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Abstract

The intramolecular model for gene assembly in ciliates iclams three operations,
Id, hi, anddlad that can assemble any gene pattern through folding and t@oam

tion: the molecule is folded so that two occurrences of atpoi(short nucleotide

sequence) get aligned and then the sequence is rearramgadtthrecombination

of pointers. In general, the sequence rearranged by onatapecan be arbitrarily

long and consist of many coding and non-coding blocks. Wsiden in this paper

simple variants of the three operations, where only onengplliock is rearranged
at a time. We characterize in this paper the gene patternsainabe assembled
through these variants. Our characterization is in ternssgofed permutations and
dependency graphs. Interestingly, we show that simplendsges possess rather
involved properties: a gene pattern may have both sucdesstlunsuccessful

assemblies and also more than one successful assembéiteggtr
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1 Introduction

Ciliates are very old eukaryotic organisms that have de@easla very unusual way
of organizing their genomic sequences. In the macronucteessomatic nucleus
of the cell, each gene is a contiguous DNA sequence. Genegnetally placed
on their own very short DNA molecules. In the micronuclel® germline nu-
cleus of the cell, the same gene is broken into pieces calle&$/macronuclear
destined sequences) that are separated by noncoding bld IESs (internally
eliminated sequences). Moreover, the order of MDSs is gfflith some of the
MDSs being inverted. The structure is particularly complexa family of cili-
ates calledstichotrichs— we concentrate in this paper on this family. During the
process of sexual reproduction, ciliates destroy the oldramaiclei and transform
a micronucleus into a new macronucleus. In this procesateasl must assemble
all genes by placing in the orthodox order all MDSs. The caxip} of the gene
assembly process is given by the fundamentally differegamization of the mi-
cronuclear and the macronuclear genomes.

The macronuclear genes are very short molecules, rangitigeirsterkiella
nova organisms between 200bp and 3700bp, with an averag®6fisp in length,
see [23, 19, 4, 5]. Incidentally, these are the shortest DNAetules known in
Nature, even shorter than those of viruses, see [21]. Onttiex band, the mi-
cronuclear genome is organized on very long chromosomesi{d20 chromo-
somes, each with aboud” bp in S.nova, see [19]), with coding sequences oc-
cupying as little as 2 - 5% of the genome, see, e.g., [4]. @#ighus have to
identify precisely the genetic material and splice it ownfrthe chromosomes.
The real intricacy however is revealed when looking into geme structure in
micro- and macronucleus. The macronuclear gene is a cantigsequence of nu-
cleotides. The same gene in the micronucleus is broken Iotk® called MDSs
(macronuclear-destined sequences), separated by narmgcoldcks called IESs
(internally-eliminated sequences). Moreover, the ordethe MDSs is shuffled
and some of them may even be inverted. Here is where the oballeand the
beauty) of gene assembly lies: ciliates have to identifyemly more than 100
000 MDSs in their genome, see [21], assemble them togethBeiorthodox or-
der, and eliminate all IESs. We refer to [12, 19, 25] for mos&ads on ciliates and
gene assembly.

A hint on how ciliates achieve gene assembly is given by thestre of MDSs.
It turns out that ciliates have developed a very ingenioug @faorganizing their
genomic data as linked lists in the style used in computemnsei, see [19]. A
short sequence in the end of each MDS is repeated identicatlye beginning
of the MDS that should follow it in the orthodox order, thusvéeg as a com-
puter science-like pointer. Moreover, the first MDS starithwa special beginning
marker, while the last MDS ends with a special ending markes. currently be-
lieved that ciliates splice together their MDSs on the commpainters to assemble
the gene. There are two main models for gene assembly, seg7lénd [8, 22],
that both agree on this generic mechanism.

The intramolecular model for gene assembly, introduce@jrahd [22] con-
sists of three operation#d, hi, anddlad. In each of these operations, the molecule



folds on itself so that two or more pointers get aligned amdubh recombination
two or more MDSs get combined into a bigger composite MDS. fioeess con-
tinues until all MDSs have been assembled. For detailselat ciliates and gene
assembly we refer to [12], [19], [20] and for details relatedhe intramolecular
model and its mathematical formalizations we refer to [6§r & different inter-
molecular model we refer to [14], [16], [17].

In general there are no restrictions on the number of nudestetween the
two pointers that should be aligned in a certain fold. Howeg# available ex-
perimental data is consistent with restricted versionsusfaperations, in which
between two aligned pointers there is never more than one ,MB&S[6] and [7].
We propose in this paper a mathematical model for simpleamtsiofld, hi, and
dlad. The model, in terms of signed permutations, is used to anthedollowing
guestion: which gene patterns can be assembled by the sopetations? As it
turns out, the question is difficult: the simple assembly i®a-deterministic pro-
cess, with more than one strategy possible for certainmpaténd in some cases,
with both successful and unsuccessful assemblies. We etehpanswer the ques-
tion in terms of sorting signed permutations. Here, a sigrachutation represents
the sequence of MDSs in a gene pattern, including their tatiem.

There is rich literature on sorting (signed and unsignedijnpéations, both
in connection to their applications to computational biglan topics such as ge-
nomic rearrangements or genomic distances, but also assioaktopic in discrete
mathematics, see, e.g., [1], [2], [9], [13].

A preliminary version of this paper has been published if.[Me present
here full constructions, complete proofs, and new exampMsalso correct some
errors in [10], in connection with defining the notion of dedency graph.

2 Preliminaries

For an alphabel we denote by:* the set of all finite strings ovet. For a string
u we denotedom(u) the set of letters occurring ia. We denote by\ the empty
string. For strings:, v over Y., we say that, is asubstringof v, denotedu < v,
if v = zuy, for some strings:, y. We say that. is asubsequencef v, denoted
u<g v, ifu=aias...an, a €3 andv = vpai1vias ... ayvy,, for some strings
v;, 0 <1 < m, overX. For somed C ¥ we define the morphism4 : ¥* — A*
as follows: ¢4(a;) = a;, if a; € Aandga(a;) = Aif a; € ¥\ A. For any
u € X%, we denoteu| 4 = ¢4(u). We say that theelative positionf letters from
setA C ¥ are the same in stringg v € ¥* if and only if u| 4 = v|4.

Lety, = {1,2,...,n} and lets, = {1,2,...,7} be asigned copyof %,,.
For anyp € ¥, we say thap is aunsigned letterwhile p is asigned letter We
call theidentity mappingand denote it byd the automorphism o, UX,,)* such
thatid(u) = u for any stringu over (%, U %,,). Let .|| be the morphism from
(B, UX,)* to X that unsigns the letters: for all€ 3, ||a@|| = ||a|| = a. Fora
stringu overY, UX,, & = a1a2...am, a; € 3, U, forall1 < i < m, we
denote itdnversionby @ = @, ... asa;, wherea = a, for alla € %,,.

Consider aijective mappindcalledpermutation = : A — A over an alpha-
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identify 7 with the stringr(aq ) (as2) . .. 7(a;). The domain ofr, denotediom (),
is A. We say thatr is (cyclically) sortedif 7 = agagy1...a;a1 02 ... ag—1, for
somel < k <.

A signed permutationverA is a stringy over AUA such that|y|| is a permu-
tation overA. We say thaty is (cyclically) sortedif ¢ = ax agy1...a1a1 a2 ...

. Qf—1 O ) = Gp_1...A2G1 Gy ... a1 G, TOr somel < k < [. Equivalently,
4 is sorted if eitherp, or ¢ is a sorted unsigned permutation. In the former case
we say that) is sorted in theorthodox orderor thaty is asorted orthodox permu-
tation, while in the latter case we say thatis sorted in thénverted orderor that
1) is asorted inverted permutation

For basic notions and results on graph theory we refer ta [24]

betA = {ai,as9,...,a;} with the order relation; < a; for all i < j. We often

3 The Simple Intramolecular Model

The micronuclear gene structure may be abstracted (byifgnéne non-coding
blocks) as a shuffled sequence of coding blocks called MD88n§ gene assem-
bly, the MDSs are sorted in the orthodox order to yield thesdsed macronuclear
gene. This rearrangement is facilitated by the speciatttre of the MDSs: each
MDS M ends with a short nucleotide sequence that is repeated ipetiianing
of the MDS following M in the assembled gene. Thus, each MESstarts with
anincoming pointey “pointing” to the MDS preceding// in the assembled gene,
and it ends with amutgoing pointer “pointing” to the MDS succeeding/ in the
assembled gene. Exceptions are the first and the last MDBstfre assembled
gene: the first MDS has laeginning markerather than an incoming pointer and
the last MDS has aanding markerather than an outgoing pointer.

Three molecular operationkl, hi anddlad where conjectured in [8] and [22]
for gene assembly, see [6] for a detailed presentation. \Weider in this paper
the simple versions of these molecular operations, defie#dvly and investigate
the gene patterns they can assemble. It is important to hatgeds observed in
[11], all available experimental data, see [3], is consistéth applications of the
simple operations, although they are not complete: theresigned permutations
(sequences of MDSs) that they cannot sort (assemble).

The effect of thdd operation is to combine two consecutive MDEBS M, ¢
into a bigger composite MD$/; ;1 by eliminating the non-coding sequences be-
tween them. In this paper however, we do not consider thecndimg sequences
separating the MDSs and in this way, assembling the gendysimegomes sort-
ing the MDSs in the orthodox order. Consequently, in thigraloton, we will
effectively ignore thed operation.

The simplehi operation is applicable to an MDS sequeri¢cd in § there are
two consecutive MDS4/ and N, both containing one copy of a pointgr one
being inverted with respect to the other. The operation gea# as illustrated in
Figure 1: depending on the incoming/outgoing positiorppeither M or N is
inverted.

The simpledlad operation is applicable to an MDS sequenidéin ¢ there is
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Figure 1: The MDS structures where the simpleule is applicable: the two
occurrences of pointer, one inverted, are placed on consecutive MDSs. The MDS
sequence is changed as illustrated in the figure. A rectalegletes one MDS, with

its two pointers indicated, a straight line indicates tlmMDSs occur in that area,
while a jigged line denotes an arbitrary sequence of MD&sjenotes the inverse

of MDS M and N’ denotes the inverse a¥’.

an MDS M flanked by some pointers andq, where there is no MDS occurring
in 6 between the second occurrencepofind the second occurrence @f The
operation change$ as illustrated in Figure 2: MDS3/ is moved between the
second occurrence pfand the second occurrenceqof

N M__L

FE&%, Mrl [ 4] r2|m§

M s N L
27’1 T2

~§Hp P4

M N L M'_ L' __N'
~§v14r1 pHa rzl»é%lp q|~§$i 5dpa, i [p] 4] r2|-w—--52 93

Figure 2: The MDS structures where the simgbled-rule is applicable: one pair of
pointersp andq is placed on the same MDS, while in between the other pagir of
andgq there is no MDS. The MDS sequence is changed as illustratibe figure. A
rectangle denotes one MDS, with its two pointers indicagéestraight line indicates
that no MDSs occur in that area, while a jigged line denotesarhitrary sequence
of MDSs.

For a detailed presentation of the molecular transformatemnjectured to take
place in simplehi and simpledlad, including folding of the DNA molecules and
various recombinations, we refer to [11].

In this paper we consider restricted versions of the simpégations. We con-
sider such simpl@i anddlad that rearrange parts of the molecule containing only
non-composite MDSs. For a study on non-restricted simpégaijpns we refer to
[18].

4 Gene Assembly as a Sorting of Signed Permutations
In this paper we represent each MO, by symbolp and its inversionM,, by

symbolp. In this way, a sequence of MDSs is represented by a signeapetion.
In this paper we choose to ignore thkoperation observing that once such an
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operation becomes applicable to a gene pattern, it can biedg any later step
of the assembly, see [6] for a formal proof. In particular,ca@ assume that dt
operations are applied in the last stage of the assemblg,ah®IDSs are sorted in
the correct order. In this way, the process of gene asserahlindeed be described
as a process of sorting the associated signed permutaggrarranging the MDSs
in the proper order, be that orthodox or inverted.

The simplehi is formalized on permutations through operatibn For each
p > 1, shy, is defined as follows:

shy(zp(p+1)y) =zp(p+1)y, shy(z(p+1)py) =z (p+1)py,
shp(zP(p+1)y) =zp(p+1)y, shp(z(p+1)py) ==

wherez, y are signed strings ovét,,. We denotésh = {sh, | 1 < p < n}.
The simpledlad is formalized on permutations through operatissh For
eachp, 2 < p <n — 1, sd, is defined as follows:

sdp(zpy(p—1)(p+1)z)=zy(p-Lpp+1)2
sdp(z(p—1) (p+ypz)=x(p-plp+1)yz,
sdy(z(p+1)(p -1 yp2) =2+l —-1)yz,
sdp(zpy(p+ 1) (p—1)2)=zy(p+ P -1)2

wherez, y, z are signed strings ovet,,. We denoteésd = {sd,, | 1 < p < n}.

Definition 1. We define orthodox and inverted operations as follows:

e Operationssh, transforming strings:p (p + 1) v andup (p+ 1) v toup
(p + 1) v we will call orthodoxSh operations;

e Operationssh, transforming strings: (p + 1) pv andu (p + 1) pv to

u (p + 1) pv we will call invertedSh operations;

e Operationssd, transforming strings:pv (p — 1) (p + 1) w andw (p — 1)
(p+1)vpwtouv (p—1)p (p+1) w and tou (p—1) p (p+1) v w respectively
we will call orthodoxSd operations;

e Operationssd, transforming strings:pv (p + 1) (p — 1) w and

up+1)(p—Dvpwtouv(p+1)p(p—1)wandtou(p+1)p(p—1)
v w respectively we will call inverte8d operations.

For a composition of operationB = ¢, o ... o ¢1 we write ¢; € & for all
1 <4 < k and we say thap; is usedin @ beforeg; forall 1 <i < j <k.

We say that a signed permutati@nover the set of integers,, is sortableif
there is a compositio® = ¢, o ... o ¢; such thatd(r) is a (cyclically) sorted
signed permutation. In this case we say thatorts7 and also, that it is aorting
compositionfor . Permutationr is Sh-sortableif ¢1,..., ¢, € Sh andr is Sd-
sortableif ¢, ..., ¢, € Sd.



Example 1. (i) Permutationm; = 345612 is sortable and a sorting compo-
sition is shy (shs(sh3(71))) = 345612, Permutationr] = 345612 is
unsortable. Indeed, nbh operations and n&d operation is applicable to

!
7‘(1.

(i) Permutationm, = 134275 is sortable and has only one sorting composition:
sh4(sd2(7r2)) =12345.

(iii) There exist permutations with several sorting conifjoss, even leading to
different sorted permutations. One such permutationsis= 35124. In-
deedsds(m3) = 51234. Atthe same timed,(m3) =34512.

(iv) The simple operations yield a nondeterministic prgcebere are permuta-
tions having both sorting compositions and non-sorting jpositions lead-
ing to unsortable permutations. One such permutatioinis= 1357924
6 8. Note thatsds(sds(sd7(m4))) = 192345678 is a unsortable permuta-
tion. However;r4 can be sorted, e.g., by the following composition:
Sd2(5d4(5d6(5d8(7r4)))) =123456789.

(v) Permutationrs = 13524 has both sorting and non-sorting compositions.
Indeed;sds(75) = 15234, a unsortable permutation. However,
sda(sdy(ms)) = 12345 is sorted.

(vi) Applying a cyclic shift to a permutation may render itsorntable. Indeed,
permutation2 14 35 is sortable, whiles 214 3 is not.

(vii) Consider the signed permutatiory = 111395724136 1581012 14 16.
Operationsd may be applied ta; on elements, 6, 9, 11, 13, and15. Doing
that however leads to a unsortable permutation:

Sd3(Sds(Sdg(Sd11(5d13(5d15(7r7)))))) =15672348910111213141516.

However, omittingsds from the above composition leads to a sorting com-
position formy: let

7 = sdg(sdg(sd 1 (sdi3(sd15(m7))))) = 1356724891011121314 15 16.
Thensds(sd4(77)) is a sorted permutation.
The following lemma follows directly from the definition ed andsh.

Lemma 1. Letw be a signed permutation oveél, andp € ¥,,. Then we have the
following properties:

(i) sd, is applicable tor if and only ifsd, is applicable tor and in this case,
sdy () = sdy (7);

(i) sh, is applicable tor if and only ifsh,, is applicable tor and in this case,
shy (1) = sh,(7);

(i) [ shy(m)[} = ll=ll;




(iv) If p(p + 1) < =, then for any compositio® of Sh and Sd operations appli-
cable torr, p(p + 1) < ®(7);

(V) If p(p + 1) < «, thensd,, sd, 11, andsh, cannot be used in any composition
applicable tor.

Lemma 2. Letn be a signed permutation ov&),, and® a composition applicable

to 7. Then,® is applicable tor as well and we have thd(r) = & (7).

Proof. We prove this by induction on the number of operationgbin The case
when |®| = 1 follows from Lemma 1. Now, assume for any compositidrof

length% applicable tor we have thatb is also applicable t@ and® () = & (7).
Consider compositio®’ = ¢ o ®, where¢ is either anSh or anSd operation.

Consider the permutatiof = ®(r). Clearly,$ can be applied ta’ and¢ (') =

(') by Lemma 1. Butg(r') = ¢(&(r)) = &'(r) andg(w’) = ¢(®(w)) =
H(®(7)) = ®'(7). In this wayd'(r) = ®'(7) and so, the lemma is proved. O

The following result follows from Lemma 1(iv), (v) and thefatgtion of the
operationsh andsd.

Lemma 3. Letw be a signed permutation ov&l, andp € %,,.
(i) sdp,—1 andsd,, cannot be used in the same composition applicable. to
(i) sh,—1 andsd, cannot be used in the same composition applicable. to
(i) sd, can be used at most once in a composition applicable. to
(iv) sh, can be used at most once in a composition applicabte. to
(v) sh, andsd,, cannot be used in the same composition applicable. to
(vi) sd; andsd,, are not applicable in any composition.
(vii) sh,, cannot be used in any of compositions.

Theorem 4. No permutationr can be sorted both to an orthodox permutation and
to an inverted one.

Proof. Assume that there is a permutatiorthat can be sorted both to an orthodox
permutation and to an inverted one. We have two cases: dithex, ||x]|, or
n1 <, ||r||. Assume the first case, as the second one can be reduced tsttbadi
by Lemma 2. Then there are two sorting compositidgsand ®; for = such that
,(r) = 12...nand®;(n) = (k—1)...217m...(k + 1)k, for somek > 2.
We have now the following two cases:

(i) 1is unsigned inr. Thensh; € ®; and sok > 3. Also, it follows by Lemma 3
thatsdq, sdy ¢ ®; and so, the relative position dfand2 does not change in
w21 < ||«

Since®,(r) = 12...n, it follows thatsd, € ®, and so, by Lemma 3,
sd3 € ®,. Then213 <, ||«]|.



If 2 is unsigned inr, thenshy, € ®;, but forsh, to be applicablesds has to
be applied in®; beforesh,, contradicting Lemma 3.

If 2 is signed inr, then eithesh; € ®,, orshy, € ®,. Sincesd; € @, this
contradicts Lemma 3.

(ii) 1 is signed inr. Thensh; € ®, and sosd, ¢ ®,, i.e., the relative position
of 1 and2 does not change through applyifg: 12 <, ||7||. We have now
two cases as follows:

(iL1) k > 3: ®;(r) = (k—1)...17m ... k. In this casesd, € ®; and so,
sd3 € ®;,1.e.,312 <, [|n]|.
If 2 is unsigned inr, i.e., 12 <, w, thensh; € ®; orshy, € ®;, a
contradiction by Lemma 3 since, € ;.
If 2 is signed inm, i.e., 12 <, =, thenshy € ®, and so, to become
applicable sd3 must be used i®, beforesh,, contradicting Lemma 3.
(ii.2) k=2: ®;(mr) =1m...2.
If 2 is unsigned inr, i.e., 12 <, , then eithersh; € ®; orshy, €
®; and by Lemma 3sdq,sds,sd,, € ®;. Thus,1,2,n do not change
their relative position through; and so,1 n2 <, ||«||. Consequently,
sdy € @, a contradiction by Lemma 3 sinek; € @,
If 2 is signed inr, i.e.,12 <, 7, thensh, € ®, and so, by Lemma 3,
sdy,sd3 € ®,. Thus, 1,2,3 do not change their relative position
through ®, and s0,123 <, |«[|. But then, eithersd, € ®;, or
sd3 € ®;, but not both. Thus, eitheds ¢ ®;, orsdy ¢ ®;, i.e., either
1,3, nor1, 2, n do not change their relative positions through i.e.,
eitherln3 < ||x]j or1n2 <, ||7|. Butthen, eithesd; € ®,, or
sdy € ®,, a contradiction by Lemma 3 sineb; € ¢,.

Lemma 5. Letw be a signed permutation.

(a) = cannot be sorted to an orthodox order if there exjs&ich that:

(i) (p+
(i) p+D(p—-1) <.

@) p+1)p < m or
T

(b) = cannot be sorted to an inverted order if there exigich that:

(V) g(g+1) <mor
Wa(g+1) <mor
(Vi) (g—1)(g+1) <



Proof. We only prove here part (a) of the result, since part (b) isragtnic with
respect to inversion.

To prove (a.i), assume thgt + 1) p < 7 andw may be sorted to an orthodox
order through a compositio of Sh andSd operations. Then eitheh,_; € ®
orsh, € ® and so, by Lemma 3d,, ¢ ®. But then,sd,;; € ® and sosh, & ®.
Thus,sh,_; € ® andsd,,; € ®. The contradiction comes from the fact thaf_;
must be applied beforel, . ; which in its turn, must be applied befosk,_; and
an operation may only be used once in a composition, by Lemma 3

Claim (a.ii) follows similarly as (a.i).

To prove (a.iii), assume as above that- 1) (p — 1) < 7 andr is sorted to an
orthodox order by®. Since an orthodox sorted permutation has no signed letters
it follows thatsh,,,sh,_; € ®. Consequently, throughout the assembly, we must
obtain bothp (p + 1) and(p — 1) p as substrings. Thusd, € ®, a contradiction
by Lemma 3 sinceh, € ®.

]

The following result follows from Lemma 5.

Lemma 6. Let 7 be a signed permutation. If an orthodox operationois ap-
plicable to, then there is no composition applicablesta@ontaining an inverted
rule onp. Similarly, if an inverted operation op is applicable tor, then there is
no composition applicable to containing an orthodox rule op.

Lemma 7. If both orthodox and inverted operations are applicablertathen
cannot be sorted.

Proof. Assumeg, is an orthodox and, is an inverted operation applicable an
For invertedy, we have either

() (¢+1)g < mor
(i)g(g—1) <mor
(iii) (¢ +1) (¢ — 1) < 7 andgq is signed inr.

By Lemma 5 we cannot sort any of (i)—(iii) to an orthodox orddihus,
cannot be sorted to an orthodox permutation.
For orthodoxg, we have either

(iv) (p—1)p

Wpp+1)

(Vi) (p—1) (p+1) < mandpis unsigned inr.

<
<s m, or

By Lemma 5 we cannot sort any of (iv)—(vi) to an inverted orded so, we
cannot sortr to an inverted order.
In this way, 7 cannot be sorted.



Corollary 8. Permutationr is sortable to an orthodox order if and only 4f is
sortable and no inverted rule is applicable to

Proof. Considern a permutation sortable to an orthodox order andgldte an
operation applicable to. If ¢ is an inverted rule, then by definition, therepisuch
that either(p + 1)p < m,or(p+1)p < m,or(p+ 1) (p — 1) < =. It follows then
by Lemma 5 thatr cannot be sorted to an orthodox permutation, a contradictio
The reverse implication follows based on similar arguments
U

Example 2. (i) Consider the permutatiom; = 13425. This permutation is
sorted to an orthodox order. Indeed, we hatigo sds o shz(m) = 12345.
Moreover, by Lemma; should be sorted to an inverted order. By Lemma 2
compositiorshy o sds o shg is applicable tor as well and it should sort it to
an inverted order. Indeedhy osds o sh3(77) = shyosdyosh3(52431) =

54321 = shyosdy oshs(my).

(i) Consider the permutations’, = 13254 and 7 = 132645. Orthodox
sde and invertedsh, are applicable tor, but it is easy to see, that we can
sort 7}, neither to an orthodox order nor to an inverted order. Ortbadds
and invertedsds are applicable tor?), but 7 can be sorted neither to an
orthodox order nor to an inverted order.

(iii) Consider the permutatior; = 13462 5. Orthodox operationsd; andsh;
are applicable torr;,. By Corollary 8 if 7 is sortable, it should be sorted
to an orthodox order. Let's try to sort itshy osda(ms) = 123465. Now
invertedshs; became applicable. By using it we get permutati®B346 5.
This permutation cannot be sorted. Since there are no otherpositions
applicable tor, it cannot be sorted as well.

Consider the permutation] = 134526. Orthodoxsd, andshz can be
applied tor}. We can sortr;. Indeed,shsoshsosds(ny) = 123456.
Thus,r% is sortable, orthodox operations are applicable atifis sorted to
an orthodox order.

5 Sh-sortable permutations

We characterize in this section all signed permutationiscdnabe sorted using only
Sh operations. As it turns out, they are easy to describe sheght operations do
not change the relative positions of the letters in the péatian.

The following result characterizes &h-sortable signed permutations.

Theorem 9. A signed permutatiom over Y, is Sh-sortable if and only if

@) l|I7]| =p+1)...nl1...(p — 1), for somel < p < n and there arer, 1,
1 <r<p-1,p<t<nsuchthatr andt are unsigned letters, or

() |7 =(p@-1)...1n...(p+ 1) p, for somel < p < n and there arer, t,
1 <r<p-—1,p <t <nsuchthat andt are signed letters.

10



In Case (i),m sortstop(p + 1)...n1...(p — 1), while in Case (ii),r sorts to
p=1)...1a...(p+ 1)p.

Proof. The conditions of the theorem are clearly sufficient. Cosrsitbw aSh-
sortable permutatiomr. Thus, there is a compositioh of operations irSh such
that ®(7) = p(p+1)...nl1...(p — 1) for somel < p < n, or &(m) =
(p—1)...1m...(p+ 1)p. Consider the first case — the second one is symmet-
ric with respect to inversion.

Note, that arbh operation does not change the relative order of lettefs but
only changes one sign. Thus, it follows thgt|| = p(p+1)...n1...(p — 1)
for somel < p < n. Itis easy to see that to sort a permutation to an orthodox
order by onlySh operations, it is necessary to have at least one unsigrted ilet

{p,p+1,...,n} and at least one unsigned lettef{in 2,...,p — 1}. O

Example 3. (i) The permutationt; = 56781234 is Sh sortable and arSh-
sorting form is Sh3(Sh2(Sh1(Sh7(5h5(sh6(7r1)))))) = 56781234. Note
thatshs can be used only aftehg and also,shs can be used only afteh,.

(ii) The permutationrs = 5678 1234 is unsortable, since we cannot unsign
2, 3 and4.

6 Sd-Sortable Permutations

We characterize in this section tBd-sortable permutations. Sinée operations
do not change the sign of elements, we consider only unsigaedutations. The
case when all elements are signed is symmetric with respéuatdrsion. A crucial
role in our result is played by the dependency graph of a petion.

6.1 The dependency graph

The dependency graph describes for a unsigned permutatio@ order in which
orthodox Sd operations can be used in a composition applicable.tdt is in
general a directed graph with self-loops.

Definition 2. For a permutationr overy:,, we define its dependency graph as the
directed graphG, = (X, E), where

E={(p,q)| (¢q—1)p(g+1) <;m1<p<n,2<qg<n—-1}U
{(:0) [ (g+1)(g—1) <smorg=1lorqg=n}.

Intuitively, an edg€(p, ¢) in the dependency graph of a permutation says that
sd, may be used in a composition faronly aftersd, was used. A loofq,q)
means thatd, can never be used in a composition for Note thatG, may also
have a loop on nodeif (¢ — 1)g(q + 1) <5 7.

Example 4. (i) The graph associated to the permutation = 1436572 is
shown in Figure 3(a). It can be seen, e.g., thdt can never be used in
a composition applicable ta, neither cansd; because of the edg8, 5).

11
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Figure 3: Dependency graphs: (a) associatethte= 1436572 and (b) associ-
atedtomry = 14325.

Also, the graph suggests thedg should be used beforal, and this one
beforesds. Indeedsdy(sds(sdg(7))) =1234567.

(i) The graph associated to the permutatian = 14325 is shown in Fig-
ure 3(b). Thus, the graph has a cycle with nodemd4. Indeed, to used,
in a composition forry, sd4 should be used first and the other way around.

Lemma 10. For any signed permutation ovér,, and anyp € 3, if (p + 1)
(p — 1) <, m, thensd, cannot be used in a composition applicablerto

Proof. Indeed, to used, we need to obtain the substriig— 1) (p + 1) first. But,
for this we need to use eithed,_; or sd,, ;. However, by Lemma 3 we cannot
usesd, afterwards.

Ol

Lemma 11. Let = be a unsigned permutation ov&l,, and G, = (%,,F) its
dependency graph.

(i) If there is a path fronp to ¢ in G, then in any composition whesd, is used,
sd, is used befored,.

(i) If G has a cycle containing € X,,, thensd,, cannot be used in any compo-
sition applicable tor.

Proof. We prove claim (i) by induction along the length of paths frpnto g.
For a path of length, note that if we have an edde, ¢q) in G, with p # ¢,
then(¢ — 1)p(¢ + 1) <, m. Now, sd, can be used only aftgy — 1) (¢ + 1) is
obtained and sasd,, has to be applied beforal, in any composition applicable
to w. Assume now that the path is of lengthand is presented by the sequence
(pp1p2 ... pk—1q). Clearlysd,, , is applied beforesd, and by the induction
hypothesis we have thad,, is applied beforad,, _,.

Claim (i) follows from (i) and from Lemma 3. Indeed, if thei®a nonempty
path fromp to itself, then we have either:

@p+1)p-1) <smor

12
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Figure 4. The dependency graph associatedrto= 11139572413615

8101214 16. The nodes indicated by white background are used in a gartim-
position forr.

®@E-1)plp+1) < m o0r

(c) Neither(p+1) (p—1) <smnor(p—1)p(p+1) <, w, but there is a path of
a length greater thanfrom p to itself in the graph.

In case (b) and (c) it follows thad, should be used twice in a composition
applicable tor, which is impossible by Lemma 3(iii). Case (a) is proved by
Lemma 10.

]

6.2 The Characterization

We characterize in this subsection thé-sortable permutations. We first give an
example.

Example 5. Consider the dependency graph forr =111395724136158
101214 16, shown in Figure 4. Based on Lemmas 3 and 11 we build a sorting
composition® for . We label all nodeg for whichsd, is used in® by D and
the other nodes b¥/. Nodes labelled by are shown with a white background in
Figure 4, while nodes labelled ly are shown with a gray background.

By Lemmas 3 and 11, operatioss;, sds, sdip and sdig cannot be used in
any composition applicable ta. Thus,1,8,10,16 € U. Now, if we want to
usesds, the operationsd;; should be used first, since the edge, 2) is in G.
Thus,2,11 € D. According to Lemma 3 we cannot usk andsds in the same
composition, thus we labs8lby U. If we want to used,, we need to ussdy first
because of the edg®, 4). Thus, we label botd and9 by D. It follows then by
Lemma 3 thab € U. Then6 can be labelled byD and then, necessarily, € U.
Note now, that ifl2 € D, since(3,12) is an edge inG,, then by Lemma 11(ii),
3 € D, which contradicts our labelling 08. Thus,12 € U. Then13 can be
labelled byD and necessarilyl4 € U. Also, 15 can now be labelled byp.

13
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Figure 5: The dependency graph associated to =

111395724136 158101214 16 and partitionU = {1,3,5,6,8, 10, 12, 14, 16},
D ={2,4,7,9,11,13,15}.

In this way, we obtaitD = {2,4,6,9,11, 13,15} andU = {1,3,5,7,8,10, 12,
14,16}. Note that, since elementslihdo not change their relative positions in the
composition® we are building,r|;; has to be sortedr|;; = 13578101214 16.

® is a composition of the operatiosd,, withp € D. The dependency graph
shows the order in which these operations should be usedsdscan be used
only aftersd;q, sd4 can be used only aftety. In this way, we can sort by using
the following sorting composition(sds o sdy o sdg 0 sdy5 0sdy3 0sdy1 osdg)(m) =
12345678910111213141516. Clearly, our choice ofo andU is not unique.
For instance, we may have chosbn= {2,4,7,9,11,13,15} andU = {1, 3,5, 6,
8,10,12,14, 16} as shown in Figure 5. Then the sorting compositiosdiso sd4 o
o Sd7 OSd15 OSd13 0o Sd11 o Sdg.

The following result characterizes &d-sortable permutations.

Theorem 12. Letw be a unsigned permutation. Theris Sd-sortable if and only
if there exists a partitiof 1, 2,...,n} = DUU, such that the following conditions
are satisfied:

(i) 7|y is sorted;

(i) The subgraph induced b® in G is acyclic;
(i) If (p,q) € G withq € D, thenp € D;

(V) Foranyp € D, (p—1)(p+ 1) <, m;
(vyForanype D, (p—1),(p+1) € U.

Proof. Consider a sortable unsigned permutatioand let® = sd,, o... o sd,,
be a sorting composition for, D = {p1,...,pr} andU = 3, \ D.

The relative positions of integers I are not changed throughout the sorting
and so (i) follows. Sinc@ can be applied ta, (i), (iii), (v) follow from Lemmas 3
and 11. To prove (iv), consider nowe D. Then(p — 1),(p + 1) € U and so,
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their relative position does not change throughout thersprSince(p — 1)(p+1)
is a substring of the permutation whet, becomes applicable, it follows that
(p—1)(p+1) < m, proving (iv).

We prove the converse implication by induction [d». If |D| = 0, then the
claim follows by (i). Let|D| > 0.

By (ii), D induces a directed forest in the dependency graplp;beta source of
this forest. By (iv),(p—1)(p+1) <s 7. If (p—1)(p+1) is not a substring of, then
there is a7 such that(p — 1)q(p + 1) <s w. But then(q,p) € G, and so, by (iii),
g € D, contradicting the choice gf as a root. Consequentlip — 1)(p+ 1) <7
and so,sd,, is applicable tor. Letn’ = sd,(7): then(p — 1)p(p +1) < 7.
Consider the partitioD’ = D \ {p}, U' = U U {p}. We claim thatD" andU’
satisfy conditiongi) - (v) for the permutationr’.

It is easy to see that' | is sorted because|; is sorted andp — 1)(p + 1) is
a substring ofr, proving (i).

Assume now that (iii) does not hold, i.e., there is a depecylén t) € G,
(t=Dr(t+1) <;x)withr € U',t € D'. We claim thaf(r, ) € G. Indeed, if
this is not the case, then eithee= p,ori — 1 =p,ori + 1 =p.

Ift—1=p,thent=p+1 €U C U and sot € D' NU’; a contradiction.
The case whefi+ 1 = p is analogous. Now, if = p, then eithe — 1 =p — 1
and thust = p,or(t —1)(p — 1) (t + 1) <; n’. The case = p is impossible
sincet € D' = D\ {p}. Consider then the cage— 1)(p — 1)(t + 1) <, 7’ and
t—1,t+1 # p. Consequentlyt —1)(p—1)(t+1) <; 7, i.e.,(p—1,t) € G,. It
follows from Condition (iii) forr thatp — 1 € D, which contradicts Condition (v)
for 7, sincep € D. Consequently, (iii) holds for'.

To prove (iv) consider € D'. Thus,r € D and so(r — 1)(r + 1) <, «. If
r—1l=p(r+1=p,resp) them=p+1(r=p—1,resp.) iereclU cCU,
which is impossible. Thus,— 1 # pandr+1 # pand so(r —1)(r + 1) <, 7/,
i.e., (iv) holds.

Using a similar argument it is easy to show thati#pt € D', (r,t) € G~ if
and only if(r,t) € G, thus proving (ii).

Condition (v) follows sinceD’ C D andU C U'.

Consequently, sincgD’| < |D|, it follows by induction thatr’ is sortable.
Then, sincer’ = sd, (), = is also sortable, concluding the proof. O

Example 6. Consider the permutation = 138105729114612. Its depen-
dency graph is shown in Figure 6. Based only on this graph ailguTheorem 12
we deduce a sorting composition for

It follows by property (ii) thatl,7,11,12 € U. Then, it follows from prop-
erty (iii) that 3 € U. Sincel,3 € U, it follows from property (i) tha € D.
Also, since3, 7,11 € U, it follows from property (i) that, 6,8, 10 € D and so, by
property (v),5,9 € U. We have now a complete labelling 1Gt, :

D ={2,4,6,8,10}, U = {1,3,5,7,9,11,12}.

We represent the elements frdthas white vertices and elements frdmas
gray vertices.
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Figure 6: The dependency graph associated t0 138105729114612, U =
{1,3,5,7,9,11,12}, D = {2,4,6,8,10}.

The permutationr may be sorted now by a composition of operatisdyswith
p € D. The dependency graph imposes the following order of ojp@sit sdy
after sdg andsdy, sdg aftersd,. The other operations can be used in any order.
For instance, we can sort in the following way:

(Sd4OSd80$d2 OSd10 OSdG)(W) =1234567891011 12,
but also,

(sdg 0 sd4 o sdg osdy osdig)(m) = 1234567891011 12.

7 {Sd,Sh}-Sortable Permutations

We characterize in this section all signed permutationtsdhia be sorted using our
operations irfd U Sh. First we give some examples.

Example 7. (i) The signed permutations; = 21435 andmy, = 152436 are
not{Sd, Sh}-sortable. Indeed, onlyh; can be applied tar;, but it does not
sort it, and no operation can be applied 4.

(i) The signed permutations; = 9210111537468 andny = 543821976
are {Sd, Sh}-sortable:

(Sh10 OSthSdQ OSd5OSh3 OSd7)(7T3) =9101112345678

and

(shy oshg oshy oshy osdg oshg)(my) =543219876.

Definition 3. Consider a permutatiom. Let H, D C {1,2,...,n}, HN D = {.
The (orthodox) dependency graph x p generated byr, H and D hasX,, as its
set of vertices, while its edges are defined as follows:
i. Forg e D and some € %,
—if (¢ = 1)p(g+1) <s [|I7|, then(p, q) € T u,p;
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—if(g+1) (g —1) <s |7, then(g, q) € T'r u,p;
—if ¢ — 1, ¢ have different signs im, then(q — 2,q) € I'x u,p;
—if ¢, ¢ + 1 have different signs im, then(¢ + 1,q) € 'z u,p.

ii. For g € Hand some € %,,,

—ifgp(q+1) < [Ix|, then(p,q) € 'z u,p;
—if (¢ +1)g <s|[r[|org(q+1) <, m then(q,q) € T'x u,p;
—ifg(q + 1) <, m, then
e ifg—1lisnotinH or (q,q—1)is an edge, thefy+1,q9) € I'x up,
e else(q—1,9) € Trmp.

For a composition® applicable tor, we denotedy = {p € ¥,, | sh, € ®}
andDg = {p | sd, € ®}. Also, we denot€'; o = I'x 1y, Dy -

Example 8. Considerr = 68101937425 and letH = {3,4} and D =
{2,7,9}. The dependency grapii = I'r &, &,, Shown in Figure 7, is built as
follows.

We represent the elements frdihas slanted vertices, the elements fréhas
white vertices and the rest of the elements as gray vertie@seach vertex; from
G we have the following edgés, q):

Nodel: we do not have edgdp, 1), sincel ¢ H and1 ¢ D;

Node2: 2 € D, element2 and 3 have different signs im, thus,(3,2) € G.
Moreover, we have substringd 3 < ||| and thus,9,2) € G;

Node3: 3 € H,374 <, |||, thus(7,3) € G;

Node4: 4 € H, we have substring25 <; ||=||, then(2,4) € G,

Node5: no predecessors for elementsinceb ¢ H and5 ¢ D;

Node6: no predecessors for elemehitsince6 ¢ H and6 ¢ D;

Node7: 7 € D, 68 < m, thus we have no edgés, 7);

Node8: 8 ¢ H and8 ¢ D, thus we have no edgés, 8);

Node9: 9 € D, 810 < , thus we have no edgés, 9);

Nodel0: no predecessors for elemetti, sincel0 ¢ H and10 ¢ D.

Lemma 13. If in a permutationr the elementg andp + 1 are signed, for some
p > 2, then the orthodo$h operationssh,_1, sh, andsh,_ are applicable in the
same composition only in one of the following orders: eithesh,_;, sh,, sh,;1,
orin sh, 1, shy, sh,_1, wherep — 1 is signed.

Proof. Consider all possible orders:
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Figure 7: The dependency graph associated 068101937425, H = {3,4}
andD = {2,7,9}.

e sh,_y, sh,y1, shy, orsh,,q, sh,_q, shy,: By the definition of orthodoxSh
operations, after application e, ; andsh,; we get substringép — 1) p
and(p+1)(p + 2), i.e.,p and(p + 1) are unsigned. In order to use,
we should sign eithes or (p 4 1) first. This can be done either by inverted
sh,_1 orsh, orsh, 1, i.e., some of these operations should be used twice in
the same composition, which is not possible;

e shy, sh,_1, shy,q Orsh,, sh,,1, sh,_i: Sincep andp + 1 are signedsh,,
cannot be used first;

e sh, 1, shy, sh,;: After sh, ; was used, we get substririg — 1) p. Then,
we can useh,, thus elemen{p + 1) becomes unsigned, and then, we can
usesh,, 1 if p + 2 is signed,

e sh,.,shy, sh, ;: The operatiorsh,; unsignsp + 1, thensh, can be used
and unsigng, thensh,,_; can be used ip — 1 is signed.

O

Lemma 14. Let = be a signed permutation ovét,, and ® a composition appli-
cable tor where only orthodox operations are used. [gty be the orthodox
dependency graph associatedit@nd ®. Then:

(i) If there is a path fronpto g in 'z ¢, p # ¢, theng, € ® and ¢, is used before
¢q In ®;

(if) The dependency graph;, 4 is acyclic.

Proof. Let H be the set of all elements to whi&h operations are applied i@
and letD be the set of all elements to whi€ld operations are applied ib.

We will prove the first claim by induction on the length of thetips. For the
beginning we consider paths of lengthi.e., edgeqp, q) for somep,q € %,,
wherep # ¢. By the definition of the dependency graph we have here twescas
eitherg € D (i.e.,¢, =sd, € ®)orq € H (i.e., ¢, = shy € ®).

Considery, = sd,. Here we have one of the following subcases:
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e (¢—Dplg+1) <s|=l;

elements; — 1, ¢ have different signs im andp = g — 2;

elements; + 1, ¢ have different signs im andp = g + 1;

(g +1)(g—1) < ||r]| andp = ¢. This subcase is impossible since we
assumea # q;

If (¢ —1)p(q+1) <s 7, then we need to obtain the substrifgg— 1) (¢ + 1)
first. Clearly, in order to obtaify — 1)(¢ + 1) we need to used,, first.

If ¢ — 1 andq are of a different sign inr, then to used,, we should obtain
g — 1 andq of the same sign first. This can be done eithesligy » or by sh,_; or
by sh,. By Lemma 3 the operations,_; andsd, or sh, andsd, cannot be used
in the same composition. Thush,_» is used in® beforesd,.

If ¢ + 1 andq are of a different sign inr, then to used,, we should obtain
g andq + 1 of the same sign first. This can be done eitheslyy ; or by sh, or
by sh,+1. By Lemma 3 the operatiorsh,_; or sh, cannot be used witkd, in the
same composition. In this wash, is used befored, in composition®.

Consider nowp, = sh,. By the definition, we have the following subcases:

plg+1) <s Ixl;

*Gg+t1)<;mp=q+lg-1¢Hor(q,q—1) €rg;
°q¢+I)<smp=g—1g—1€Hand(gq—1) ¢ rae;

e (¢+1)g € ||=|| andp = ¢. This subcase is impossible since we assumed
p#q.

If gp(¢+ 1) <; |||, then we should ussd, first to obtain either substring
q(g+1)org(q+1).

If G(¢+1) <, m, then to useh, eitherq or ¢ + 1 should be unsigned first.
This can be done either By, or bysh,,;. We will prove by induction that, if
p=q+1,withqg—1¢ Hor(q,q—1) € I'z o, thensh,,; is used beforah, in
.

Indeed, ifg—1 ¢ H, then we can obtain the substriigg+ 1) only aftersh,
isused. Now, assumethat-k —1¢ H,q—k,q—k+1,...,q—1,¢q € H and
(¢g—1),(¢—1,¢—2),...,(¢—k+1,qg—k) € T e. Then,sh,_, is used after
shg_ k41, shg_r41 is used aftesh, o, ...,shy_o is used aftesh,_; andsh,_; is
used aftesh,. We show thash, can be used only aftah,;. Indeed, sincah,_;
is used aftesh,, we cannot unsiggp beforesh, is used. Then, we unsign+ 1 by
shy41 first, thus,p = g + 1.

If¢g—1€ Hp=gq—1and(q,q — 1) ¢ I'r e, then we will show that
sh,—1 is used first. Here we have one of two cases: eifger 1) is unsigned
or (¢ — 1) is signed. If(¢ — 1) is unsigned, it is clear, that,_; can be used
beforesh,. Moreover, if(¢ — 1) is unsignedsh, cannot be used beford, ;.
Now, we will prove, that if(¢ — 1) is signed,g — 1 € H and(q,q — 1) ¢ T'z s,
thensh,_; is used beforgh,. We will prove this by induction. Assume, we have
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subsequence;—2) (¢ — 1) g. By Lemma 13h,_» is used beforeh,_; andsh,_;

is used beforsh,, no other orders are possible. Now, assume we have subsegquen
(q—Fk)(q—k+1)(q—k+2)...(¢—1)g, edgesq —k,q—k+1),(¢ -k +
1,g—k+2),...,(¢g—2,9—1),(¢g—1,q) € T'r,» andsh,_y, is used beforeh,_;1,
shg—r+1 is used beforgh,_;_o, ...,sh,_5 is used beforah,_;, no other orders
are applicable. We will show, thah,_; is used beforah, and not viceversa. By
Lemma 13 we can usgh operations either in ordeh,_», sh,_1, sh, or in order
shg, shq—1, shy—o. Sincesh,_; cannot be used befosh, o by our assumption,
sh, is used aftesh,_; in ®.

Assume now, that if we have a path frgnto ¢’ in graphI'; ¢ of a length at
mostn, then¢, is used beforep, in a composition®. Assume, we have a path
from p to ¢ via elemeny’ and(¢', ¢) € 'z ». As we have shown abové, can be
used only aftegy, . Since, by our assumptiaf,, can be used only aftef),, then
¢q is used after,,.

To prove the second claim of the lemma, assume on the corhat¥/ . & has
acycle.

If the cycle has length at least two, then the claim follonairpart (i) and
Lemma 3.

Assume now thal'; ¢ has a loop:(p,p) € I'r o, for somep. We have the
following two cases:

(@p € Do, ie.,sd, € ®. Then by definition,(p — 1)p(p + 1) <, ||x|, or
(p+1)(p—1) < |Ir|. Itis easy to see that in the first casd, cannot
be used throughp, a contradiction. In the second case, $§dj to become
applicable, we need to obtain the substripg- 1) (p + 1), i.e., eithersd,, 1,
orsd,1 should be used i® beforesd,, a contradiction by Lemma 3.

(b)p € Ho, i.e.,sh, € ®. Then it follows from the definition thafp + 1) p <
|||, orp (p + 1) <s m. Inthe first case, in order to use (orthodak), we
first must obtain substring (p + 1) orp (p + 1), i.e., we need to use either
sd,, orsd,;; beforesh,. This is impossible, see Lemma 3. In the second
case, eithep, or p + 1 needs to be signed before we can apgly. Thus,
sh,_1, shy, orsh,; should be used i@ beforesh,. This is impossible by

Lemma 3.

O

Lemma 15. Let 7 be a signed permutationp = ¢, o ... o ¢ a composition
applicable tor where all operations are orthodox. Let al§8 = ¢} o ... o ¢,
whereg! = ¢;, if ¢; € SD and ¢ = id otherwise. Thef{®(r)|| = ®'(||=||).

Proof. If £ = 1, then eitherd = sd, or ® = sh,. In the former cas®’ = sd,,.
Clearly, || sd,(m)|| = sd,(]|=]|), sincep, p — 1 andp + 1 are not signed in the
permutation and|.|| does not change the relative positions of letters. In the cas
when® = sh,, ® = id. Then||® ()| = @'(||x]|).

If £ > 1, thent’ = (¢p_1 0 ...0 ¢1)(m) and by inductive assumptighr’|| =
(@f_qo...08))(||7]]). Now, if ¢, = sdy,, theng), = sd,, if 5, = sh,, theng) = id.
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In both cases we have thigb ()| =

I = [l ( KU = ¢ (l(dr-10...0
¢1)(m)) = (S o 0 ) (lIml]) = @

O

I
S

The following theorem gives the main result of this section.

Theorem 16. A permutationr is {Sh, Sd}-sortable to an orthodox order if and
only if there is a partition{1,2,...,n} = D U H U U such that the following
conditions are satisfied:

(i) Foranyp € D, pis unsigned inr;

(i) H sortsw | Uy to an orthodox order;

(iii) D sorts|||;

(iv) The subgraph of ; z p induced byH U D is acyclic.

Proof. We prove first that the conditions of the theorem are necgskat = be a
signed permutation sorted by the compositibrio an orthodox order. Lell =
Hy ={p|shy, € ®},D =Dg ={p|sd, € P} andU =Us =%, \ (HU D).
Then (i) follows from the fact, that can be unsigned either 8y,_; or by sh,,,
but by Lemma 3d, cannot be used in the same composition either with ; or
with sh,,. Property (iii) follows from Lemma 15, and (iv) follows by bema 14.

Condition (ii) we will prove by inductionD|. If |D| = 0 then the claim
follows directly from the fact thatr is sorted by®. Assume now, that is sorted
by a composition® where|D| = k. Consider a permutation’ to whichsd,, is
applicable for some € U andr = sd,, (7). Then,x' is sorted by the composition
®' = ®osd,. Clearly,H' = Hyy = H, D' = Dyy = D U {p} andU’ = Uy =
U\{p}. We claim thati’ sortsz’ |g;r7. Indeed, sinced,, € @', thensh,_; ¢ @’
by Lemma 3 and of coursgh, ; ¢ ®. Since neithesh,,_; norsh, are used ind,
the elemenp is not needed bgh operations from¥ and so,r| i i\ (p} IS Sorted
by H. But, HUU \{p} = H'UU" and thuss| zruin (py = Ty SinceH’ = H,
H' sortsmly, -

To prove the reverse implication, consider now a permutatiand a partition
{1,2,...,n} = DUH UU satisfying conditions (i)-(iv) of the theorem. We prove
the claim by induction onD U H|. If |D U H| = 0, then the claim follows from
(ii). We will show that, if conditions (i)—(iv) are satisfiddr a partitionH U D UU
such thaiD U H| > 1, then we can always apply at least an operatidio = and
we can choose a new partitidd’ U D’ U U’ satisfying (i)—(iv) for permutation
' = ’l/)(ﬂ) and graprf‘ﬂ/,nyD/.

Condition (iv) implies that the subgraph ofy, p, induced byH U D is a
directed forest. Lep be a source of it. By the definition of the dependency graph
we have either substring(p + 1) orp (p + 1) or (p — 1) (p + 1) andp is unsigned
in, i.e., eithersh, or sd, is applicable tar. Consider both cases:

(a) shp € ®. Then, by the definition of the dependency graphe H and
' =sh,(r) =mp(p+1)m. LetH' = H\ {p}, D' = D, U’ =U U {p}.
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Figure 8: The dependency grapky, o sh;,sd, @ssociated ta = 24356 1.

We claim thatH’, D', U’ satisfy conditions (i)-(iv) of the theorem for per-
mutationr’.

Indeed, (i) and (iii) are obvious. To prove (ii), note thaf;,; can be sorted
by a composition of operationsh,, ¢ € H, wheresh, can be used first.
Then (ii) follows sincer’| gt = shy (7| o). Condition (iv) also follows
sincel'y g pr is a subgraph of - iz p andH' U D' C HU D.

(b) sdp € ®. Then, by the definition of the dependency graph D andn =
mi(p — 1)(p + 1)mopms or m = mpma(p — 1)(p + 1)73. Let H' = H,
D' =D\ {p}, U =UU{p}. We claim thatH', D', U’ satisfy condition
(i)-(iv) for ='.
Conditions (i) and (ii) are obvious. Condition (iii) follavby noting that
||| can be sorted by a composition of operatistig ¢ € D, wheresd, can
be used first. Condition (iv) follows since graph 5 pr is a subgraph of
Fﬂ—’H,D andH' UD' C HUD.

In this way we proved the reverse implication and the thedieiows.
U

Example 9. Letm = 24356 1. We build a sorting composition for based on
Theorem 16. Considell = {2,5}. Clearly, ||«|| = 243561 is sorted by using
sds. Then letD = {4} andU = {1,3,6}. We verify now conditions of The-
orem 16. Considerr |gup= 23561. Thenshs(shs(r |pur)) = 23561, a
(circularly) sorted string. Graph'sp, o sh; sd, IS Shown in Figure 8, where elements
from H are shown as slanted vertices, elements fidrare shown as white ver-
tices and elements frobi are shown as gray vertices. Clearlif, U D induces an
acyclic subgraph if'sh, o shssd,- Thus, by Theorem 16,is sortable and a sorting
composition should be obtained by combinihg o sh; and sds as indicated by
the graph. Sincé4,2) is an edge in the graph, it follows thatl; must be used
beforesh,. Also, since(5,4) is an edge, it follows thaths; must be used before
sds. Consequentlysh, o sdy o shs must be a sorting composition far. Indeed,
sho(sd4(shs(7))) =234561, a sorted permutation.

Example 10. Letm =21437596810 11. We build a sorting composition far
based on Theorem 16. Considdr= {5,10}. The unsigned permutatidr|| =
2143759681011 can be sorted byds osdy osdg osd7, thusD = {2,4,7,9}.
SetU = {1,3,6,8,11}. The dependency gragh associated tor and H U D is
shown in Figure 9. Clearly, permutation] 7,7 = 1356810 11 can be sorted to
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Figure 9: The dependency graph associated $92143759681011 andH =
{5,10}, D = {2,4,7,9}.

cyclically sorted permutation 35681011 by usingshs andshy. Also, H U D
induces an acyclic subgraph @. It follows then thatr is sortable. Indeed, a sort-
ing composition, as suggested &Y is sdy o sd4 0 sd7 o shs osdg oshyg. Another
sorting composition isds o sdy4 o shs o sdg o sd7 o shyg.

Example 11.Letr = 312. Clearly, the only sorting composition fatis sdo () =
321. Note that the (orthodox) graph; ¢ (2 has aloop on node but this does not
contradict Theorem 16, sincesorts to an inverted order. Howevar,= 2 1 3 and
['z 5,42y IS a discrete graph. According to Theorem i6s sortable to an orthodox
permutation.

8 Discussion

We considered in this paper a mathematical model for thealeecsimple opera-
tions for gene assembly in ciliates. The simple operatioesewlefined so that the
DNA sequence that they manipulate is minimal: only one MD&fiscted. We
considered in this paper only the case where this MDS is @wagronuclear. Re-
call however that thil-operation (that we ignored in our abstraction) may combine
two consecutive MDS41,, M, into a bigger composite MD87,, ,,.;. Conse-
qguently, if the MDS affected by simple or simpledlad is allowed to be composite,
then the mathematical model needs to be slightly reforradlathis approach has
been considered in [18] and somewhat surprisingly, it leadgery different re-
sults. While in the approach presented in the paper, ther@emimutations with
both sorting compositions and non-sorting compositioagileg to unsortable per-
mutations, see Example 1(iv) and 1(v), it turns out that & flamework of [18],
a permutation has only sorting or only non-sorting compmsit Moreover, all
those compositions have essentially the same “structure”.

The gene structure and the gene assembly may be studiedesnlévels of
abstraction: as (sorting of) signed permutations, as @tezhs of) signed double
occurrence strings, and as (reduction of) signed overlaptgy, see [6]. The molec-
ular model of simple operations illustrated in Figures 1 arhs been formulated
in [11] both on the level of permutations, and on that of gfsin Translating the
model to overlap graphs seems difficult: the overlap gramhaal represent the
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linear distance between pointers, which is the main ingredin the molecular
model of simplehi anddlad. We suggest however that defining a minimal graph
reduction model is possible: consider the graph-bdsemperation (often called
gpr, see [6]) applicable only to vertices with at most one neggltbin the graph, as
well as the graph-basetiad operation (often callegdr, see [6]) applicable only to
adjacent vertices having the same neighbourhood. It isantiow this “simple”
graph-based model relates to the other two abstractionisecsimple model for
gene assembly.
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