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Abstract

We consider several aspects of Wilke’s (1996) tree algebra formalism for
representing binary labelled trees and compare it with approaches that rep-
resent trees as terms in the traditional way. A convergent term rewriting
system yields normal form representations of binary trees and contexts, as
well as a new completeness proof and a computational decision method for
the axiomatization of tree algebras. Varieties of binary tree languages are
compared with varieties of tree languages studied earlier in the literature.
We also prove a variety theorem thus solving a problem noted by several
authors. Syntactic tree algebras are studied and compared with ordinary
syntactic algebras. The expressive power of the language of tree algebras is
demonstrated by giving equational definitions for some well-known varieties
of binary tree languages.
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1 Introduction

In algebraic language theory words are usually regarded as elements of the
free monoid X∗ (or the free semigroup X+ if the empty word is omitted)
generated by a given alphabet X. In particular, the syntactic monoid (cf.
[8, 22]) of a language L ⊆ X∗ is defined with this interpretation in mind.
Similarly, in algebraic treatments of regular tree languages (cf. [7, 31, 13, 14])
trees are often defined as terms, and the syntactic algebra [1, 27, 28] of a tree
language is then a quotient algebra of the appropriate term algebra. However,
Wilke [33] has proposed a different framework in which trees are not directly
viewed as elements of any algebraic structure but are represented by terms
over a signature Γ with six operation symbols involving the three sorts label,
tree and context. The trees thus represented are binary trees over a given
label alphabet. A tree algebra is a Γ-algebra satisfying certain identities that
equate some pairs of Γ-terms representing the same tree or the same context.
The component of sort tree of the syntactic tree algebra of a binary tree
language T is essentially the syntactic algebra of T in the sense of [1, 27, 28],
while its context-component gives the syntactic semigroup of T as defined
(as monoids) in [32], and studied further in [26], [21] and [23]. A binary
tree language is regular if and only if its syntactic tree algebra is finite [33].
Hence, one may characterize families of binary tree languages by syntactic
tree algebras as shown by Wilke [33] in the case of frontier testable (i.e.,
reverse definite) tree languages.

In this paper we study several aspects of the tree algebra formalism. The
theory is formulated in such a way that it

(1) lets us derive the conceptual machinery directly from some general
ideas of algebraic language theory,

(2) yields many fundamental results, including the general theorems of
[33], in a natural way with transparent algebraic proofs, and

(3) facilitates the comparison with other algebraic approaches to regular
tree languages.

A classification theory for binary tree languages based on syntactic tree
algebras was called for already in [33], and the lack of an appropriate variety
theorem was noted also in [29], [10] and [11]. Here such a theorem is proved.
For this, we have to consider varieties of finite tree algebras of a special kind as
the direct bijection between varieties of binary tree languages (VBTLs) and
all varieties of finite tree algebras fails to hold. We also show that any general
variety of tree languages of the kind studied in [29], yields a VBTL when
restricted to binary ranked alphabets. That not every VBTL is obtained
this way, is due to a subtle difference in the tree homomorphisms used in the
definitions of the two kinds of varieties. A similar difference can be noted in
the relation between syntactic tree algebras and ordinary syntactic algebras:
the syntactic algebra completely determines the syntactic tree algebra, but
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the converse is only partially true. Anyway, it seems that mostly the same
families of binary tree languages are definable in terms of the two syntactic
invariants. On the other hand, the language of tree algebras lends itself
better for equational definitions of VBTLs.

Let us now review the contents of the paper section by section. In Section
2 we introduce algebras, terms and trees as well as several related notions, fix-
ing at the same time some general notation to be used throughout the paper.
In Section 3 Wilke’s tree algebras are introduced, and the representations
of binary trees and contexts by Wilke’s terms are formalized by homomor-
phisms from the appropriate term algebras to the corresponding tree algebras
of binary trees. In Section 4 we turn Wilke’s axioms for tree algebras into
a convergent term rewriting system, and describe the corresponding normal
form representations of binary trees and contexts. The term rewriting system
also yields a completeness theorem for Wilke’s axioms, proved differently in
[33], as well as a computational method to test the equivalence of two tree
or context representations.

In Section 5 we define and survey some basic properties of the syntactic
congruences and syntactic algebras of subsets of Γ-algebras making use of
the general many-sorted theory developed in [25]. When these definitions
are applied in Section 6 to binary tree languages, regarding these as subsets
of sort tree of free tree algebras, we obtain Wilke’s syntactic tree algebras as
well as some basic facts about them. In particular, by noting some relation-
ships between the syntactic tree algebra STA(T ) of a binary tree language
T and its ordinary syntactic algebra SA(T ) and syntactic semigroup SS(T ),
we get in a new way Wilke’s theorem stating that T is regular iff STA(T ) is
finite. Moreover, we note several general properties of syntactic tree algebras
needed in the variety theory.

In Section 7 we introduce varieties of binary tree languages (VBTLs) and
varieties of finite tree algebras (VFTAs). However, the natural maps between
VBTLs and VFTAs, defined via syntactic algebras, do not yield the complete
correspondence one could expect. In Section 8 it is then shown how a Variety
Theorem for VBTLs can be obtained by replacing VFTAs with varieties of
finite reduced tree algebras; we call a tree algebra reduced if it is generated
by its elements of sort label, and no two elements of sort label, or of sort
context, are equivalent with respect to the operations of the algebra that
yield elements of sort tree. All syntactic tree algebras are reduced in this
sense. We also show how any tree algebraM can be transformed to a reduced
tree algebra that is maximal among the reduced tree algebras covered byM.

Varieties of binary tree languages are less general than varieties of [1],
[27] and [28] in that they involve binary trees only. On the other hand, they
are more general in the sense that the alphabet of labels is not fixed. In this
they resemble the general varieties of tree languages (GVTLs) of [29] where
tree languages over all ranked alphabets and leaf alphabets appear. In Sec-
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tion 9 we show that when a GVTL is restricted to the ranked alphabets of
binary tree languages, a VBTL is obtained. Thus the binary parts of many
known families of regular tree languages are VBTLs. However, not every
VBTL can be obtained this way from a GVTL. This ultimately depends on
the fact that in the binary trees of [33], leaves and inner nodes are labelled
with the same symbols. A similar subtle difference surfaces when we study
connections between the syntactic tree algebra STA(T ), the syntactic alge-
bra SA(T ) and the syntactic semigroup SS(T ) of a binary tree language T .
Although STA(T ) is completely determined by SA(T ), and we can construct
STA(T ) from SA(T ), the converse is not completely true. Nevertheless, it
appears that essentially the same families of binary tree languages can be
characterized by syntactic tree algebras as by syntactic algebras.

In spite of the above conclusion drawn from the results of Section 9, it
seems that the language of tree algebras has certain advantages and is very
convenient for defining VBTLs by equations. This was first shown by Wilke
[33] who gave an elegant equational description of the frontier testable binary
tree languages. Wilke also proved that frontier testability is a decidable
property for binary tree languages. However, the equational description did
not by itself yield a decision method, but a closer analysis of the syntactic tree
algebras of frontier testable sets was required. In Section 10 we present, after
some relevant general facts, three more examples of equational descriptions
of VBTLs.

This paper has been written over a rather long period of time. Hence it
both precedes and follows the doctoral dissertation of the first-named author,
and some of the results appear already in [24]. However, even in those cases,
the presentation may be somewhat different here. The bibliography contains
several general references related to the subject matter of this paper. In
particular, [30] surveys various algebraic approaches to the classification of
regular tree languages, and contains many further relevant references.

2 Algebras, terms, trees and contexts

In this section we recall some basic notions mainly to fix our notation for
later reference. First a word on notation: we shall frequently write a := b to
indicate that a is defined to be equal to b.

Let Σ be a ranked alphabet, i.e., a finite set of operation symbols each of
which has a given non-negative integer arity. For each m ≥ 0, let Σm denote
the set of m-ary symbols in Σ. A Σ -algebra D = (D,Σ) consists of a non-
empty set D (of the elements of D) and a Σ -indexed family of operations
such that if f ∈ Σm, then fD : Dm → D is an m-ary operation on D. In
particular, any c ∈ Σ0 fixes a constant cD ∈ D.

Next we recall the usual definition of trees as terms (cf. [7, 31, 13, 14],
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for example). Let X be a finite set of symbols disjoint from Σ, called a leaf
alphabet. The set TΣ(X) of Σ-terms over X is defined inductively:

(1) Σ0 ∪X ⊆ TΣ(X);

(2) f(t1, . . . , tm) ∈ TΣ(X) if m > 0, f ∈ Σm and t1, . . . , tm ∈ TΣ(X).

We shall view terms in the usual way as (syntactic representations of) trees
labelled with symbols in Σ ∪X, and call them also ΣX-trees.

The height hg(t) of a ΣX-tree t is defined by setting (1) hg(t) = 0 for any
t ∈ Σ0∪X, and (2) hg(t) = max{hg(t1), . . . , hg(tm)}+1 for t = f(t1, . . . , tm).

Let ξ be a new symbol that does not appear in Σ or X. A ΣX-context is
a Σ(X ∪ {ξ})-tree in which ξ appears exactly once. The set of ΣX-contexts
is denoted by CΣ(X). Furthermore, let C+

Σ (X) = CΣ(X) \ {ξ} be the set of
non-unit ΣX-contexts ; ξ is the unit context. In the special case X = ∅, we
get the sets TΣ, CΣ and C+

Σ of Σ-trees (or ground Σ-terms), Σ-contexts, and
non-unit Σ-contexts, respectively.

The ξ-depth dξ(p) of p ∈ CΣ(X) is the distance of the ξ-labelled node from
the root of p, that is, (1) dξ(ξ) = 0, and (2) if p = f(t1, . . . , ti−1, q, ti+1, . . . , tm)
for some m > 0, 1 ≤ i ≤ m, t1, . . . , ti−1, ti+1, . . . , tm ∈ TΣ(X) and q ∈ CΣ(X),
then dξ(p) = dξ(q) + 1.

If p, q ∈ CΣ(X) and t ∈ TΣ(X), then q · p := p(q) ∈ CΣ(X) and t · p :=
p(t) ∈ TΣ(X) are obtained from p by replacing the single occurrence of ξ
with q and with t, respectively. Obviously, ξ(p) = p(ξ) = p and ξ(t) = t
for any context p and any tree t. Clearly, (CΣ(X), ·, ξ) is a monoid for the
product p · q. Similarly, (C+

Σ (X), ·) is a semigroup.
In what follows, we consider especially binary trees in which both the

inner nodes and the leaves are labelled with symbols from a given finite
non-empty alphabet A, the label alphabet. To obtain compatibility with the
term formalism, we define them formally as follows. First of all, we associate
with A the ranked alphabet ΣA = ΣA

0 ∪ ΣA
2 , where ΣA

0 = {ca | a ∈ A} and
ΣA

2 = {fa | a ∈ A}. We shall call ΣA-trees ΣA-contexts simply A-trees and A-
contexts, respectively, and the notation is simplified correspondingly. Hence
the set TA of A-trees and the set CA of A-contexts are defined inductively:

(1) ca ∈ TA for every a ∈ A, and ξ ∈ CA;

(2) fa(s, t) ∈ TA and fa(p, t), fa(t, p) ∈ CA for all a ∈ A, s, t ∈ TA and
p ∈ CA.

Moreover, let C+
A = CA \ {ξ} be the set of non-unit A-contexts.

The ΣA-algebra of A-trees TA = (TA,Σ
A) is defined by setting

(1) cTA
a = ca for every a ∈ A, and

(2) fTA
a (s, t) = fa(s, t) for every a ∈ A and all s, t ∈ TA.
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Since TA is the ΣA-term algebra generated by the empty set, there is for each
ΣA-algebra D a unique homomorphism ϕD : TA → D defined by

(1) caϕD = cDa for a ∈ A, and

(2) fa(s, t)ϕD = fDa (sϕD, tϕD) for any a ∈ A and s, t ∈ TA.

Subsets of TA we call A-tree languages, and a binary tree language is any
set that is an A-tree language for some label alphabet A.

Let us now introduce Wilke’s [33] formalism for representing binary trees
by terms over a 3-sorted ranked alphabet. An overview of the theory of many-
sorted algebras, as well as many further references, can be found in [19]. In
[25] we have developed a general theory of varieties of recognizable subsets
of many-sorted algebras, and some of the notions and facts to be presented
here could be obtained by a suitable specialization from that theory.

The set of sorts is S = {label, tree, context}. For the sort names we
use the abbreviations l = label, t = tree and c = context. An S-sorted set
M is a triple 〈Ml,Mt,Mc〉 in which Ml, Mt and Mc are the sets of elements
of M of sort label, tree and context, respectively. Although this would
not be quite necessary, we shall always assume that the sets Ml, Mt and
Mc are pairwise disjoint, i.e., that the sort of each element of M is uniquely
determined.

Now let Γ = {ι, κ, λ, ρ, η, σ} be the S-sorted ranked alphabet where the
types of the symbols are as follows:

ι : l→ t; κ : ltt→ t; λ, ρ : lt→ c; η : ct→ t; σ : cc→ c.

For example, in any Γ-algebra the λ-operation forms from an element of sort
l and an element of sort t an element of sort c.

For the general notion of many-sorted terms we refer the reader to [19]
or [25]. Here we introduce just the kind of Γ-terms to be used in this paper.
The S-sorted set 〈A, TΓ(A), C+

Γ (A)〉 of ΓA-terms, where TΓ(A) is the set of
ΓA-tree terms, and C+

Γ (A) the set of non-unit ΓA-context terms, is defined
inductively as follows:

(1) if a ∈ A, then ι(a) ∈ TΓ(A);

(2) if a ∈ A and s, t ∈ TΓ(A), then κ(a, s, t) ∈ TΓ(A);

(3) if a ∈ A and t ∈ TΓ(A), then λ(a, t) ∈ C+
Γ (A);

(4) if a ∈ A and t ∈ TΓ(A), then ρ(a, t) ∈ C+
Γ (A);

(5) if p ∈ C+
Γ (A) and t ∈ TΓ(A), then η(p, t) ∈ TΓ(A);

(6) if p, q ∈ C+
Γ (A), then σ(p, q) ∈ C+

Γ (A).
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Hence, the ΓA-terms are the Γ-terms over the sorted set X = 〈A, ∅, ∅〉 of
variables, where A is a the given label alphabet.

Remark 2.1 Note that C+
Γ (A) does not include the unit context ξ. Simi-

larly, the syntactic tree algebras – to be defined later – do not automatically
have a unit element of sort context. This means that, in a way, Wilke’s
[33] theory corresponds to Eilenberg’s [8] theory of +-varieties and syntactic
semigroups. By adding to Γ a constant of sort context one could obtain
a variant of the theory that corresponds to the theory of ∗-varieties and
syntactic monoids.

Binary A-trees and A-contexts are represented by ΓA-tree terms and
ΓA-context terms as follows. For any t ∈ TΓ(A), let t̂ denote the A-tree
represented by t. Similarly, p̂ denotes the A-context represented by a ΓA-
context term p ∈ C+

Γ (A). The representations are defined by setting for any
a ∈ A, s, t ∈ TΓ(A) and p, q ∈ C+

Γ (A),

(1) ι(a) represents the A-tree ca,

(2) κ(a, s, t) represents the A-tree fa(ŝ, t̂),

(3) λ(a, t) represents the A-context fa(ξ, t̂),

(4) ρ(a, t) represents the A-context fa(t̂, ξ),

(5) η(p, t) represents the A-tree p̂(t̂), and

(6) σ(p, q) represents the A-context p̂(q̂).

The following facts are easy to verify by induction on A-trees and A-contexts.

Lemma 2.2 Let A be any label alphabet. For any A-tree t we can find a
ΓA-tree term t ∈ TΓ(A) such that t̂ = t, and for any non-unit A-context p a
ΓA-context term p ∈ C+

Γ (A) such that p̂ = p.

These representations are usually not unique. For example, the {a, b}-tree
terms κ(b, κ(a, ι(b), ι(a)), ι(a)) and η(λ(b, ι(a)), κ(a, ι(b), ι(a))) both represent
the same {a, b}-tree fb(fa(cb, ca), ca). Later on we formulate this representa-
tion relation as a homomorphism.

3 Tree algebras

A Γ-algebraM = (〈Ml,Mt,Mc〉,Γ) consists of a nonempty setMl of elements
of sort label, a nonempty set Mt of elements of sort tree, and a nonempty
set Mc of elements of sort context, and operations
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(1) ιM : Ml →Mt (2) κM : Ml ×Mt ×Mt →Mt

(3) λM : Ml ×Mt →Mc (4) ρM : Ml ×Mt →Mc

(5) ηM : Mc ×Mt →Mt (6) σM : Mc ×Mc →Mc,

defined as realizations of the symbols in Γ. Usually we write simply M =
(M,Γ) with the understanding that M = 〈Ml,Mt,Mc〉.

The basic algebraic notions, such as subalgebras, congruences, homomor-
phisms etc., are defined for Γ-algebras the same way as for many-sorted alge-
bras in general (cf. [19] or [25]). For example, a homomorphism ϕ : M→N
from a Γ-algebra M = (M,Γ) to a Γ-algebra N = (N,Γ) is a sorted map-
ping ϕ : M → N , i.e., an S-sorted triple of maps 〈ϕl : Ml → Nl, ϕt : Mt →
Nt, ϕc : Mc → Nc〉 that preserves all the Γ-operations between M and
N , that is to say, ιM(a)ϕt = ιN (aϕl) for every a ∈ Ml, κ

M(a, s, t)ϕt =
κN (aϕl, sϕt, tϕt) for all a ∈ Ml and s, t ∈ Mt, etc. A homomorphism
ϕ : M→N is an epimorphism if ϕ is surjective, i.e., ϕi : Mi → Ni is surjec-
tive for every i ∈ S. Similarly, ϕ is a monomorphism if every ϕi : Mi → Ni

is injective. Finally, an isomorphism is a bijective homomorphism. The fact
thatM and N are isomorphic is denoted by writingM∼= N .

For any label alphabet A, the Γ-algebra of ΓA-terms

TΓ(A) = (〈A, TΓ(A), C+
Γ (A)〉,Γ)

is defined by setting

(1) ιTΓ(A)(a) = ι(a), (2) κTΓ(A)(a, s, t) = κ(a, s, t),

(3) λTΓ(A)(a, t) = λ(a, t), (4) ρTΓ(A)(a, t) = ρ(a, t),

(5) ηTΓ(A)(p, t) = η(p, t), (6) σTΓ(A)(p, q) = σ(p, q),

for all a ∈ A, s, t ∈ TΓ(A) and p, q ∈ C+
Γ (A).

Following [33], we call a Γ-algebra a tree algebra if it satisfies the following
set of identities TA:

(TA1) σ(σ(p, q), r)) ≈ σ(p, σ(q, r)),

(TA2) η(σ(p, q), t) ≈ η(p, η(q, t)),

(TA3) η(λ(a, s), t) ≈ κ(a, t, s), and

(TA4) η(ρ(a, s), t) ≈ κ(a, s, t).

Here, a is a variable of sort label, s and t are variables of sort tree, and p,
q and r variables of sort context. Let TA denote the equational class of all
tree algebras.

For each label alphabet A, a tree algebra of special interest is the Γ-
algebra of A-trees FTA(A) = (〈A, TA, C

+
A 〉,Γ), where for any a ∈ A, s, t ∈ TA

and p, q ∈ C+
A ,
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(1) ιFTA(A)(a) = ca, (2) κFTA(A)(a, s, t) = fa(s, t),

(3) λFTA(A)(a, t) = fa(ξ, t), (4) ρFTA(A)(a, t) = fa(t, ξ),

(5) ηFTA(A)(p, t) = p(t), (6) σFTA(A)(p, q) = p(q).

As shown by Wilke ([33], Proposition 1), and suggested by our notation,
FTA(A) is the free tree algebra generated by 〈A, ∅, ∅〉. This means that
FTA(A) satisfies the identities TA, and that if M = (M,Γ) is any tree
algebra, then every mapping ϕ0 : A → Ml can be extended in a unique
way to a homomorphism ϕ = 〈ϕl, ϕt, ϕc〉 of Γ -algebras from FTA(A) toM.
Obviously, then ϕl = ϕ0.

For any label alphabet A, an A-instance of an identity in TA is any pair
of ΓA-tree or ΓA-context terms obtained from the identity by assigning each
of the variables a, s, t, p, q and r appearing in it a value from the appropriate
set A, TA or C+

A . For example, if b, c ∈ A, then(
η(λ(c, ι(b)), ι(c)), κ(c, ι(b), ι(c))

)
is the A-instance of (TA3) obtained by the substitution

a 7→ c, s 7→ ι(b), t 7→ ι(c).

Moreover, let ≡A be the fully invariant congruence on TΓ(A) generated by the
set of all A-instances of TA, i.e., the equational theory in variables 〈A, ∅, ∅〉
defined by TA.

It is clear that if (u, v) is an A-instance of an identity in TA, then û =
v̂. Furthermore, if (u, v) is obtained from pairs of ΓA-terms representing
the same A-tree or the same A-context by any inference rule of Birkhoff’s
equational logic (for the many-sorted version, cf. Section 5.2 in [19]), then
again û = v̂. Hence we get at this point the soundness property of Wilke’s
axiom system TA.

Proposition 3.1 Let A be any label alphabet. For any s, t ∈ TΓ(A) and
p, q ∈ C+

Γ (A),

(a) if s ≡A
t t, then ŝ = t̂, and

(b) if p ≡A
c q, then p̂ = q̂.

As the Γ-algebras TΓ(A) and FTA(A) both are generated by 〈A, ∅, ∅〉, the
identity mapping 1A : A → A (of sort label) can be extended in a unique
way to an epimorphism νA : TΓ(A)→ FTA(A) of Γ-algebras that we call the
canonical A-homomorphism. It is the triple of mappings

〈νA
l : A→ A, νA

t : TΓ(A)→ TA, ν
A
c : C+

Γ (A)→ C+
A 〉

such that for all a ∈ A, s, t ∈ TΓ(A) and p, q ∈ C+
Γ (A),
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(1) νA
l (a) = a,

(2) νA
t (ι(a)) = ca,

(3) νA
t (κ(a, s, t)) = fa(ν

A
t (s), νA

t (t)),

(4) νA
c (λ(a, t)) = fa(ξ, ν

A
t (t)),

(5) νA
c (ρ(a, t)) = fa(ν

A
t (t), ξ),

(6) νA
t (η(p, t)) = νA

c (p)(νA
t (t)), and

(7) νA
c (σ(p, q)) = νA

c (p)(νA
c (q)).

The following lemma is obtained immediately by comparing the above
equalities with the clauses defining the A-trees and A-contexts represented
by ΓA-terms.

Lemma 3.2 For any ΓA-tree term t ∈ TΓ(A) and any ΓA-context term
p ∈ C+

Γ (A), we have νA
t (t) = t̂ and νA

c (p) = p̂.

4 Normal form representations

Let us now transform the set of identities TA into a convergent (i.e., termi-
nating and confluent) term rewriting system. For the general theory of term
rewriting and the few notions needed here, cf. [3], [4], [6] or [17], for example.

Definition 4.1 Let R be the term rewriting system consisting of the rules

(R1) σ(σ(p, q), r))→ σ(p, σ(q, r)),

(R2) η(σ(p, q), t)→ η(p, η(q, t)),

(R3) η(λ(a, s), t)→ κ(a, t, s), and

(R4) η(ρ(a, s), t)→ κ(a, s, t).

Proposition 4.2 The system R is convergent.

Proof. It is clear that R is compatible with the lexicographic path ordering
induced by any order on Γ such that η > κ. Hence, R is terminating. There
are just two critical pairs. The pair

〈η(σ(p, σ(q, r)), t), η(σ(p, q), η(r, t))〉

produced by (R1) and (R2) converges to η(p, η(q, η(r, t))) by applications of
(R2), and the other critical pair

〈σ(σ(p, σ(q, r)), r′), σ(σ(p, q), σ(r, r′))〉
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obtained by overlapping (R1) with itself, converges to σ(p, σ(q, σ(r, r′))) by
further applications of (R1). Hence, R is confluent as well. �

Let A⇒ be the (S-sorted) reduction relation defined by R on the set
〈A, TΓ(A), C+

Γ (A)〉 of ΓA-terms, and let A⇔∗ be its equivalence closure. It
follows directly from the definitions of R and ≡A that A⇔∗ = ≡A. This
suggests the idea to define normal form representations of A-trees and A-
contexts by using R.

Let IRR(R, A)l, IRR(R, A)t and IRR(R, A)c be the sets of ΓA-terms
irreducible by R of sort label, tree and context, respectively. Clearly,
IRR(R, A)l = A. The other two sets are described in the following proposi-
tion.

Proposition 4.3 Let A be any label alphabet.

a. A ΓA-tree term is irreducible iff it contains the operators ι and κ only,
that is to say, IRR(R, A)t is obtained inductively thus:

(1) ι(a) ∈ IRR(R, A)t for every a ∈ A, and

(2) if a ∈ A and s, t ∈ IRR(R, A)t, then κ(a, s, t) ∈ IRR(R, A)t.

b. IRR(R, A)c is the smallest subset of C+
Γ (A) such that

(1’) λ(a, t), ρ(a, t) ∈ IRR(R, A)c for all a ∈ A and t ∈ IRR(R, A)t,
and

(2’) σ(λ(a, t), p) ∈ IRR(R, A)c and σ(ρ(a, t), p) ∈ IRR(R, A)c for
any a ∈ A, t ∈ IRR(R, A)t and p ∈ IRR(R, A)c.

Proof. By considering the rules of R one sees that clauses (1) and (2) define a
set of irreducible ΓA-tree terms. On the other hand, any ΓA-tree term with
a subterm of the form η(p, t) is reducible because the ΓA-context term p
must begin with λ, ρ or σ. Hence, all irreducible ΓA-tree terms are obtained
by clauses (1) and (2).

It is clear that no rule of R applies to any ΓA-context term obtained by
rules (1’) and (2’). That (1’) and (2’) yield all irreducible ΓA-context terms,
is verified by induction on the ξ-depth dξ(p̂) of the A-context represented by
p ∈ IRR(R, A)c. If dξ(p̂) = 1, then p must be a ΓA-context term given by
(1’). If dξ(p̂) > 1, then p = σ(q, r) for some q, r ∈ IRR(R, A)c, and because
of rule (R1), q must be of the form λ(a, t) or ρ(a, t) with t ∈ IRR(R, A)t.
Since the inductive assumption applies to r, also p is of the required type. �

As noted in Proposition 3.1, any two ≡A-congruent ΓA-tree terms repre-
sent the same A-tree. Therefore it follows now from Lemma 2.2 and Propo-
sition 4.2 that any A-tree is represented by a unique irreducible ΓA-tree
term. By Proposition 4.3 only the operators ι and κ appear in irreducible
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ΓA-tree terms, and hence it is clear that if s, t ∈ IRR(R, A)t and s 6= t, then
ŝ 6= t̂. Similarly, A-contexts are represented by unique irreducible ΓA-context
terms, and since these are of the form

σ(p1, (σ(p2, . . . σ(pn−1, pn) . . .),

where n ≥ 1, and each pi is of the form λ(a, t) or ρ(a, t) with a ∈ A
and t ∈ IRR(R, A)t, it is again clear that p̂ 6= q̂ for any two distinct
p, q ∈ IRR(R, A)c. These observations yield the following proposition that
completes the picture.

Proposition 4.4 Let A be any label alphabet. Every A-tree is represented
by a unique R-irreducible ΓA-tree term and hence, if ŝ = t̂ for any ΓA-tree
terms s, t ∈ TΓ(A), then s ≡A t. Similarly, each A-context is represented by
a unique R-irreducible ΓA-context term, and any two ΓA-context terms that
represent the same A-context are ≡A-congruent.

By combining this result with Lemma 3.2 and Proposition 3.1, we get the
following fact.

Corollary 4.5 For any label alphabet A, ker νA =≡A.

Furthermore, we now get Wilke’s [33] Proposition 1 in a new way:

Corollary 4.6 FTA(A) is the free tree algebra generated by 〈A, ∅, ∅〉.

Proof. Since≡A is the fully invariant congruence generated by the A-instances
of the identities (TA), the quotient algebra TΓ(A)/ ≡A is freely generated by
〈A, ∅, ∅〉 (we identify each a ∈ A with its ≡A-class {a}) over the class TA. On
the other hand, FTA(A) ∼= TΓ(A))/ ker νA by the Homomorphism Theorem
(cf. [19] for the many-sorted version). �

By combining Propositions 3.1 and 4.4, we get as a further corollary the
following result.

Proposition 4.7 Let A be any label alphabet.

(a) For any s, t ∈ TΓ(A), ŝ = t̂ if and only if s ≡A
t t.

(b) For any p, q ∈ C+
Γ (A), p̂ = q̂ if and only if p ≡A

c q.

The proposition may be regarded as a Completeness Theorem for Wilke’s
axiomatization (TA) with respect to representations of binary trees and con-
texts. Indeed, it means that any two ΓA-tree or ΓA-context terms represent
the same A-tree or A-context, respectively, iff they are TA-provably equal.
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By Proposition 4.7 the the equational theory ≡A is trivially decidable: to
decide whether s ≡A

t t holds for any given s, t ∈ TΓ(A), it suffices to construct
the A-trees ŝ and t̂ and compare them with each other. Similarly, p ≡A

c q iff
p̂ = q̂, for any given p, q ∈ C+

Γ (A). Of course, this fact is implicit also in [33]
since it follows also from Corollary 4.6 (and also from Corollary 4.5, for that
matter). However, let us also note that Proposition 4.2 yields also another
decision method that does not require forming the trees or contexts: whether
any two given ΓA-tree terms, or two ΓA-context terms, are ≡A-equivalent
can be decided by computing their respective R-normal forms.

5 Syntactic Γ-algebras

The basic properties of Wilke’s [33] syntactic tree algebra congruences and
syntactic tree algebras of binary tree languages can be obtained conveniently
by considering more generally subsets of arbitrary Γ-algebras. In [25] we
studied these notions for subsets of general many-sorted algebras. Two kinds
of subsets were considered, the sorted subsets that have of a component of
each sort, and the “pure” subsets consisting of elements of one given sort.
Since we eventually apply these notions just to binary tree languages, we will
focus here on pure subsets. The general theory will be used here by letting
the set of sorts be S = {label, tree, context} and the ranked alphabet be
Γ = {ι, κ, λ, ρ, η, σ} as above. In the following section we will then recover
Wilke’s notions by considering subsets of the free tree algebras FTA(A).

A sorted subset of an S-sorted set M is a triple 〈Ll, Lt, Lc〉 such that
Ll ⊆ Ml, Lt ⊆ Mt and Lc ⊆ Mc. The inclusion relation and the basic set
operations are defined for sorted subsets by the natural sortwise conditions.
A subset of sort i ∈ S of M is any subset of Mi. With a subset T ⊆ Mi of
sort i we associate the sorted subset 〈T 〉 = 〈Tl, Tt, Tc〉 such that Ti = T and
Tj = ∅ for j ∈ S, j 6= i. By identifying T with 〈T 〉, we may treat T as a
special sorted subset.

Let M = (M,Γ) be a Γ-algebra. For any i, j ∈ S, an elementary ij-
translation is any mapping Mi → Mj obtained from one of the fundamental
operations of sort j ofM by fixing the values of all arguments save one that
is of sort i. Let ETr(M, i, j) denote the set of all elementary ij-translations.
Thus, for example, ETr(M, l, t) = {ιM(ξl)} ∪ {κM(ξl, u, v) | u, v ∈ Mt},
where ξl is a variable of sort label. The sets Tr(M, i, j) of ij-translations
(i, j ∈ S) are defined inductively by the following:

(1) ETr(M, i, j) ⊆ Tr(M, i, j) for all i, j ∈ S;

(2) for each i ∈ S, the identity mapping 1i : Mi → Mi, u 7→ u, is in
Tr(M, i, i);

(3) if α(ξi) ∈ Tr(M, i, j) and β(ξj) ∈ Tr(M, j,k) for some i, j,k ∈ S, then
β(α(ξi)) ∈ Tr(M, i,k).
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Let θ = 〈θl, θt, θc〉 be a sorted equivalence on M , i.e., θl, θt and θc are
equivalences on Ml, Mt and Mc, respectively. Then θ is a congruence on
M = (M,Γ) if it is invariant with respect to the operations ofM. For exam-
ple, for the κ-operation this means that for any a, a′ ∈Ml and s, t, s′, t′ ∈Mt,
if a θl a

′, s θt s
′ and t θt t

′, then κM(a, s, t) θt κ
M(a′, s′, t′). The congruences

of a Γ-algebra M enjoy all the general properties the congruences of usual
one-sorted algebras. In particular, every congruence of M is invariant with
respect to every translation ofM and, on the other hand, any sorted equiv-
alence on M that is invariant with respect to all elementary translations of
M is a congruence.

Definition 5.1 The syntactic congruence ≈T of a subset T ⊆ Mi of some
sort i ∈ S is the sorted equivalence 〈≈T

l ,≈T
t ,≈T

c 〉 on M defined by the con-
dition that for any j ∈ S and u, v ∈Mj,

u ≈T
j v ⇔ (∀α ∈ Tr(M, j, i))(α(u) ∈ T ↔ α(v) ∈ T ).

and its syntactic algebra is M/T :=M/≈T . For an element u ∈ Mj of any
given sort j ∈ S, let u/T denote the congruence class u/≈T

j of u.

The syntactic congruences and syntactic algebras of (sorted or one-sorted)
subsets of Γ-algebras have the same general properties as the corresponding
notions defined for monoids and semigroups [8, 22], for general algebras [1,
27, 28, 29], and for many-sorted algebras [25]. In fact, the following lemmas
are special cases of facts presented in [25].

Recall that an equivalence θ on a set U saturates a subset L of U if L is
the union of some θ-classes. Similarly, a sorted equivalence θ on an S-sorted
set M saturates a subset T ⊆Mi of some sort i ∈ S if θi saturates T .

Lemma 5.2 Let M = (M,Γ) be a Γ-algebra and i ∈ S be a sort. For any
subset T ⊆Mi, ≈T is the greatest congruence on M that saturates T .

Let α ∈ Tr(M, i, j) be an ij-translation of a given Γ-algebraM = (M,Γ)
for some i, j ∈ S. If T ⊆ Mk is a subset of some sort k ∈ S, then let
α−1(T ) := {u ∈ Mi | α(u) ∈ T} if k = j, and α−1(T ) := ∅ otherwise.
Furthermore, the relation ϕ◦ ≈T ◦ϕ−1 appearing in the following lemma
denotes the sorted equivalence

〈ϕl◦ ≈T
l ◦ϕ−1

l , ϕt◦ ≈T
t ◦ϕ−1

t , ϕc◦ ≈T
c◦ϕ−1

c 〉

on M , where for all j ∈ S and u, v ∈Mj, u ϕj◦≈T
j ◦ϕ−1

j v iff uϕj ≈T
j vϕj.

Lemma 5.3 Let M = (M,Γ) and N = (N,Γ) be any Γ-algebras.

(a) ≈T {
= ≈T for any subset T ⊆Mi of any sort i ∈ S.
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(b) ≈T ∩ ≈U ⊆ ≈T∩U and ≈T ∩ ≈U ⊆ ≈T∪U for any subsets T, U ⊆ Mi of
any sort i ∈ S.

(c) If α ∈ Tr(M, i, j) is an ij-translation of M for some i, j ∈ S, then
≈T ⊆ ≈α−1(T ) for every subset T ⊆Mk of any sort k ∈ S.

(d) If ϕ : M → N is a homomorphism, then ϕ◦ ≈T ◦ϕ−1 ⊆ ≈Tϕ−1
i for

every subset T ⊆ Ni of any sort i ∈ S. If ϕ is an epimorphism, then
ϕ◦≈T◦ϕ−1 = ≈Tϕ−1

i holds.

Let us now formulate the corresponding facts for syntactic algebras. For
this we need a couple of definitions.

Definition 5.4 A Γ-algebra N is said to cover a Γ-algebra M if M is an
epimorphic image of a subalgebra of N , in notationM� N .

The covering relation generalizes both

• the subalgebra relation: M ⊆ N iff M is (isomorphic to) a subalgebra
of N , and

• the image relation: M←N iffM is an epimorphic image of N .

Definition 5.5 A Γ-algebra N is said to recognize a subset T of some sort
i ∈ I of M if there exist a homomorphism ϕ : M→ N and subset F ⊆ Ni

of sort i of N such that L = Fϕ−1
i .

Lemma 5.6 Let M and N be Γ-algebras. Then N recognizes a subset T ⊆
Mi of some sort i ∈ S of M iff M/T � N .

The lemma expresses the fact that, in a certain sense, the syntactic alge-
bra is the minimal Γ-algebra recognizing a given subset.

Lemma 5.7 Let M = (M,Γ) and N = (N,Γ) be any Γ-algebras.

(a) M/T { = M/T for any subset T ⊆Mi of any sort i ∈ S.

(b) M/T ∩ U � M/T ×M/U and M/T ∪ U � M/T ×M/U for any
subsets T, U ⊆Mi of any sort i ∈ S.

(c) If α ∈ Tr(M, i, j) is an ij-translation of M for some i, j ∈ S, then
M/α−1(T )←M/T for every subset T ⊆Mk of any sort k ∈ S.

(d) If ϕ : M → N is a homomorphism, then M/Tϕ−1
i � N /T for every

subset T ⊆ Ni and any sort i ∈ S. If ϕ is an epimorphism, then
M/Tϕ−1

i
∼= N/T .
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6 Syntactic tree algebras

We now define the syntactic congruences and syntactic algebras of binary
tree languages by regarding these as subsets of sort tree of free tree algebras
FTA(A), by which the definitions and facts of the previous section get more
explicit forms.

Definition 6.1 LetA be a label alphabet. The syntactic tree algebra congru-
ence, the STA-congruence for short, of an A-tree language T is its syntactic
congruence as a subset of sort tree of the Γ-algebra FTA(A) of A-trees. The
syntactic algebra FTA(A)/≈T is called the syntactic tree algebra of T , and it
is denoted by STA(T ).

Since FTA(A) is a tree algebra, the syntactic tree algebras of A-tree lan-
guages are really tree algebras. To show that the above definition agrees
with Wilke’s [33] definitions, we need a careful analysis of the translations
of the free tree algebras FTA(A). The relevant parts of such an analysis are
presented in the following lemma.

Lemma 6.2 Let A be any label alphabet.

(a) A mapping α : A→ TA is an lt-translation of FTA(A) iff either

(1) there is an A-context p ∈ CA such that α(a) = p(ca) for every
a ∈ A, or

(2) there exist an A-context p ∈ CA and A-trees s, t ∈ TA such that
α(a) = p(fa(s, t)) for every a ∈ A.

(b) A mapping α : TA → TA is a tt-translation of FTA(A) iff there is an
A-context p ∈ CA such that α(t) = p(t) for every t ∈ TA.

(c) A mapping α : C+
A → TA is a ct-translation of FTA(A) iff there exist

an A-context r ∈ C+
A and an A-tree t ∈ TA such that α(p) = r(p(t)) for

every p ∈ C+
A .

Proof. That all translations are expressible as claimed can be proved by in-
duction following the definition of the sets Tr(FTA(A), i, j) (i, j ∈ S) of trans-
lations of FTA(A). The complete proof presented in the Appendix involves
numerous cases and also statements about the missing types of translations.
Here we just illustrate the idea by some example cases.

For an elementary lt-translation α(ξl) = κFTA(A)(ξl, s, t), where s, t ∈ TA,
we have a case of alternative (2) in statement (a) where p = ξ and s, t ∈ TA

are the given A-trees s and t. Indeed, α(a) = κFTA(A)(a, s, t) = fa(s, t) =
ξ(fa(s, t)) for every a ∈ A.
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Consider now an lt-translation β(α(ξl)) obtained as the composition of
an lt-translation α and a tt-translation β, and assume that there exist A-
contexts p, q ∈ CA such that α(a) = p(ca) for every a ∈ A, and β(t) = q(t)
for every t ∈ TA. Then q(p) is an A-context such that q(p)(ca) = β(α(a)) for
every a ∈ A.

Of course, we should also show that all the mappings obtainable by the
constructions mentioned in (a)–(c) really are translations of the appropriate
types. For example, we have to prove that for any p ∈ CA, the mapping
A → TA, a 7→ p(ca) is an lt-translation of FTA(A). This can be done by
induction on the ξ-depth of p. �

By using Lemma 6.2 and the observation that the l- and c-components of
〈T 〉 are empty, we obtain a description of the STA-congruence of an A-tree
language T that is essentially Wilke’s definition.

Proposition 6.3 The STA-congruence ≈T of any A-tree language T ⊆ TA

is obtained as follows. For any a, b ∈ A, s, t ∈ TA and p, q ∈ C+
A ,

(a) a ≈T
l b iff

(1) (∀p ∈ CA)
(
p(ca) ∈ T ↔ p(cb) ∈ T

)
, and

(2) (∀p ∈ CA)(∀s, t ∈ TA)
(
p(fa(s, t)) ∈ T ↔ p(fb(s, t)) ∈ T

)
,

(b) s ≈T
t t iff (∀p ∈ CA)

(
p(s) ∈ T ↔ p(t) ∈ T

)
, and

(c) p ≈T
c q iff (∀r ∈ CA)(∀t ∈ TA)

(
r(p(t)) ∈ T ↔ r(q(t)) ∈ T

)
.

Let us now show how syntactic tree algebras are related to the usual
syntactic algebras [1, 27, 28, 29] and the syntactic semigroups (obtained by
a natural modification from the syntactic monoids of [32]). Then we obtain
new proofs for Wilke’s [33] basic results about syntactic tree algebras and
recognizable binary tree languages. The following definitions are restricted
directly to binary tree languages.

Definition 6.4 Let T ⊆ TA for some label alphabet A.

(a) The syntactic congruence of T is the relation θT on TA defined by

s θT t ⇔ (∀p ∈ CA)(p(s) ∈ T ↔ p(t) ∈ T ) (s, t ∈ TA),

and its syntactic algebra is the ΣA-algebra SA(T ) := TA/θT .

(b) The syntactic semigroup congruence of T is the relation σT on C+
A

defined by the condition that for any p, q ∈ C+
A ,

p σT q ⇔ (∀t ∈ TA)(∀r ∈ CA)(r(p(t)) ∈ T ↔ r(q(t)) ∈ T ),

and the syntactic semigroup of T is SS(T ) := C+
A/σT , where C+

A is
regarded as a semigroup with respect to the product p · q = q(p).
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The usual definition of a recognizable subset of an algebra [20] can be
applied to a binary tree language T ⊆ TA either by regarding T as a subset
of the ΣA-algebra TΣA = (TA,Σ

A) or as a subset of sort tree of the tree
algebra FTA(A) = (〈A, TA, C

+
A 〉,Γ). However, as shown by Wilke [33], the

two definitions are equivalent. We choose the first alternative since it is
immediately clear that it means recognizability by a finite tree recognizer
(cf. [7, 20, 31, 13, 14], for example).

Definition 6.5 Let A be a label alphabet. An A-tree language T ⊆ TA

is said to be recognizable, or regular, if there exist a finite ΣA-algebra D
and a subset F of D such that T = Fϕ−1

D . Let RecA denote the set of all
recognizable A-tree languages.

The above definition can also be expressed by saying that T ∈ RecA iff T
is saturated by a congruence on TA of finite index. The following proposition
includes the contents of Wilke’s [33] Propositions 2 and 3.

Proposition 6.6 For any binary tree language T ⊆ TA over any label al-
phabet A, the following conditions are equivalent:

(1) T ∈ RecA;

(2) SA(T ) is a finite ΣA-algebra;

(3) SS(T ) is a finite semigroup;

(4) STA(T ) is a finite tree algebra;

(5) T is recognized by a finite tree algebra.

Proof. That (1)–(3) are equivalent for tree languages quite generally is well
known (cf. [13, 14, 28, 30, 32], for example).

Proposition 6.3 shows that θT = ≈T
t and σT = ≈T

c , and hence (4) implies
(1)–(3). The equivalence of (4) and (5) follows from Lemma 5.6.

That (2) implies (4) follows from the fact that the syntactic congruence
θT determines completely the syntactic semigroup congruence σT . Indeed,
by comparing the definitions of the two relations, it is easy to see that for
any p, q ∈ C+

A , p σT q holds iff p(t) θT q(t) for every t ∈ TA. This means, in
particular, that if SA(T ) is finite, then so is SS(T ), and hence also STA(T )
is finite as its l-component is always finite. �

The next two lemmas, needed in the variety theory, are also well-known
in various other forms, and all of them can be derived from the general many-
sorted theory of [25]. Here Lemma 6.7 follows from Lemma 5.7 when this is
applied to free tree algebras, and Lemma 6.8 follows from Proposition 6.3(b).

Since the tt-translations of a free tree algebra FTA(A) are defined by
A-contexts, we define p−1(T ) := {t ∈ TA | p(t) ∈ T} for any binary tree
language T ⊆ TA and any A-context p ∈ CA.
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Lemma 6.7 Let A and B be label alphabets. For any A-tree languages
T, U ⊆ TA,

(a) STA(T {) = STA(T ),

(b) STA(T ∩ U), STA(T ∪ U) � STA(T )× STA(U),

(c) STA(p−1(T ))← STA(T ) for every p ∈ CA, and

(d) if ϕ : FTA(B) → FTA(A) is a homomorphism of tree algebras, then
STA(Tϕ−1

t ) � STA(T ).

Lemma 6.8 Let T ⊆ TA for some label alphabet A.

(a) T ∈ RecA iff the set {p−1(T ) | p ∈ CA} is finite.

(b) The ≈T -class t/T of any A-tree t ∈ TA can be given as⋂
{p−1(T ) | p ∈ CA, p(t) ∈ T} \

⋃
{p−1(T ) | p ∈ CA, p(t) /∈ T}.

7 Varieties of binary tree languages

In this section we introduce varieties of binary tree languages. Although the
general many-sorted theory of [25] yielded all the basic properties of syntactic
tree algebras, the variety theorems of [25] are not directly applicable here.
Firstly, the free algebras FTA(A) are always generated by sorted sets of the
special form 〈A, ∅, ∅〉, not by arbitrary finite sorted sets. Secondly, we are
now concerned just with subsets of sort tree while the varieties in [25] consist
either of many-sorted sets or one-sorted sets of all possible sorts. In fact, the
correspondence one could expect between varieties of binary tree languages
and varieties of finite tree algebras fails to hold. The modifications necessary
for a true variety theorem are introduced in the following section.

A family of recognizable binary tree languages is a mapping V that assigns
to each label alphabet A a set V(A) ⊆ RecA of regular A-tree languages.
We write V = {V(A)} with the understanding that A ranges over all label
alphabets. The inclusion relation and various operations on such families are
defined in the natural way: if U = {U(A)} and V = {V(A)} are families of
recognizable binary tree languages, then

• U ⊆ V iff U(A) ⊆ V(A) for every label alphabet A,

• U ∩ V is the family W = {W(A)} such that W(A) = U(A) ∩ V(A) for
every label alphabet A, etc.

Definition 7.1 A variety of binary tree languages, a VBTL for short, is a
family of recognizable binary tree languages V = {V(A)} such that for all
label alphabets A and B,
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(1) V(A) 6= ∅,

(2) if T, U ∈ V(A), then T {, T ∩ U ∈ V(A),

(3) if T ∈ V(A), then p−1(T ) ∈ V(A) for every p ∈ CA, and

(4) if ϕ : FTA(A) → FTA(B) is a homomorphism, then Tϕ−1
t ∈ V(A) for

every T ∈ V(B).

Let VBTL denote the class of all VBTLs.
A variety of finite tree algebras, a VFTA for short, is a nonempty class of

finite tree algebras closed under subalgebras, homomorphic images and finite
direct products. Let VFTA denote the class of all VFTAs.

In terms of the usual class operators S and H and the operator Pf that
forms the class of all direct products with finitely many factors from a given
class (cf. [5] and [2], for example), we can define a VFTA as a class K of
finite tree algebras such that S(K), H(K), Pf(K) ⊆ K.

It is clear that (VBTL,⊆) and (VFTA,⊆) are complete lattices. There-
fore there is for each family of recognizable binary tree languages V a least
VBTL containing V , the VBTL generated by V . Similarly, for any class K of
finite tree algebras, the VFTA generated by K is the least VFTA containing
K as a subclass.

The following fact, easy to prove and well-known from other similar situ-
ations, is frequently needed. Note that the value n = 0 yields the trivial tree
algebras.

Lemma 7.2 For any class K of finite tree algebras, the VFTA generated by
K consists of the tree algebras M such that M�M1 × · · · ×Mn for some
n ≥ 0 and M1, . . . ,Mn ∈ K.

Following the general pattern of various variety theorems we define two
maps that connect the classes VBTL and VFTA.

Definition 7.3 For any family of recognizable binary tree languages V =
{V(A)}, let Va be the VFTA generated by the class of all syntactic tree
algebras STA(T ) where T ∈ V(A) for some label alphabet A.

For any class K of finite tree algebras, Kt is the family of recognizable
binary tree languages such that Kt(A) = {T ⊆ TA | STA(T ) ∈ K} for each
label alphabet A.

In the above definition, and in other similar situations, we tacitly assume
that K is an abstract class of algebras, i.e., it contains every algebra isomor-
phic to any of its members. The following proposition shows how close to a
variety theorem, that would establish an isomorphism between (VBTL,⊆)
and (VFTA,⊆), we get with the above definitions.
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Proposition 7.4 Let U and V be families of recognizable binary tree lan-
guages, and let K and L be classes of finite tree algebras.

(a) If U ⊆ V, then Ua ⊆ Va.

(b) If K ⊆ L, then Kt ⊆ Lt.

(c) If V ∈ VBTL, then Va ∈ VFTA.

(d) If K ∈ VFTA, then Kt ∈ VBTL.

(e) If V ∈ VBTL, then Vat = V.

(f) If K ∈ VFTA, then Kta ⊆ K but the inclusion may be proper.

Proof. Here we show just that the inclusion in (f) may be proper; the rest
can be found in the proof of Proposition 8.7 below.

Let us consider the Γ-algebra M = (〈{a, b}, {t}, {p}〉,Γ), where the
operations are defined in the only possible way, i.e., ιM(a) = ιM(b) =
κM(a, t, t) = κM(b, t, t) = ηM(p, t) = t and λM(a, t) = λM(b, t) = ρM(a, t) =
ρM(b, t) = σM(p, p) = p. Since the t- and c-components are singletons, it
is clear that M satisfies the identities TA and is therefore a tree algebra.
Let K be the VFTA generated byM. The t-component of every member of
K is also a singleton, and therefore Kt(A) = {∅, TA} for every label alpha-
bet A. This means that Kta is the class of trivial tree algebras and hence
M∈ K \Kta. �

8 Reduced tree algebras and a variety theo-

rem

There are natural reasons why a complete correspondence between the classes
VBTL and VFTA was not obtained. Firstly, since the algebras FTA(A)
are generated by their l-components, so are the syntactic tree algebras of all
binary tree languages. In fact, Wilke [33] anticipated a variety theorem that
would involve varieties of such l-generated finite tree algebras. However, that
something more is required, is indicated by the counterexample used in the
proof of Proposition 7.4; the tree algebraM is l-generated. It turns out that
we have to focus on tree algebras that do not have pairs of elements of sort
label or context that are in a sense equivalent.

Definition 8.1 For any tree algebra M = (M,Γ), let Ml denote the sub-
algebra of M generated by 〈Ml〉 = 〈Ml, ∅, ∅〉. If Ml = M, then M is said
to be l-generated. An l-generated tree algebra M = (M,Γ) is reduced if it
satisfies the following two additional conditions:

20



(1) For any a, b ∈Ml, if ιM(a) = ιM(b) and κM(a, s, t) = κM(b, s, t) for all
s, t ∈Mt, then a = b.

(2) For any p, q ∈Mc, if ηM(p, t) = ηM(q, t) for every t ∈Mt, then p = q.

Any tree algebraM = (M,Γ) can be reduced as follows. LetMl = N =
(N,Γ), and let θM be the sorted relation on N such that

(1) for any a, b ∈ Nl, a θ
M
l b iff

ιN (a) = ιN (b) & (∀s, t ∈ Nt)(κ
N (a, s, t) = κN (b, s, t)),

(2) for any s, t ∈ Nt, s θ
M
t t iff s = t, and

(3) for any p, q ∈ Nc, p θ
M
c q iff (∀t ∈ Nt)(η

N (p, t) = ηN (q, t)).

It is easy to see that θM is a congruence on N , and let Mr denote the
quotient algebra N/θM.

Lemma 8.2 For any tree algebraM, the tree algebraMr, as defined above,
is reduced. If M is reduced, then Mr ∼=M.

Proof. Let us write N = Ml and θ = θM. Since N is l-generated, so is
Mr = N/θ. Assume that for some a, b ∈ Nl,

(A) ιM
r
(a/θl) = ιM

r
(b/θl), and

(B) (∀s, t ∈ Nt)(κ
Mr

(a/θl, s/θt, t/θt) = κM
r
(b/θl, s/θt, t/θt)).

Condition (A) is equivalent to ιM(a)/θt = ιM(b)/θt, and hence ιM(a) =
ιM(b) by the definition of θt. Similarly, (∀s, t ∈ Nt)(κ

M(a, s, t) = κM(b, s, t))
follows from (B). Together (A) and (B) imply a/θl = b/θl by the definition of
θl. This means thatMr satisfies (1) of Definition 8.1. Condition (2) follows
similarly from the fact that

(∀t ∈ Nt)(η
Mr

(p/θc, t/θt) = ηM
r

(q/θc, t/θt)) ⇒ p/θc = q/θc,

for all p, q ∈ Nc, and henceMr is reduced.
IfM is reduced, thenMl =M, and each component of θM is the identity

relation on the respective set. Hence,Mr =M/θM ∼=M. �

Lemma 8.3 For any tree algebrasM = (M,Γ) and N = (N,Γ), ifM� N ,
then Mr � N r.

Proof. The covering relation is transitive as M � N iff M ∈ HS({N}),
and the well-known properties of the class operators S and H by which
HSHS(K) = HS(K) for any class K of algebras (cf. [5], for example).
Therefore it suffices to prove the following special cases of the lemma:
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(a) ifM⊆ N , thenMr � N r;

(b) ifM←N , thenMr � N r.

If M ⊆ N , then also Ml ⊆ N l, and therefore we may assume in (a) that
M and N are l-generated. Let µ := θM and let ν := θN ∩ (M ×M) be the
restriction of θN to M . ThenM/ν ⊆ N r, and therefore it is enough to show
that ν ⊆ µ because thenMr =M/µ←M/ν.

For any a, b ∈Ml,

a νl b ⇒ ιN (a) = ιN (b) & (∀s, t ∈ Nt)(κ
N (a, s, t) = κN (b, s, t))

⇒ ιM(a) = ιM(b) & (∀s, t ∈Mt)(κ
M(a, s, t) = κM(b, s, t))

⇒ a µl b,

and hence νl ⊆ µl. It is obvious that νt = µt and the inclusion νc ⊆ µc is
verified similarly as νl ⊆ µl. Hence ν ⊆ µ.

To prove (b), let ϕ : N → M be an epimorphism. Since Nlϕ = Ml, it
is clear that the restriction of ϕ to N l is an epimorphism from N l ontoMl.
We may therefore again assume that M and N themselves are l-generated.
Let µ := θM and ν := θN . We show now that the mapping ψ : N/ν → Mµ
defined by

ψl : a/νl 7→ aϕl/µl, ψt : t/νt 7→ tϕt/µt, ψc : p/νc 7→ pϕc/µc

(a ∈ Nl, t ∈ Nt, p ∈ Nc) is an epimorphism from N r ontoMr.
First we note that ψ is well-defined. For example, for any a, b ∈ Nl,

a/νl = b/νl ⇒

ιN (a) = ιN (b) & (∀s, t ∈ Nt)(κ
N (a, s, t) = κN (b, s, t))⇒

ιN (a)ϕt = ιN (b)ϕt & (∀s, t ∈ Nt)(κ
N (a, s, t)ϕt = κN (b, s, t)ϕt)⇒

ιM(aϕl) = ιM(bϕl) & (∀s, t ∈ Nt)(κ
M(aϕl, sϕt, tϕt) =

κM(bϕl, sϕt, tϕt))⇒
aϕl/µl = bϕl/µl,

where the last equality depends on the assumption that ϕ is surjective. Simi-
larly, s/νt = t/νt implies sϕt/µt = tϕt/µt for any s, t ∈ Nt, and p/νc = q/νc
implies pϕc/µc = qϕc/µc for any p, q ∈ Nc.

It is clear that ψ is surjective. Finally, by routine computations it can be
verified that ψ is a homomorphism. For example,

ιN/ν(a/νl)ψt = (ιN (a)/νt)ψt = ιN (a)ϕt/µt = ιM(aϕl)/µt

= ιM/µ(aϕl/µl) = ιM/µ((a/νl)ψl).

for every a ∈ Nl. �
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The following proposition summarizes the main properties of Mr and
shows that it is, up to isomorphism, the greatest reduced tree algebra covered
byM.

Proposition 8.4 For any tree algebraM,Mr is a reduced tree algebra such
that Mr � M. Moreover, if N � M for a reduced tree algebra N , then
N �Mr.

Proof. We know already that Mr is reduced and Mr � M follows directly
from the definition. If N is a reduced tree algebra such that N � M, then
N ∼= N r �Mr by Lemmas 8.2 and 8.3. �

Let us now note a couple of important facts about reduced tree algebras
and syntactic tree algebras.

Lemma 8.5 The syntactic tree algebra of any binary tree language is re-
duced. On the other hand, for any finite reduced tree algebra M, there
exist a label alphabet A and regular A-tree languages T1, . . . , Tn ⊆ TA, for
some n ≥ 1, such that STA(Tj) � M for every j = 1, . . . , n, and M ⊆
STA(T1)× · · · × STA(Tn).

Proof. As a quotient algebra of FTA(A), the syntactic tree algebra STA(T )
of a binary tree language T ⊆ TA is naturally l-generated. That STA(T )
satisfies conditions (1) and (2) of Definition 8.1 can be verified by using
Proposition 6.3.

To prove the second claim of the proposition, take a label alphabet A
such that |A| ≥ |Ml|. Since M is l-generated, there is an epimorphism
ϕ : FTA(A) → M. Assume that Mt = {t1, . . . , tn} for some n ≥ 1, and let
Tj := tjϕ

−1 for each j = 1, . . . , n. By using Lemma 5.7(d) we obtain for
every j = 1, . . . , n,

STA(Tj) = FTA(A)/Tj
∼= M/{tj} � M.

To prove that M ⊆ STA(T1) × · · · × STA(Tn), it suffices to prove that M
is isomorphic to a subalgebra of M/{t1} × · · · × M/{tn}. To do this, we
consider the mapping

ψ : M →M/{t1} × · · · ×M/{tn}

that maps each element u = 〈ul, ut, uc〉 ∈M to

〈(ul/{t1}, . . . , ul/{tn}), (ut/{t1}, . . . , ut/{tn}), (uc/{t1}, . . . , uc/{tn})〉.

It is clear that ψ is a homomorphism from M to M/{t1} × · · · ×M/{tn}.
Hence, it remains to be shown that ψ is injective.
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If aψl = bψl for some a, b ∈ Ml, then a ≈{tj}l b for every j = 1, . . . , n.

In particular, a ≈{ι
M(a)}

l b which implies that ιM(a) = ιM(b). Similarly,

a ≈{κ
M(a,s,t)}

l b implies κM(a, s, t) = κM(b, s, t), for all s, t ∈ Mt. Since M
is reduced, this means that a = b.

If sψt = tψt for some s, t ∈Mt, then s ≈{s} t yields s = t.

Finally, if pψc = qψc for some p, q ∈ Mc, then p ≈{η
M(p,t)}

c q implies
ηM(p, t) = ηM(q, t) for every t ∈ Mt. Since M is reduced, this means that
p = q.

Hence we have shown that ψ : M → M/{t1} × · · · × M/{tn} is a
monomorphism. �

Definition 8.6 A variety of finite reduced tree algebras, an rVFTA for short,
is a nonempty class of finite reduced tree algebras R such that N ∈ R
whenever N is a reduced tree algebra and N � M1 × · · · × Mn for some
n ≥ 1 andM1, . . . ,Mn ∈ R. Let rVFTA denote the class of all rVFTAs.

An rVFTA contains, in particular, all reduced subalgebras and all reduced
images of its members. Since the intersection of any collection of rVFTAs
is also an rVFTA, we may speak about the rVFTA generated by any given
class of finite reduced tree algebras.

We shall now establish an isomorphism between the complete lattices
(rVFTA,⊆) and (VBTL,⊆) thus obtaining the desired variety theorem.
The mapping R 7→ Rt is defined as above but its application is restricted to
classes of finite reduced tree algebras. The mapping V 7→ Va is modified as
follows: if V = {V(A)} is any family of recognizable binary tree languages,
then Va is the rVFTA generated by the class of all syntactic tree algebras
STA(T ) where T ∈ V(A) for some A.

Proposition 8.7 (The Variety Theorem) Let U and V be families of recog-
nizable binary tree languages, and let P and R be classes of finite reduced
tree algebras.

(a) If U ⊆ V, then Ua ⊆ Va.

(b) If P ⊆ R, then Pt ⊆ Rt.

(c) If V ∈ VBTL, then Va ∈ rVFTA.

(d) If R ∈ rVFTA, then Rt ∈ VBTL.

(e) If V ∈ VBTL, then Vat = V.

(f) If R ∈ rVFTA, then Rta = R.
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Proof. Assertions (a) and (b) are completely obvious, (c) follows directly from
the definition of Va, and (d) follows from Lemma 6.7.

As to (e), the inclusion V ⊆ Vat is also obvious, and the less obvious
converse inclusion can be shown by adapting suitably Eilenberg’s [8] original
proof similarly as, for example, in [28] (Proposition 7.3) or in [25] (Proposition
6.3) where the corresponding fact is proved in the general many-sorted case.
For completeness and the reader’s convenience we present such a proof for
the current case, too.

Assume that T ∈ Vat for some A. Then STA(T ) ∈ Va implies that
STA(T ) � STA(T1) × · · · × STA(Tn), where Ti ∈ V(Ai) (i = 1, . . . , n) for
some n ≥ 1 and label alphabets A1, . . . , An. For each i = 1, . . . , n, let ϕi

denote the syntactic homomorphism FTA(Ai) → STA(Ti) that maps each
element of FTA(Ai) to its ≈Ti-class. Then there is a homomorphism

β : FTA(A1)× · · · × FTA(An)→ STA(T1)× · · · × STA(Tn)

such that βπi = τ iϕi for each i = 1, . . . , n, where

πi : STA(T1)× · · · × STA(Tn)→ STA(Ti)

and
τ i : FTA(A1)× · · · × FTA(An)→ FTA(Ai)

are the respective projections. By Lemma 5.6 there exist a homomorphism
ϕ : FTA(A) → STA(T1) × · · · × STA(Tn) and a subset H of STA(T1)t ×
· · · × STA(Tn)t such that T = Hϕ−1

t . Since β is an epimorphism, there is a
homomorphism ψ : FTA(A)→ FTA(A1)× · · · × FTA(An) such that ψβ = ϕ.
Because H is finite, T is the union of the finitely many sets uϕ−1

t with
u = (u1, . . . , un) ∈ H. Each such set can be expressed as

uϕ−1
t =

⋂
{ui(ϕtπ

i
t)
−1 | 1 ≤ i ≤ n} =

⋂
{ui(ϕ

i
t)
−1(ψτ i)−1

t | 1 ≤ i ≤ n}.

It follows from Lemma 6.8 that ui(ϕ
i
t)
−1 ∈ V(Ti) for every i = 1, . . . , n, and

hence also T ∈ V(A).
The inclusion Rta ⊆ R in (f) follows from the fact that the syntactic tree

algebras that generate Rta are also in R. Indeed, if T ∈ Rt(A) for some A,
then STA(T ) is in R by the definition of Rt.

It remains to show that also R ⊆ Rta holds for any rVFTA R. Let
us consider an M ∈ R. Since M is a finite reduced tree algebra, there
exist by Lemma 8.5 a label alphabet A and recognizable A-tree languages
T1, . . . , Tn ⊆ TA (n ≥ 1) such that STA(Tj) � M (j = 1, . . . , n), and
M⊆ STA(T1)× · · · × STA(Tn). Then STA(Tj) ∈ R for every j = 1, . . . , n,
and henceM⊆ STA(T1)× · · · × STA(Tn) implies thatM∈ Rta. �

To conclude this section, we shall note that every rVFTA is obtained
as the class of reduced members of a VFTA, but that this fact does not
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establish a bijection between rVFTA and VFTA because a given rVFTA
can be obtained from several VFTAs.

Proposition 8.8 For any VFTA K, the class Kr of all reduced members of
K is an rVFTA. On the other hand, for each rVFTA R, there is a VFTA K
such that Kr = R, but this K is not necessarily unique for a given R.

Proof. It follows easily from the definitions of VFTAs and rVFTAs that Kr ∈
rVFTA for any K ∈ VFTA, and also that if R ∈ rVFTA and K is the
VFTA generated by R, then Kr = R.

For the last assertion, let R be the rVFTA of all trivial tree algebras.
Then R is itself a VFTA such that Rr = R. On the other hand, we have
Kr = R also for the VFTA K of all finite tree algebras M = (M,Γ) such
that |Mt| = 1. �

9 VBTLs and general varieties of tree lan-

guages

The varieties of binary tree languages considered here are in some sense less
general than the varieties of tree languages studied in [28], for example, but
at the same time they are in some respect more general. Less general they
are because they involve binary trees only and in that there are no separate
leaf alphabets. On the other hand, a VBTL is not restricted to one ranked
alphabet but contains tree languages over all alphabets of the form ΣA. In
this respect VBTLs resemble the general varieties of tree languages (GVTL)
of [29] and the similar varieties studied in [18]. We shall show that each
GVTL becomes a VBTL when restricted to the binary ranked alphabets ΣA

considered here. Since many known families of regular tree languages are
indeed GVTLs, this fact yields several natural examples of VBTLs. Such
examples include the families of nilpotent, definite, reverse definite, general-
ized definite, locally testable and non-counting tree languages. For showing
the connection between GVTLs and VBTLs we have to recall the definition
of a GVTL.

Let Σ and Ω be ranked alphabets. A g-morphism from a Σ-algebra D =
(D,Σ) to an Ω-algebra E = (E,Ω) is a pair of mappings α : Σ → Ω and
ϕ : D → E such that

(1) α(f) ∈ Ωm for any f ∈ Σm and m ≥ 0,

(2) cDϕ = α(c)E for every c ∈ Σ0, and

(3) fD(d1, . . . , dm)ϕ = α(f)E(d1ϕ, . . . , dmϕ) for all m > 0, f ∈ Σm and
d1, . . . , dm ∈ D.
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It is easy to see (cf. [29]) that a g-morphism (α, ϕ) : TΣ(X)→ TΩ(Y ) between
term algebras is essentially a relabeling of trees that replaces each label from
Σ with its α-image. That leaves labelled with leaf symbols in X may be
replaced by any ΩY -trees, is of no consequence here because in a VBTL all
leaf alphabets are empty (and not shown at all).

A general variety of tree languages (GVTL) is a family of regular tree
languages V = {V(Σ, X)} such that for all ranked alphabets Σ and Ω, and
all leaf alphabets X and Y ,

(G1) V(Σ, X) 6= ∅,

(G2) if T, U ∈ V(Σ, X), then T {, T ∩ U ∈ V(Σ, X),

(G3) if T ∈ V(Σ, X) and p ∈ CΣ(X), then p−1(T ) ∈ V(Σ, X), and

(G4) if (α, ϕ) : TΣ(X) → TΩ(Y ) is a g-morphism, then Tϕ−1 ∈ V(Σ, X) for
every T ∈ V(Ω, Y ).

If we restrict ourselves to the ranked alphabets ΣA obtained from label
alphabets and assume that the leaf alphabets are always empty, then the
above definition matches exactly the definition of a VBTL except for the last
clauses concerning g-morphisms and homomorphism, respectively. Hence, to
determine the relationship between VBTLs and these restricted GVTLs we
have to describe the g-morphisms between the term algebras TA and the t-
components of homomorphisms between the free tree algebras FTA(A). The
following two lemmas follow directly from the appropriate definitions.

Lemma 9.1 Let A and B be any label alphabets. If (α, ϕ) : TA → TB is a
g-morphism, then

(1) caϕ = α(ca) for every a ∈ A, and

(2) fa(s, t)ϕ = α(fa)(sϕ, tϕ) for any a ∈ A and s, t ∈ TA.

The lemma also shows that the mapping ϕ : TA → TB in a g-morphism
(α, ϕ) : TA → TB is a relabeling fully determined by α : ΣA → ΣB.

Lemma 9.2 Let A and B be label alphabets. If ϕ : FTA(A)→ FTA(B) is a
homomorphism, then

(1) caϕt = caϕl
for every a ∈ A, and

(2) fa(s, t)ϕt = faϕl
(sϕt, tϕt) for all a ∈ A and s, t ∈ TA.
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Hence, homomorphisms between free tree algebras also are just rela-
belings of binary trees. Moreover, it is clear that for any homomorphism
ϕ : FTA(A) → FTA(B) there is a g-morphism (α, ψ) : TA → TB, such that
tϕt = tψ for every t ∈ TA; we just define α by setting α(ca) = caϕl

and
α(fa) = faϕl

for every a ∈ A, and this is consistent with the idea that ca and
fa actually represent the same label a. This means that (G4) in the above
definition of a GVTL implies the corresponding condition in the definition
of a VBTL. The following fact is now obvious.

Proposition 9.3 For any GVTL V = {V(Σ, X)}, the family of recognizable
binary tree languages Vb = {Vb(A)}, where Vb(A) = V(ΣA, ∅) for each label
alphabet A, is a VBTL.

The relabelings defined by homomorphisms between free tree algebras are
somewhat less general than the g-morphisms of Lemma 9.1 because of the
bindings between the pairs ca, fa (a ∈ A): if ca maps to cb, fa has to map
to fb, and conversely. This means that (G4) is strictly stronger than clause
(4) in Definition 7.1, even when restricted to our binary tree languages, and
therefore it is conceivable that not every VBTL is obtained as a restriction
of a GVTL. That this is indeed the case, is shown by the following example.

Example 9.4 For each label alphabet A, let V(A) be the set of all regular
A-tree languages T ⊆ TA such that fa(ca, t) ≈T

t t for all a ∈ A and t ∈ TA.
It is easy to verify that V = {V(A)} is a VBTL. Assume that V = U b for
some GVTL U = {U(Σ, X)}. Let A = {a, b} and define the A-contexts
pa = fa(ca, ξ) and pb = fb(cb, ξ). Let T be the least A-tree language such
that ca ∈ T and pa(t), pb(t) ∈ T for every t ∈ T . Then T ∈ V = U(ΣA, ∅).
Consider the g-morphism (α, ϕ) : TA → TB defined by the assignment

α : TΣA → TΣA , ca 7→ ca, cb 7→ cb, fa 7→ fb, fb 7→ fa,

and the A-tree t = fa(ca, ca). Now t ∈ Tϕ−1 but pa(t) /∈ Tϕ−1 because
tϕ = fb(ca, ca) = pb(ca) ∈ T while pa(t)ϕ = fb(ca, fb(ca, ca)) /∈ T . Hence,
Tϕ−1 /∈ U(ΣA, ∅), a contradiction, and we have shown that V = U b for no
GVTL U .

Whether there are more natural examples of varieties of binary tree lan-
guages that cannot be obtained from a GVTL remains to be seen.

The relationship between the two theories can be illuminated also by
considering the corresponding syntactic algebras. First we show how the
syntactic tree algebra of a binary tree language can be obtained from its
syntactic algebra.

The set Tr+(D) of (non-unit) translations of a Σ-algebra D = (D,Σ) is
the least set of unary operations on D that (1) contains every elementary
translation

D → D, x 7→ fD(d1, . . . , di−1, x, di+1, . . . , dm) (x ∈ D),
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where m > 0, f ∈ Σm, 1 ≤ i ≤ m and d1, . . . , di−1, di+1, . . . , dm ∈ D are
given, and (2) is closed under composition. Note that Tr+(D) does not
necessarily contain the identity map of D.

Definition 9.5 Let A be a label alphabet and D = (D,ΣA) be any ΣA-
algebra. Let δD be the equivalence on A defined by

a δD b ⇔ cDa = cDb & fDa = fDb (a, b ∈ A).

Now the Γ-algebra D• = (〈A/δD, D,Tr+(D)〉,Γ) is defined by setting for all
a ∈ A, d, e ∈ D and p, q ∈ Tr+(D),

(1) ιD
•
(a/δD) = cDa , (2) κD

•
(a/δD, d, e) = fDa (d, e),

(3) λD
•
(a/δD, d) = fDa (ξ, d), (4) ρD

•
(a/δD, d) = fDa (d, ξ),

(5) ηD
•
(p, d) = p(d), and (6) σD

•
(p, q) = p(q).

The operations of D• are well-defined by the definition of δD. Moreover,
the following holds.

Lemma 9.6 For any label alphabet A and any ΣA-algebra D = (D,ΣA), the
Γ-algebra D• is a tree algebra. Furthermore, if D is generated by the empty
set, then D• is reduced.

Proof. It is easy to verify that D• satisfies the identities TA. Suppose D is
generated by ∅. To see that D• is l-generated, we apply Definition 9.5:

(a) A/δD generates all of D by (1) and (2), and

(b) all elementary translations of D• are obtained from A/δD and D by (3)
and (4), and all of their compositions are obtained by (6).

That D• satisfies condition (1) of Definition 8.1 follows from the definition
of δD, and condition (2) follows from the definition of ηD

•
. �

Proposition 9.7 SA(T )• ∼= STA(T ) for any binary tree language T .

Proof. Assume that T ⊆ TA for some leaf alphabet A. Let us compare

SA(T )• = (〈A/δSA(T ), TA/θT ,Tr+(SA(T ))〉,Γ)

with
STA(T ) = FTA(A)/≈T = (〈A/≈T

l , TA/≈T
t , C

+
A/≈

T
c 〉,Γ).

First of all, we may replace Tr+(SA(T )) with C+
A/σT since by Lemma 6.2,

for every α ∈ Tr+(SA(T )), there is a p ∈ C+
A such that α(t/θT ) = p(t)/θT
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for every t ∈ TA, and if p σT q for some p, q ∈ C+
A , then p(t)/θT = q(t)/θT for

every t ∈ TA.
In the proof of Proposition 6.6 we already noted that θT =≈T

t and σT =
≈T

c . That also δSA(T ) = ≈T
l holds, follows from the definitions of δSA(T ) and

SA(T ) by repeated use of Proposition 6.3: for any a, b ∈ A,

a δSA(T ) b ⇔ c
SA(T )
a = c

SA(T )
b & f

SA(T )
a = f

SA(T )
b

⇔ ca ≈T
t cb & (∀s, t ∈ TA)(fa(s, t) ≈T

t fb(s, t))

⇔ a ≈T
l b.

To show that the sorted identity map defines an isomorphism between the
tree algebras SA(T )• and STA(T ), we have to verify that the operations of
the two Γ-algebras are the same. This can be done by straightforward, though
somewhat tedious, computations directly based on the relevant definitions.
As examples, we consider the κ- and λ-operations.

For any a ∈ A and s, t ∈ TA,

κSA(T )•(a/δSA(T ), s/θT , t/θT ) = f
SA(T )
a (s/θT , t/θT ) = fTA

a (s, t)/θT

= fa(s, t)/θT = fa(s, t)/≈T
t

= κFTA(A)(a, s, t)/≈T
t

= κSTA(T )(a/≈T
l , s/≈T

t , t/≈T
t ).

When considering the operations involving elements of sort context, we
identify each translation TA/θT → TA/θT , t/θT 7→ p(t)/θT with the ≈T

c -class
of any A-context p ∈ CA that defines it. For example, λSA(T )• = λSTA is then
seen as follows. For any a ∈ A and s, t ∈ TA,

λSA(T )•(a/δSA(T ), t/θT )(s/θT ) = f
SA(T )
a (ξ, t/θT )(s/θT )

= f
SA(T )
a (s/θT , t/θT ) = fa(s, t)/θT

= fa(s, t)/≈T
t = λFTA(A)(a, t)(s)/≈T

t

= λSTA(T )(a/≈T
l , t/≈T

t )(s/≈T
t ).

�

Corollary 9.8 Let A be any label alphabet. For any A-tree languages T and
U , if SA(T ) ∼= SA(U), then STA(T ) ∼= STA(U).

Although the syntactic tree algebra of any binary tree language is deter-
mined by its ordinary syntactic algebra, there is a subtle point to be observed
that explains why not every BVTL is obtained from a GVTL.
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In the theory of GVTLs the syntactic invariant used to characterize a
tree language T ⊆ TΣ(X) is its reduced syntactic algebra RA(T ) (cf. [29]).
This is obtained from SA(T ) by merging equivalent symbols in ΣA similarly
as we merged label symbols when Mr was constructed from a tree algebra
M. However, in the case of a binary tree language T ⊆ TA, the construction
of RA(T ) may merge two symbols ca and cb without merging fa and fb, or
conversely, and in such a case a and b are not merged in STA(T ).

Example 9.9 Let us consider the A-tree language T = {ca} for A = {a, b}.
Clearly, TA/θT = {T, T {}, and

cSA(T )
a = T, c

SA(T )
b = T {, fSA(T )

a (u, v) = f
SA(T )
b (u, v) = T {,

for all u, v ∈ TA/θT . Hence, fa and fb are merged when RA(T ) is constructed
but ca and cb are not. Of course, a and b are not merged in the l-component
of STA(T ).

In the GVTL-theory any two algebras D = (D,Σ) and E = (E,Ω),
possibly over different ranked alphabets, are in effect equivalent if they are
g-isomorphic, D ∼=g E in symbols; a g-isomorphism is a g-morphism in which
both mappings are bijective.

Remark 9.10 The syntactic tree algebras of two binary tree languages may
be non-isomorphic even when their syntactic algebras (or even reduced syn-
tactic algebras) are g-isomorphic. More precisely: there exist a leaf alpha-
bet A and two A-tree languages T and U such that SA(T ) ∼=g SA(U) and
RA(T ) ∼=g RA(U), but STA(T ) � STA(U).

Proof. Let A = {a, b} and let us consider the A-tree languages
T = {ca} ∪ {fa(s, t) | s, t ∈ TA} and U = {ca} ∪ {fb(s, t) | s, t ∈ TA}.

Now TA/θT = {T, T {} and TA/θU = {U,U{}, and we may let RA(T ) =
SA(T ) and RA(U) = SA(U) because in neither case there are any pairs of
equivalent symbols. It is easy to verify that the pair of maps

α : ΣA → ΣA, ca 7→ ca, cb 7→ cb, fa 7→ fb, fb 7→ fa,

ϕ : TA/θT → TA/θU , T 7→ U, T { 7→ U{,

is a g-isomorphism from RA(T ) to RA(U). However, STA(T ) � STA(U)
because STA(T ) satisfies the identity ι(a) ' κ(a, s, t) while STA(U) does
not. Indeed, for any s, t ∈ TA,

ιSTA(T )(d/≈T
l ) = cd/≈T

t = fd(s, t)/≈T
t = κSTA(T )(d/≈T

l , s/≈T
t , t/≈T

t ),

for both d = a and d = b, while

ιSTA(U)(a/≈U
l ) = ca/≈U

t

6= fa(s, t)/≈U
t = κSTA(U)(a/≈U

l , s/≈U
t , t/≈U

t ).
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Remark 9.10 suggests that by using syntactic tree algebras we can make
some distinctions between binary tree languages that cannot be made by
using syntactic algebras or reduced syntactic algebras. However, this depends
again on the bond between a leaf label ca and an interior node label fa created
by the definition of the syntactic tree congruence, and it may be hard to find
any natural examples where the difference could be utilized.

To complete the picture, we introduce a partial converse of the construc-
tion of Definition 9.5.

Definition 9.11 LetM = (M,Γ) be a tree algebra such that Ml is a finite
set. Treating Ml as a label alphabet and denoting it by A, we let M◦ =
(Mt,Σ

A) be the ΣA-algebra such that for any a ∈ A,

(1) cM
◦

a = ιM(a), and

(2) fM
◦

a (u, v) = κM(a, u, v) for all u, v ∈Mt.

As a general example, we note that FTA(A)◦ = TA for any label alphabet A.
Consider now any leaf alphabet A and any A-tree language T , and set

Ā := A/≈T
l and ā := a/≈T

l for every a ∈ A. Since≈T
t = θT and≈T

c = σT , we
may then write STA(T ) = (〈Ā, TA/θT , C

+
A/σT 〉,Γ). By easy computations,

one may verify that for every a ∈ A,

(1) c
STA(T )◦

ā = ca/θT = c
SA(T )
a , and

(2) f
STA(T )◦

ā (s/θT , t/θT ) = fa(s, t)/θT = f
SA(T )
a (s/θT , t/θT ) for all s, t ∈ TA.

Hence, α : A → Ā, a 7→ ā, and the identity map ϕ : t/θT 7→ t/θT of TA/θT ,
define a g-morphism (α, ϕ) : SA(T ) → STA(T )◦. Since α is surjective and
ϕ the identity map, this means that STA(T )◦ is very similar to SA(T ), the
only possible difference being that some identical operations of SA(T ) may
be replaced by one operation in STA(T )◦. On the other hand, RA(T ) is
easily seen to be obtained from STA(T )◦ by possibly further merging some
equally realized operators cā and cb̄, or fā and fb̄, for which a ≈T

l b does not
hold. Any characterization of T in terms of SA(T ), or RA(T ), is therefore
likely to yield a characterization in terms of STA(T ). This is illustrated by
some examples in the following section.

10 Equational descriptions of VBTLs

Although basically the same families of binary tree languages can be charac-
terized in terms of syntactic tree algebras as by syntactic algebras, or reduced
syntactic algebras, in many cases the language of tree algebras appears to
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be very convenient for defining the class of tree algebras corresponding to
a given VBTL. In [33] Wilke gave an effective characterization of frontier
testable, or reverse definite, binary tree languages in terms of syntactic tree
algebras and also presented equational definitions of the corresponding class
of finite tree algebras. We shall present some further examples of equational
descriptions of tree algebras for some well-known families of tree languages.
However, first we consider certain special Γ-terms and identities involving
such terms.

Let p, q, r, p1, p2, . . . , q1, q2, . . . and s, t, s1, s2, . . . , t1, t2, . . . be variables of
sort context and tree, respectively. It is a major advantage of the language
of tree algebras that it admits such variables. For any k ≥ 0, let

• pk · · · p1(t) := η(pk, η(pk−1, . . . , η(p1, t) . . .)), and

• pk · · · p1 := σ(pk, σ(pk−1, . . . , σ(p2, p1) . . .)).

For k = 0, these expressions stand for t and ξ, respectively.
Let ζ be a valuation of the variables in a given tree algebraM = (M,Γ). If

ζ(p1) = p1, . . . , ζ(pk) = pk (∈Mc) and ζ(t) = t (∈Mt), then pk · · · p1(t)
M(ζ)

denotes the value ηM(pk, . . . , η
M(p1, t) . . .) of the term pk · · · p1(t) in M for

the valuation ζ. Similarly, let pk · · · pM1 (ζ) denote σM(pk, . . . , σ
M(p2, p1) . . .).

In terms of these conventions, we can say that an identity
ph · · · p1(s) ≈ qk · · · q1(t)

holds in a tree algebraM, or is satisfied byM, if
ph · · · p1(s)

M(ζ) = qk · · · q1(t)
M(ζ)

for all valuations ζ of the variables inM.
For any label alphabet A, in FTA(A) variables of sort context and vari-

ables of sort tree range over the set C+
A of non-unit A-contexts and and the

set TA of A-trees, respectively. Hence, the following useful facts.

Lemma 10.1 Let A be a label alphabet, t ∈ TA and q ∈ C+
A , and let us

consider any terms ph · · · p1(s) and qk · · · q1, where h ≥ 0 and k ≥ 1. Then

(a) hg(t) ≥ h iff there exists a valuation ζ of the variables in FTA(A) such
that ph · · · p1(s)

FTA(A)(ζ) = t, and

(b) dξ(q) ≥ k iff there exists a valuation ζ of the variables in FTA(A) such

that qk · · · qFTA(A)
1 (ζ) = q.

In other words,

(a’) hg(t) ≥ h iff t = ph(. . . p1(s) . . .) = s ·p1 · . . . ·ph for some p1, . . . , ph ∈ C+
A

and s ∈ TA, and

(b’) dξ(q) ≥ k iff q = qk(. . . q2(q1) . . .) = q1 ·q2 ·. . .·qk for some q1, . . . , qk ∈ C+
A .

Consider any label alphabet A and any ΣA-algebra D = (D,ΣA), and let
ϕD be the unique homomorphism from TA to D. Each A-context p ∈ CA

defines a unary operation pD : D → D as follows:
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(1) ξD : d 7→ d is the identity map 1D : D → D, and

(2) if p = fa(q, s) or p = fa(s, q), for some a ∈ A, q ∈ CA and s ∈ TA, then
for every d ∈ D, pD(d) = fDa (qD(d), sϕD) or pD(d) = fDa (sϕD, q

D(d)),
respectively.

It is clear that each pD is a translation of D, and if ϕD is surjective, then
every translation of D is obtained this way. It is also clear that if p = q(r)
for some q, r ∈ CA, then pD is the composition of qD and rD, that is to say,
pD(d) = qD(rD(d)) for every d ∈ D.

The following lemma results from the above discussion.

Lemma 10.2 Let A be any leaf alphabet and let M = (M,Γ) be a tree
algebra such that Ml = A. Then the following hold for all h, k ≥ 0.

(a) M satisfies ph · · · p1(s) ≈ qk · · · q1(t) iff pM
◦
(u) = qM

◦
(v) holds for all

u, v ∈Mt and all p, q ∈ CA such that dξ(p) ≥ h and dξ(q) ≥ k.

(b) M satisfies pk · · · p1(s) ≈ pk · · · p1(t) iff pM
◦
(u) = pM

◦
(v) holds for all

u ∈Mt and all p ∈ CA such that dξ(p) ≥ k.

(c) M satisfies ph · · · p1 ≈ qk · · · q1 iff pM
◦

= qM
◦

holds for all p, q ∈ CA

such that dξ(p) ≥ h and dξ(q) ≥ k.

Recall that an algebra D (of any kind) is said to ultimately satisfy (cf.
[8]) a sequence of identities u1 ≈ v1, u2 ≈ v2, u3 ≈ v3, . . . if there is an n ≥ 1
such that D satisfies uk ≈ vk for every k ≥ n.

The term function tD : DX → D induced by a term t ∈ TΣ(X) in a given
Σ -algebra D = (D,Σ) is defined as follows. For any assignment α : X → D
of values to the variables,

(1) cD(α) = cD for every c ∈ Σ0,

(2) xD(α) = α(x) for every x ∈ X, and

(3) tD(α) = fD(tD1 (α), . . . , tDm(α)) if t = f(t1, . . . , tm).

As the first example we consider the GVTL Nil = {Nil(Σ, X)} where
for each pair Σ and X, Nil(Σ, X) is the set of all finite ΣX-tree languages
and their complements in TΣ(X). In [12] a finite algebra D = (D,Σ) was
defined to be nilpotent if there is an element d0 ∈ D and a number k > 0
such that for any leaf alphabet X, and any t ∈ TΣ(X) such that hg(t) ≥ k,
tD(α) = d0 for every assignment α : X → D. In other words, if D is viewed
as a deterministic bottom-up tree automaton, it reaches the root of any tree
of height ≥ k in state d0 for any assignment α of initial states to the leaf
symbols. If D is nilpotent, the minimal value of k is called its degree of
nilpotency. In [28] it was noted that for any fixed Σ, the class NilΣ of all
nilpotent Σ-algebras is the variety of finite Σ-algebras that corresponds to
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the family NilΣ = {Nil(Σ, X)}, where Σ is now fixed and X ranges over
all leaf alphabets. This fact is easily extended to a correspondence between
the GVTL Nil and the generalized variety of finite algebras (GVFA; cf. [29],
p. 13) Nil of all nilpotent algebras. This means that for any Σ and X, a
ΣX-tree language T is in Nil(Σ, X) iff SA(T ) ∈ NilΣ, or equivalently, iff
RA(T ) ∈ Nil.

Let A be any leaf alphabet. It is easy to see that a finite ΣA-algebra
D = (D,ΣA) is nilpotent if there exist a k ≥ 0 and an element d0 ∈ D such
that pD(d) = d0 for every d ∈ D whenever p ∈ C+

A is an A-context of height
≥ k. This means by Lemma 10.2(a) that for a finite tree algebraM = (M,Γ)
such that Ml = A, the algebra M◦ = (Mt,Σ

A) (defined in the previous
section) is nilpotent iff M satisfies the identity pk · · · p1(s) ≈ qk · · · q1(t) for
some k ≥ 0. Furthermore, it is clear that the syntactic algebra SA(T ) of any
regular A-tree language T is nilpotent iff STA(T )◦ is nilpotent. By collecting
together the above observations, we obtain the following description of the
VBTL Nilb.

Proposition 10.3 If T is any regular A-tree language for some label al-
phabet A, then T ∈ Nilb(A) iff STA(T ) ultimately satisfies the sequence of
identities

p1(s) ≈ q1(t), p2 · p1(s) ≈ q2 · q1(t), p3 · p2 · p1(s) ≈ q3 · q2 · q1(t), . . . . (N)

A couple of remarks are in order here. One can write for any given label
alphabet A a sequence of ΣA-equations that ultimately defines the class of
nilpotent ΣA-algebras. For example, if A = {a, b}, the class of nilpotent
ΣA-algebras is ultimately defined by a sequence

x1 ≈ x2, fa(x1, x2) ≈ fb(x3, x4), fa(fa(x1, x2), x3) ≈ fa(x4, fa(x5, x6)),

fa(fa(x1, x2), x3) ≈ fa(x4, fb(x5, x6)), . . . ,

that for each k ≥ 0, contains a set of identities defining the class of ΣA-
algebras of degree of nilpotency ≤ k. However, this sequence is more compli-
cated than the sequence (Nil) and then it depends on A. On the other hand,
it has to be noted that a description of a VBTL like the above proposition
does not yield automatically a decision method; we still need some bound
for the degree of nilpotency of a nilpotent algebra in terms of its size, for
example.

As our next example we consider definite tree languages. A tree language
is definite if there is a bound k ≥ 0 such that the membership of a tree in the
language can be decided by looking at its root-segment of height k. Definite
tree languages were first studied by Heuter [15, 16], their variety properties
were noted in [28, 29], and in [9] Ésik describes the corresponding algebras
and study their structure. The following formal definitions are from [15, 16]
as modified in [28].
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Let Σ be any ranked alphabet, X any leaf alphabet and k ≥ 0. For any
ΣX-tree t, let root(t) denote the label of the root of t. The k-root rk(t) of a
ΣX-tree t is now defined as follows:

(1) rk(t) = ε (the empty root segment) for every t ∈ TΣ(X).

(2) r1(t) = root(t) for every t ∈ TΣ(X).

(3) Let k ≥ 2. If hg(t) ≤ k, then rk(t) = t. If hg(t) > k and t =
f(t1, . . . , tm), then rk(t) = f(rk−1(t1), . . . , rk−1(tm)).

A tree language T ⊆ TΣ(X) is k-definite (k ≥ 0) if for all s, t ∈ TΣ(X),
if rk(s) = rk(t), then s ∈ T iff t ∈ T . A tree language is definite if it is
k-definite for some k ≥ 0. Let Defk(Σ, X) and Def(Σ, X) denote the sets of
all k-definite and all definite ΣX-tree languages, respectively. For any k ≥ 0,
Defk := {Defk(Σ, X)} is a GVTL, and so is the union Def := {Def(Σ, X)}
of these families (cf. [29]).

A Σ-algebra D = (D,Σ) is said to be k-definite (k ≥ 0) if for every X and
any s, t ∈ TΣ(X), if rk(s) = rk(t), then sD(α) = tD(α) for every α : X → D.
An algebra is definite if it is k-definite for some k ≥ 0.

In [9] it was shown that a tree language is (k-)definite iff its syntactic alge-
bra is (k-)definite. To turn this fact into an equational tree algebra character-
ization, we need one more observation: for any k ≥ 0, Σ, X and s, t ∈ TΣ(X),
rk(s) = rk(t) holds iff s = pk(. . . p1(s

′) . . .) and t = pk(. . . p1(t
′) . . .) for some

p1, . . . , pk ∈ C+
Σ (X) and s′, t′ ∈ TΣ(X).

By applying the above definitions and facts to the alphabets ΣA and
binary tree languages, we get by Lemma 10.2(b) the following result.

Proposition 10.4 Let T be a regular A-tree language for some label alpha-
bet A. Then T ∈ Def b(A) iff STA(T ) ultimately satisfies the sequence of
identities

p1(s) ≈ p1(t), p2 · p1(s) ≈ p2 · p1(t), p3 · p2 · p1(s) ≈ p3 · p2 · p1(t), . . . . (D)

Again we can note that one could apply the equational descriptions of
definite algebras given by Ésik [9] to obtain, for each A, a sequence that
ultimately defines the class of definite ΣA-algebras, but such a sequence is
more complicated than (D) and it depends on A. As shown by Heuter [15, 16],
and by Ésik [9], it is decidable whether a given finite algebra is definite or
not, but this does not follow from the equational descriptions alone.

As a further, somewhat different, example, we consider the aperiodic tree
languages introduced by Thomas [32]. A ΣX-tree language T is aperiodic,
or non-counting, if there is an n ≥ 0 such that for all p, q ∈ C+

Σ (X) and
t ∈ TΣ(X), t · pn · q ∈ T iff t · pn+1 · q ∈ T . If Ap(Σ, X) denotes the set of all
aperiodic ΣX-tree languages, then Ap := {Ap(Σ, X)} is a GVTL (cf. [29]).
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In [32] it is shown that a tree language T is aperiodic iff its syntactic monoid
SM(T ) is aperiodic, i.e., all of its subgroups are trivial. A semigroup M is
known to be aperiodic iff there exists an n ≥ 0 such that xn+1 = xn for every
x ∈M (cf. [8] or [22], for example).

The c-component C+
A/≈T

c of the syntactic tree algebra of a binary tree
language T ⊆ TA forms with respect to the product p/T · q/T := p · q/T
a semigroup isomorphic to the syntactic semigroup SS(T ), and this differs
from the syntactic monoid SM(T ) only in that it does not necessarily have a
unit element. Hence, T is aperiodic iff C+

A/≈T
c is an aperiodic semigroup. By

Lemma 10.2(c) we may now turn Thomas’ result into the following equational
characterization, where pn stands for the n-fold product p · p · · · p (n ≥ 1).

Proposition 10.5 If T is a regular A-tree language for some label alphabet
A, then T ∈ Apb(A) iff STA(T ) ultimately satisfies the sequence of identities

p2 ≈ p, p3 ≈ p2, p4 ≈ p3, . . . . (A)

11 Concluding remarks

We have developed the theory of tree algebras and tree algebra representa-
tions of binary trees in a systematic algebraic way, and explored the relation-
ships between this formalism and some other approaches to the classification
of regular tree languages. The new results include also a Variety Theorem.
Of course, many questions remain to be studied. For example, one could
try to extend the formalism in such way that the restriction to binary trees
could be lifted. Alternatively, one could borrow some ideas from the tree
algebra theory to other formalisms to increase their expressive power. One
would also like to see further effective characterizations of natural families of
binary tree languages in terms of syntactic tree algebras. However, in view of
our results, it seems that they would, in most cases, be virtually equivalent
to characterizations in terms of ordinary syntactic algebras.
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[9] Z. Ésik, Definite tree automata and their cascade composition, Publ.
Math. Debrecen 48, 3–4 (1996), 243–261.
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Appendix

Here we present proof for the full version of Lemma 6.2. Let us begin by
writing out explicitly the set of elementary translations of the free tree
algebra FTA(A) for a fixed A. For simplicity, we write ETri,j instead of
ETr(FTA(A), i, j) where i, j ∈ S. We also omit FTA(A) as a superscript from
the operations ιFTA(A), κFTA(A), etc. Clearly,

(ll) ETrl,l = ∅;

(lt) ETrl,t = {ι(ξl)} ∪ {κ(ξl, s, t) | s, t ∈ TA};

(lc) ETrl,c = {λ(ξl, t) | t ∈ TA} ∪ {ρ(ξl, t) | t ∈ TA};

(tl) ETrt,l = ∅;

(tt) ETrt,t = {κ(a, t, ξt) | a ∈ A, t ∈ TA}
∪ {κ(a, ξt, t) | a ∈ A, t ∈ TA} ∪ {η(p, ξt) | p ∈ C+

A};

(tc) ETrt,c = {λ(a, ξt) | a ∈ A} ∪ {ρ(a, ξt) | a ∈ A};

(cl) ETrc,l = ∅;

(ct) ETrc,t = {η(ξc, t) | t ∈ TA};

(cc) ETrc,c = {σ(ξc, p) | p ∈ C+
A} ∪ {σ(p, ξc) | p ∈ C+

A};

where ξl, ξt and ξc are variables of sort label, tree and context, respectively.

Recall that for contexts p, q ∈ CA and tree t ∈ TA, the composition of p
and q is denoted by q · p which is a context in CA resulted from p by putting
q in the place of ξ. Similarly, the tree t · p results from p by substituting
the ξ by t. We note that (u · q) · p = u · (q · p) holds for all p, q ∈ CA, and
u ∈ TA ∪CA. Thus we omit the brackets in the expressions like (u · q) · p and
simply write u · q · p.

For any i, j ∈ S let Tri,j denote Tr(FTA(A), i, j). The full form of Lemma
6.2 can be written as follows.

Lemma 6.2

(ll) The only member of Trl,l is the identity function A→ A.

(lt) α : A→ TA belongs to Trl,t iff for some s, t ∈ TA and p ∈ CA, either

α : a 7→ ca · p for every a ∈ A, or

α : a 7→ fa(s, t) · p for every a ∈ A.
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(lc) α : A → C+
A belongs to Trl,c iff for some b ∈ A, s, t ∈ TA and some

p, q ∈ CA, either

α : a 7→ fa(q, t) · p for every a ∈ A, or

α : a 7→ fa(t, q) · p for every a ∈ A, or

α : a 7→ fb(q, ca · r) · p for every a ∈ A, or

α : a 7→ fb(ca · r, q) · p for every a ∈ A, or

α : a 7→ fb(q, fa(s, t) · r) · p for every a ∈ A, or

α : a 7→ fb(fa(s, t) · r, q) · p for every a ∈ A.

(tl) Trt,l = ∅.

(tt) α : TA → TA belongs to Trt,t iff for some p ∈ CA,

α : t 7→ t · p for every t ∈ TA.

(tc) α : TA → C+
A belongs to Trt,c iff for some a ∈ A and p, q, r ∈ CA, either

α : t 7→ fa(q, t · r) · p for every t ∈ TA, or

α : t 7→ fa(t · r, q) · p for every t ∈ TA.

(cl) Trc,l = ∅.

(ct) α : C+
A → TA belongs to Trc,t iff for some q ∈ CA and t ∈ TA,

α : p 7→ t · p · q for every p ∈ CA.

(cc) α : C+
A → C+

A belongs to Trc,c iff for some a ∈ A, t ∈ TA and some
q, r, d ∈ CA, either

α : p 7→ r · p · q for every p ∈ CA, or

α : p 7→ fa(r, t · p · d) · q for every p ∈ CA, or

α : p 7→ fa(t · p · d, r) · q for every p ∈ CA.

Proof. For each pair i, j ∈ S, let T(i, j) denote the set of maps specified in
clauses (ij) of the lemma. It is then enough to show that

(A) ETri,j ⊆ T(i, j) ⊆ Tri,j for all i, j ∈ S,

(B) for any i ∈ S, T(i, i) contains the identity function of sort i, and

(C) the collection {T(i, j)}i,j∈S is closed under composition of mappings.

(A) The claimed inclusions follow from the following observations. We always
assume that a, b ∈ A, s, t, u ∈ TA and p, q, r, d ∈ CA.
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(lt) • ι(a) = ca · ξ, κ(a, s, t) = fa(s, t) · ξ;
• ca · p = η(p, ι(a)), fa(s, t) · p = η(p, κ(a, s, t));

(lc) • λ(a, t) = fa(ξ, t) · ξ, ρ(a, t) = fa(t, ξ) · ξ;
• fa(q, t) · p = σ(p, σ(λ(a, t), q)),

fa(t, q) · p = σ(p, σ(ρ(a, t), q)),

fb(q, ca · r) · p = σ(p, σ(λ(a, η(r, ι(a))), q)),

fb(ca · r, q) · p = σ(p, σ(ρ(a, η(r, ι(a))), q)),

fb(q, fa(s, t) · r) · p = σ(p, σ(λ(a, η(r, κ(a, s, t))), q)),

fb(fa(s, t) · r, q) · p = σ(p, σ(ρ(a, η(r, κ(a, s, t))), q));

(tt) • κ(a, s, t) = t · fa(s, ξ), κ(a, t, s) = t · fa(ξ, s), η(p, t) = t · p;
• t · p = η(p, t);

(tc) • λ(a, t) = fa(ξ, t · ξ) · ξ, ρ(a, t) = fa(t · ξ, ξ) · ξ;
• fa(q, t · r) · p = σ(p, σ(λ(a, η(r, t)), q)),

fa(t · r, q) · p = σ(p, σ(ρ(a, η(r, t)), q));

(ct) • η(p, t) = t · p · ξ;
• t · p · q = η(q, η(p, t));

(cc) • σ(p, q) = q · p · ξ, σ(q, p) = ξ · p · q;
• r · p · q = σ(q, σ(p, r)),

fa(r, t · p · d) · q = σ(q, σ(λ(a, η(d, η(p, t))), r)),

fa(t · p · d, r) · q = σ(q, σ(ρ(a, η(d, η(p, t))), r)).

(B) It is straightforward to see that T(i, i) contains the identity function for
each i ∈ S.
(C) We now show that for each α ∈ T(i, j) and β ∈ T(j,k) (i, j,k ∈ S) their
composition α · β belongs to T(i,k). We always assume that a, b, o ∈ A,
s, t, u ∈ TA and p, q, r, d, e, g, h ∈ CA.

• If α ∈ Trl,l then α is the identity function, thus for any β ∈ T(l,k) we
have α · β = β ∈ T(l,k).

• For α ∈ T(l, t) and β ∈ T(t, t), if β : t 7→ t · p then

if α : a 7→ ca · q then α · β : a 7→ ca · q · p ∈ T(l, t); and

if α : a 7→ fa(s, t) · q then α · β : a 7→ fa(s, t) · q · p ∈ T(l, t).

• For α ∈ T(l, t) and β ∈ T(t, c), first assume α : a 7→ ca · p. Then

if β : t 7→ fb(r, t · d) · q, then α · β : a 7→ fb(r, ca · p · q) · q ∈ T(l, c); and
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if β : t 7→ fb(t · d, r) · q, then α · β : a 7→ fb(ca · p · d, r) · q ∈ T(l, c).

Now, assume α : a 7→ fa(s, t) · p. Then

if β : t 7→ fb(r, t · d) · q, then α ·β : a 7→ fb(r, fa(s, t) · p · d) · q ∈ T(l, c); and

if β : t 7→ fb(t · d, r) · q, then α · β : a 7→ fb(fa(s, t) · p · d, r) · q ∈ T(l, c).

• For α ∈ T(l, c) and β ∈ T(c, t), if β : p 7→ t · p · q then

if α : a 7→ fa(d, s) · r then α · β : a 7→ fa(t · d, s) · r · q ∈ T(l, t);

if α : a 7→ fa(s, d) · r then α · β : a 7→ fa(s, t · d) · r · q ∈ T(l, t);

if α : a 7→ fb(d, ca · e) · r then α · β : a 7→ fb(t · d, ca · e) · r · q ∈ T(l, t);

if α : a 7→ fb(ca · e, d) · r then α · β : a 7→ fb(ca · e, t · d) · r · q ∈ T(l, t);

if α : a 7→ fb(d, fa(s, u)·e)·r then α·β : a 7→ fb(t·d, fa(s, u)·e)·r·q ∈ T(l, t);

if α : a 7→ fb(fa(s, u)·e, d)·r then α·β : a 7→ fb(fa(s, u)·e, t·d)·r·q ∈ T(l, t).

• For α ∈ T(l, c) and β ∈ T(c, c), we distinguish three different cases of β:

(1) if β : p 7→ r · p · q, then

if α : a 7→ fa(e, t) · d then α · β : a 7→ fa(r · e, t) · d · q ∈ T(l, c);

if α : a 7→ fa(t, e) · d then α · β : a 7→ fa(t, r · e) · d · q ∈ T(l, c);

if α : a 7→ fb(e, ca · g) · d then α · β : a 7→ fb(r · e, ca · g) · d · q ∈ T(l, c);

if α : a 7→ fb(ca · g, e) · d then α · β : a 7→ fb(ca · g, r · e) · d · q ∈ T(l, c);

if α : a 7→ fb(e, fa(s, t)·g)·d then α·β : a 7→ fb(r·e, fa(s, t)·g)·d·q ∈ T(l, c);

if α : a 7→ fb(fa(s, t)·g, e)·d then α·β : a 7→ fb(fa(s, t)·g, r·e)·d·q ∈ T(l, c).

(2) if β : p 7→ fb(r, t · p · d) · q, then

if α : a 7→ fa(g, s) · e then α · β : a 7→ fb(r, fa(t · g, s) · e · d) · q ∈ T(l, c);

if α : a 7→ fa(s, g) · e then α · β : a 7→ fb(r, fa(s, t · g) · e · d) · q ∈ T(l, c);

if α : a 7→ fo(g, ca · h) · e then

α ·β : a 7→ fb(r, fo(t ·g, ca ·h) ·e ·d) ·q = fb(r, ca ·fo(t ·g, h) ·e ·d) ·q ∈ T(l, c);

if α : a 7→ fo(ca · h, g) · e then

α ·β : a 7→ fb(r, fo(ca ·h, t ·g) ·e ·d) ·q = fb(r, ca ·fo(h, t ·g) ·e ·d) ·q ∈ T(l, c);

if α : a 7→ fo(g, fa(s, u) · h) · e then

α · β : a 7→ fb(r, fo(t · g, fa(s, u) · h) · e · d) · q =

fb(r, fa(s, u) · fo(t · g, h) · e · d) · q ∈ T(l, c);

if α : a 7→ fo(fa(s, u) · h, g) · e then

α · β : a 7→ fb(r, fo(fa(s, u) · h, t · g) · e · d) · q =

fb(r, fa(s, u) · fo(h, t · g) · e · d) · q ∈ T(l, c).
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(3) if β : p 7→ fb(t · p · d, r) · q, then

if α : a 7→ fa(g, s) · e then α · β : a 7→ fb(fa(t · g, s) · e · d, r) · q ∈ T(l, c);

if α : a 7→ fa(s, g) · e then α · β : a 7→ fb(fa(s, t · g) · e · d, r) · q ∈ T(l, c);

if α : a 7→ fo(g, ca · h) · e then

α ·β : a 7→ fb(fo(t·g, ca ·h)·e·d, r)·q = fb(ca ·fo(t·g, h)·e·d, r)·q ∈ T(l, c);

if α : a 7→ fo(ca · h, g) · e then

α ·β : a 7→ fb(fo(ca ·h, t·g)·e·d, r)·q = fb(ca ·fo(h, t·g)·e·d, r)·q ∈ T(l, c);

if α : a 7→ fo(g, fa(s, u) · h) · e then

α · β : a 7→ fb(fo(t · g, fa(s, u) · h) · e · d, r) · q =

fb(fa(s, u) · fo(t · g, h) · e · d, r) · q ∈ T(l, c);

if α : a 7→ fo(fa(s, u) · h, g) · e then

α · β : a 7→ fb(fo(fa(s, u) · h, t · g) · e · d, r) · q =

fb(fa(s, u) · fo(h, t · g) · e · d, r) · q ∈ T(l, c).

• For α ∈ T(t, t) and β ∈ T(t, t), if α : t 7→ t · p and β : t 7→ t · q, then
α · β : t 7→ t · p · q ∈ T(t, t).

• For α ∈ T(t, t) and β ∈ T(t, c), if α : t 7→ t · p then

if β : t 7→ fa(r, t · d) · q then α · β : t 7→ fa(r, t · d · p) · q ∈ T(t, c); and

if β : t 7→ fa(t · d, r) · q then α · β : t 7→ fa(t · p · d, r) · q ∈ T(t, c).

• For α ∈ T(c, t) and β ∈ T(t, t), if α : p 7→ t · p · q and β : t 7→ t · r, then

α · β : p 7→ t · p · q · r = t · p · (q · r) ∈ T(c, t).

• For α ∈ T(c, t) and β ∈ T(t, c), if α : p 7→ s · p · q then

if β : t 7→ fa(d, t · e) · r then

α · β : p 7→ fa(d, s · p · q · e) · r = fa(d, s · p · (q · e)) · r ∈ T(c, c); and

if β : t 7→ fa(t · e, d) · r then

α · β : p 7→ fa(s · p · q · e, d) · r = fa(s · p · (q · e), d) · r ∈ T(c, c).

• For α ∈ T(c, c) and β ∈ T(c, t), if β : p 7→ t · p · q then

if α : p 7→ d · p · r then α · β : p 7→ t · d · p · r · q = (t · d) · p · (r · q) ∈ T(c, t);

if α : p 7→ fa(d, s · p · e) · r then α ·β : p 7→ fa(t · d, s · p · e) · r ∈ T(c, c); and

if α : p 7→ fa(s · p · e, d) · r then α · β : p 7→ fa(s · p · e, t · d) · r ∈ T(c, c).

• For α ∈ T(c, c) and β ∈ T(c, c), we distinguish three different cases of α:

(1) if α : p 7→ r · p · q, then
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if β : p 7→ e · p · d then α · β : p 7→ (e · r) · p · (q · d) ∈ T(c, c);

if β : p 7→ fa(e, t ·p ·g) ·d then α ·β : p 7→ fa(e, (t ·r) ·p · (q ·g)) ·d ∈ T(c, c);

if β : p 7→ fa(t ·p ·g, e) ·d then α ·β : p 7→ fa((t ·r) ·p · (q ·g), e) ·d ∈ T(c, c).

(2) if α : p 7→ fa(r, t · p · d) · q, then

if β : p 7→ g · p · e then α · β : p 7→ fa(g · r, t · p · d) · q · e ∈ T(c, c);

if β : p 7→ fb(g, s · p · h) · e then

α · β : p 7→ fb(g, fa(s · r, t · p · d) · q · h) · e =

fb(g, t · p · fa(s · r, d) · q · h) · e ∈ T(c, c);

if β : p 7→ fb(s · p · h, g) · e then

α · β : p 7→ fb(fa(s · r, t · p · d) · q · h, g) · e =

fb(t · p · fa(s · r, d) · q · h, g) · e ∈ T(c, c).

(3) if α : p 7→ fa(t · p · d, r) · q, then

if β : p 7→ g · p · e then α · β : p 7→ fa(t · p · d, g · r) · q · e ∈ T(c, c);

if β : p 7→ fb(g, s · p · h) · e then

α · β : p 7→ fb(g, fa(t · p · d, s · r) · q · h) · e =

fb(g, t · p · fa(d, s · r) · q · h) · e ∈ T(c, c);

if β : p 7→ fb(s · p · h, g) · e then

α · β : p 7→ fb(fa(t · p · d, s · r) · q · h, g) · e =

fb(t · p · fa(d, s · r) · q · h, g) · e ∈ T(c, c).

�
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