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Transient faults belong to a wide-spread class of faults typical in control systems. These 
are faults that appear for a short period of time and might reappear later. However, even 
by appearing for a short time, they might cause dangerous system errors. Hence, 
designing mechanisms for tolerating and recovering from transient faults is an acute 
issue, especially in the development of safety-critical control systems. In this paper we 
propose a formal development (based on the B Method) of a software-based 
mechanisms for tolerating transient faults. The mechanism relies on a specific 
architecture of error detection actions called evaluating tests. These tests are executed 
(with different frequencies) on predefined subsets of analyzed data. Our formal model 
allows us to formally express and verify interdependencies between tests as well as to 
define the test scheduling. Application of the proposed approach ensures proper damage 
confinement caused by transient faults. We use our approach in the avionics domain, 
focusing on a formal development of the engine Failure Management System. The 
proposed specification and refinement patterns can be applied in the development of 
control systems in other application domains as well. 
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Software is nowadays a crucial part of many safety-critical applications. To guarantee 
dependability [1] of such systems, we should ensure that software is not only fault-free 
but also is able to cope with faults of other system components. In this paper we focus 
on designing controllers able to withstand transient physical faults of the system 
components. Transient faults are temporal defects within the system [2]. They 
frequently occur in hardware functioning. However, design of mechanisms for 
tolerating transient faults is inherently complex. On the one hand, controlling software 
(further referred to as a controller) should not over-react on an isolated transient fault. 
On the other hand, it should ensure that even the isolated transient faults are not 
propagated further into the system. Moreover, if the fault persists, the controller should 
initiate the appropriate recovery actions. The algorithm for ensuring this was proposed 
in [3,4]. 
 In complex fault-tolerant control systems, a controller largely consists of 
mechanisms for supporting fault tolerance. This is often perceived as a separate 
subsystem dedicated to fault tolerance. In avionics, such a subsystem is traditionally 
called Failure Management System (further referred to as FMS). The major role of FMS 
is to mask faulty readings obtained from sensors and hereby provide the controller with 
the correct information about the system state.  
 The requirements imposed on FMS are often changed as a result of simulation of the 
system behaviour under failure conditions. These changes occur at the later 
development stages, which complicates the design of FMS [4]. To overcome this 
difficulty, we propose a generic formal pattern for specifying and developing FMS. The 
proposed pattern can be used in the product-line development. 
 Obviously, correctness of FMS is essential for ensuring dependability of the overall 
system. Formal methods are traditionally used for reasoning about software correctness. 
In this paper we demonstrate how to develop FMS by stepwise refinement in the B 
Method [5,6]. The B Method is a formal framework for the development of dependable 
systems correct by construction. AtelierB [7] – the tool supporting the method – 
provides a high degree of automation of the verification process, which facilitates a 
better acceptance of the method in the industrial practice. 
 The work reported in this paper is conducted within EU project RODIN [8]. 
 The paper is structured as follows: in Section 2 we describe FMS by presenting its 
structure, the behaviour and the error detection mechanism. In this section we also give 
the graphical representation of the FMS relying on data from a single sensor. In the 
Section 3 we give a short introduction to our modelling framework – the B Method. 
Section 4 demonstrates the process of developing FMS formally. We start from an 
abstract specification of the system and obtain the detailed specification by a number of 
correctness preserving refinement steps. In Section 5 we discus the proposed approach 
and outline the future work. 
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Failure Management System (FMS) [3,4,9] is a part of the embedded control system as 
shown on Fig. 1. 
 The control system regularly reads data from its sensors. These readings are 
considered as the inputs to FMS. The outputs from FMS are forwarded to the controller. 
The role of FMS is to detect erroneous inputs and prevent their propagation into the 
controller. Hence the main purpose of FMS is to supply the controller of the system 
with fault-free inputs from the system environment. 
 

Fig. 1. Structure of an embedded control system 

 We assume that initially the system operates without any errors. The operating cycle 
starts with obtaining sensor readings which become the inputs to the FMS. FMS tests 
the inputs by applying a certain detection procedure. As a result, the inputs are 
categorized as fault-free or faulty. Then, FMS analyses the input and takes 
corresponding remedial action. The remedial actions can be classified as healthy, 
temporary or confirmation. This classification is adopted from [4]. 
 In Fig. 2 we illustrate the general behaviour of FMS, as proposed in [3]. 

Fig. 2. Specification of the FMS behaviour 

 Healthy action. If FMS is in the Normal state (i.e., there is no suspected inputs) and 
the received input is fault-free, then the input is forwarded unchanged to the controller 
and FMS continues the operating cycle by accepting another input from the 
environment. 
 Temporary action. If FMS is in the Normal state and detects the first faulty input, it 
marks the status of that input as suspected and changes the operating state from Normal 
to Recover (Fig. 2). In the Recover state FMS starts to count the number of faulty 
inputs. In this state the input can get recovered during a certain number of operating 
cycles. One of the requirements imposed on FMS is to give a fault-free output even 
when the input is faulty. Hence, while operating in the Recover state, FMS returns the 
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last good value of the input obtained before entering the state Recover. Once a 
temporary action is triggered, it will keep the system in the state Recover as long as the 
status of the input coming from the environment is suspected. The counting mechanism 
determines whether the input gets recovered. If this is the case, the system changes its 
state from Recover to Normal. 
 Confirmation. If the system has been operating in the state Recover and the input 
fails to recover then the counting mechanism triggers the confirmation action. The input 
is confirmed failed and the system changes the operating state to Failed. After this the 
system proceeds with the control actions defined for the state Failed.  
 Next we describe error detection mechanism in detail. 
 ×�Ø´×ÚÙ�ÛOÛAÜZÛÞÝ�ß�àáß�â�àäã¡ÜZå
 
The detection mechanism is the most important part of FMS. Its role is to determine 
whether the input is faulty or fault-free. In Fig. 3 we propose the architecture of the 
detection mechanism. 
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Fig. 3. Detection mechanism architecture 
 

 For each input we should define the corresponding tests required to detect whether 
that particular input is faulty. The detection procedure in FMS is based on applying the 
tests in the order defined by its architecture. The tests may vary depending on the 
application domain. For instance, the most commonly used tests on analogue signals in 
the avionics field are the magnitude test, the rate test and the predicted values test. 
 We differentiate between different kinds of tests. The basic category is a simple test. 
An input signal may pass through several simple tests, which can be applied in any 
order. When triggered, a simple test runs based solely on the input reading from the 
sensor. After the test is executed, it is marked as passed for the current input, which in 
turn may trigger the execution of some other test.  
 The second test category is complex test with the level of complexity 1. The 
execution of this kind of test depends on the execution of several simple tests. Input 
may go through several complex tests of this level. Tests can be executed in random 
order. However, in order to perform complex tests over a certain input, the system 
should first execute all required simple tests for that particular complex test as shown in 
Fig. 3. 
 In general, there might be N test categories, where the last test category is the 
complex test with the level of complexity N. The execution of this kind of test depends 



 

not only on the previous execution of simple tests, but also on the execution of the 
complex tests with the level of complexity up to N-1. If the input requires several tests 
of this kind, then they are executed in random order. However, all the tests of the lower 
levels of complexity should be already passed. Hence, detection operates in stages, first 
executing all simple tests associated with the certain input and then all complex tests 
with ascending complexity levels as shown in Fig. 3. 
 In general, sensors can be classified as continuous (digital or analogue) and binary 
(switches). Hence, inputs to FMS can be represented as numerical or Boolean values 
correspondingly. For both types the detection template holds in general, but different 
tests can be applied on each of them. 
 After executing all required tests on a particular input, FMS analyses the results and 
finally classifies the input as faulty or fault-free. 
 ! "$#&%('*),+.-(/0/214365
The actions of FMS described in Fig. 2 and the detection template presented on Fig. 3 
constitute the generic FMS structure and behaviour pattern as summarized in Fig. 4. 
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Fig. 4. FMS pattern 
 

 The figure shows the flow of the detection decisions and effect of remedial actions 
after the inputs are received from the system environment. Note that now three main 
FMS states (Normal, Recover and Failed) are connected with the input status. The 
additional component – the counting mechanism (described in detail later) – is 
introduced to distinguish between recoverable and unrecoverable transient faults. As a 
result, the system switches to the state Normal after the input has recovered or stays in 
the state Recover if the input is still suspected. The system enters a Failed state if the 
input failed to recover.  
 The given pattern can be applied in the controlling software product line [10] for 
creating a collection of similar control systems fault tolerant against transient faults, as 
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proposed in [9]. Although this pattern is created for one single sensor, it can be reused 
for handling N multiple sensors as well. However, when handling N multiple sensors, a 
system failure state might be executed when several or all sensors have failed. This 
system failure state corresponds to a frozen state or selection of a backup controller 
when the system becomes sufficiently degraded to be unsafe. 
 Next we give a short introduction into the B Method. 
 � �  �����������������������	����� �R��������� ���4�������
In this paper we have chosen the B Method [5,6] as our formal modelling framework. 
The B Method is an approach for the industrial development of highly dependable 
software that has been successfully used in the development of several complex real-life 
applications [11]. The tool support available for B provides us with the assistance for 
the entire development process with a high degree of automation in verifying 
correctness. For instance, Atelier B [7], one of the tools supporting the B Method, has 
facilities for automatic verification and code generation as well as documentation, 
project management and prototyping. The high degree of automation in verifying 
correctness improves scalability of B, speeds up development and, also, requires less 
mathematical training from the users.  
 In B, a specification is represented by a module or a set of modules, called Abstract 
Machines. The common pseudo-programming notation, called Abstract Machine 
Notation (AMN), is used to construct and formally verify them. An abstract machine 
encapsulates a state and operations of the specification and has the following general 
form: 

MACHINE   name 
SETS   Set 
VARIABLES  v 
INITIALISATION Init 
INVARIANT  I 

       OPERATIONS   Op 

 Each machine is uniquely identified by its name. The state variables of the machine 
are declared in the VARIABLES clause and initialized in the INITIALISATION clause. 
The variables in B are strongly typed by constraining predicates of the INVARIANT 
clause. The constraining predicates are conjoint by conjunction (denoted as &). All types 
in B are represented by non-empty sets and hence set membership (denoted as :) 
expresses typing constraint for a variable, e.g., x:TYPE. Local types can be introduced 
by enumerating the elements of the type, e.g., TYPE = {element1, element2,…}
in the SETS clause. The operations of the machine are atomic and they are defined in 
OPERATIONS clause.  To describe the computation in operations we use the B 
statements listed in the Table 1. 
 In this paper we adopt the event-based approach to system modelling [12]. The 
events are specified as the guarded operations of the form: 

Event = SELECT cond THEN body END 
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Here cond is a state predicate, and body is a B statement describing how the state 
variables are affected by the operation. If cond is satisfied, the behaviour of the guarded 
operation corresponds to the execution of its body. If cond is false at the current state 
then the operation is disabled, i.e., cannot be executed. The event-based modelling is 
especially suitable for describing reactive systems, typical examples of which are the 
control systems. Then a SELECT operation describes the reaction of the system when 
particular event occurs. 

Table 1. List of B statements used in our operations 

Statement Informal meaning 
x := e Assignment 
x, y := e1, e2 Multiple assignment 
IF P THEN S1 ELSE S2 END If P is true then execute S1, otherwise S2 
S1 ; S2 Sequential composition 
S1 || S2 Parallel execution of S1 and S2 

x :: T 
Nondeterministic assignment – assigns 
variable x arbitrary value from given set T 

ANY x WHERE Q THEN S END  
Nondeterministic block – introduces a new 
local variable x according to the predicate 
Q, which is then used in S 

CHOICE S OR T OR … OR U END 
Nondeterministic choice – one of the 
statements S, T… U is arbitrarily chosen 
for execution 

  
 B also provides structuring mechanisms for modularization, which allows us to 
express machines as compositions of other machines. For instance, if in the 
specification of machine M1 we define that M1 SEES M2, where M2 is another machine, 
then the sets, the constants and the state of M2 are available to M1 for the use in its own 
initialization and within preconditions and the bodies of operations. In particular, this 
allows us to define widely used sets and constants in a separate machine and then make 
it “seen” by all other machines where these sets and constants are needed. 
 The development methodology adopted by B is based on stepwise refinement [13]. 
The result of a refinement step in B is a machine called REFINEMENT. Its structure 
coincides with the structure of the abstract machine. The refined machine contains an 
additional clause REFINES, which directly refers to the machine refined by the current 
machine. Moreover, besides typing of variables, the invariant of the refinement machine 
includes the refinement relation (linking invariant) that describes the connection 
between the state spaces of more abstract and refined machines. 
 Sometimes, both in MACHINE and REFINEMENT, it is useful to introduce user’s own 
definitions as abbreviations for certain complex expressions. This can be formulated in 
the DEFINITION clause.  
 To ensure correctness of a specification or a refinement, we should verify that 
initialization and each operation preserve the machine invariant. Verification can be 
completely automatic or user-assisted. In the former case, the tool generates the required 
proof obligations and discards them without user’s help. In the latter case, the user 
proves certain proof obligations using the interactive prover provided by the tool. 



 

 Next we demonstrate how to formally specify a failure management system 
described in the previous section. 
 ¡ ¢  £�¤�¥�¦�§�¨�©«ª4¬�ª­¨�¤¯®­¦°ª�±³²*¤µ´¶£4·¹¸
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Control systems are usually cyclic, i.e., their behaviour is essentially interleaving 
between environment stimuli and the controller reaction on these stimuli. The controller 
reaction depends on whether FMS has detected error in the obtained inputs (i.e., 
stimuli). Hence, it is natural to consider the behaviour of FMS in the context of the 
overall system.  
 The abstract specification pattern given in Fig. 5 is obtained from the informal FMS 
description represented graphically in Fig. 4. The abstract specification defines the 
behaviour of FMS during one operating cycle. The stages of such a cycle are modelled 
using the variable FMS_State. The type STATES of FMS_State is defined in the 
machine Global, as follows: 
 

STATES = {env, det, detloop, anl, anlloop, act, out, stop}; 

where the values of FMS_State define the phases of FMS execution in the following 
way:  

• env – obtaining inputs from the environment,  
• detloop and det – performing tests on inputs and detecting erroneous inputs,  
• anlloop and anl – deciding upon the input status,  
• act – setting the appropriate remedial actions,  
• out – sending output to the controller either by simple forwarding of the 

obtained input or by calculating the output based on the last good values of 
inputs,  

• stop – freezing the system.  

 The variable FMS_State models the evolution of the system behaviour in the 
operating cycle. At the end of the operating cycle the system finally reaches either the 
terminating (freezing) state or produces a fault-free output. In the latter case, the 
operating cycle starts again. 
 In our abstract specification the input values produced by the environment (i.e., 
sensor data) are assigned nondeterministically in the operation Environment. The 
input values produced by the sensors are modelled by the variable InputN. The 
variable represents the readings of N multiple sensors. 
 After obtaining the sensor readings from the environment, FMS changes its state to 
Detection. In the abstract specification we omit detailed representation of the error 
detection and model only its result, which is assigned to the variable 
Input_In_ErrorN. Its value is TRUE if the error is detected on the sensor reading on 
particular input and FALSE otherwise. 
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 After the detection, FMS enters the Analysis state. Based on the results obtained at 
the previous state FMS decides upon the status of an input – fault-free, suspected or 
confirmed. The variable Input_StatusN is an array that for each of N inputs contains 
a value of the type 

I_STATUS = {ok, suspected, confirmed_failed}; 

representing the status of this input. The nondeterministic assignment to 
Input_StatusN is bounded by the following condition: namely, if the input is not in 
error, its status can be either ok or suspected. If the input is in error, the assigned 
status is either suspected or confirmed_failed. The assignment is then written as: 
 
Input_StatusN :∈ { ff | ff∈ Indx → I_STATUS ∧ 
     ∀ee.(ee∈Indx ∧ Input_In_ErrorN(ee)=FALSE ×  ff(ee)∈{ok,suspected}) ∧ 
     ∀ee.(ee∈Indx ∧ Input_In_ErrorN(ee)=TRUE ×  ff(ee)∈{suspected,confirmed_failed}) } 

 Upon completing analysis, FMS applies the corresponding remedial action. A 
healthy action is executed if the input is fault-free; a temporary action if the input is 
suspected, and a confirmation action if the input is confirmed failed. While performing 
a healthy action, FMS forwards its input to the system controller. Then the operating 
cycle starts again. As a result of a temporary action FMS calculates the output based on 
the information about the last good input value. After this the operating cycle starts 
again. If FMS cannot properly function after the input has failed, the system goes into 
the freezing state. Otherwise, it removes the input which has been confirmed failed from 
further observations. In the latter case, the output is calculated based on the last good 
input value (similarly as in a temporary action). 
 Since the controller of the system relies only on the input it obtains from FMS, in our 
safety invariant we express error confining conditions: 

Safety Invariant == 
     (( FMS_State=act ×  ∀(ee).(ee∈Indx∧ Input_In_ErrorN(ee)=FALSE ×  

Input_StatusN(ee)∈{ok,suspected}))  ∧ 
 
     ( FMS_State=act ×  ∀(ee).(ee∈Indx ∧ Input_In_ErrorN(ee)=TRUE ×  

Input_StatusN(ee)∈{suspected,confirmed_failed}) ) ∧ 
 
     ( Indx=∅ ×  FMS_State=stop )) 

Here Indx is a set of ok or suspected inputs. The first predicate states that whenever 
FMS is in the state act and some input ee is detected fault-free, the value assigned to 
the variable Input_StatusN is either ok or suspected. The second predicate 
expresses similarly that, whenever FMS is in the state act and the error is detected for 
some input ee, the value assigned to the variable Input_StatusN is either 
suspected or confirmed_failed. Finally, the last predicate states that whenever 
the variable Indx is empty, which means that all the inputs have failed, FMS_State 
becomes stop (i.e., the system goes into the freezing state). 
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MACHINE FMS 
SEES  Global 
VARIABLES Indx, InputN, Input_StatusN, Input_In_ErrorN, Last_Good_InputN, Output, FMS_State 
INVARIANT  

… ∧ <safety invariant>
INITIALISATION  

… 
OPERATIONS 
 
Environment= 
SELECT FMS_State=env 
THEN 
 InputN Ù ∈ Indx → T_INPUT || FMS_State := det
END; 
 
Detection= 
SELECT FMS_State=det 
THEN 
 Input_In_ErrorN Ù ∈ Indx → BOOL || FMS_State := anl 
END; 
 
Analysis= 
SELECT FMS_State=anl 
THEN 
 Input_StatusN Ù ∈ {ff | ff∈ Indx → I_STATUS ∧  
 ∀ee.(ee∈Indx ∧ Input_In_ErrorN(ee)=FALSE Ú  ff(ee)∈{ok,suspected}) ∧

∀ee.(ee∈Indx ∧ Input_In_ErrorN(ee)=TRUE Ú  
    ff(ee)∈{suspected,confirmed_failed}) } || FMS_State := act
END; 
 
Action= 
SELECT FMS_State=act ∧ confirmed_failed ∈ ran(Input_StatusN)  
THEN 
 CHOICE 
  <remove the inputs which are confirmed failed from further observation> || 
  FMS_State:=out 
 OR FMS_State:=stop 
 END 
WHEN 
 FMS_State=act ∧ confirmed_failed ∉ ran(Input_StatusN)
THEN 
 FMS_State:=out    
END; 
 
Return= 
SELECT FMS_State=out  
THEN 
 <save the values of healthy inputs in Last_Good_InputN and set outputs to  

  inputs value for healthy inputs and to last good values for non-healthy inputs> || 
FMS_State:=env 

END; 
 

Freeze= 
SELECT FMS_State=stop 
THEN 
 skip 
END 
END 

Fig. 5. Excerpt from the abstract FMS specification pattern 
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 Our initial specification of FMS abstractly describes the intended behaviour of FMS. 
However, it leaves the mechanism of detecting errors and the analysis of inputs 
underspecified. Next we demonstrate how to fill in these details by refinement. 
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In our first refinement step we introduce a detailed specification of the input analysis 
procedure. 
 
REFINEMENT  FMSR1 
REFINES  FMS 
VARIABLES   

…  Input_StatusN1, Processed 
INVARIANT 
 /* linking invariant */ 
( ∀ee.(ee∈Indx ∧ Processed(ee)=TRUE ∧ Input_In_ErrorN(ee)=TRUE ø  

Input_StatusN1(ee)∈{suspected,confirmed_failed}) ) ∧
( ∀ee.(ee∈Indx ∧ Processed(ee)=TRUE ∧ Input_In_ErrorN(ee)=FALSE ø  

Input_StatusN1(ee)∈{ok,suspected}) ) ∧ ù
OPERATIONS 
 
Environment=…  
Detection=…  
 
AnalysisLoop= 
SELECT FMS_State=anlloop 
THEN 
 ANY ii WHERE ii∈Indx ∧ Processed(ii)=FALSE

THEN 
  <decide upon the value of Input_StatusN1 depending on  
    the previous status Input_StatusN and the information if  

                 the error is detected Input_In_ErrorN> || 
        Processed(ii):=TRUE 

 END; 
 IF ran(Processed)={TRUE} THEN FMS_State:=anl ELSE FMS_State:=anlloop END 
END; 
 
Analysis= 
SELECT FMS_State=anl 
THEN 
 Input_StatusN := Input_StatusN1 || FMS_State:=act 
END; 
 
Action=…  
Return=…  
Freeze=…  
 
END

Fig. 6. First FMS refinement – specifying input analysis 
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 In the initial FMS specification the input analysis was modelled by the 
nondeterministic assignment to the variable Input_StatusN in the operation 

Analysis. In the refined specification we calculate the current value of the input status 
based on the value of Input_In_ErrorN and the value of input status obtained at the 
previous cycle of FMS. Namely, if the analysed input was ok (fault-free), after the error 
is detected it becomes suspected (faulty). If the input was already suspected and 
the error is detected again, it can either stay suspected or become 
confirmed_failed. This information is used to construct the linking invariant as 
shown in Fig. 6. In this refinement step we add the new operation AnalysisLoop. The 
operation gradually performs input analysis, considering inputs one by one until all the 
inputs are processed. The information about the input status is correspondingly 
accumulated in the variable Input_StatusN1. After the AnalysisLoop is 
completed, the value of Input_StatusN1 is assigned to Input_StatusN in the 
operation Analysis. 
 
REFINEMENT FMSR2 
REFINES FMSR1 
VARIABLES …  cc, num 
OPERATIONS 
 
Environment=…  
Detection=…  
AnalysisLoop= 
 SELECT FMS_State=anlloop 
 THEN 
  ANY ii WHERE ii∈Indx ∧ Processed(ii)=FALSE …  
  THEN 
   IF Input_In_ErrorN(ii)=FALSE 
   THEN 
    IF Input_StatusN(ii)=suspected 
    THEN <decrement ccii by yy>; <increment the numii >; 
     IF <numii is less then defined Limit and 
            ccii reached zero> 
     THEN <input is recovered>; <reset numii>  
     END 
    END 
   ELSE 
    <increment ccii by xx>; <increment the numii>; 
    IF <numii is equal to or greater then Limit or ccii reached zz> 
    THEN <input is confirmed failed>   
    ELSE <input is suspected> 
    END 
   END || …  
 END; 
Analysis=…  
Action=…  
Return=…  
Freeze=…  
 
END 

 
Fig. 7. Second FMS refinement – specifying error recovery 
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 Our second refinement step (Fig. 7) aims at introducing a detailed procedure for 
determining the input status in the operation AnalysisLoop. The procedure is based 
on using a customisable counting mechanism which re-evaluate the status of a particular 
input at each cycle. 
 For each of N inputs, we introduce counters cci(i∈1..N), which contain 
accumulated values determining how trustworthy a particular input i is. If cci=0 then 
the input i is ok. If 0<cci<zz, where zz is some predefined value, then the input i is 
suspected. Otherwise, the input i is considered failed. 
 At every cycle the counters cci are re-evaluated depending on the detection results. 
Each input i that was found in error increments the counter cci by a certain predefined 
value xx. Similarly, if the input i was found not in error by the detection procedure, the 
corresponding counter cci is decremented by another predefined value yy. 
 If at some point the value of cci reaches 0, the input i is declared ok. Similarly, if 
the value of cci exceeds zz, the input i is declared confirmed_failed and should be 
removed from the set of inputs used by FMS. 
 The predefined values zz, xx and yy are set after observing the real performance of 
FMS. By setting the value of xx higher then the value of yy, the counter cc is biased 
towards failure. However, such a specification is insufficient for guaranteeing 
termination of recovery. Observe that the input may behave in such a way that the 
counter cc is practically oscillating between some values but never reaches the limit zz 
or zero. To overcome this problem we introduce the second counter numi(i∈1..N), 
which counts the number of consequent recovering cycles on each suspected input (i.e., 
when 0<cci<zz). When a certain limit for numi is exceeded, the recovery terminates 
and, if cci is different from zero, the input is confirmed failed. 
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We continue the development of FMS by refining the error detection procedure. This 
third refinement step aims at introducing the architecture of tests which are then used by 
the refined error detection procedure.  
 The nondeterministic assignment to the variable Input_In_ErrorN in the abstract 
Detection operation specifies only that each of N inputs can be either faulty or fault-
free. This assignment is refined in the third refinement step by introducing evaluation 
tests, which are applied to all inputs to determine whether they are in error or not.  
  

 ( ) * + ,- . /10 2 , ( ) * + ,- . /10 2 ,
354 6 376 398 : 2 ( 378 : 2 ) 378 : 2 ,+ 354 6 376 378 : 2 (398 : 2 )

378 : 2 ,+
378 : 2 *378 : 2 )
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378 : 2 <378 : 2 =
378 : 2 >++

Fig. 8. Defining tests for homogeneous and heterogeneous multiple sensors 
 

           a)                            b) 
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 Since we observe homogeneous multiple sensors measuring the same physical 
process in the environment, for each of N sensor readings the same series of tests can be 
applied (Fig. 8a). The pattern for heterogeneous multiple sensors could easily be 
adapted from the one presented here and it would require defining tests for each one of 
the N sensor readings separately, as shown in Fig. 8b. 
 The architecture of tests used for error detection follows the idea of test dependencies 
presented in Section 2.2. The set of all tests (modelled by deferred set TESTS) is 
partitioned into two subsets:  

S_TEST ⊆ TESTS ∧ C_TEST ⊆ TESTS 

where S_TEST is the set of all simple tests and C_TEST is the set of complex tests. 
Moreover, since each complex test depends on some simple tests, we define this 
dependency as the following constant function: 

ComplexTest ∈ C_TEST → POW(S_TEST) 

 To model the error detection, we add the new operation DetectionLoop. The 
operation guard, as given below, defines which tests are actually enabled for execution. 
We introduce the relation TestExecuted which contains only those pairs (ii,te), 
where ii is the input and te is the test, such that input ii is tested by the test te. 
 
DetectionLoop=  
ANY ii,te WHERE FMS_State=detloop ∧ ii∈Indx ∧ te∈TESTS ∧ (ii,te)∉TestExecuted ∧  
    Input_In_ErrorN1(ii)=FALSE ∧ 
  ( te∈C_TEST B  ∀mm.(mm∈ComplexTest(te) B  (ii,mm)∈TestExecuted) )  
THEN 
 CHOICE TestPassed:=TestPassed ∪{ii C te} OR skip END; 
 IF (ii,te)∉TestPassed  

THEN  
  Input_In_ErrorN1(ii):=TRUE ||  
     <all the tests associated with the input ii are marked as executed,  
    i.e., after the input has failed no more tests on that input are executed> 
 ELSE  <the test te for the input ii is marked as executed> 
 END || FMS_State : ∈ {detloop, det}; 
END  
 
This operation guard implements the following requirements imposed on evaluating 
tests: 

[req1] each test can be executed at most once on a certain input, i.e., for some input 
ii and test te predicate (ii,te)∉TestExecuted should hold; 

[req2] if the test is complex, then all the simple tests it depends on have to be 
already executed, i.e., predicate  
( te∈C_TEST D  ∀mm.(mm∈ComplexTest(te) D  (ii,mm)∈TestExecuted) )  
should hold and 

[req3] if some input has failed, i.e., the error on input is detected, then no more tests 
on that input should be applied, or formally, only tests for which the 
predicate Input_In_ErrorN1(ii)=FALSE holds, are chosen for execution. 
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 After executing the chosen test, we model the result of this execution as a variable 
TestPassed, which keeps all successfully passed tests on particular input. This value 
is afterwards checked and if the test on the input failed, the input is found in error.  
 Similarly as in the operation AnalysesLoop, DetectionLoop performs error 
detection on inputs one by one. The information about the inputs in error is 
correspondingly accumulated in the variable Input_In_ErrorN1. After the 
DetectionLoop is completed, the value of Input_In_ErrorN1 is assigned to 
Input_In_ErrorN. 
 The invariant of this third refinement step guarantees that if any of the tests applied 
on a certain input failed, then the input is considered in error: 
 
   ( ∀(ii,te).(ii∈Indx ∧ te∈TESTS ∧ (ii,te)∈TestExecuted ∧ (ii,te)∉TestPassed G  

Input_In_ErrorN1(ii)=TRUE ) ) 
 
In other words, in order for some input to be error free, it should successfully pass all 
the required tests.  
 The process of error detection can be graphically represented as shown in Fig. 9. 

Fig. 9. Process of deciding upon the error detection  

 The mechanism of error detection can be further refined. Namely, which tests are 
enabled for execution depends not only on the requirements listed in req1-3 but also on 
some additional conditions on the required test frequencies and the internal state of the 
system: 

[req4] every test is executed with a certain frequency; The test frequency can be 
different for different tests; 

[req5] in order for some complex test to be executed, its frequency has to be 
divisible by the frequencies of all the simple tests required for its execution; 
This requirement is necessary in order to ensure the application of all 
required tests on the same data; 

[req6] the execution of each test may depend on the current internal state of the 
system; 

 We introduce the constant function Freq: TESTS --> NAT which defines the 
frequency for each test. The state of the system is modelled as a variable State, whose 
values are assigned from the set STATE. 
 With the new requirements in mind, we develop the fourth FMS refinement step. In 
order to apply tests according to the given frequencies, we introduce time scheduling. 
There is one global clock guaranteeing that the tests with the same frequency are 
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executed at the same time instances. We model the real time by introducing the event 
TickTime which increments the current Time whenever the event is enabled. In 
addition, the operation TickTime models possible change of the internal system state 
by nondeterministically updating the variable State. 

 TickTime= 
 SELECT Clock_Flag=enabled 
 THEN 
  Time:=Time+1 || State l ∈ STATE;  
  IF Exist_Test_For_Execution THEN Clock_Flag:=disabled END 
 END; 

 The progress of time is allowed in two situations: 
- when one FMS operation cycle finishes and before the next one starts, or 
- when there are no tests enabled for execution under given conditions. 

 In that case we allow time to progress and possibly update the internal system state 
until some tests become enabled.  
 The conditions under which the tests are enabled combine some condition on the 
internal state (modelled by the abstract function Cond) and checking the required 
frequency: 

CONDITION(tt,ti,st)==(Cond(tt,st)=TRUE ∧ (ti mod Freq(tt)=0)); 

The above definition expresses that a particular test tt is enabled for execution at the 
time ti and at the system state st. With this definition we strengthen the guard of the 
operation DetectionLoop so that it implements requirements req4-6: 
 
DetectionLoop=  
ANY ii,te WHERE FMS_State=detloop ∧ ii∈Indx ∧ te∈TESTS ∧ (ii,te)∉TestExecuted ∧ 

    Input_In_ErrorN1(ii)=FALSE ∧
( te∈C_TEST m ∀mm.(mm∈ComplexTest(te) m

    (ii,mm)∈TestExecuted ∧ (Freq(te) mod Freq(mm)=0)) ) ∧  
    CONDITION(te,Time,State)  

THEN 
 …  || IF StopCond THEN FMS_State:=det END  
END; 

 The termination of the detection procedure in the operation DetectionLoop is 
accomplished by explicitly checking the defined stopping condition, which becomes 
true only when all required tests for all inputs have been executed: 

StopCond== 
(∀(ii,te).(ii∈Indx ∧ te∈TESTS ∧ CONDITION(te,Time,State) n (ii,te)∈TestExecuted))

 We can summarize our formal development of FMS as follows. We start with a 
simple specification of the system together with its environment, which abstractly 
models the necessary stages of FMS execution (input reading, detection, input 
analysis,… ). The first two refinements focus on introducing a detailed procedure for 
analyzing inputs and determining their current status in the system. The next refinement 
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step introduces the architecture of tests to be used by the refined error detection 
procedure. Finally, the last refinement elaborates on error detection by modelling the 
required time scheduling of the tests. The specification of the full development can be 
found in the Appendix. 
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In this paper we proposed a formal pattern for specifying and refining a part of the 
safety-critical control system – the Failure Management System. Our formal 
development of FMS aims at specifying and refining, firstly, the analysis of inputs by 
introducing a customisable counting mechanism and, secondly, error detection 
procedure on N multiple homogeneous sensors based on applying a certain architecture 
of tests. Moreover, in order to assure application of tests on the same data, i.e., data 
collected at the same time instances, we introduced test scheduling. The test scheduling 
is implemented by introducing one global clock and enabling the progression of time 
only when the whole FMS operating cycle finishes or when there are no enabled tests 
for execution. In this way, we prevent the deadlock which might occur while executing 
the detection operation. 
 Laibinis and Troubitsyna have proposed a formal approach to model-driven 
development of fault tolerant control systems in B [14]. However, they did not consider 
transient faults. Since we consider this type of faults our approach is an extension of the 
pattern proposed in their work. 
 Formal development of FMS has also been undertaken in [3,9]. This work is focused 
on reusability and portability of FMS modelled using UML-B [15]. However, the 
dependencies between tests are not explicitly addressed. The error detection mechanism 
we proposed is based on a hierarchical test architecture allowing us to tackle the input 
anomalies more efficiently. 
 A similar goal – design of software-implemented fault tolerance – was studied in 
[16,17,18]. This work focused on studying how to modify software at the code level to 
achieve fault tolerance. Our approach is complementary: we aimed at studying how to 
specify and develop software with fault tolerance mechanism integrated into it. 
 We verified our complete development with the automatic tool support – Atelier B. 
Around 70% of proof obligations have been proved automatically by the tool. The rest 
have been proved using the interactive prover. 
 The proposed FMS refinement pattern gives a template for the instantiation of a 
domain-specific reliable FMS. Hence, as a future work it would be interesting to study 
the instantiation of the developed pattern with realistic data on concrete multiple 
homogeneous sensors. Also, the pattern can be modified to handle multiple 
heterogeneous sensors and their instantiation. 
 �
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MACHINE Global 
 
SETS  STATES = {env, det, detloop, anl, anlloop, act, out, stop}; 
  I_STATUS = {ok, suspected, confirmed_failed}; 
  PARAMETERS = {xx,yy,zz}; 
  TESTS; 
  STATE; 
  CLOCK_STATES = {enabled, disabled} 
 
ABSTRACT_CONSTANTS 
  T_INPUT, max_int, max_indx , Good_Input, Init_Output, Config, Limit,  

S_TEST, C_TEST, ComplexTest, Cond, Freq 
 

PROPERTIES  
  T_INPUT ⊆ NAT ∧ 
  ∀nn.(nn∈NAT ¥  nn<2147483645) ∧ 
  max_int = 214748364 ∧ 
  max_indx ∈ NAT ∧ max_indx ≥2 ∧ 
  Good_Input ∈ T_INPUT ∧ 
  Init_Output ∈ T_INPUT ∧ 
  Config ∈ PARAMETERS → NAT ∧ 
  Config(zz)≥Config(xx) ∧ Config(xx)≥Config(yy) ∧ (Config(yy)∈0..1) ∧  
  Limit ∈ NAT ∧ 
  S_TEST ⊆ TESTS ∧ C_TEST ⊆ TESTS ∧ 
  S_TEST ∩ C_TEST=∅ ∧ S_TEST ∪ C_TEST=TESTS ∧ 
  ComplexTest ∈ C_TEST → POW (S_TEST) ∧ 
  Cond : (TESTS × STATE) → BOOL ∧ 
  Freq ∈ TESTS → NAT 
  
END
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MACHINE FMS 
 
SEES  Global 
 
VARIABLES   
 Indx, InputN, Input_StatusN, Input_In_ErrorN, Last_Good_InputN, Output, FMS_State 
 
INVARIANT 
 Indx ⊆ 1..max_indx ∧ InputN ∈ Indx → T_INPUT ∧   
 Input_StatusN ∈ Indx → I_STATUS ∧ Input_In_ErrorN ∈ Indx → BOOL ∧ 
 Last_Good_InputN ∈ Indx → T_INPUT ∧ Output ∈ T_INPUT ∧ FMS_State ∈ STATES ∧ 
 ( Indx=∅ ¨  FMS_State=stop ) ∧ 

( FMS_State=act ¨  ∀(ee).(ee∈Indx ∧ Input_In_ErrorN(ee)=FALSE ¨  
Input_StatusN(ee)∈{ok,suspected}) ) ∧ 

         ( FMS_State=act ¨  ∀(ee).(ee∈Indx ∧ Input_In_ErrorN(ee)=TRUE ¨  
Input_StatusN(ee)∈{suspected,confirmed_failed}) ) 

   
INITIALISATION  
 Indx := 1..max_indx || 
 InputN := (1..max_indx) × {Good_Input} || 
 Input_StatusN := (1..max_indx) × {ok} || 
 Input_In_ErrorN := (1..max_indx) × {FALSE} || 
 Last_Good_InputN :=  (1..max_indx) × {Good_Input} || 
 Output := Init_Output || FMS_State := env 
 
OPERATIONS 
 
Environment= 
 SELECT FMS_State=env 
 THEN 
  InputN :∈ Indx → T_INPUT ||  
  FMS_State := detloop 
 END; 
 
DetectionLoop= 
 SELECT FMS_State=detloop 
 THEN 
  FMS_State :∈ {detloop, det} 
 END; 
 
Detection= 
 SELECT FMS_State=det 
 THEN 
  Input_In_ErrorN :∈ Indx → BOOL || 
  FMS_State := anlloop 
 END; 
 
AnalysisLoop= 
 SELECT FMS_State=anlloop 
 THEN 
  FMS_State :∈ {anlloop, anl} 
 END; 
 



©�ª

Analysis= 
 SELECT FMS_State=anl 
 THEN 
    Input_StatusN :∈ {ff|ff∈ Indx → I_STATUS ∧ 

       ∀ee.(ee∈Indx ∧ Input_In_ErrorN(ee)=FALSE «  ff(ee)∈{ok,suspected}) ∧ 
       ∀ee.(ee∈Indx ∧ Input_In_ErrorN(ee)=TRUE «  ff(ee)∈{suspected,confirmed_failed}) } || 

                FMS_State := act 
 END; 
 
Action= 
 SELECT FMS_State=act ∧ confirmed_failed ∈ ran(Input_StatusN) 
 THEN CHOICE 
       IF Input_StatusN-1[{ok,suspected}]≠∅ 
       THEN 
              Indx := Input_StatusN-1[{ok,suspected}] || 
              InputN := Input_StatusN-1[{ok,suspected}]  InputN ||   
              Input_StatusN := Input_StatusN  {ok,suspected} || 
              Input_In_ErrorN := Input_StatusN-1[{ok,suspected}]  Input_In_ErrorN || 
              Last_Good_InputN := Input_StatusN-1[{ok,suspected}]  Last_Good_InputN || 
              FMS_State:=out 
       ELSE FMS_State:=stop  

     END 
  OR 
              FMS_State:=stop 
  END 
 WHEN 
  FMS_State=act ∧ confirmed_failed ∉ ran(Input_StatusN) 
 THEN 
  FMS_State:=out  
 END; 
 
Return= 
 SELECT FMS_State=out  
 THEN 
                ANY in WHERE in=(Last_Good_InputN  (Input_StatusN-1[{ok}] InputN)) 
  THEN 
   Last_Good_InputN := in || 
   Output:∈ran(in) 
  END || 
                Input_In_ErrorN := Indx × {FALSE} ||  

   FMS_State:=env 
 END; 
 
TickTime= 
 BEGIN 
  skip 
 END; 
 
Freeze= 
 SELECT FMS_State=stop 
 THEN 
  skip 
 END 
END
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REFINEMENT FMSR1 
 
REFINES FMS 
 
SEES  Global 
 
VARIABLES   
 Indx, InputN, Input_StatusN, Input_StatusN1, Input_In_ErrorN, Last_Good_InputN,  
 Output, FMS_State, Processed 
 
INVARIANT 
 Input_StatusN1 ∈ Indx → I_STATUS ∧ 
 Processed ∈ Indx → BOOL ∧ 
 
 ( FMS_State ∈ {env, detloop, det} ∧ Indx≠∅ ¯  ran(Processed)={FALSE} ) ∧  
 ( FMS_State ∈ {anl, act, out} ¯  ran(Processed)={TRUE} ) ∧ 
 ( FMS_State=det ¯  Indx≠∅ ) ∧   
 
 ( ∀ee.(ee∈Indx ∧ Processed(ee)=TRUE ∧ Input_In_ErrorN(ee)=TRUE ¯   

Input_StatusN1(ee)∈{suspected,confirmed_failed}) ) ∧ 
 
 ( ∀ee.(ee∈Indx ∧ Processed(ee)=TRUE ∧ Input_In_ErrorN(ee)=FALSE ¯   

Input_StatusN1(ee)∈{ok,suspected}) ) ∧ 
 
 ( FMS_State ∈ {act, out, env, detloop, det} ¯  Input_StatusN = Input_StatusN1 ) ∧ 
 ( FMS_State ∈ {out, env, detloop, det} ¯  ran(Input_StatusN)⊆{ok,suspected} ) ∧  
 
 ( ∀ee.(ee∈Indx ∧ FMS_State=anlloop ∧ Processed(ee)=FALSE ¯   

Input_StatusN(ee) = Input_StatusN1(ee) ) ) ∧ 
 
 ( ∀ee.(ee∈Indx ∧ FMS_State=anlloop ∧ Processed(ee)=FALSE ¯   

ran(Input_StatusN)⊆{ok,suspected}) ) 
 
INITIALISATION  
 Indx := 1..max_indx || 
 InputN := (1..max_indx) × {Good_Input} || 
 Input_StatusN := (1..max_indx) × {ok} || Input_StatusN1 := (1..max_indx) × {ok} || 
 Input_In_ErrorN := (1..max_indx) × {FALSE} || 
 Last_Good_InputN :=  (1..max_indx) × {Good_Input} || 
 Output := Init_Output || FMS_State := env || 
 Processed := (1..max_indx) × {FALSE} 
 
OPERATIONS 
 
Environment= 
 SELECT FMS_State=env 
 THEN 
  InputN :∈ Indx → T_INPUT || 
  FMS_State := detloop 
 END; 
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DetectionLoop= 
 SELECT FMS_State=detloop 
 THEN 
  FMS_State :∈ {detloop, det} 
 END; 
 
Detection= 
 SELECT FMS_State=det 
 THEN 
  Input_In_ErrorN :∈ Indx → BOOL || 
  FMS_State := anlloop 
 END; 
 
AnalysisLoop= 
 SELECT FMS_State=anlloop 
 THEN 
  ANY ii WHERE ii∈Indx ∧ Processed(ii)=FALSE 
  THEN 
   IF Input_In_ErrorN(ii)=FALSE 
   THEN 
    IF Input_StatusN(ii)=suspected 
    THEN 
     ANY ch WHERE ch∈{ok,suspected}  

THEN Input_StatusN1(ii):=ch END 
    END 
   ELSE 
    ANY ch WHERE ch∈{suspected,confirmed_failed}  

THEN Input_StatusN1(ii):=ch END 
   END || 
   Processed(ii):=TRUE 
  END; 
  IF ran(Processed)={TRUE}  

THEN FMS_State:=anl  
ELSE FMS_State:=anlloop  
END   

 END; 
 
Analysis= 
 SELECT FMS_State=anl 
 THEN 
  Input_StatusN := Input_StatusN1 || 
  FMS_State:=act 
 END; 
 
Action= 
 SELECT FMS_State=act ∧ confirmed_failed ∈ ran(Input_StatusN) 
 THEN CHOICE 
  IF Input_StatusN-1[{ok,suspected}]≠∅ 
  THEN 
       Indx := Input_StatusN-1[{ok,suspected}] || 
       InputN := Input_StatusN-1[{ok,suspected}]  InputN ||   
       Input_StatusN := Input_StatusN  {ok,suspected} || 
       Input_In_ErrorN := Input_StatusN-1[{ok,suspected}]  Input_In_ErrorN || 
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       Last_Good_InputN := Input_StatusN-1[{ok,suspected}]  Last_Good_InputN || 
       Input_StatusN1:= Input_StatusN1  {ok,suspected} || 
       Processed:= Input_StatusN-1[{ok,suspected}]  Processed || 
       FMS_State:=out 
  ELSE FMS_State:=stop END 
  OR 
       FMS_State:=stop 
  END 
 WHEN 
  FMS_State=act ∧ confirmed_failed ∉ ran(Input_StatusN) 
 THEN 
  FMS_State:=out  
 END; 
 
Return= 
 SELECT FMS_State=out  
 THEN 
                 Last_Good_InputN := Last_Good_InputN  (Input_StatusN-1[{ok}] InputN); 
  Output:∈ran(Last_Good_InputN) || 
  Input_In_ErrorN := Indx × {FALSE} || 
  Processed := Indx × {FALSE} || 
  FMS_State:=env 
 END; 
 
TickTime= 
 BEGIN 
  skip 
 END; 
 
Freeze= 
 SELECT FMS_State=stop 
 THEN 
  skip 
 END 
 
END
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REFINEMENT FMSR2 
 
REFINES FMSR1 
 
SEES  Global 
 
VARIABLES   
 Indx, InputN, Input_StatusN, Input_StatusN1, Input_In_ErrorN, Last_Good_InputN,  
 Output, FMS_State, Processed, cc, num 
 
INVARIANT 
 cc ∈ Indx  NAT ∧ num ∈ Indx  NAT 
  
INITIALISATION  
 Indx := 1..max_indx || 
 InputN := (1..max_indx) × {Good_Input} || 
 Input_StatusN := (1..max_indx) × {ok} || Input_StatusN1 := (1..max_indx) × {ok} || 
 Input_In_ErrorN := (1..max_indx) × {FALSE} || 
 Last_Good_InputN :=  (1..max_indx) × {Good_Input} || 
 Output := Init_Output || FMS_State := env || 
 Processed := (1..max_indx) × {FALSE} || 
 cc := (1..max_indx) × {0} || num :=  (1..max_indx) × {0} 
 
OPERATIONS 
 
Environment= 
 SELECT FMS_State=env 
 THEN 
  InputN :∈ Indx → T_INPUT || 
  FMS_State := detloop 
 END; 
 
DetectionLoop= 
 SELECT FMS_State=detloop 
 THEN 
  FMS_State :∈ {detloop, det} 
 END; 
 
Detection= 
 SELECT FMS_State=det 
 THEN 
  Input_In_ErrorN :∈ Indx → BOOL || 
  FMS_State := anlloop 
 END; 
 
AnalysisLoop= 
 SELECT FMS_State=anlloop 
 THEN 
  ANY ii WHERE ii∈Indx ∧ Processed(ii)=FALSE ∧ Config(yy)≤cc(ii) ∧  

cc(ii)+Config(xx)≤max_int ∧ num(ii)+1≤max_int 
  THEN 
   IF Input_In_ErrorN(ii)=FALSE 
   THEN 
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    IF Input_StatusN(ii)=suspected 
    THEN 
     cc(ii):=cc(ii)-Config(yy); num(ii):=num(ii)+1; 
     IF (num(ii)<Limit ∧ cc(ii)=0) 
     THEN Input_StatusN1(ii):=ok; num(ii):=0  
     END 
    END 
   ELSE 
    cc(ii):=cc(ii)+Config(xx); num(ii):=num(ii)+1; 
    IF (num(ii)≥Limit ∨ cc(ii)≥Config(zz)) 
    THEN 
     Input_StatusN1(ii):=confirmed_failed   
    ELSE 
     Input_StatusN1(ii):=suspected 
    END 
   END || 
   Processed(ii):=TRUE 
  END; 
  IF ran(Processed)={TRUE}  

THEN FMS_State:=anl  
ELSE FMS_State:=anlloop  
END 

 END; 
 
Analysis= 
 SELECT FMS_State=anl 
 THEN 
  Input_StatusN := Input_StatusN1 || 
  FMS_State:=act 
 END; 
 
Action= 
 SELECT FMS_State=act ∧ confirmed_failed ∈ ran(Input_StatusN) 
 THEN CHOICE 
       IF Input_StatusN-1[{ok,suspected}]≠∅ 
       THEN 
            Indx := Input_StatusN-1[{ok,suspected}] || 
            InputN := Input_StatusN-1[{ok,suspected}]  InputN ||   
            Input_StatusN := Input_StatusN  {ok,suspected} || 
            Input_In_ErrorN := Input_StatusN-1[{ok,suspected}]  Input_In_ErrorN || 
            Last_Good_InputN := Input_StatusN-1[{ok,suspected}]  Last_Good_InputN || 
            Input_StatusN1:= Input_StatusN1  {ok,suspected} || 
            Processed:= Input_StatusN-1[{ok,suspected}]  Processed || 
            cc:= Input_StatusN-1[{ok,suspected}]  cc || 
            num:= Input_StatusN-1[{ok,suspected}]  num || 
            FMS_State:=out 
       ELSE FMS_State:=stop  
           END 
  OR 
   FMS_State:=stop 
  END 
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WHEN 
  FMS_State=act ∧ confirmed_failed ∉ ran(Input_StatusN) 
 THEN 
  FMS_State:=out  
 END; 
 
Return= 
 SELECT FMS_State=out  
 THEN 

Last_Good_InputN := Last_Good_InputN  (Input_StatusN-1[{ok}] InputN); 
  Output:∈ran(Last_Good_InputN) || 
  Input_In_ErrorN := Indx × {FALSE} || 
  Processed := Indx × {FALSE} || 
  FMS_State:=env 
 END; 
 
TickTime= 
 BEGIN 
  skip 
 END; 
 
Freeze= 
 SELECT FMS_State=stop 
 THEN 
  skip 
 END 
 
END  
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REFINEMENT FMSR3 
 
REFINES FMSR2 
 
SEES  Global 
 
VARIABLES   
 Indx, InputN, Input_StatusN, Input_StatusN1, Input_In_ErrorN, Input_In_ErrorN1, 
 Last_Good_InputN, Output, FMS_State, Processed, cc, num, 
 TestExecuted, TestPassed 
 
INVARIANT 
 Input_In_ErrorN1 ∈ Indx → BOOL ∧ 
 TestExecuted ∈ Indx ↔ TESTS ∧ 
 TestPassed ∈ Indx ↔ TESTS ∧ 
  
 ( FMS_State=env ½  ran(Input_In_ErrorN1)={FALSE} ) ∧ 
  
 ( ∀(ii,te).(ii∈Indx ∧ te∈TESTS ∧ (ii,te)∈TestExecuted ∧ (ii,te)∉TestPassed ½  

Input_In_ErrorN1(ii)=TRUE ) ) ∧ 
 
 ( ∀(ii,te).(ii∈Indx ∧ te∈TESTS ∧ (ii,te)∉TestExecuted ½  (ii,te)∉TestPassed) ) ∧ 
 
 ( ∀ee.(ee∈Indx ∧ ee∈Input_StatusN-1[{ok,suspected}] ½   

ee∉Input_StatusN-1[{confirmed_failed}]) )  
 
I_STATUS = { ok, suspected, confirmed_failed } ∧ 

 
( ∀(ii,te).(ii∈Indx ∧ te∈TESTS ∧ (ii,te)∉TestExecuted ∧ 

( ∀pp.(pp∈TESTS ∧ (ii,pp)∈TestExecuted ½  (ii,pp)∈TestPassed ) ) ½   
Input_In_ErrorN1(ii)=FALSE ) ) ∧ 

 
( ∀(ii,te).(ii∈Indx ∧ te∈TESTS ∧ (ii,te)∈TestExecuted ∧ (ii,te)∈TestPassed ∧ 

( ∀pp.(pp∈TESTS ∧ (ii,pp)∈TestExecuted ½  (ii,pp)∈TestPassed ) ) ½   
Input_In_ErrorN1(ii)=FALSE ) ) 
 

INITIALISATION  
 Indx := 1..max_indx || 
 InputN := (1..max_indx) × {Good_Input} || 
 Input_StatusN := (1..max_indx) × {ok} ||  

Input_StatusN1 := (1..max_indx) × {ok} || 
 Input_In_ErrorN := (1..max_indx) × {FALSE} ||  

Input_In_ErrorN1 := (1..max_indx) × {FALSE} || 
 Last_Good_InputN :=  (1..max_indx) × {Good_Input} || 
 Output := Init_Output || FMS_State := env || 
 Processed := (1..max_indx) × {FALSE} || 
 cc := (1..max_indx) × {0} || num :=  (1..max_indx) × {0} || 
 TestExecuted := ∅ || TestPassed := ∅ 
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OPERATIONS 
 
Environment= 
 SELECT FMS_State=env 
 THEN 
  InputN :∈ Indx → T_INPUT || 
  FMS_State := detloop 
 END; 
 
DetectionLoop= 
 SELECT FMS_State=detloop 
 THEN 
  ANY ii,te WHERE ii∈Indx ∧ te∈TESTS ∧ (ii,te)∉TestExecuted ∧  

 Input_In_ErrorN1(ii)=FALSE ∧ 
    ( te∈C_TEST Á  ∀mm.(mm∈ComplexTest(te) Á  (ii,mm)∈TestExecuted) )  
  THEN 
   CHOICE 
    TestPassed:=TestPassed ∪{ii Â te} 
   OR 
    skip 
   END; 
   IF (ii,te)∉TestPassed   
   THEN  
    Input_In_ErrorN1(ii):=TRUE ||    
    TestExecuted:=TestExecuted∪({ii}×TESTS) 
   ELSE 
    TestExecuted:=TestExecuted∪{ii Â te} 
   END 
  END || 
           FMS_State :∈ {detloop, det} 
 END; 
 
Detection= 
 SELECT FMS_State=det 
 THEN 
  Input_In_ErrorN := Input_In_ErrorN1 || 
  FMS_State:= anlloop 
 END; 
 
AnalysisLoop= 
 SELECT FMS_State=anlloop 
 THEN 
  ANY ii WHERE ii∈Indx ∧ Processed(ii)=FALSE ∧ Config(yy)≤cc(ii) ∧  

cc(ii)+Config(xx)≤max_int ∧ num(ii)+1≤max_int 
  THEN 
   IF Input_In_ErrorN(ii)=FALSE 
   THEN 
    IF Input_StatusN(ii)=suspected 
    THEN 
     cc(ii):=cc(ii)-Config(yy); num(ii):=num(ii)+1; 
     IF (num(ii)<Limit ∧ cc(ii)=0) 
     THEN Input_StatusN1(ii):=ok; num(ii):=0   
     END 
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    END 
   ELSE 
    cc(ii):=cc(ii)+Config(xx); num(ii):=num(ii)+1; 
    IF (num(ii)≥Limit ∨ cc(ii)≥Config(zz)) 
    THEN 
     Input_StatusN1(ii):=confirmed_failed   
    ELSE 
     Input_StatusN1(ii):=suspected 
    END 
   END || 
   Processed(ii):=TRUE 
  END; 
  IF ran(Processed)={TRUE}  

THEN FMS_State:=anl  
ELSE FMS_State:=anlloop  
END 

 END; 
 
Analysis= 
 SELECT FMS_State=anl 
 THEN 
  Input_StatusN := Input_StatusN1 || 
  FMS_State:=act 
 END; 
 
Action= 
 SELECT FMS_State=act ∧ confirmed_failed ∈ ran(Input_StatusN) 
 THEN CHOICE 
       IF Input_StatusN-1[{ok,suspected}]≠∅ 
       THEN 
            Indx := Input_StatusN-1[{ok,suspected}] || 
            InputN := Input_StatusN-1[{ok,suspected}]  InputN ||   
            Input_StatusN := Input_StatusN  {ok,suspected} || 
            Input_In_ErrorN := Input_StatusN-1[{ok,suspected}]  Input_In_ErrorN || 
            Last_Good_InputN := Input_StatusN-1[{ok,suspected}]  Last_Good_InputN || 
            Input_StatusN1:= Input_StatusN1  {ok,suspected} || 
            Processed:= Input_StatusN-1[{ok,suspected}]  Processed || 
            cc:= Input_StatusN-1[{ok,suspected}]  cc || 
            num:= Input_StatusN-1[{ok,suspected}]  num || 
            Input_In_ErrorN1:= Input_StatusN-1[{ok,suspected}]  Input_In_ErrorN1 || 
            TestPassed := Input_StatusN-1[{ok,suspected}]  TestPassed || 
            TestExecuted := Input_StatusN-1[{ok,suspected}]  TestExecuted || 
            FMS_State:=out 
       ELSE FMS_State:=stop  

     END 
  OR 
   FMS_State:=stop 
  END 
 WHEN 
  FMS_State=act ∧ confirmed_failed ∉ ran(Input_StatusN) 
 THEN 
  FMS_State:=out  
 END; 
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Return= 
 SELECT FMS_State=out  
 THEN 

Last_Good_InputN := Last_Good_InputN  (Input_StatusN-1[{ok}] InputN); 
  Output:∈ran(Last_Good_InputN) || 
  Input_In_ErrorN:= Indx × {FALSE} || 
  Processed := Indx × {FALSE} || 
  TestExecuted := ∅ || 
  TestPassed := ∅ || 
  Input_In_ErrorN1:= Indx × {FALSE} || 
  FMS_State:=env 
 END; 
 
TickTime= 
 BEGIN 
  skip 
 END; 
 
Freeze= 
 SELECT FMS_State=stop 
 THEN 
  skip 
 END 
 
END



Ç®È

 
REFINEMENT FMSR4 
 
REFINES FMSR3 
 
SEES  Global 
 
VARIABLES   
 Indx, InputN, Input_StatusN, Input_StatusN1, Input_In_ErrorN, Input_In_ErrorN1, 
 Last_Good_InputN, Output, FMS_State, Processed, cc, num, 
 TestExecuted, TestPassed, Time, Clock_Flag, State 
 
DEFINITIONS 
 
Exist_Test_For_Execution == 
(∃(ii,te).(ii∈Indx ∧ te∈TESTS ∧ (ii,te)∉TestExecuted ∧ Input_In_ErrorN1(ii)=FALSE ∧ 
(te∈C_TEST É ∀mm.(mm∈ComplexTest(te) É (ii,mm)∈TestExecuted ∧ (Freq(te) mod Freq(mm)=0))) ∧ 
(Time mod Freq(te)=0))); 
 
CONDITION(tt,ti,st) == (Cond(tt,st)=TRUE ∧ (ti mod Freq(tt)=0)); 
 
StopCond == (∀(ii,te).(ii∈Indx ∧ te∈TESTS ∧ CONDITION(te,Time,State) É  (ii,te)∈TestExecuted)) 
 
INVARIANT 
 Time ∈ NATURAL  ∧ 
 Clock_Flag ∈ CLOCK_STATES ∧ 
 State ∈ STATE 
 
INITIALISATION  
 Indx := 1..max_indx || 
 InputN := (1..max_indx) × {Good_Input} || 
 Input_StatusN := (1..max_indx) × {ok} ||  

Input_StatusN1 := (1..max_indx) × {ok} || 
 Input_In_ErrorN := (1..max_indx) × {FALSE} ||  

Input_In_ErrorN1 := (1..max_indx) × {FALSE} || 
 Last_Good_InputN :=  (1..max_indx) × {Good_Input} || 
 Output := Init_Output || FMS_State := env || 
 Processed := (1..max_indx) × {FALSE} || 
 cc := (1..max_indx) × {0} || num :=  (1..max_indx) × {0} || 
 TestExecuted := ∅ || TestPassed := ∅ || 
 Time :=0 || Clock_Flag := disabled || 
 State :∈ STATE 
  
OPERATIONS 
 
Environment= 
 SELECT FMS_State=env ∧ Clock_Flag=disabled 
 THEN 
  InputN :∈ Indx → T_INPUT || 
  FMS_State := detloop 
 END; 
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DetectionLoop= 
 SELECT FMS_State=detloop 
 THEN 
  ANY ii,te  

WHERE ii∈Indx ∧ te∈TESTS ∧ (ii,te)∉TestExecuted ∧ 
 Input_In_ErrorN1(ii)=FALSE ∧ CONDITION(te,Time,State) ∧ 

    ( te∈C_TEST Ì  ∀mm.(mm∈ComplexTest(te) Ì   
(ii,mm)∈TestExecuted ∧ (Freq(te) mod Freq(mm)=0)) ) 

  THEN 
   CHOICE 
    TestPassed:=TestPassed ∪{ii Í te} 
   OR 
    skip 
   END; 
   IF (ii,te)∉TestPassed   
   THEN  
    Input_In_ErrorN1(ii):=TRUE ||    
    TestExecuted:=TestExecuted∪({ii}×TESTS) 
   ELSE 
    TestExecuted:=TestExecuted∪{ii Í te} 
   END 
  END || 
           IF StopCond THEN FMS_State:=det END 
 END; 
 
Detection= 
 SELECT FMS_State=det 
 THEN 
  Input_In_ErrorN := Input_In_ErrorN1 || 
  FMS_State:= anlloop 
 END; 
 
AnalysisLoop= 
 SELECT FMS_State=anlloop 
 THEN 
  ANY ii WHERE ii∈Indx ∧ Processed(ii)=FALSE ∧ Config(yy)≤cc(ii) ∧  

cc(ii)+Config(xx)≤max_int ∧ num(ii)+1≤max_int 
  THEN 
   IF Input_In_ErrorN(ii)=FALSE 
   THEN 
    IF Input_StatusN(ii)=suspected 
    THEN 
     cc(ii):=cc(ii)-Config(yy); num(ii):=num(ii)+1; 
     IF (num(ii)<Limit ∧ cc(ii)=0) 
     THEN Input_StatusN1(ii):=ok; num(ii):=0   
     END 
    END 
   ELSE 
    cc(ii):=cc(ii)+Config(xx); num(ii):=num(ii)+1; 
    IF (num(ii)≥Limit ∨ cc(ii)≥Config(zz)) 
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THEN 
    Input_StatusN1(ii):=confirmed_failed   
    ELSE 
     Input_StatusN1(ii):=suspected 
    END 
   END || 
   Processed(ii):=TRUE 
  END; 
  IF ran(Processed)={TRUE}  

THEN FMS_State:=anl  
ELSE FMS_State:=anlloop  
END 

 END; 
 
Analysis= 
 SELECT FMS_State=anl 
 THEN 
  Input_StatusN := Input_StatusN1 || 
  FMS_State:=act 
 END; 
 
Action= 
 SELECT FMS_State=act ∧ confirmed_failed ∈ ran(Input_StatusN) 
 THEN 
  CHOICE 
       IF Input_StatusN-1[{ok,suspected}]≠∅ 
       THEN 
            Indx := Input_StatusN-1[{ok,suspected}] || 
            InputN := Input_StatusN-1[{ok,suspected}]  InputN ||   
            Input_StatusN := Input_StatusN  {ok,suspected} || 
            Input_In_ErrorN := Input_StatusN-1[{ok,suspected}]  Input_In_ErrorN || 
            Last_Good_InputN := Input_StatusN-1[{ok,suspected}]  Last_Good_InputN || 
            Input_StatusN1:= Input_StatusN1  {ok,suspected} || 
            Processed:= Input_StatusN-1[{ok,suspected}]  Processed || 
            cc:= Input_StatusN-1[{ok,suspected}]  cc || 
            num:= Input_StatusN-1[{ok,suspected}]  num || 
            Input_In_ErrorN1:= Input_StatusN-1[{ok,suspected}]  Input_In_ErrorN1 || 
            TestPassed := Input_StatusN-1[{ok,suspected}]  TestPassed || 
            TestExecuted := Input_StatusN-1[{ok,suspected}]  TestExecuted || 
            FMS_State:=out 
       ELSE FMS_State:=stop  

     END 
  OR 
   FMS_State:=stop 
  END 
 WHEN 
  FMS_State=act ∧ confirmed_failed ∉ ran(Input_StatusN) 
 THEN 
  FMS_State:=out  
 END; 
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Return= 
 SELECT FMS_State=out  
 THEN 

Last_Good_InputN := Last_Good_InputN  (Input_StatusN-1[{ok}] InputN); 
  Output:∈ran(Last_Good_InputN) || 
  Input_In_ErrorN:= Indx × {FALSE} || 
  Processed := Indx × {FALSE} || 
  TestExecuted := ∅ || 
  TestPassed := ∅ || 
  Input_In_ErrorN1:= Indx × {FALSE} || 
  FMS_State:=env || 
  Clock_Flag:=enabled 
 END; 
 
TickTime= 
 SELECT Clock_Flag=enabled 
 THEN 
  Time:=Time+1 || State :∈ STATE;  
  IF Exist_Test_For_Execution  

THEN Clock_Flag:=disabled  
END 

 END; 
 
Freeze= 
 SELECT FMS_State=stop 
 THEN 
  skip 
 END 
 
END
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