sorted now by a composition of operationssdp withp 2 D. The dependency graph imposes the following order of operations: sd4

after sd8 and sd10, sd8 after sd2. The other operations can be used in any order.
For instance, we can sort� in the following way:(sd4 Æ sd8 Æ sd2 Æ sd10 Æ sd6)(�) = 1 2 3 4 5 6 7 8 9 10 11 12;
but also, (sd6 Æ sd4 Æ sd8 Æ sd2 Æ sd10)(�) = 1 2 3 4 5 6 7 8 9 10 11 12:
7 fSd; Shg-Sortable Permutations

We characterize in this section all signed permutations that can be sorted using our
operations inSd[Sh. First we give some examples.

Example 7. (i) The signed permutations�1 = 21 4 3 5 and�2 = 15 2 4 3 6 are
not fSd;Shg-sortable. Indeed, onlysh3 can be applied to�1, but it does not
sort it, and no operation can be applied to�2.

(ii) The signed permutations�3 = 92 10 11 1 5 3 7 4 6 8 and�4 = 54 3 8 2 1 9 7 6
arefSd;Shg-sortable:(sh10 Æ sh9 Æ sd2 Æ sd5 Æ sh3 Æ sd7)(�3) = 9 10 11 1 2 3 4 5 6 7 8
and (sh4 Æ sh3 Æ sh1 Æ sh2 Æ sd8 Æ sh6)(�4) = 5 4 3 2 1 9 8 7 6:

Definition 3. Consider a permutation�. LetH;D � f1; 2; : : : ; ng, H \D = ;.
The (orthodox) dependency graph��;H;D generated by�,H andD has�n as its
set of vertices, while its edges are defined as follows:

i. For q 2 D and somep 2 �n,

– if (q � 1) p (q + 1) �s k�k, then(p; q) 2 ��;H;D;
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– if (q + 1) (q � 1) �s k�k, then(q; q) 2 ��;H;D;

– if q � 1; q have different signs in�, then(q � 2; q) 2 ��;H;D;

– if q; q + 1 have different signs in�, then(q + 1; q) 2 ��;H;D.

ii. For q 2 H and somep 2 �n,

– if q p (q + 1) �s k�k, then(p; q) 2 ��;H;D;

– if (q + 1) q �s k�k or q (q + 1) �s �, then(q; q) 2 ��;H;D;

– if q(q + 1) �s �, then� if q�1 is not inH or (q; q�1) is an edge, then(q+1; q) 2 ��;H;D,� else(q � 1; q) 2 ��;H;D.

For a composition� applicable to�, we denoteH� = fp 2 �n j shp 2 �g
andD� = fp j sdp 2 �g. Also, we denote��;� = ��;H�;D� .

Example 8. Consider� = 68 10 1 9 3 7 4 2 5 and letH = f3; 4g and D =f2; 7; 9g. The dependency graphG = ��;�H ;�D , shown in Figure 7, is built as
follows.

We represent the elements fromH as slanted vertices, the elements fromD as
white vertices and the rest of the elements as gray vertices.For each vertexq fromG we have the following edges(p; q):
– Node1: we do not have edges(p; 1), since1 =2 H and1 =2 D;

– Node2: 2 2 D, elements2 and 3 have different signs in�, thus,(3; 2) 2 G.
Moreover, we have substring1 9 3 �s k�k and thus,(9; 2) 2 G;

– Node3: 3 2 H, 3 7 4 �s k�k, thus(7; 3) 2 G;

– Node4: 4 2 H, we have substring4 2 5 �s k�k, then(2; 4) 2 G;

– Node5: no predecessors for element5, since5 =2 H and5 =2 D;

– Node6: no predecessors for element6, since6 =2 H and6 =2 D;

– Node7: 7 2 D, 6 8 � �, thus we have no edges(p; 7);
– Node8: 8 =2 H and8 =2 D, thus we have no edges(p; 8);
– Node9: 9 2 D, 8 10 � �, thus we have no edges(p; 9);
– Node10: no predecessors for element10, since10 =2 H and10 =2 D.

Lemma 13. If in a permutation� the elementsp andp + 1 are signed, for somep � 2, then the orthodoxSh operationsshp�1, shp andshp+1 are applicable in the
same composition only in one of the following orders: eitherin shp�1, shp, shp+1,
or in shp+1, shp, shp�1, wherep� 1 is signed.

Proof. Consider all possible orders:

17



7

9 2

���
���
���

���
���
���3

���
���
���

���
���
���4 6

10

18

5

Figure 7: The dependency graph associated to� = 68 10 1 9 3 7 4 2 5,H = f3; 4g
andD = f2; 7; 9g.� shp�1, shp+1, shp or shp+1, shp�1, shp: By the definition of orthodoxSh

operations, after application ofshp�1 andshp+1 we get substrings(p� 1) p
and (p + 1) (p + 2), i.e., p and (p + 1) are unsigned. In order to useshp
we should sign eitherp or (p+ 1) first. This can be done either by invertedshp�1 or shp or shp+1, i.e., some of these operations should be used twice in
the same composition, which is not possible;� shp, shp�1, shp+1 or shp, shp+1, shp�1: Sincep andp + 1 are signed,shp
cannot be used first;� shp�1, shp, shp+1: After shp�1 was used, we get substring(p� 1) p. Then,
we can useshp, thus element(p + 1) becomes unsigned, and then, we can
useshp+1 if p+ 2 is signed;� shp+1, shp, shp�1: The operationshp+1 unsignsp+ 1, thenshp can be used
and unsignsp, thenshp�1 can be used ifp� 1 is signed.

Lemma 14. Let � be a signed permutation over�n and� a composition appli-
cable to� where only orthodox operations are used. Let��;� be the orthodox
dependency graph associated to� and�. Then:

(i) If there is a path fromp to q in ��;�, p 6= q, then�p 2 � and�p is used before�q in �;

(ii) The dependency graph��;� is acyclic.

Proof. Let H be the set of all elements to whichSh operations are applied in�
and letD be the set of all elements to whichSd operations are applied in�.

We will prove the first claim by induction on the length of the paths. For the
beginning we consider paths of length1, i.e., edges(p; q) for somep; q 2 �n,
wherep 6= q. By the definition of the dependency graph we have here two cases:
eitherq 2 D (i.e.,�q = sdq 2 �) or q 2 H (i.e.,�q = shq 2 �).

Consider�q = sdq. Here we have one of the following subcases:
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� (q � 1) p (q + 1) �s k�k;� elementsq � 1, q have different signs in� andp = q � 2;� elementsq + 1, q have different signs in� andp = q + 1;� (q + 1) (q � 1) �s k�k andp = q. This subcase is impossible since we
assumedp 6= q;

If (q � 1) p (q + 1) �s �, then we need to obtain the substring(q � 1) (q + 1)
first. Clearly, in order to obtain(q � 1)(q + 1) we need to usesdp first.

If q � 1 andq are of a different sign in�, then to usesdq, we should obtainq � 1 andq of the same sign first. This can be done either byshq�2 or by shq�1 or
by shq. By Lemma 3 the operationsshq�1 andsdq or shq andsdq cannot be used
in the same composition. Thus,shq�2 is used in� beforesdq.

If q + 1 andq are of a different sign in�, then to usesdq, we should obtainq andq + 1 of the same sign first. This can be done either byshq�1 or by shq or
by shq+1. By Lemma 3 the operationsshq�1 or shq cannot be used withsdq in the
same composition. In this way,shq+1 is used beforesdq in composition�.

Consider now�q = shq. By the definition, we have the following subcases:� q p (q + 1) �s k�k;� q (q + 1) �s �, p = q + 1, q � 1 =2 H or (q; q � 1) 2 ��;�;� q (q + 1) �s �, p = q � 1, q � 1 2 H and(q; q � 1) =2 ��;�;� (q + 1) q 2 k�k andp = q. This subcase is impossible since we assumedp 6= q.
If q p (q + 1) �s k�k, then we should usesdp first to obtain either substringq (q + 1) or q (q + 1).
If q (q + 1) �s �, then to useshq eitherq or q + 1 should be unsigned first.

This can be done either byshq�1 or by shq+1. We will prove by induction that, ifp = q + 1, with q � 1 =2 H or (q; q � 1) 2 ��;�, thenshq+1 is used beforeshq in�.
Indeed, ifq�1 =2 H, then we can obtain the substringq (q+1) only aftershq+1

is used. Now, assume thatq� k � 1 =2 H, q � k; q � k + 1; : : : ; q � 1; q 2 H and(q; q� 1); (q� 1; q� 2); : : : ; (q� k+1; q� k) 2 ��;�. Then,shq�k is used aftershq�k+1, shq�k+1 is used aftershq�k+2, . . . ,shq�2 is used aftershq�1 andshq�1 is
used aftershq. We show thatshq can be used only aftershq+1. Indeed, sinceshq�1
is used aftershq, we cannot unsignq beforeshq is used. Then, we unsignq + 1 byshq+1 first, thus,p = q + 1.

If q � 1 2 H, p = q � 1 and (q; q � 1) =2 ��;�, then we will show thatshq�1 is used first. Here we have one of two cases: either(q � 1) is unsigned
or (q � 1) is signed. If(q � 1) is unsigned, it is clear, thatshq�1 can be used
beforeshq. Moreover, if (q � 1) is unsigned,shq cannot be used beforeshq�1.
Now, we will prove, that if(q � 1) is signed,q � 1 2 H and(q; q � 1) =2 ��;�,
thenshq�1 is used beforeshq. We will prove this by induction. Assume, we have
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subsequence(q�2) (q � 1) q. By Lemma 13shq�2 is used beforeshq�1 andshq�1
is used beforeshq, no other orders are possible. Now, assume we have subsequence(q � k) (q � k + 1) (q � k + 2) : : : (q � 1) q, edges(q � k; q � k + 1); (q � k +1; q�k+2); : : : ; (q�2; q�1); (q�1; q) 2 ��;� andshq�k is used beforeshq�k+1,shq�k+1 is used beforeshq�k+2, . . . , shq�2 is used beforeshq�1, no other orders
are applicable. We will show, thatshq�1 is used beforeshq and not viceversa. By
Lemma 13 we can useSh operations either in ordershq�2, shq�1, shq or in ordershq, shq�1, shq�2. Sinceshq�1 cannot be used beforeshq�2 by our assumption,shq is used aftershq�1 in �.

Assume now, that if we have a path fromp to q0 in graph��;� of a length at
mostn, then�p is used before�q0 in a composition�. Assume, we have a path
from p to q via elementq0 and(q0; q) 2 ��;�. As we have shown above,�q can be
used only after�q0 . Since, by our assumption�q0 can be used only after�p, then�q is used after�p.

To prove the second claim of the lemma, assume on the contrarythat��;� has
a cycle.

If the cycle has length at least two, then the claim follows from part (i) and
Lemma 3.

Assume now that��;� has a loop:(p; p) 2 ��;�, for somep. We have the
following two cases:

(a) p 2 D�, i.e., sdp 2 �. Then by definition,(p � 1) p (p + 1) �s k�k, or(p + 1) (p � 1) �s k�k. It is easy to see that in the first case,sdp cannot
be used through�, a contradiction. In the second case, forsdp to become
applicable, we need to obtain the substring(p� 1) (p+1), i.e., eithersdp�1,
or sdp+1 should be used in� beforesdp, a contradiction by Lemma 3.

(b) p 2 H�, i.e., shp 2 �. Then it follows from the definition that(p + 1) p �sk�k, or p (p + 1) �s �. In the first case, in order to use (orthodox)shp, we
first must obtain substringp (p + 1) or p (p+ 1), i.e., we need to use eithersdp, or sdp+1 beforeshp. This is impossible, see Lemma 3. In the second
case, eitherp, or p + 1 needs to be signed before we can applyshp. Thus,shp�1, shp, or shp+1 should be used in� beforeshp. This is impossible by
Lemma 3.

Lemma 15. Let � be a signed permutation,� = �k Æ : : : Æ �1 a composition
applicable to� where all operations are orthodox. Let also�0 = �0k Æ : : : Æ �01,
where�0i = �i, if �i 2 SD and�0i = id otherwise. Thenk�(�)k = �0(k�k).
Proof. If k = 1, then either� = sdp or � = shp. In the former case�0 = sdp.
Clearly, k sdp(�)k = sdp(k�k), sincep, p � 1 andp + 1 are not signed in the
permutation andk:k does not change the relative positions of letters. In the case
when� = shp, �0 = id. Thenk�(�)k = �0(k�k).

If k > 1, then�0 = (�k�1 Æ : : : Æ �1)(�) and by inductive assumptionk�0k =(�0k�1Æ: : :Æ�01)(k�k). Now, if �k = sdp, then�0k = sdp, if �k = shp, then�0k = id.
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In both cases we have thatk�(�)k = k�k(�0)k = �0k(k�0k) = �0k(k(�k�1 Æ : : : Æ�1)(�)k) = �0k((�0k�1 Æ : : : Æ �01)(k�k)) = �0(k�k).
The following theorem gives the main result of this section.

Theorem 16. A permutation� is fSh;Sdg-sortable to an orthodox order if and
only if there is a partitionf1; 2; : : : ; ng = D [ H [ U such that the following
conditions are satisfied:

(i) For anyp 2 D, p is unsigned in�;

(ii) H sorts� jH[U to an orthodox order;

(iii) D sortsk�k;
(iv) The subgraph of��;H;D induced byH [D is acyclic.

Proof. We prove first that the conditions of the theorem are necessary. Let � be a
signed permutation sorted by the composition� to an orthodox order. LetH =H� = fp j shp 2 �g, D = D� = fp j sdp 2 �g andU = U� = �n n (H [D).
Then (i) follows from the fact, thatp can be unsigned either byshp�1 or by shp,
but by Lemma 3sdp cannot be used in the same composition either withshp�1 or
with shp. Property (iii) follows from Lemma 15, and (iv) follows by Lemma 14.

Condition (ii) we will prove by inductionjDj. If jDj = 0 then the claim
follows directly from the fact that� is sorted by�. Assume now, that� is sorted
by a composition� wherejDj = k. Consider a permutation�0 to which sdp is
applicable for somep 2 U and� = sdp(�0). Then,�0 is sorted by the composition�0 = � Æ sdp. Clearly,H 0 = H�0 = H, D0 = D�0 = D [ fpg andU 0 = U�0 =U nfpg. We claim thatH 0 sorts�0 jH0[U 0 . Indeed, sincesdp 2 �0, thenshp�1 =2 �0
by Lemma 3 and of courseshp�1 =2 �. Since neithershp�1 nor shp are used in�,
the elementp is not needed bySh operations fromH and so,�jH[Unfpg is sorted
byH. But,H[U nfpg = H 0[U 0 and thus,�jH[Unfpg = �0H0[U 0 . SinceH 0 = H,H 0 sorts�0H0[U 0 .

To prove the reverse implication, consider now a permutation � and a partitionf1; 2; : : : ; ng = D[H [U satisfying conditions (i)-(iv) of the theorem. We prove
the claim by induction onjD [Hj. If jD [Hj = 0, then the claim follows from
(ii). We will show that, if conditions (i)–(iv) are satisfiedfor a partitionH [D[U
such thatjD [Hj � 1, then we can always apply at least an operation to � and
we can choose a new partitionH 0 [ D0 [ U 0 satisfying (i)–(iv) for permutation�0 =  (�) and graph��0;H0;D0 .

Condition (iv) implies that the subgraph of�H�;D� induced byH [ D is a
directed forest. Letp be a source of it. By the definition of the dependency graph
we have either substringp (p+1) or p (p+ 1) or (p� 1) (p+1) andp is unsigned
in �, i.e., eithershp or sdp is applicable to�. Consider both cases:

(a) shp 2 �. Then, by the definition of the dependency graphp 2 H and�0 = shp(�) = �1 p (p+1)�2. LetH 0 = H n fpg,D0 = D, U 0 = U [ fpg.
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Figure 8: The dependency graph�sh2 Æ sh5;sd4 associated to� = 2 4 3 5 6 1.

We claim thatH 0;D0; U 0 satisfy conditions (i)-(iv) of the theorem for per-
mutation�0.
Indeed, (i) and (iii) are obvious. To prove (ii), note that�jH[U can be sorted
by a composition of operationsshq, q 2 H, whereshp can be used first.
Then (ii) follows since�0jH0[U 0 = shp(�jH[U ). Condition (iv) also follows
since��0;H0;D0 is a subgraph of��;H;D andH 0 [D0 � H [D.

(b) sdp 2 �. Then, by the definition of the dependency graphp 2 D and� =�1(p � 1)(p + 1)�2p�3 or � = �1p�2(p � 1)(p + 1)�3. Let H 0 = H,D0 = D n fpg, U 0 = U [ fpg. We claim thatH 0;D0; U 0 satisfy condition
(i)-(iv) for �0.
Conditions (i) and (ii) are obvious. Condition (iii) follows by noting thatk�k can be sorted by a composition of operationssdq, q 2 D, wheresdp can
be used first. Condition (iv) follows since graph��0;H0;D0 is a subgraph of��;H;D andH 0 [D0 � H [D.

In this way we proved the reverse implication and the theoremfollows.

Example 9. Let � = 24 3 5 6 1. We build a sorting composition for� based on
Theorem 16. ConsiderH = f2; 5g. Clearly, k�k = 24 3 5 6 1 is sorted by usingsd4. Then letD = f4g and U = f1; 3; 6g. We verify now conditions of The-
orem 16. Consider� jH[U= 2 3 5 6 1. Thensh2(sh5(� jH[U )) = 2 3 5 6 1, a
(circularly) sorted string. Graph�sh2 Æ sh5;sd4 is shown in Figure 8, where elements
fromH are shown as slanted vertices, elements fromD are shown as white ver-
tices and elements fromU are shown as gray vertices. Clearly,H [D induces an
acyclic subgraph in�sh2 Æ sh5;sd4 . Thus, by Theorem 16,� is sortable and a sorting
composition should be obtained by combiningsh2 Æ sh5 and sd4 as indicated by
the graph. Since(4; 2) is an edge in the graph, it follows thatsd4 must be used
beforesh2. Also, since(5; 4) is an edge, it follows thatsh5 must be used beforesd4. Consequently,sh2 Æ sd4 Æ sh5 must be a sorting composition for�. Indeed,sh2(sd4(sh5(�))) = 2 3 4 5 6 1, a sorted permutation.

Example 10. Let� = 21 4 3 7 5 9 6 8 10 11. We build a sorting composition for�
based on Theorem 16. ConsiderH = f5; 10g. The unsigned permutationk�k =21 4 3 7 5 9 6 8 10 11 can be sorted bysd2 Æ sd4 Æ sd9 Æ sd7, thusD = f2; 4; 7; 9g.
SetU = f1; 3; 6; 8; 11g. The dependency graphG associated to� andH [D is
shown in Figure 9. Clearly, permutation�jH[U = 13 5 6 8 10 11 can be sorted to
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Figure 9: The dependency graph associated to� = 21 4 3 7 5 9 6 8 10 11 andH =f5; 10g, D = f2; 4; 7; 9g.
cyclically sorted permutation1 3 5 6 8 10 11 by usingsh5 and sh10. Also,H [ D
induces an acyclic subgraph inG. It follows then that� is sortable. Indeed, a sort-
ing composition, as suggested byG, is sd2 Æ sd4 Æ sd7 Æ sh5 Æ sd9 Æ sh10. Another
sorting composition issd2 Æ sd4 Æ sh5 Æ sd9 Æ sd7 Æ sh10.
Example 11.Let� = 3 1 2. Clearly, the only sorting composition for� is sd2(�) =3 2 1. Note that the (orthodox) graph��;;;f2g has a loop on node2 but this does not
contradict Theorem 16, since� sorts to an inverted order. However,� = 21 3 and��;;;f2g is a discrete graph. According to Theorem 16,� is sortable to an orthodox
permutation.

8 Discussion

We considered in this paper a mathematical model for the so-called simple opera-
tions for gene assembly in ciliates. The simple operations were defined so that the
DNA sequence that they manipulate is minimal: only one MDS isaffected. We
considered in this paper only the case where this MDS is always micronuclear. Re-
call however that theld-operation (that we ignored in our abstraction) may combine
two consecutive MDSsMp Mp+1 into a bigger composite MDSMp;p+1. Conse-
quently, if the MDS affected by simplehi or simpledlad is allowed to be composite,
then the mathematical model needs to be slightly reformulated. This approach has
been considered in [18] and somewhat surprisingly, it leadsto very different re-
sults. While in the approach presented in the paper, there are permutations with
both sorting compositions and non-sorting compositions leading to unsortable per-
mutations, see Example 1(iv) and 1(v), it turns out that in the framework of [18],
a permutation has only sorting or only non-sorting compositions. Moreover, all
those compositions have essentially the same “structure”.

The gene structure and the gene assembly may be studied on three levels of
abstraction: as (sorting of) signed permutations, as (reductions of) signed double
occurrence strings, and as (reduction of) signed overlap graphs, see [6]. The molec-
ular model of simple operations illustrated in Figures 1 and2 has been formulated
in [11] both on the level of permutations, and on that of strings. Translating the
model to overlap graphs seems difficult: the overlap graphs do not represent the
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linear distance between pointers, which is the main ingredient in the molecular
model of simplehi anddlad. We suggest however that defining a minimal graph
reduction model is possible: consider the graph-basedhi operation (often calledgpr, see [6]) applicable only to vertices with at most one neighbour in the graph, as
well as the graph-baseddlad operation (often calledgdr, see [6]) applicable only to
adjacent vertices having the same neighbourhood. It is unclear how this “simple”
graph-based model relates to the other two abstractions of the simple model for
gene assembly.
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