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Abstract

This paper introduces a method for formal transformation of platform inde-
pendent models (PIM) to platform speci�c models (PSM) in a model driven
architecture (MDA) context1. The models are constructed using statema-
chines in the Uni�ed Modelling Language (UML). As a formal framework for
reasoning about the models we use Event B. In this paper we focus on fault
tolerance features. Fault tolerance is not considered in the PIM in order to
make the models reusable for di�erent platforms. On the other hand, the
PSM often has to consider platform speci�c faults. However, fault tolerance
mechanisms cannot usually be introduced as a re�nement in the PSM. In
this paper we introduce a model transformation of the PIM in order to pre-
serve re�nement properties in the development of the PSM. Design patterns
are used for guiding the development. UML is widely used in industry and
therefore this development method can be bene�cial for developing reliable
applications in many di�erent application areas.

Keywords: Model Driven Architecture, UML, Statemachines, Event B,
Re�nement
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1 Introduction
A platform independent model (PIM) in a Model Driven Architecture (MDA)
[13] context considers only features in the problem domain. In order to im-
plement the platform independent model, the model is transformed into a
platform speci�c model (PSM) that takes into account implementation issues
for the platform where the system will run. The PSM is not necessarily a re-
�nement of the PIM, since it can introduce features that are not considered
there at all [15]. For example, fault tolerance and other platform speci�c
features should not be included in the PIM, since every possible platform
where the system could run would have to be taken into account. All po-
tential platforms might not even be known at the time the PIM is created
[4, 11].

We use UML [14] to describe the platform independent and platform spe-
ci�c models. Here we concentrate on statemachines [7]; we do not consider
the object oriented features of UML. To have a formal semantics and good
tool support for analysis, the statemachines are translated to Event B. Event
B [3, 12] is a formalism based on Action Systems [5] and the B Method [2] for
reasoning about distributed and reactive systems. It supports stepwise re-
�nement of speci�cations and it is also compatible with UML statemachines
[16].

In order to anticipate all the di�erent restrictions that will be encountered
on a speci�c platform, the fault handling mechanisms and other platform
speci�c features in the PIM would have to be very general. Hence, they would
not provide any useful information and could restrict future transformations
to other platforms. We introduce an automatic transformation of the PIM to
allow a very abstract de�nition of fault tolerance and other platform speci�c
features. These platform speci�c features can then be re�ned to concrete
features in the platform speci�c model. We give extra rules for ensuring
deadlock freeness and preserving the behaviour of the PIM. In this paper
we focus on fault tolerance features and we use pattern to facilitate the
introduction.

Section 2 gives a short presentation of UML and Section 3 describes
Event B. The translation of UML statemachines to Event B is then given in
Section 4. The PIM to PSM transformation is introduced in Sections 5 and
6. Patterns for fault tolerance are presented in Section 7 and in Section 8
we conclude.

2 UML
An application developed using object oriented methodology [1, 17] consists
of a set of objects that communicate by sending messages. Each object con-
sists of a set of variables and a set of operations describing the functionality
of the object. Messages are assumed to be operation calls. Furthermore,
objects run concurrently and the communication between them is instanta-
neous. The behaviour of the objects is described by statemachines [7]. Here
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s1 s2

e1[ G1 ] / S1

e2[ G2 ] / S2

Figure 1: A simple statemachine

we assume that at most one statemachine is used for each object.
The statemachine speci�cation in UML is large and complex [14]. For

simplicity we will only use a subset of it. We consider only statemachines
containing normal, initial and �nal states and no composite states. We as-
sume that all statemachines containing composite states have been �attened.

Transitions between states model the execution of the system. They can
be labelled by events and each event corresponds to an operation. Hence,
statemachines in di�erent objects can communicate by sending events (op-
eration calls). In UML, events that cannot �re a transition are normally
implicitly consumed. However, we assume that events are always deferred
until they can �re a transition. If a transition is without an event, it can
be non-deterministically �red by an arbitrary event. Transitions can have
guards and actions that take into account other variables than the state in
the enclosing object. A guard is a predicate that has to evaluate to true be-
fore the transition can be �red. An action is a substitution that is executed
when the corresponding transition is �red.

A simple statemachine is shown in Figure 1. The statemachine contains
two states s1 and s2. There are two transitions E1 and E2 between the
states. Transition E1 is triggered by event e1 and it has the guard G1 and
the action S1.

The speci�cation of statemachines in UML contains also other features
than the ones described here, such as e.g., composite states, history states,
activities, entry- or exit-actions inside states. However, the aim of this paper
is not to give a complete formal semantics to UML statemachines, but to
consider mapping a PIM into a fault tolerant PSM within the UML environ-
ment.

3 Event B

Event B [12] is a formalism based on Action Systems [5] and the B Method
[2], and it is related to B Action Systems [21]. It has been developed for
reasoning about distributed and reactive systems. An Event B speci�cation
consists of an abstract model that can be re�ned to a concrete model in a
stepwise manner.
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MODEL M
SEES
C

VARIABLES
v

INVARIANT
I(s, c, v)

INITIALISATION
S0(s, c, v)

EVENTS
E1 =̂

WHEN G1(s, c, v) THEN S1(s, c, v) END ;
E2 =̂

WHEN G2(s, c, v) THEN S2(s, c, v) END ;
END

CONTEXT C
SETS

s
CONSTANTS

c
PROPERTIES

P (s, c)
END

Figure 2: An abstract Event B model

3.1 Abstract model
An Event B model consists of variables giving the statespace and events for
describing the behaviour of the system [12]. Consider model M in Figure
2. The context C of the model provides de�nitions of sets s and constants c,
where P (s, c) describes their properties. The set of variables in the model is
given by v. Their types and properties are given in the invariant I(s, c, v).
The behaviour of the model is described by the events E1 and E2. Each event
consists of a guard Gi and a substitution Si. When the guard Gi evaluates
to true the event Ei is said to be enabled and the substitution Si can be
executed. Enabled events are chosen non-deterministically for execution.

A number of proof obligations need to be discharged in order to show that
an Event B model is consistent [12]. To generate the proof obligations every
substitution Si(s, c, v) is translated to a before-after predicate PSi(s, c, v, v′).
For example, if the substitution is S(s, c, v) =̂ (v := F (s, c, v)) then the
before-after predicate is PS(s, c, v, v′) =̂ (v′ = F (s, c, v)). The �rst two
proof obligations concern the correctness of the initialisation.

Mod1: P (s, c) ⇒ ∃v′.PS0(s, c, v′)

Mod2: P (s, c) ∧ PS0(s, c, v′) ⇒ I(s, c, v′)

The proof obligations state that the initialisation should be possible (Mod1)
and it should establish the invariant (Mod2). Note that the before-after
predicate for the initialisation only refer to the new value of the variables v.
The correctness of each event Ei is ensured by the following proof obligations.

Mod3: P (s, c) ∧ I(s, c, v) ∧Gi(s, c, v) ⇒ ∃v′.PSi(s, c, v, v′)

Mod4: P (s, c) ∧ I(s, c, v) ∧Gi(s, c, v) ∧ PSi(s, c, v, v′) ⇒ I(s, c, v′)

The �rst proof obligation states that the substitution in each event Ei should
be possible (Mod3) and the second one that the event has to maintain the
invariant (Mod4).
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REFINEMENT M1

REFINES M
SEES
C

VARIABLES
w

INVARIANT
J(s, c, v, w)

INITIALISATION
R0(s, c, w)

EVENTS
E1 =̂

WHEN H1(s, c, w) THEN R1(s, c, w) END ;
E2 =̂

WHEN H2(s, c, w) THEN R2(s, c, w) END ;
F1 =̂

WHEN N1(s, c, w) THEN T1(s, c, w) END ;
END

Figure 3: An Event B re�nement model

3.2 Re�nement
An Event B model can be re�ned [12]. As an example we have modelM1 in
Figure 3 that is a re�nement of the model M. The variables in the re�ned
model is given by w. The relation between the variables in the abstract model
and the re�ned model is given by the re�nement invariant J(s, c, v, w). The
guard Gi and substitution Si in event Ei is re�ned by the guard Hi and
substitution Ri, respectively. A new event F1 may also be introduced. In
order to show that event Ei is re�ned in a correct manner the following proof
obligations need to be discharged.

Ref1: P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧Hi(s, c, w) ⇒ ∃w′.PRi(s, c, w, w′)

Ref2: P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧Hi(s, c, w) ⇒ Gi(s, c, v)

Ref3: P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ Hi(s, c, w) ∧ PRi(s, c, w,w′) ⇒
∃v′.(PSi(s, c, v, v′) ∧ J(s, c, v′, w′))

The proof obligations states that the re�ned substitution Ri is possible
(Ref1), the guard of the event is strengthed (Ref2) and that there is an
assignment to the variables in the abstract model corresponding to the as-
signment in the re�ned substitution under relation J (Ref3). The proof
obligations for new events Fi are similar to the ones above. However, they
re�ne skip and, hence, the before-after predicate in the abstract speci�cation
is PSn(s, c, v, v′) =̂ (v′ = v).

In order to ensure the correctness of the entire model, two additional
proof obligations need to be discharged. The re�ned system cannot deadlock
or terminate more often than the abstract one (Ref4).

Ref4: P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧Gi(s, c, v) ⇒
Hi(s, c, w) ∨N1(s, c, w) ∨ . . . ∨Nn(s, c, w)
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If an event is enabled in the abstract model it is also enabled in the re�ned
model or some new events are enabled. This is the strong version of the
proof obligation for deadlock freeness. Finally, we need to show that the
new events terminate when executed in isolation, since they are not allowed
to take control forever. We assume that we have a variant V (s, c, w) that is
a well founded structure (N,≤). Each new event then has to decrease the
variant (Ref5).

Ref5: P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧Ni(s, c, w) ∧ PTi(s, c, w, w′) ⇒
V (s, c, w′) ∈ N ∧ V (s, c, w′) < V (s, c, w)

These proof obligations are necessary and su�cient to show that an Event
B model is consistent and that the re�nement is correct.

A recently introduced feature in Event B is the, so called, anticipating
events [3]. Sometimes a new event is needed in a re�nement that also modi�es
old variables. The event is then added as an anticipating event in previous
re�nement steps. An anticipating event can perform any substitution that
maintains the invariant. We still have to prove that the new events re�ning
the anticipating events terminate when executed in isolation. Anticipating
events is only syntactic sugar for actually introducing the events in earlier
re�nement steps and introducing extra variables for their variant.

4 Translation of statemachines to Event B
Since UML is a speci�cation language that is widely used in industry, we
create behavioural models using UML statemachines. In order to be able
to formally reason about the models, we translate them to Event B. There
are several translations from UML to B [16, 19]. However, here we present
a translation of a subset of UML, using a semantics concerning events and
communication that is suitable for our purpose.

4.1 Transitions and Events
The statemachine in Figure 1 is translated to Event B as shown in Figure
4. The states of the statemachine are given as an enumerated set S =
{s1, s2, exit} in Event B. The current state of the statemachine is modelled
as a variable s ∈ S. The initial state in a UML statemachine gives the initial
value of the state variable s. The exit states are modelled as a single state,
exit ∈ S. The variables v in M are the variables of the UML statemachine.
The transitions correspond to events in Event B. The events E1 and E2 in
Event B (later called B events) corresponds to the transitions triggered by
the UML events e1 and e2, respectively. The guards Gi and substitutions Si

refer to the variables v.
The proof obligations for transitions are the standard proof obligations

for events in Event B. However, it is a desirable property that a statemachine
should not deadlock. The only state where no transition should be enabled is
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s1 s2

e1[ G1 ] / S1

e2[ G2 ] / S2

MODEL M
SETS

S = {s1, s2, exit}
VARIABLES

v, s
INVARIANT

I(v, s)
INITIALISATION

S0(v) ‖ s := s1

EVENTS
E1 =̂

WHEN s = s1 ∧G1

THEN S1 ‖ s := s2

END
E2 =̂

WHEN s = s2 ∧G2

THEN S2 ‖ s := s1

END
Eexit =̂

WHEN s = s1 THEN s := exit END
END

Figure 4: Translation of a UML statemachine M to Event B

in state exit. To ensure that this holds we introduce an extra proof obligation
(Exit1).

Exit1: I(v, s) ∧ ¬((s = s1 ∧G1) ∨ . . . ∨ (s = sn ∧Gm)) ⇒ s = exit

The abstract model in Figure 4 can be re�ned to take into account more
features and to make the model implementable. In �gure 5 we re�ne the
abstract variables v with concrete variables w. The guards and actions in
the transitions of the abtract model are re�ned to Hi and Ri, respectively,
to take the concrete variables w into consideration. The state variable s is
re�ned by r. The relation between s and r is given as JS(s, r) =̂ (s = s1 ⇔
r = r1) ∧ (s = s2 ⇔ r ∈ {r2, r3}). Two new transitions with UML event
f1 have also been introduced in the model (transitions F11 and F12 in Event
B). Translation of the re�ned statemachine M1 is performed in the same
manner as for the abstract model.

A UML event can be considered to be an operation in an object as de-
scribed in Section 2. Thus, we can consider each UML event to be the
non-deterministic choice of its transitions. Assume UML event e consists
of transitions E1, . . . , En. Then the behaviour in Event B for e is given as
e =̂ E1[]E2[] . . . []En. Transition without an UML event are included in the
behaviour of e, since these transitions can be triggered by any UML event.
The behaviour of e should be re�ned when the statemachine is re�ned. This
interpretation of UML events gives rules for labeling transitions with UML
events: A transition without an UML event can be re�ned to a transition
with any UML event. The UML event cannot be changed on a transition
during the re�nement process. Furthermore, if a UML event e can trig-
ger a transition in the abstract statemachine it should also be possible in
the re�ned statemachine. Since we have deferred UML events, this can be

6



r1 r2

r3

e1[ H1 ] / R1

f1[ N2 ] / T2

e2[ H2 ] / R2

f1[ N1 ] / T1

REFINEMENT M1

REFINES M
SETS

R = {r1, r2, r3, exit}
VARIABLES

w, r
INVARIANT

J(v, w, r) ∧ JS(s, r)
VARIANT

V (w, r)
INITIALISATION

R0(w) ‖ r := r1

EVENTS
E1 =̂

WHEN r = r1 ∧H1

THEN R1 ‖ r := r2

END
E2 =̂ . . .
F11 =̂

WHEN r = r2 ∧N1

THEN T1 ‖ r := r3

END
F12 =̂ . . .
Eexit =̂

WHEN r = r1

THEN r := exit
END

END

Figure 5: Translation of a re�ned UML statemachine M1

proved by showing the strong version of deadlock freeness in combination
with termination of new transitions.

4.2 System consisting of several objects
Applications usually consist of more than one object. Consider an applica-
tion consisting of the objects A and B where the behaviour of the objects
is described using UML statemachines. Object A has the variables vA, the
operations e1, . . . , em and the states SA, while the object B has the variables
vB, the operations f1, . . . , fn and the states SB.

In order describe the composition of objects A and B we rely on the
parallel composition of action systems with procedures [18]. The parallel
composition, A ‖ B, of the statemachines describing the behaviour of objects
A and B can be de�ned in Event B. We assume that the sets of variables vA

and vB are disjoint, otherwise the variables are renamed before composition.
In the composed Event B model the variables are merged, vA∪vB. The state
in the composed statemachine is SA × SB. A transition from si to sj of the
form ei[Gi]/Si in A is translated to the following B event:

Ei =̂
WHEN sA = si ∧Gi

THEN Si ‖ sA := sj

END

We note that the state of B is not changed here.
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Communication between objects is performed by sending events, which
corresponds to operation calls. A transition ej [Gj ]/Sj ‖ fk inA that sends an
event fk, triggering transition fk[Hk]/Rk in object B, models instantaneous
communication between the objects. We assume that each statemachine
involved in the communication will only make one transition. Hence, A
transition in B, labelled fk, cannot send an event back to A. The two
transitions are then translated together into Event B as follows:

Ej =̂
WHEN (sA = sj ∧Gj) ∧ (sB = sk ∧Hk)
THEN Sj ‖ sA := si ‖ Rk ‖ sB := sl

END

The communication can take place when both the guard of the transition in
A and B are enabled. The actions of the transitions in A and B are then
executed as one atomic operation. Note that if fk triggers several transitions
there needs to be a composed transition for each of them.

To prove that the composition A′ ‖ B′ is a re�nement of A ‖ B we only
need to show that A v A′ and B v B′ [18]. Hence, the proof obligations
in Section 3 should be discharged for both the objects A and B, in order to
prove A ‖ B v A′ ‖ B′.

5 Introduction of platform speci�c features in UML
In order to implement a PIM we need to transform it into a PSM. The PSM
is not necessarily a re�nement of the PIM, since the PIM does not consider
platform speci�c features. Here we are mainly interested in introduction of
fault tolerance features; we can even consider fault tolerance to be a platform
in its own right (cf. [4, 11]). We can make the following observations: the
behaviour in the PIM should be the �normal� behaviour of the PSM and
the new behaviour in the PSM relates mainly to tolerance of faults that can
occur on a speci�c platform.

The faults can be divided into three groups: the �rst group consists of
faults where the only remedy is to terminate the application. The second
group consists of faults that cannot be recovered from when the mechanisms
for fault tolerance are introduced as a re�nement of the PIM. An example
of such a fault could be inserting an item into a bu�er. The PIM considered
the bu�er to have in�nite length, while in the PSM it has a �nite length.
When the bu�er gets full, messages are dropped, but the application can
otherwise continue its operation. The last group of faults consists of faults
that the fault tolerance mechanisms always can recover from and where the
fault tolerance mechanism can be introduced as a re�nement. This group of
faults are not a problem, since the PSM can still be a re�nement of the PIM
in this case.

We would like to preserve as many re�nement properties as possible in
the transformation from PIM to PSM. The following properties of the PIM
are required to be preserved in the PSM:
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1. The sequence of valid calls to public operations are maintained in the
PSM or the statemachine has reached state exit.

2. New public operations (UML events) are not introduced. Hence, an
object does not require new interactions from its environment.

3. New behaviour violating the re�nement relation between the PIM and
the PSM cannot take control forever.

4. There should be a trace in the PIM that is also a possible trace in the
PSM. Hence, it should be possible to execute the PSM using only the
transitions in the PIM.

The rules above can also be expressed as restrictions on the statemachine in
the PSM. In the view of the environment, a UML statemachine accepts a lan-
guage over an alphabet consisting of the events. Assume that statemachine
in the platform independent model accepts the language L. The alphabet
of the language is the public operations of the object. Consider two strings
L1 and L2 in L such that L = L1L2. In order to introduce fault tolerance,
we can add new error handling mechanisms. Assume the error handling
mechanism is represented by the string of events f and the error can occur
between L1 and L2. The statemachine of the platform speci�c model can
then accept the following language L1L2 + L1fL2 + L1f . This means that
the statemachine operates either normally, recovers and continues with its
normal operation or it terminates.

6 Transforming a PIM into a PSM
In order to transform the PIM into a PSM we use design patterns. Design
patterns are template solutions for solving commonly occurring problems.
Fault tolerance patterns will be discussed in more detail in Section 7.

6.1 Introducing anticipating events
To enable transformation of the PIM to a PSM we use anticipating events
in Event B. We transform the PIM to a model having all the possible an-
ticipating events modelling very abstract fault tolerance features. Figure 6
illustrates how a platform independent model M is transformed into a plat-
form speci�c model M′′. First M is automatically translated to a model
T (M) including all the possible anticipating events. The model T (M) is
hidden from the developer of the PIM. He/She will only have to consider
the models M, M′ and M′′. To obtain a model M′ with platform spe-
ci�c features, a pattern p1 is applied to the PIM M by the developer. This
procedure can be repeated until all platform speci�c features have been in-
troduced. The result obtained is a model that have similar functionality
as M, but can have several platform speci�c features, e.g. fault tolerance.
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Figure 6: Transforming a platform independent model M into a platform
speci�c model M′′

s1 s2

/ Undef / Undef

e2[ G2 ] / S2

/ Undef
e2[ G2 ] / Undef

e1[ G1 ] / S1

/ Undef

e1[ G1 ] / Undef

Figure 7: The transformation of the platform independent model T (M) in
Figure 1

The obtained model M′ is a re�nement of T (M), but not necessarily of the
platform independent model M.

The problem of fault tolerance can be divided into two separate parts, the
modelling of the occurrence of an error and the error handling. To model the
occurrence of errors we introduce one new transition for each transition in
the platform independent model. These anticipating transition ei[Gi]/Undef
have the same source, destination and guard as their corresponding transi-
tions. They contain the action Undef , modelling that the execution of the
action failed. To model error handling we introduce two extra transitions
/Undef for each state in the platform independent model. These anticipat-
ing transitions have no event and can, hence, be executed at any time. One
transition models errors that the system can recover from, the other models
termination of the system in the state exit. All the anticipating transitions
can be re�ned to any behaviour, as for example fault tolerance.

An abstract platform independent model is presented in Figure 1 in Sec-
tion 2. The model contains two states, s1 and s2 and two transitions be-
tween them. The corresponding transformed PIM T (M) is shown in Figure
7, where anticipating transitions are introduced for both the states s1 and
s2, as well as between these two states.
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6.2 Validation of the platform speci�c model
We transform the PIM M to a PSM M′ using a pattern p that takes into
account the transformation rules in this paper. The model M′ is shown
within Figure 8. Validation of the PSM is performed within the Event B
framework, where we can show that the PSM M′ is a re�nement of the
transformed platform independent model T (M). In Section 5 we gave four
additional properties that the PSM M′ should satisfy with respect to the
original PIMM. They are related to proof obligations in Event B as follows.
The sequence of valid calls (1) is preserved, since we have deferred events
and we prove strong deadlock freeness for each transition in Event B. We
can check syntactically on the UML model that no new public events are
introduced (2). New behaviour is not allowed to take control forever (3),
which is guaranteed with the proof obligations for anticipating transitions
and new transitions in Event B. Condition (4) stating that there is behaviour
common to the PIM and PSM requires extra proof obligations in Event B.

The fourth requirement in Section 5 is needed, since we introduce several
extra transitions in T (M) compared to M. It is necessary to show that
the behaviour of the PIM is still feasible in the PSM. First, we check that
the initialisation R0(w, r) of the PSM M′ can enable an already existing
transition in the PIM or that it moves to state exit (PSM1).

PSM1: ∃w′, r′.(PR0(w′, r′) ∧ (H1(w′, r′) ∨ . . . ∨Hn(w′, r′) ∨ r′ = exit))

Here every Hi denotes the Event B guard of a transition in the PSM that
re�nes a transition in the PIM. Furthermore, for every transition in the PSM
WHEN Hj(w, r)THEN Rj(w, r)END that is a re�nement of a transition
in the PIM there should be assignment w′, r′ to the variables that enables a
transition with translated guard Hi or leads to the state exit (PSM2).

PSM2: I(v, s) ∧ J(v, w, s, r) ∧Hj(w, r) ⇒
∃w′, r′.(PRj(w,w′, r, r′) ∧ (H1(w′, r′) ∨ . . . ∨Hn(w′, r′) ∨ r′ = exit))

When these proof obligations hold the statemachine is not allowed to use
only fault tolerance mechanisms. Note that the proof obligations are the
same as the feasibility proof obligation with the the condition (H1(w′, r′) ∨
. . . ∨Hn(w′, r′) ∨ r′ = exit) added.

In the PIM we show that when all events in the system are disabled then
all objects are in state exit. Hence, the PIM of the system does not deadlock.
When we transform the PIM, we allow the introduction of new transitions
to state exit. Even if the statemachine in the PIM always terminates in state
exit, this property does not necessarily hold in the PSM. We need an extra
proof obligation to ensure that the statemachine only terminates in this state
(Exit2).

Exit2: I(v, s) ∧ J(v, w, s, r) ∧ ¬(H1(w, r) ∨ . . . ∨Hn(w, r)) ⇒ (r = exit)
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As a �nal issue, we need to consider UML events on transitions. Several of
the transitions in T (M) were not labelled with UML events. Since UML
events are operations in objects, there should not be any transitions without
events in the �nal PSM. However, new private UML events are introduced
that either trigger new transitions or transitions re�ning the anticipating
transitions. These extra rules ensure that the desired properties given in
Section 5 holds.

7 Fault Tolerance Patterns
A pattern introducing new functionality is dependent upon the original
model and must satisfy the system constraints. In this case it means that
the fault tolerance pattern must not change the original functionality of the
system. This implies that the fault tolerance features have to be re�ned
during the development. Thus, for all trace(s) in the originalM, there must
be corresponding valid trace(s), in the successively developed systems, in-
cluding the transition containing Undef . Consequently, after fault tolerance
has been introduced, it can be seen as a �slave� system evolving in parallel.
Introducing the �slave� system early provides a higher level of abstraction,
but makes the re�nement more complicated in contradiction to initiating it
later.

In this paper we add fault tolerance as a �nal step of the development.
Considering Figure 8, abstract fault tolerance features are added to the model
T (M). The added features include transitions containing Undef that can
be re�ned to anything satisfying the abstract invariant. The transformation
that is performed automatically follows a pattern for adding the anticipating
events and hence, model T (M) is not a re�nement ofM. When introducing
fault tolerance according to a pattern p into the PSM M′, we will have the
case that M′ is a re�nement of T (M).

In general, a fault is a defect in the system that possibly can manifest
itself as an error, which might result in a system failure [20]. Because of
the unpredictability of the environment, faulty behaviour is evident. Fault
tolerance refers to a method for designing a system so that it is capable of
operating, possibly at a reduced level, rather than failing completely when
some part of the system fails. Consequently, a fault tolerant system is ca-
pable of handling unexpected erroneous events in a sensible manner. A
fault tolerance procedure always starts with error detection, followed by a
diagnosis and the outcome of the error handling method. In this paper the
detection is modelled as a transition containing Undef , while the diagnosis
is completely dependent on the uniqueness of the current state. The out-
come of the fault tolerance is achieved through applying a handling method
designed for errors occurring in that speci�c state. Consequently, an error
in a certain state is always tackled according to the same pattern.

The PSM model can handle the errors in three distinct ways. Opti-
mally a recovery from the error is performed; otherwise the system prefers a
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Figure 8: Transformation of the PIM M into a PSM M′

shutdown in a clean manner, i.e., a software reboot under controlled circum-
stances conducting damage avoidance procedures. If neither can be chosen,
the system will su�er an uncontrolled �total� failure.

In our transformation from PIM to PSM we prohibit usage of history
states and of traces. Hence, if there is more than one possible path leading to
the present state, the system cannot know its prior events. Consequently, any
pattern preserving the system conditions is deduced from a unique situation
of the system, making checkpoint dependent recovery unattainable [8]. These
constraints demand more of the development of fault tolerance.

When developing a fault tolerant system, according to the method in
this paper, it is deadlock free and preserves the invariant. The patterns
are bounded within the strict constraints proposed here. This means that
the system T (M) (in Figure 8) will have the following structure, where Li

stands for a subset of the language (UML events) accepted by a statema-
chine in the PIM, f for an erroneous event and∗ denotes the Kleene star:
L1f

∗L2f
∗ . . . Lnf∗. Hence, any number of faults can occur between the

events of the PIM. If fault tolerance would evolve in parallel with the model,
every added feature can potentially change the desired recovery method.

In the PSM we can re�ne the error f in T (M) (transition with Undef
in Figure 8) to a combination of handled crash h and error recovery r in
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M′. The expression L1L2 + L1rL2 + L1h in M′, gives the re�ned fault
tolerance, where + is disjunction. Every error state would have to contain at
least the worst case scenario of unexpected total breakdown, leading to hard
reboot. However, the unexpected total breakdown is out of the scope of this
paper and is not modelled here. Our expression models normal behaviour
(L1L2), successful recovery (L1rL2) and handled crash after possible recovery
attempts (L1h). By following this method we can introduce fault tolerance
in the PSM while preserving the main functionality of the PIM.

8 Conclusions
In this paper we presented a method for transforming a PIM into a PSM in
a MDA context. Our transformation rules are mainly aimed at introducing
fault tolerance features into the models. We consider behavioural models
constructed using UML statemachines and we use Event B as the underlying
formal framework. A PIM does not consider platform speci�c features such
as fault tolerance. However, the PSM often has to consider platform speci�c
faults, but the fault tolerance mechanisms cannot necessarily be introduced
as a re�nement of the PIM. The transformation rules in this paper will ensure
that certain desirable properties are preserved in the PSM.

Adding features to a model that do not obey re�nement rules has been
investigated before. Retrenchement [6] is an approach to make exceptions to
re�nement rules in a structured manner. For our purposes retrenchement is
unnecessarily complicated and re�nement, as well as, anticipating events [3]
is su�cient to introduce platform speci�c features in the PSM.

Fault tolerance is often considered directly in the abstract speci�cation
(PIM). Adding fault tolerance in B has been investigated before by Laibinis
and Troubitsyna in e.g. [9, 10]. However, we like to construct the PIM with-
out considering fault tolerance, in order to focus on the desired functionality
and to make the models more reusable.

As future work, we aim at to applying the method on a case study to
investigate its practicality and to develop reusable patterns. The method is
not limited to only the small subset of UML statemachines given in the paper,
but it can be extended to consider more features from the UML standard.
UML is well known in industry and therefore this type of transformation
rules can be bene�cial in many application areas.
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