
Tur ku Cent re Computer Sciencefor

������� ���	��

�������������
�������
���! #"%$'&%(*),+.-0/'1#2#23"

4657�8
	���:9;�	� <
4657�8
	���=�?>@� <�4657�8
	���=��

�A�	�
4657�8
	���CBD��5�� <�4!57�8
	���EB��GFH�

IKJMLON P Q J!R N N S R T IUS V L N W P XYJ

Z!5�[H�\�]F�^�� _`�a�cb <ed����
�	� ���A��5
[f�G�hg#i��	� <
jk�l�	�*g j%�
�m[f�m�H�ng <o���?�a�m� ���	�Y��^

p P X V L N q N LOP W N T J P Q
N S R V T IUr r QfP X P LON XHV J!I8T s
XfV T r IUN T J ptV u LKJ=r

vxwzyz{�v`|U}�~�����}�������|��A���c�
�x���������������m�����������

���e�z� ���� ¢¡�£¤¡¥�¦�e§=� ¡¥¨�© �«ª ¬ ¡�­H®¯��¨�°a±H� ± ª²�³�
´µ�³�¦¡�����©¶°·¨�¸ ´¹����¨¯±º°a¡¥¨�© ���=»e�¼©½±

¾o¿�À�Á�Â%Ã�Ä#Â ÅUÆ�Ç0È
É�ÆËÊÍÌDÂÏÎHÁÑÐ]¿�À�ÇÓÒ�Ô`Õ�ÌDÂ
Ö,ÇnÌDÂkÔtÖ8ÂÍÇnÀ×ÇcÌ�Ç0Ô

Ø½Ù�Ú�ÛzÜÞÝ�ßáàAâ�ãáäæå\ãèçáà\énêÞãèënìAí`îæà\ïðÝ\éGëmâ]à\åÑëzÚKñ`ò�ÚUâ�ï\ó�ëôà\éxõ�ö÷ãøà\å�ö.àáíù àAâ	â�ã�åOÜÞú\ãøêûà\åOÜÞÝ�ëüó
ýÿþ\Û8í�������������óAéaÜÑó\í
	���

� Ð7Æ¼ÇcÌ �
Ì�Ð Ð7Ä

õ�ö���Ú�Ú��KÚKñ���� à�ö ëüénÚAåAãøö.êkÝ\å�ß	ò�ÚOâ�ïáóÑëôà\é½õhö÷ã à\å�ö.àáí ä`å\ã ç�à\énê÷ã ëcì�ÚKñõ�ÚOó�ë���ÝAâ�ïÞëôÚOåáí�õ���ý���ý����ûí ä��

 "!$#
%'&)(+*
%

Transient faults belong to a wide-spread class of faults typical in control systems. These
are faults that appear for a short period of time and might reappear later. However, even
by appearing for a short time, they might cause dangerous system errors. Hence,
designing mechanisms for tolerating and recovering from transient faults is an acute
issue, especially in the development of safety-critical control systems. In this paper we
propose a formal development (based on the B Method) of a software-based
mechanisms for tolerating transient faults. The mechanism relies on a specific
architecture of error detection actions called evaluating tests. These tests are executed
(with different frequencies) on predefined subsets of analyzed data. Our formal model
allows us to formally express and verify interdependencies between tests as well as to
define the test scheduling. Application of the proposed approach ensures proper damage
confinement caused by transient faults. We use our approach in the avionics domain,
focusing on a formal development of the engine Failure Management System. The
proposed specification and refinement patterns can be applied in the development of
control systems in other application domains as well.

Keywords: transient fault, control system, FMS, B Method, refinement

 ,.-0/
1"2�354�6�7�3�89657;:

<�=?>A@�B;=DCFE)@;G�HJILK�>A@;G�MN>�<�G�>O=QP�R

S

TVU
 W
XZY'[)\^]`_Va
Y�bc\dX

Software is nowadays a crucial part of many safety-critical applications. To guarantee
dependability [1] of such systems, we should ensure that software is not only fault-free
but also is able to cope with faults of other system components. In this paper we focus
on designing controllers able to withstand transient physical faults of the system
components. Transient faults are temporal defects within the system [2]. They
frequently occur in hardware functioning. However, design of mechanisms for
tolerating transient faults is inherently complex. On the one hand, controlling software
(further referred to as a controller) should not over-react on an isolated transient fault.
On the other hand, it should ensure that even the isolated transient faults are not
propagated further into the system. Moreover, if the fault persists, the controller should
initiate the appropriate recovery actions. The algorithm for ensuring this was proposed
in [3,4].
 In complex fault-tolerant control systems, a controller largely consists of
mechanisms for supporting fault tolerance. This is often perceived as a separate
subsystem dedicated to fault tolerance. In avionics, such a subsystem is traditionally
called Failure Management System (further referred to as FMS). The major role of FMS
is to mask faulty readings obtained from sensors and hereby provide the controller with
the correct information about the system state.
 The requirements imposed on FMS are often changed as a result of simulation of the
system behaviour under failure conditions. These changes occur at the later
development stages, which complicates the design of FMS [4]. To overcome this
difficulty, we propose a generic formal pattern for specifying and developing FMS. The
proposed pattern can be used in the product-line development.
 Obviously, correctness of FMS is essential for ensuring dependability of the overall
system. Formal methods are traditionally used for reasoning about software correctness.
In this paper we demonstrate how to develop FMS by stepwise refinement in the B
Method [5,6]. The B Method is a formal framework for the development of dependable
systems correct by construction. AtelierB [7] – the tool supporting the method –
provides a high degree of automation of the verification process, which facilitates a
better acceptance of the method in the industrial practice.
 The work reported in this paper is conducted within EU project RODIN [8].
 The paper is structured as follows: in Section 2 we describe FMS by presenting its
structure, the behaviour and the error detection mechanism. In this section we also give
the graphical representation of the FMS relying on data from a single sensor. In the
Section 3 we give a short introduction to our modelling framework – the B Method.
Section 4 demonstrates the process of developing FMS formally. We start from an
abstract specification of the system and obtain the detailed specification by a number of
correctness preserving refinement steps. In Section 5 we discus the proposed approach
and outline the future work.

e

fhg
 i�jlk�monqp�rtsujqv+j$whryxzryvZ{}|�~��
{�rhx

���A���Z�������������9�����.�z�������
���������

Failure Management System (FMS) [3,4,9] is a part of the embedded control system as
shown on Fig. 1.
 The control system regularly reads data from its sensors. These readings are
considered as the inputs to FMS. The outputs from FMS are forwarded to the controller.
The role of FMS is to detect erroneous inputs and prevent their propagation into the
controller. Hence the main purpose of FMS is to supply the controller of the system
with fault-free inputs from the system environment.

Fig. 1. Structure of an embedded control system

 We assume that initially the system operates without any errors. The operating cycle
starts with obtaining sensor readings which become the inputs to the FMS. FMS tests
the inputs by applying a certain detection procedure. As a result, the inputs are
categorized as fault-free or faulty. Then, FMS analyses the input and takes
corresponding remedial action. The remedial actions can be classified as healthy,
temporary or confirmation. This classification is adopted from [4].
 In Fig. 2 we illustrate the general behaviour of FMS, as proposed in [3].

Fig. 2. Specification of the FMS behaviour

 Healthy action. If FMS is in the Normal state (i.e., there is no suspected inputs) and
the received input is fault-free, then the input is forwarded unchanged to the controller
and FMS continues the operating cycle by accepting another input from the
environment.
 Temporary action. If FMS is in the Normal state and detects the first faulty input, it
marks the status of that input as suspected and changes the operating state from Normal
to Recover (Fig. 2). In the Recover state FMS starts to count the number of faulty
inputs. In this state the input can get recovered during a certain number of operating
cycles. One of the requirements imposed on FMS is to give a fault-free output even
when the input is faulty. Hence, while operating in the Recover state, FMS returns the

�������¡ �¢?�
£�¤�¤�¥ ¦ §�¨ª©«¦ ¬�

£o§¡©«­�¨®© �¢?�
¯° �� © ¢± ¥ ¥ ��¢

²´³�µ

¶�·¹¸ º9»½¼

¾®¿ÁÀD·ÁÂ�¿½¸

Ã?Ä½Å½ÆÁÇ

Ã?Ä½Å½ÆÁÇ ÈªÉ;Ê

Ã?Ä½Å½ÆÁÇ È½Ë�Æ¡ÌDÅ¡¿¡ÀÍÇÎ¿ÁÏ

Ã?Ä½Å½ÆÁÇ ÈªÐª·¹Ä¡ÑÎÒ ¸ ºA¿¡Ï
Ã?Ä½Å½ÆÁÇ È®¾®¿ÁÀÓ·ÓÂ�¿¹¸ ¿¡Ï
Ã?Ä½Å½ÆÁÇ È¹Ë®Æ¡ÌÔÅ¡¿¡ÀÍÇ ¿¡Ï

 Õ »�Ò ¼ ¿¡Ï

Ö

last good value of the input obtained before entering the state Recover. Once a
temporary action is triggered, it will keep the system in the state Recover as long as the
status of the input coming from the environment is suspected. The counting mechanism
determines whether the input gets recovered. If this is the case, the system changes its
state from Recover to Normal.
 Confirmation. If the system has been operating in the state Recover and the input
fails to recover then the counting mechanism triggers the confirmation action. The input
is confirmed failed and the system changes the operating state to Failed. After this the
system proceeds with the control actions defined for the state Failed.
 Next we describe error detection mechanism in detail.
 ×�Ø´×ÚÙ�ÛOÛAÜZÛÞÝ�ß�àáß�â�àäã¡ÜZå

The detection mechanism is the most important part of FMS. Its role is to determine
whether the input is faulty or fault-free. In Fig. 3 we propose the architecture of the
detection mechanism.

æ¬çÁè«éÍê

ëíì°î�ï�ðDñoîoð9ï°òíó¡îcôªóõî�ö�îc÷¬ø´ó¡ù ï�ú

…

…

û®ü ýAþ¹ÿ ç9éÎç¡èQé è

æ�ç¡èQé �
æ�ç¡è«é �

æ�çÁè«é ��� ê
…

æ�ç¡è«é ��� �
æ�ç¡è«é �

æ�ç¡è«é � � ê
…

æ�çÁè«é � � �
æ�çÁè«é ���	�

��¹ý þ½ÿ ç�
 é ç�è«é è�� ü é��ÿ ç��½ç ÿ��������ªýAþ¹ÿ ç�
 ü é �Oê
��¹ý þ½ÿ ç�
AéÎçÁè«é è�� ü é��ÿ ç��¡ç ÿ��������ªýAþ¹ÿ ç�
 ü é ���

Fig. 3. Detection mechanism architecture

 For each input we should define the corresponding tests required to detect whether
that particular input is faulty. The detection procedure in FMS is based on applying the
tests in the order defined by its architecture. The tests may vary depending on the
application domain. For instance, the most commonly used tests on analogue signals in
the avionics field are the magnitude test, the rate test and the predicted values test.
 We differentiate between different kinds of tests. The basic category is a simple test.
An input signal may pass through several simple tests, which can be applied in any
order. When triggered, a simple test runs based solely on the input reading from the
sensor. After the test is executed, it is marked as passed for the current input, which in
turn may trigger the execution of some other test.
 The second test category is complex test with the level of complexity 1. The
execution of this kind of test depends on the execution of several simple tests. Input
may go through several complex tests of this level. Tests can be executed in random
order. However, in order to perform complex tests over a certain input, the system
should first execute all required simple tests for that particular complex test as shown in
Fig. 3.
 In general, there might be N test categories, where the last test category is the
complex test with the level of complexity N. The execution of this kind of test depends

not only on the previous execution of simple tests, but also on the execution of the
complex tests with the level of complexity up to N-1. If the input requires several tests
of this kind, then they are executed in random order. However, all the tests of the lower
levels of complexity should be already passed. Hence, detection operates in stages, first
executing all simple tests associated with the certain input and then all complex tests
with ascending complexity levels as shown in Fig. 3.
 In general, sensors can be classified as continuous (digital or analogue) and binary
(switches). Hence, inputs to FMS can be represented as numerical or Boolean values
correspondingly. For both types the detection template holds in general, but different
tests can be applied on each of them.
 After executing all required tests on a particular input, FMS analyses the results and
finally classifies the input as faulty or fault-free.
 ! "$#&%('*),+.-(/0/214365
The actions of FMS described in Fig. 2 and the detection template presented on Fig. 3
constitute the generic FMS structure and behaviour pattern as summarized in Fig. 4.

7�8�9;:�<>= ?;9;@ < A B :;C�9�< D

B :�C�9�<�E D = ?�9�@ <�= F G�G
B :�C;9�<HE D = ?;9;@ < A

I G�< G�JK< E 8�:

B :�C�9�<HE D = ?�9�@ <�= F G�G

B :�C�9�<HE D DL9�DLC�G�JM< G�N

B :;C�9�<OE D = ?�9;@ < A

B :�C;9�<�E D JK8P:�= E F QRG�NS= ?�E @ G�N

T :�U E F 8P:;Q�G;:�<
V 8PF Q�?�@ W G�JM8�U G�F

X F G�G�YKG

Z[9�< C;9�<�@ ?�D\<] 8�8�N^U�?�@ 9�G
 Z[9�< C;9�< E :�C;9�<�U�?;@ 9�G

_ G�?�@ < `�A�?�JM<�E 8P: a G�Q^C�8�F ?�F A�?�JM< E 8;:
7�8�:�= E F Q�?�< E 8�:R?�JK< E 8P:

_ G�?P@ < `LAR?�JM<�E 8P:

Fig. 4. FMS pattern

 The figure shows the flow of the detection decisions and effect of remedial actions
after the inputs are received from the system environment. Note that now three main
FMS states (Normal, Recover and Failed) are connected with the input status. The
additional component – the counting mechanism (described in detail later) – is
introduced to distinguish between recoverable and unrecoverable transient faults. As a
result, the system switches to the state Normal after the input has recovered or stays in
the state Recover if the input is still suspected. The system enters a Failed state if the
input failed to recover.
 The given pattern can be applied in the controlling software product line [10] for
creating a collection of similar control systems fault tolerant against transient faults, as

b;cHd�e�f gOfLh>fLeOikj l;mHc�nLo p�qkr>skn\hOo t r�s
uKv;w x y�z

b�c[d�e�f gOfLh�f�eOi{j i�eOi�d�r�l;fKr�sb;cHd�e�f gOfLh�f�eOi{j|mH}

~

proposed in [9]. Although this pattern is created for one single sensor, it can be reused
for handling N multiple sensors as well. However, when handling N multiple sensors, a
system failure state might be executed when several or all sensors have failed. This
system failure state corresponds to a frozen state or selection of a backup controller
when the system becomes sufficiently degraded to be unsafe.
 Next we give a short introduction into the B Method.
 � � �����������������������	����� �R��������� ���4�������
In this paper we have chosen the B Method [5,6] as our formal modelling framework.
The B Method is an approach for the industrial development of highly dependable
software that has been successfully used in the development of several complex real-life
applications [11]. The tool support available for B provides us with the assistance for
the entire development process with a high degree of automation in verifying
correctness. For instance, Atelier B [7], one of the tools supporting the B Method, has
facilities for automatic verification and code generation as well as documentation,
project management and prototyping. The high degree of automation in verifying
correctness improves scalability of B, speeds up development and, also, requires less
mathematical training from the users.
 In B, a specification is represented by a module or a set of modules, called Abstract
Machines. The common pseudo-programming notation, called Abstract Machine
Notation (AMN), is used to construct and formally verify them. An abstract machine
encapsulates a state and operations of the specification and has the following general
form:

MACHINE name
SETS Set
VARIABLES v
INITIALISATION Init
INVARIANT I

 OPERATIONS Op

 Each machine is uniquely identified by its name. The state variables of the machine
are declared in the VARIABLES clause and initialized in the INITIALISATION clause.
The variables in B are strongly typed by constraining predicates of the INVARIANT
clause. The constraining predicates are conjoint by conjunction (denoted as &). All types
in B are represented by non-empty sets and hence set membership (denoted as :)
expresses typing constraint for a variable, e.g., x:TYPE. Local types can be introduced
by enumerating the elements of the type, e.g., TYPE = {element1, element2,…}
in the SETS clause. The operations of the machine are atomic and they are defined in
OPERATIONS clause. To describe the computation in operations we use the B
statements listed in the Table 1.
 In this paper we adopt the event-based approach to system modelling [12]. The
events are specified as the guarded operations of the form:

Event = SELECT cond THEN body END

�

Here cond is a state predicate, and body is a B statement describing how the state
variables are affected by the operation. If cond is satisfied, the behaviour of the guarded
operation corresponds to the execution of its body. If cond is false at the current state
then the operation is disabled, i.e., cannot be executed. The event-based modelling is
especially suitable for describing reactive systems, typical examples of which are the
control systems. Then a SELECT operation describes the reaction of the system when
particular event occurs.

Table 1. List of B statements used in our operations

Statement Informal meaning
x := e Assignment
x, y := e1, e2 Multiple assignment
IF P THEN S1 ELSE S2 END If P is true then execute S1, otherwise S2
S1 ; S2 Sequential composition
S1 || S2 Parallel execution of S1 and S2

x :: T
Nondeterministic assignment – assigns
variable x arbitrary value from given set T

ANY x WHERE Q THEN S END
Nondeterministic block – introduces a new
local variable x according to the predicate
Q, which is then used in S

CHOICE S OR T OR … OR U END
Nondeterministic choice – one of the
statements S, T… U is arbitrarily chosen
for execution

 B also provides structuring mechanisms for modularization, which allows us to
express machines as compositions of other machines. For instance, if in the
specification of machine M1 we define that M1 SEES M2, where M2 is another machine,
then the sets, the constants and the state of M2 are available to M1 for the use in its own
initialization and within preconditions and the bodies of operations. In particular, this
allows us to define widely used sets and constants in a separate machine and then make
it “seen” by all other machines where these sets and constants are needed.
 The development methodology adopted by B is based on stepwise refinement [13].
The result of a refinement step in B is a machine called REFINEMENT. Its structure
coincides with the structure of the abstract machine. The refined machine contains an
additional clause REFINES, which directly refers to the machine refined by the current
machine. Moreover, besides typing of variables, the invariant of the refinement machine
includes the refinement relation (linking invariant) that describes the connection
between the state spaces of more abstract and refined machines.
 Sometimes, both in MACHINE and REFINEMENT, it is useful to introduce user’s own
definitions as abbreviations for certain complex expressions. This can be formulated in
the DEFINITION clause.
 To ensure correctness of a specification or a refinement, we should verify that
initialization and each operation preserve the machine invariant. Verification can be
completely automatic or user-assisted. In the former case, the tool generates the required
proof obligations and discards them without user’s help. In the latter case, the user
proves certain proof obligations using the interactive prover provided by the tool.

 Next we demonstrate how to formally specify a failure management system
described in the previous section.
 ¡ ¢ £�¤�¥�¦�§�¨�©«ª4¬�ª­¨�¤¯®­¦°ª�±³²*¤µ´¶£4·¹¸
º¯»½¼¿¾(À*ÁÂÁ�ÃÅÄ�ÆÈÇ�ÉÊÇ;Æ�Ë(ÌÍÇ�Î³ÏÑÐÒË(Ì0Ì6ÄÔÓÕÏ
Control systems are usually cyclic, i.e., their behaviour is essentially interleaving
between environment stimuli and the controller reaction on these stimuli. The controller
reaction depends on whether FMS has detected error in the obtained inputs (i.e.,
stimuli). Hence, it is natural to consider the behaviour of FMS in the context of the
overall system.
 The abstract specification pattern given in Fig. 5 is obtained from the informal FMS
description represented graphically in Fig. 4. The abstract specification defines the
behaviour of FMS during one operating cycle. The stages of such a cycle are modelled
using the variable FMS_State. The type STATES of FMS_State is defined in the
machine Global, as follows:

STATES = {env, det, detloop, anl, anlloop, act, out, stop};

where the values of FMS_State define the phases of FMS execution in the following
way:

• env – obtaining inputs from the environment,
• detloop and det – performing tests on inputs and detecting erroneous inputs,
• anlloop and anl – deciding upon the input status,
• act – setting the appropriate remedial actions,
• out – sending output to the controller either by simple forwarding of the

obtained input or by calculating the output based on the last good values of
inputs,

• stop – freezing the system.

 The variable FMS_State models the evolution of the system behaviour in the
operating cycle. At the end of the operating cycle the system finally reaches either the
terminating (freezing) state or produces a fault-free output. In the latter case, the
operating cycle starts again.
 In our abstract specification the input values produced by the environment (i.e.,
sensor data) are assigned nondeterministically in the operation Environment. The
input values produced by the sensors are modelled by the variable InputN. The
variable represents the readings of N multiple sensors.
 After obtaining the sensor readings from the environment, FMS changes its state to
Detection. In the abstract specification we omit detailed representation of the error
detection and model only its result, which is assigned to the variable
Input_In_ErrorN. Its value is TRUE if the error is detected on the sensor reading on
particular input and FALSE otherwise.

Ö

 After the detection, FMS enters the Analysis state. Based on the results obtained at
the previous state FMS decides upon the status of an input – fault-free, suspected or
confirmed. The variable Input_StatusN is an array that for each of N inputs contains
a value of the type

I_STATUS = {ok, suspected, confirmed_failed};

representing the status of this input. The nondeterministic assignment to
Input_StatusN is bounded by the following condition: namely, if the input is not in
error, its status can be either ok or suspected. If the input is in error, the assigned
status is either suspected or confirmed_failed. The assignment is then written as:

Input_StatusN :∈ { ff | ff∈ Indx → I_STATUS ∧
 ∀ee.(ee∈Indx ∧ Input_In_ErrorN(ee)=FALSE × ff(ee)∈{ok,suspected}) ∧
 ∀ee.(ee∈Indx ∧ Input_In_ErrorN(ee)=TRUE × ff(ee)∈{suspected,confirmed_failed}) }

 Upon completing analysis, FMS applies the corresponding remedial action. A
healthy action is executed if the input is fault-free; a temporary action if the input is
suspected, and a confirmation action if the input is confirmed failed. While performing
a healthy action, FMS forwards its input to the system controller. Then the operating
cycle starts again. As a result of a temporary action FMS calculates the output based on
the information about the last good input value. After this the operating cycle starts
again. If FMS cannot properly function after the input has failed, the system goes into
the freezing state. Otherwise, it removes the input which has been confirmed failed from
further observations. In the latter case, the output is calculated based on the last good
input value (similarly as in a temporary action).
 Since the controller of the system relies only on the input it obtains from FMS, in our
safety invariant we express error confining conditions:

Safety Invariant ==
 ((FMS_State=act × ∀(ee).(ee∈Indx∧ Input_In_ErrorN(ee)=FALSE ×

Input_StatusN(ee)∈{ok,suspected})) ∧

 (FMS_State=act × ∀(ee).(ee∈Indx ∧ Input_In_ErrorN(ee)=TRUE ×

Input_StatusN(ee)∈{suspected,confirmed_failed})) ∧

 (Indx=∅ × FMS_State=stop))

Here Indx is a set of ok or suspected inputs. The first predicate states that whenever
FMS is in the state act and some input ee is detected fault-free, the value assigned to
the variable Input_StatusN is either ok or suspected. The second predicate
expresses similarly that, whenever FMS is in the state act and the error is detected for
some input ee, the value assigned to the variable Input_StatusN is either
suspected or confirmed_failed. Finally, the last predicate states that whenever
the variable Indx is empty, which means that all the inputs have failed, FMS_State
becomes stop (i.e., the system goes into the freezing state).

Ø

MACHINE FMS
SEES Global
VARIABLES Indx, InputN, Input_StatusN, Input_In_ErrorN, Last_Good_InputN, Output, FMS_State
INVARIANT

… ∧ <safety invariant>
INITIALISATION

…
OPERATIONS

Environment=
SELECT FMS_State=env
THEN
 InputN Ù ∈ Indx → T_INPUT || FMS_State := det
END;

Detection=
SELECT FMS_State=det
THEN
 Input_In_ErrorN Ù ∈ Indx → BOOL || FMS_State := anl
END;

Analysis=
SELECT FMS_State=anl
THEN
 Input_StatusN Ù ∈ {ff | ff∈ Indx → I_STATUS ∧
 ∀ee.(ee∈Indx ∧ Input_In_ErrorN(ee)=FALSE Ú ff(ee)∈{ok,suspected}) ∧

∀ee.(ee∈Indx ∧ Input_In_ErrorN(ee)=TRUE Ú
 ff(ee)∈{suspected,confirmed_failed}) } || FMS_State := act
END;

Action=
SELECT FMS_State=act ∧ confirmed_failed ∈ ran(Input_StatusN)
THEN
 CHOICE
 <remove the inputs which are confirmed failed from further observation> ||
 FMS_State:=out
 OR FMS_State:=stop
 END
WHEN
 FMS_State=act ∧ confirmed_failed ∉ ran(Input_StatusN)
THEN
 FMS_State:=out
END;

Return=
SELECT FMS_State=out
THEN
 <save the values of healthy inputs in Last_Good_InputN and set outputs to

 inputs value for healthy inputs and to last good values for non-healthy inputs> ||
FMS_State:=env

END;

Freeze=
SELECT FMS_State=stop
THEN
 skip
END
END

Fig. 5. Excerpt from the abstract FMS specification pattern

Û2Ü

 Our initial specification of FMS abstractly describes the intended behaviour of FMS.
However, it leaves the mechanism of detecting errors and the analysis of inputs
underspecified. Next we demonstrate how to fill in these details by refinement.
 Ý Þàßâá³ã(äÊåOæçå�æéè&êÍæÔëíìÒî�ï«æéð4ñLòçóÈå�ó¹å�æ�ô(õ÷ö
In our first refinement step we introduce a detailed specification of the input analysis
procedure.

REFINEMENT FMSR1
REFINES FMS
VARIABLES

… Input_StatusN1, Processed
INVARIANT
 /* linking invariant */
(∀ee.(ee∈Indx ∧ Processed(ee)=TRUE ∧ Input_In_ErrorN(ee)=TRUE ø

Input_StatusN1(ee)∈{suspected,confirmed_failed})) ∧
(∀ee.(ee∈Indx ∧ Processed(ee)=TRUE ∧ Input_In_ErrorN(ee)=FALSE ø

Input_StatusN1(ee)∈{ok,suspected})) ∧ ù
OPERATIONS

Environment=…
Detection=…

AnalysisLoop=
SELECT FMS_State=anlloop
THEN
 ANY ii WHERE ii∈Indx ∧ Processed(ii)=FALSE

THEN
 <decide upon the value of Input_StatusN1 depending on
 the previous status Input_StatusN and the information if

 the error is detected Input_In_ErrorN> ||
 Processed(ii):=TRUE

 END;
 IF ran(Processed)={TRUE} THEN FMS_State:=anl ELSE FMS_State:=anlloop END
END;

Analysis=
SELECT FMS_State=anl
THEN
 Input_StatusN := Input_StatusN1 || FMS_State:=act
END;

Action=…
Return=…
Freeze=…

END

Fig. 6. First FMS refinement – specifying input analysis

úûú

 In the initial FMS specification the input analysis was modelled by the
nondeterministic assignment to the variable Input_StatusN in the operation

Analysis. In the refined specification we calculate the current value of the input status
based on the value of Input_In_ErrorN and the value of input status obtained at the
previous cycle of FMS. Namely, if the analysed input was ok (fault-free), after the error
is detected it becomes suspected (faulty). If the input was already suspected and
the error is detected again, it can either stay suspected or become
confirmed_failed. This information is used to construct the linking invariant as
shown in Fig. 6. In this refinement step we add the new operation AnalysisLoop. The
operation gradually performs input analysis, considering inputs one by one until all the
inputs are processed. The information about the input status is correspondingly
accumulated in the variable Input_StatusN1. After the AnalysisLoop is
completed, the value of Input_StatusN1 is assigned to Input_StatusN in the
operation Analysis.

REFINEMENT FMSR2
REFINES FMSR1
VARIABLES … cc, num
OPERATIONS

Environment=…
Detection=…
AnalysisLoop=
 SELECT FMS_State=anlloop
 THEN
 ANY ii WHERE ii∈Indx ∧ Processed(ii)=FALSE …
 THEN
 IF Input_In_ErrorN(ii)=FALSE
 THEN
 IF Input_StatusN(ii)=suspected
 THEN <decrement ccii by yy>; <increment the numii >;
 IF <numii is less then defined Limit and
 ccii reached zero>
 THEN <input is recovered>; <reset numii>
 END
 END
 ELSE
 <increment ccii by xx>; <increment the numii>;
 IF <numii is equal to or greater then Limit or ccii reached zz>
 THEN <input is confirmed failed>
 ELSE <input is suspected>
 END
 END || …
 END;
Analysis=…
Action=…
Return=…
Freeze=…

END

Fig. 7. Second FMS refinement – specifying error recovery

ü6ý

 Our second refinement step (Fig. 7) aims at introducing a detailed procedure for
determining the input status in the operation AnalysisLoop. The procedure is based
on using a customisable counting mechanism which re-evaluate the status of a particular
input at each cycle.
 For each of N inputs, we introduce counters cci(i∈1..N), which contain
accumulated values determining how trustworthy a particular input i is. If cci=0 then
the input i is ok. If 0<cci<zz, where zz is some predefined value, then the input i is
suspected. Otherwise, the input i is considered failed.
 At every cycle the counters cci are re-evaluated depending on the detection results.
Each input i that was found in error increments the counter cci by a certain predefined
value xx. Similarly, if the input i was found not in error by the detection procedure, the
corresponding counter cci is decremented by another predefined value yy.
 If at some point the value of cci reaches 0, the input i is declared ok. Similarly, if
the value of cci exceeds zz, the input i is declared confirmed_failed and should be
removed from the set of inputs used by FMS.
 The predefined values zz, xx and yy are set after observing the real performance of
FMS. By setting the value of xx higher then the value of yy, the counter cc is biased
towards failure. However, such a specification is insufficient for guaranteeing
termination of recovery. Observe that the input may behave in such a way that the
counter cc is practically oscillating between some values but never reaches the limit zz
or zero. To overcome this problem we introduce the second counter numi(i∈1..N),
which counts the number of consequent recovering cycles on each suspected input (i.e.,
when 0<cci<zz). When a certain limit for numi is exceeded, the recovery terminates
and, if cci is different from zero, the input is confirmed failed.
 þ ÿ��������	��
��

����������������������������
!��
#"%$'&

We continue the development of FMS by refining the error detection procedure. This
third refinement step aims at introducing the architecture of tests which are then used by
the refined error detection procedure.
 The nondeterministic assignment to the variable Input_In_ErrorN in the abstract
Detection operation specifies only that each of N inputs can be either faulty or fault-
free. This assignment is refined in the third refinement step by introducing evaluation
tests, which are applied to all inputs to determine whether they are in error or not.

 () * + ,- . /10 2 , () * + ,- . /10 2 ,
354 6 376 398 : 2 (378 : 2) 378 : 2 ,+ 354 6 376 378 : 2 (398 : 2)

378 : 2 ,+
378 : 2 *378 : 2)
378 : 2 ;+

378 : 2 <378 : 2 =
378 : 2 >++

Fig. 8. Defining tests for homogeneous and heterogeneous multiple sensors

 a) b)

?A@

 Since we observe homogeneous multiple sensors measuring the same physical
process in the environment, for each of N sensor readings the same series of tests can be
applied (Fig. 8a). The pattern for heterogeneous multiple sensors could easily be
adapted from the one presented here and it would require defining tests for each one of
the N sensor readings separately, as shown in Fig. 8b.
 The architecture of tests used for error detection follows the idea of test dependencies
presented in Section 2.2. The set of all tests (modelled by deferred set TESTS) is
partitioned into two subsets:

S_TEST ⊆ TESTS ∧ C_TEST ⊆ TESTS

where S_TEST is the set of all simple tests and C_TEST is the set of complex tests.
Moreover, since each complex test depends on some simple tests, we define this
dependency as the following constant function:

ComplexTest ∈ C_TEST → POW(S_TEST)

 To model the error detection, we add the new operation DetectionLoop. The
operation guard, as given below, defines which tests are actually enabled for execution.
We introduce the relation TestExecuted which contains only those pairs (ii,te),
where ii is the input and te is the test, such that input ii is tested by the test te.

DetectionLoop=
ANY ii,te WHERE FMS_State=detloop ∧ ii∈Indx ∧ te∈TESTS ∧ (ii,te)∉TestExecuted ∧
 Input_In_ErrorN1(ii)=FALSE ∧
 (te∈C_TEST B ∀mm.(mm∈ComplexTest(te) B (ii,mm)∈TestExecuted))
THEN
 CHOICE TestPassed:=TestPassed ∪{ii C te} OR skip END;
 IF (ii,te)∉TestPassed

THEN
 Input_In_ErrorN1(ii):=TRUE ||
 <all the tests associated with the input ii are marked as executed,
 i.e., after the input has failed no more tests on that input are executed>
 ELSE <the test te for the input ii is marked as executed>
 END || FMS_State : ∈ {detloop, det};
END

This operation guard implements the following requirements imposed on evaluating
tests:

[req1] each test can be executed at most once on a certain input, i.e., for some input
ii and test te predicate (ii,te)∉TestExecuted should hold;

[req2] if the test is complex, then all the simple tests it depends on have to be
already executed, i.e., predicate
(te∈C_TEST D ∀mm.(mm∈ComplexTest(te) D (ii,mm)∈TestExecuted))
should hold and

[req3] if some input has failed, i.e., the error on input is detected, then no more tests
on that input should be applied, or formally, only tests for which the
predicate Input_In_ErrorN1(ii)=FALSE holds, are chosen for execution.

E�F

 After executing the chosen test, we model the result of this execution as a variable
TestPassed, which keeps all successfully passed tests on particular input. This value
is afterwards checked and if the test on the input failed, the input is found in error.
 Similarly as in the operation AnalysesLoop, DetectionLoop performs error
detection on inputs one by one. The information about the inputs in error is
correspondingly accumulated in the variable Input_In_ErrorN1. After the
DetectionLoop is completed, the value of Input_In_ErrorN1 is assigned to
Input_In_ErrorN.
 The invariant of this third refinement step guarantees that if any of the tests applied
on a certain input failed, then the input is considered in error:

 (∀(ii,te).(ii∈Indx ∧ te∈TESTS ∧ (ii,te)∈TestExecuted ∧ (ii,te)∉TestPassed G

Input_In_ErrorN1(ii)=TRUE))

In other words, in order for some input to be error free, it should successfully pass all
the required tests.
 The process of error detection can be graphically represented as shown in Fig. 9.

Fig. 9. Process of deciding upon the error detection

 The mechanism of error detection can be further refined. Namely, which tests are
enabled for execution depends not only on the requirements listed in req1-3 but also on
some additional conditions on the required test frequencies and the internal state of the
system:

[req4] every test is executed with a certain frequency; The test frequency can be
different for different tests;

[req5] in order for some complex test to be executed, its frequency has to be
divisible by the frequencies of all the simple tests required for its execution;
This requirement is necessary in order to ensure the application of all
required tests on the same data;

[req6] the execution of each test may depend on the current internal state of the
system;

 We introduce the constant function Freq: TESTS --> NAT which defines the
frequency for each test. The state of the system is modelled as a variable State, whose
values are assigned from the set STATE.
 With the new requirements in mind, we develop the fourth FMS refinement step. In
order to apply tests according to the given frequencies, we introduce time scheduling.
There is one global clock guaranteeing that the tests with the same frequency are

HJILKNMPOQMSR

HQIQK M TU R9V9W1X T
Y5Z1[X\H

]]
^

Y_Z1[X IY5Z1[X_O
Y5Z1[X ` a1[[Z1b]

Y_Z1[XcH
Y5Z1[X_O
^]

]U R9V9W1X d7U R dfe g g hig T HJILK M T

Y_Z1[X_I

j�k

executed at the same time instances. We model the real time by introducing the event
TickTime which increments the current Time whenever the event is enabled. In
addition, the operation TickTime models possible change of the internal system state
by nondeterministically updating the variable State.

 TickTime=
 SELECT Clock_Flag=enabled
 THEN
 Time:=Time+1 || State l ∈ STATE;
 IF Exist_Test_For_Execution THEN Clock_Flag:=disabled END
 END;

 The progress of time is allowed in two situations:
- when one FMS operation cycle finishes and before the next one starts, or
- when there are no tests enabled for execution under given conditions.

 In that case we allow time to progress and possibly update the internal system state
until some tests become enabled.
 The conditions under which the tests are enabled combine some condition on the
internal state (modelled by the abstract function Cond) and checking the required
frequency:

CONDITION(tt,ti,st)==(Cond(tt,st)=TRUE ∧ (ti mod Freq(tt)=0));

The above definition expresses that a particular test tt is enabled for execution at the
time ti and at the system state st. With this definition we strengthen the guard of the
operation DetectionLoop so that it implements requirements req4-6:

DetectionLoop=
ANY ii,te WHERE FMS_State=detloop ∧ ii∈Indx ∧ te∈TESTS ∧ (ii,te)∉TestExecuted ∧

 Input_In_ErrorN1(ii)=FALSE ∧
(te∈C_TEST m ∀mm.(mm∈ComplexTest(te) m

 (ii,mm)∈TestExecuted ∧ (Freq(te) mod Freq(mm)=0))) ∧
 CONDITION(te,Time,State)

THEN
 … || IF StopCond THEN FMS_State:=det END
END;

 The termination of the detection procedure in the operation DetectionLoop is
accomplished by explicitly checking the defined stopping condition, which becomes
true only when all required tests for all inputs have been executed:

StopCond==
(∀(ii,te).(ii∈Indx ∧ te∈TESTS ∧ CONDITION(te,Time,State) n (ii,te)∈TestExecuted))

 We can summarize our formal development of FMS as follows. We start with a
simple specification of the system together with its environment, which abstractly
models the necessary stages of FMS execution (input reading, detection, input
analysis,…). The first two refinements focus on introducing a detailed procedure for
analyzing inputs and determining their current status in the system. The next refinement

o�p

step introduces the architecture of tests to be used by the refined error detection
procedure. Finally, the last refinement elaborates on error detection by modelling the
required time scheduling of the tests. The specification of the full development can be
found in the Appendix.
 q
r sut�vxwzy|{~}���t�v

In this paper we proposed a formal pattern for specifying and refining a part of the
safety-critical control system – the Failure Management System. Our formal
development of FMS aims at specifying and refining, firstly, the analysis of inputs by
introducing a customisable counting mechanism and, secondly, error detection
procedure on N multiple homogeneous sensors based on applying a certain architecture
of tests. Moreover, in order to assure application of tests on the same data, i.e., data
collected at the same time instances, we introduced test scheduling. The test scheduling
is implemented by introducing one global clock and enabling the progression of time
only when the whole FMS operating cycle finishes or when there are no enabled tests
for execution. In this way, we prevent the deadlock which might occur while executing
the detection operation.
 Laibinis and Troubitsyna have proposed a formal approach to model-driven
development of fault tolerant control systems in B [14]. However, they did not consider
transient faults. Since we consider this type of faults our approach is an extension of the
pattern proposed in their work.
 Formal development of FMS has also been undertaken in [3,9]. This work is focused
on reusability and portability of FMS modelled using UML-B [15]. However, the
dependencies between tests are not explicitly addressed. The error detection mechanism
we proposed is based on a hierarchical test architecture allowing us to tackle the input
anomalies more efficiently.
 A similar goal – design of software-implemented fault tolerance – was studied in
[16,17,18]. This work focused on studying how to modify software at the code level to
achieve fault tolerance. Our approach is complementary: we aimed at studying how to
specify and develop software with fault tolerance mechanism integrated into it.
 We verified our complete development with the automatic tool support – Atelier B.
Around 70% of proof obligations have been proved automatically by the tool. The rest
have been proved using the interactive prover.
 The proposed FMS refinement pattern gives a template for the instantiation of a
domain-specific reliable FMS. Hence, as a future work it would be interesting to study
the instantiation of the developed pattern with realistic data on concrete multiple
homogeneous sensors. Also, the pattern can be modified to handle multiple
heterogeneous sensors and their instantiation.
 �
wz�xv~tx��y��x��������v���}

This work is supported by EU funded research project IST 511599 RODIN (Rigorous
Open Development Environment for Complex Systems).

���

�������������~���~�

[1] Laprie, J.-C., Dependability: Basic Concepts and Terminology, Springer-Verlag,

Vienna, 1991
[2] Storey, N., Safety-critical computer systems, Addison-Wesley, 1996
[3] Johnson, I., Snook, C., Edmunds, A., and Butler, M., “Rigorous development of

reusable, domain-specific components, for complex applications”, In Proceedings of 3rd
International Workshop on Critical Systems Development with UML, Lisbon, 2004, pp.
115-129

[4] Johnson, I., Snook, C., Rodin Project Case Study 2: Requirements Specification
Document, RODIN Deliverable D4 - Traceable Requirements Document for Case
Studies, Section 3, 2005, pp. 24-52

[5] Abrial, J.-R., The B Book: Assigning Programs to Meanings, Cambridge University
Press, 1996

[6] Schneider, S., The B Method. An introduction, Palgrave, 2001
[7] Atelier B - User Manual, Version 3.6, ClearSy, Aix-en-Provence, France, 2003
[8] RODIN web page: http://rodin.cs.ncl.ac.uk/index.htm
[9] Snook, C., Poppleton, M., and Johnson, I., “The engineering of generic requirements for

failure management”, In Proceedings of 11th International Workshop on Requirements
Engineering: Foundation for Software Quality, Oporto, 2005

[10] Bosch, J., Design and Use of Software Architectures: Adopting and Evolving a Product-
Line Approach, Addison-Wesley, 2000

[11] MATISSE Handbook for Correct Systems Construction, EU-project MATISSE:
Methodologies and Technologies for Industrial Strength Systems Engineering, IST-199-
11345, 2003

[12] Abrial, J.-R., Event Driven Sequential Program Construction, 2001,
http://www.atelierb.societe.com/ressources/articles/seq.pdf

[13] Back, R.J., and von Wright, J., Refinement Calculus: A Systematic Introduction,
Springer-Verlag, 1998

[14] Laibinis, L., and Troubitsyna, E., “Refinement of fault tolerant control systems in B”, In
ComputerSafety, Reliability, and Security - Proceedings of SAFECOMP 2004 Lecture
Notes in Computer Science, Num: 3219, Springer-Verlag, September 2004, pp. 254-268

[15] Snook, C., and Walden, M., “Use of U2B for specifying B action systems”, In
Proceedings of RCS’ 02 – International workshop on refinement of critical systems:
methods, tools and experience, Grenoble, France, 2002

[16] Rebaudengo, M., Reorda, M.S., Torchiano, M., and Violante, M., “A Source-to-Source
Compiler for Generating Dependable Software”, IEEE International Workshop on
Source Code Analysis and Manipulation, 2001, pp. 33–42

[17] Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., and August, D.I., “SWIFT:
Software Implemented Fault Tolerance”, Proceedings of the Third International
Symposium on Code Generation and Optimization, March 2005, pp. 243–254

[18] Oh, N., Mitra, S., and McCluskey, E.J., “ED4I: Error Detection by Diverse Data and
Duplicated Instructions”, IEEE Transactions on Computers, Vol.51, No.2, 2002, pp.
180–199

�	�

�S����� �~¡�¢¤£

MACHINE Global

SETS STATES = {env, det, detloop, anl, anlloop, act, out, stop};
 I_STATUS = {ok, suspected, confirmed_failed};
 PARAMETERS = {xx,yy,zz};
 TESTS;
 STATE;
 CLOCK_STATES = {enabled, disabled}

ABSTRACT_CONSTANTS
 T_INPUT, max_int, max_indx , Good_Input, Init_Output, Config, Limit,

S_TEST, C_TEST, ComplexTest, Cond, Freq

PROPERTIES
 T_INPUT ⊆ NAT ∧
 ∀nn.(nn∈NAT ¥ nn<2147483645) ∧
 max_int = 214748364 ∧
 max_indx ∈ NAT ∧ max_indx ≥2 ∧
 Good_Input ∈ T_INPUT ∧
 Init_Output ∈ T_INPUT ∧
 Config ∈ PARAMETERS → NAT ∧
 Config(zz)≥Config(xx) ∧ Config(xx)≥Config(yy) ∧ (Config(yy)∈0..1) ∧
 Limit ∈ NAT ∧
 S_TEST ⊆ TESTS ∧ C_TEST ⊆ TESTS ∧
 S_TEST ∩ C_TEST=∅ ∧ S_TEST ∪ C_TEST=TESTS ∧
 ComplexTest ∈ C_TEST → POW (S_TEST) ∧
 Cond : (TESTS × STATE) → BOOL ∧
 Freq ∈ TESTS → NAT

END

¦	§

MACHINE FMS

SEES Global

VARIABLES
 Indx, InputN, Input_StatusN, Input_In_ErrorN, Last_Good_InputN, Output, FMS_State

INVARIANT
 Indx ⊆ 1..max_indx ∧ InputN ∈ Indx → T_INPUT ∧
 Input_StatusN ∈ Indx → I_STATUS ∧ Input_In_ErrorN ∈ Indx → BOOL ∧
 Last_Good_InputN ∈ Indx → T_INPUT ∧ Output ∈ T_INPUT ∧ FMS_State ∈ STATES ∧
 (Indx=∅ ¨ FMS_State=stop) ∧

(FMS_State=act ¨ ∀(ee).(ee∈Indx ∧ Input_In_ErrorN(ee)=FALSE ¨
Input_StatusN(ee)∈{ok,suspected})) ∧

 (FMS_State=act ¨ ∀(ee).(ee∈Indx ∧ Input_In_ErrorN(ee)=TRUE ¨
Input_StatusN(ee)∈{suspected,confirmed_failed}))

INITIALISATION
 Indx := 1..max_indx ||
 InputN := (1..max_indx) × {Good_Input} ||
 Input_StatusN := (1..max_indx) × {ok} ||
 Input_In_ErrorN := (1..max_indx) × {FALSE} ||
 Last_Good_InputN := (1..max_indx) × {Good_Input} ||
 Output := Init_Output || FMS_State := env

OPERATIONS

Environment=
 SELECT FMS_State=env
 THEN
 InputN :∈ Indx → T_INPUT ||
 FMS_State := detloop
 END;

DetectionLoop=
 SELECT FMS_State=detloop
 THEN
 FMS_State :∈ {detloop, det}
 END;

Detection=
 SELECT FMS_State=det
 THEN
 Input_In_ErrorN :∈ Indx → BOOL ||
 FMS_State := anlloop
 END;

AnalysisLoop=
 SELECT FMS_State=anlloop
 THEN
 FMS_State :∈ {anlloop, anl}
 END;

©�ª

Analysis=
 SELECT FMS_State=anl
 THEN
 Input_StatusN :∈ {ff|ff∈ Indx → I_STATUS ∧

 ∀ee.(ee∈Indx ∧ Input_In_ErrorN(ee)=FALSE « ff(ee)∈{ok,suspected}) ∧
 ∀ee.(ee∈Indx ∧ Input_In_ErrorN(ee)=TRUE « ff(ee)∈{suspected,confirmed_failed}) } ||

 FMS_State := act
 END;

Action=
 SELECT FMS_State=act ∧ confirmed_failed ∈ ran(Input_StatusN)
 THEN CHOICE
 IF Input_StatusN-1[{ok,suspected}]≠∅
 THEN
 Indx := Input_StatusN-1[{ok,suspected}] ||
 InputN := Input_StatusN-1[{ok,suspected}] InputN ||
 Input_StatusN := Input_StatusN {ok,suspected} ||
 Input_In_ErrorN := Input_StatusN-1[{ok,suspected}] Input_In_ErrorN ||
 Last_Good_InputN := Input_StatusN-1[{ok,suspected}] Last_Good_InputN ||
 FMS_State:=out
 ELSE FMS_State:=stop

 END
 OR
 FMS_State:=stop
 END
 WHEN
 FMS_State=act ∧ confirmed_failed ∉ ran(Input_StatusN)
 THEN
 FMS_State:=out
 END;

Return=
 SELECT FMS_State=out
 THEN
 ANY in WHERE in=(Last_Good_InputN (Input_StatusN-1[{ok}] InputN))
 THEN
 Last_Good_InputN := in ||
 Output:∈ran(in)
 END ||
 Input_In_ErrorN := Indx × {FALSE} ||

 FMS_State:=env
 END;

TickTime=
 BEGIN
 skip
 END;

Freeze=
 SELECT FMS_State=stop
 THEN
 skip
 END
END

¬®­

REFINEMENT FMSR1

REFINES FMS

SEES Global

VARIABLES
 Indx, InputN, Input_StatusN, Input_StatusN1, Input_In_ErrorN, Last_Good_InputN,
 Output, FMS_State, Processed

INVARIANT
 Input_StatusN1 ∈ Indx → I_STATUS ∧
 Processed ∈ Indx → BOOL ∧

 (FMS_State ∈ {env, detloop, det} ∧ Indx≠∅ ¯ ran(Processed)={FALSE}) ∧
 (FMS_State ∈ {anl, act, out} ¯ ran(Processed)={TRUE}) ∧
 (FMS_State=det ¯ Indx≠∅) ∧

 (∀ee.(ee∈Indx ∧ Processed(ee)=TRUE ∧ Input_In_ErrorN(ee)=TRUE ¯

Input_StatusN1(ee)∈{suspected,confirmed_failed})) ∧

 (∀ee.(ee∈Indx ∧ Processed(ee)=TRUE ∧ Input_In_ErrorN(ee)=FALSE ¯

Input_StatusN1(ee)∈{ok,suspected})) ∧

 (FMS_State ∈ {act, out, env, detloop, det} ¯ Input_StatusN = Input_StatusN1) ∧
 (FMS_State ∈ {out, env, detloop, det} ¯ ran(Input_StatusN)⊆{ok,suspected}) ∧

 (∀ee.(ee∈Indx ∧ FMS_State=anlloop ∧ Processed(ee)=FALSE ¯

Input_StatusN(ee) = Input_StatusN1(ee))) ∧

 (∀ee.(ee∈Indx ∧ FMS_State=anlloop ∧ Processed(ee)=FALSE ¯

ran(Input_StatusN)⊆{ok,suspected}))

INITIALISATION
 Indx := 1..max_indx ||
 InputN := (1..max_indx) × {Good_Input} ||
 Input_StatusN := (1..max_indx) × {ok} || Input_StatusN1 := (1..max_indx) × {ok} ||
 Input_In_ErrorN := (1..max_indx) × {FALSE} ||
 Last_Good_InputN := (1..max_indx) × {Good_Input} ||
 Output := Init_Output || FMS_State := env ||
 Processed := (1..max_indx) × {FALSE}

OPERATIONS

Environment=
 SELECT FMS_State=env
 THEN
 InputN :∈ Indx → T_INPUT ||
 FMS_State := detloop
 END;

°±°

DetectionLoop=
 SELECT FMS_State=detloop
 THEN
 FMS_State :∈ {detloop, det}
 END;

Detection=
 SELECT FMS_State=det
 THEN
 Input_In_ErrorN :∈ Indx → BOOL ||
 FMS_State := anlloop
 END;

AnalysisLoop=
 SELECT FMS_State=anlloop
 THEN
 ANY ii WHERE ii∈Indx ∧ Processed(ii)=FALSE
 THEN
 IF Input_In_ErrorN(ii)=FALSE
 THEN
 IF Input_StatusN(ii)=suspected
 THEN
 ANY ch WHERE ch∈{ok,suspected}

THEN Input_StatusN1(ii):=ch END
 END
 ELSE
 ANY ch WHERE ch∈{suspected,confirmed_failed}

THEN Input_StatusN1(ii):=ch END
 END ||
 Processed(ii):=TRUE
 END;
 IF ran(Processed)={TRUE}

THEN FMS_State:=anl
ELSE FMS_State:=anlloop
END

 END;

Analysis=
 SELECT FMS_State=anl
 THEN
 Input_StatusN := Input_StatusN1 ||
 FMS_State:=act
 END;

Action=
 SELECT FMS_State=act ∧ confirmed_failed ∈ ran(Input_StatusN)
 THEN CHOICE
 IF Input_StatusN-1[{ok,suspected}]≠∅
 THEN
 Indx := Input_StatusN-1[{ok,suspected}] ||
 InputN := Input_StatusN-1[{ok,suspected}] InputN ||
 Input_StatusN := Input_StatusN {ok,suspected} ||
 Input_In_ErrorN := Input_StatusN-1[{ok,suspected}] Input_In_ErrorN ||

²±³

 Last_Good_InputN := Input_StatusN-1[{ok,suspected}] Last_Good_InputN ||
 Input_StatusN1:= Input_StatusN1 {ok,suspected} ||
 Processed:= Input_StatusN-1[{ok,suspected}] Processed ||
 FMS_State:=out
 ELSE FMS_State:=stop END
 OR
 FMS_State:=stop
 END
 WHEN
 FMS_State=act ∧ confirmed_failed ∉ ran(Input_StatusN)
 THEN
 FMS_State:=out
 END;

Return=
 SELECT FMS_State=out
 THEN
 Last_Good_InputN := Last_Good_InputN (Input_StatusN-1[{ok}] InputN);
 Output:∈ran(Last_Good_InputN) ||
 Input_In_ErrorN := Indx × {FALSE} ||
 Processed := Indx × {FALSE} ||
 FMS_State:=env
 END;

TickTime=
 BEGIN
 skip
 END;

Freeze=
 SELECT FMS_State=stop
 THEN
 skip
 END

END

´Aµ

REFINEMENT FMSR2

REFINES FMSR1

SEES Global

VARIABLES
 Indx, InputN, Input_StatusN, Input_StatusN1, Input_In_ErrorN, Last_Good_InputN,
 Output, FMS_State, Processed, cc, num

INVARIANT
 cc ∈ Indx NAT ∧ num ∈ Indx NAT

INITIALISATION
 Indx := 1..max_indx ||
 InputN := (1..max_indx) × {Good_Input} ||
 Input_StatusN := (1..max_indx) × {ok} || Input_StatusN1 := (1..max_indx) × {ok} ||
 Input_In_ErrorN := (1..max_indx) × {FALSE} ||
 Last_Good_InputN := (1..max_indx) × {Good_Input} ||
 Output := Init_Output || FMS_State := env ||
 Processed := (1..max_indx) × {FALSE} ||
 cc := (1..max_indx) × {0} || num := (1..max_indx) × {0}

OPERATIONS

Environment=
 SELECT FMS_State=env
 THEN
 InputN :∈ Indx → T_INPUT ||
 FMS_State := detloop
 END;

DetectionLoop=
 SELECT FMS_State=detloop
 THEN
 FMS_State :∈ {detloop, det}
 END;

Detection=
 SELECT FMS_State=det
 THEN
 Input_In_ErrorN :∈ Indx → BOOL ||
 FMS_State := anlloop
 END;

AnalysisLoop=
 SELECT FMS_State=anlloop
 THEN
 ANY ii WHERE ii∈Indx ∧ Processed(ii)=FALSE ∧ Config(yy)≤cc(ii) ∧

cc(ii)+Config(xx)≤max_int ∧ num(ii)+1≤max_int
 THEN
 IF Input_In_ErrorN(ii)=FALSE
 THEN

¶¸·

 IF Input_StatusN(ii)=suspected
 THEN
 cc(ii):=cc(ii)-Config(yy); num(ii):=num(ii)+1;
 IF (num(ii)<Limit ∧ cc(ii)=0)
 THEN Input_StatusN1(ii):=ok; num(ii):=0
 END
 END
 ELSE
 cc(ii):=cc(ii)+Config(xx); num(ii):=num(ii)+1;
 IF (num(ii)≥Limit ∨ cc(ii)≥Config(zz))
 THEN
 Input_StatusN1(ii):=confirmed_failed
 ELSE
 Input_StatusN1(ii):=suspected
 END
 END ||
 Processed(ii):=TRUE
 END;
 IF ran(Processed)={TRUE}

THEN FMS_State:=anl
ELSE FMS_State:=anlloop
END

 END;

Analysis=
 SELECT FMS_State=anl
 THEN
 Input_StatusN := Input_StatusN1 ||
 FMS_State:=act
 END;

Action=
 SELECT FMS_State=act ∧ confirmed_failed ∈ ran(Input_StatusN)
 THEN CHOICE
 IF Input_StatusN-1[{ok,suspected}]≠∅
 THEN
 Indx := Input_StatusN-1[{ok,suspected}] ||
 InputN := Input_StatusN-1[{ok,suspected}] InputN ||
 Input_StatusN := Input_StatusN {ok,suspected} ||
 Input_In_ErrorN := Input_StatusN-1[{ok,suspected}] Input_In_ErrorN ||
 Last_Good_InputN := Input_StatusN-1[{ok,suspected}] Last_Good_InputN ||
 Input_StatusN1:= Input_StatusN1 {ok,suspected} ||
 Processed:= Input_StatusN-1[{ok,suspected}] Processed ||
 cc:= Input_StatusN-1[{ok,suspected}] cc ||
 num:= Input_StatusN-1[{ok,suspected}] num ||
 FMS_State:=out
 ELSE FMS_State:=stop
 END
 OR
 FMS_State:=stop
 END

¹�º

WHEN
 FMS_State=act ∧ confirmed_failed ∉ ran(Input_StatusN)
 THEN
 FMS_State:=out
 END;

Return=
 SELECT FMS_State=out
 THEN

Last_Good_InputN := Last_Good_InputN (Input_StatusN-1[{ok}] InputN);
 Output:∈ran(Last_Good_InputN) ||
 Input_In_ErrorN := Indx × {FALSE} ||
 Processed := Indx × {FALSE} ||
 FMS_State:=env
 END;

TickTime=
 BEGIN
 skip
 END;

Freeze=
 SELECT FMS_State=stop
 THEN
 skip
 END

END

»�¼

REFINEMENT FMSR3

REFINES FMSR2

SEES Global

VARIABLES
 Indx, InputN, Input_StatusN, Input_StatusN1, Input_In_ErrorN, Input_In_ErrorN1,
 Last_Good_InputN, Output, FMS_State, Processed, cc, num,
 TestExecuted, TestPassed

INVARIANT
 Input_In_ErrorN1 ∈ Indx → BOOL ∧
 TestExecuted ∈ Indx ↔ TESTS ∧
 TestPassed ∈ Indx ↔ TESTS ∧

 (FMS_State=env ½ ran(Input_In_ErrorN1)={FALSE}) ∧

 (∀(ii,te).(ii∈Indx ∧ te∈TESTS ∧ (ii,te)∈TestExecuted ∧ (ii,te)∉TestPassed ½

Input_In_ErrorN1(ii)=TRUE)) ∧

 (∀(ii,te).(ii∈Indx ∧ te∈TESTS ∧ (ii,te)∉TestExecuted ½ (ii,te)∉TestPassed)) ∧

 (∀ee.(ee∈Indx ∧ ee∈Input_StatusN-1[{ok,suspected}] ½

ee∉Input_StatusN-1[{confirmed_failed}]))

I_STATUS = { ok, suspected, confirmed_failed } ∧

(∀(ii,te).(ii∈Indx ∧ te∈TESTS ∧ (ii,te)∉TestExecuted ∧

(∀pp.(pp∈TESTS ∧ (ii,pp)∈TestExecuted ½ (ii,pp)∈TestPassed)) ½
Input_In_ErrorN1(ii)=FALSE)) ∧

(∀(ii,te).(ii∈Indx ∧ te∈TESTS ∧ (ii,te)∈TestExecuted ∧ (ii,te)∈TestPassed ∧

(∀pp.(pp∈TESTS ∧ (ii,pp)∈TestExecuted ½ (ii,pp)∈TestPassed)) ½
Input_In_ErrorN1(ii)=FALSE))

INITIALISATION
 Indx := 1..max_indx ||
 InputN := (1..max_indx) × {Good_Input} ||
 Input_StatusN := (1..max_indx) × {ok} ||

Input_StatusN1 := (1..max_indx) × {ok} ||
 Input_In_ErrorN := (1..max_indx) × {FALSE} ||

Input_In_ErrorN1 := (1..max_indx) × {FALSE} ||
 Last_Good_InputN := (1..max_indx) × {Good_Input} ||
 Output := Init_Output || FMS_State := env ||
 Processed := (1..max_indx) × {FALSE} ||
 cc := (1..max_indx) × {0} || num := (1..max_indx) × {0} ||
 TestExecuted := ∅ || TestPassed := ∅

¾À¿

OPERATIONS

Environment=
 SELECT FMS_State=env
 THEN
 InputN :∈ Indx → T_INPUT ||
 FMS_State := detloop
 END;

DetectionLoop=
 SELECT FMS_State=detloop
 THEN
 ANY ii,te WHERE ii∈Indx ∧ te∈TESTS ∧ (ii,te)∉TestExecuted ∧

 Input_In_ErrorN1(ii)=FALSE ∧
 (te∈C_TEST Á ∀mm.(mm∈ComplexTest(te) Á (ii,mm)∈TestExecuted))
 THEN
 CHOICE
 TestPassed:=TestPassed ∪{ii Â te}
 OR
 skip
 END;
 IF (ii,te)∉TestPassed
 THEN
 Input_In_ErrorN1(ii):=TRUE ||
 TestExecuted:=TestExecuted∪({ii}×TESTS)
 ELSE
 TestExecuted:=TestExecuted∪{ii Â te}
 END
 END ||
 FMS_State :∈ {detloop, det}
 END;

Detection=
 SELECT FMS_State=det
 THEN
 Input_In_ErrorN := Input_In_ErrorN1 ||
 FMS_State:= anlloop
 END;

AnalysisLoop=
 SELECT FMS_State=anlloop
 THEN
 ANY ii WHERE ii∈Indx ∧ Processed(ii)=FALSE ∧ Config(yy)≤cc(ii) ∧

cc(ii)+Config(xx)≤max_int ∧ num(ii)+1≤max_int
 THEN
 IF Input_In_ErrorN(ii)=FALSE
 THEN
 IF Input_StatusN(ii)=suspected
 THEN
 cc(ii):=cc(ii)-Config(yy); num(ii):=num(ii)+1;
 IF (num(ii)<Limit ∧ cc(ii)=0)
 THEN Input_StatusN1(ii):=ok; num(ii):=0
 END

ÃÀÄ

 END
 ELSE
 cc(ii):=cc(ii)+Config(xx); num(ii):=num(ii)+1;
 IF (num(ii)≥Limit ∨ cc(ii)≥Config(zz))
 THEN
 Input_StatusN1(ii):=confirmed_failed
 ELSE
 Input_StatusN1(ii):=suspected
 END
 END ||
 Processed(ii):=TRUE
 END;
 IF ran(Processed)={TRUE}

THEN FMS_State:=anl
ELSE FMS_State:=anlloop
END

 END;

Analysis=
 SELECT FMS_State=anl
 THEN
 Input_StatusN := Input_StatusN1 ||
 FMS_State:=act
 END;

Action=
 SELECT FMS_State=act ∧ confirmed_failed ∈ ran(Input_StatusN)
 THEN CHOICE
 IF Input_StatusN-1[{ok,suspected}]≠∅
 THEN
 Indx := Input_StatusN-1[{ok,suspected}] ||
 InputN := Input_StatusN-1[{ok,suspected}] InputN ||
 Input_StatusN := Input_StatusN {ok,suspected} ||
 Input_In_ErrorN := Input_StatusN-1[{ok,suspected}] Input_In_ErrorN ||
 Last_Good_InputN := Input_StatusN-1[{ok,suspected}] Last_Good_InputN ||
 Input_StatusN1:= Input_StatusN1 {ok,suspected} ||
 Processed:= Input_StatusN-1[{ok,suspected}] Processed ||
 cc:= Input_StatusN-1[{ok,suspected}] cc ||
 num:= Input_StatusN-1[{ok,suspected}] num ||
 Input_In_ErrorN1:= Input_StatusN-1[{ok,suspected}] Input_In_ErrorN1 ||
 TestPassed := Input_StatusN-1[{ok,suspected}] TestPassed ||
 TestExecuted := Input_StatusN-1[{ok,suspected}] TestExecuted ||
 FMS_State:=out
 ELSE FMS_State:=stop

 END
 OR
 FMS_State:=stop
 END
 WHEN
 FMS_State=act ∧ confirmed_failed ∉ ran(Input_StatusN)
 THEN
 FMS_State:=out
 END;

Å�Æ

Return=
 SELECT FMS_State=out
 THEN

Last_Good_InputN := Last_Good_InputN (Input_StatusN-1[{ok}] InputN);
 Output:∈ran(Last_Good_InputN) ||
 Input_In_ErrorN:= Indx × {FALSE} ||
 Processed := Indx × {FALSE} ||
 TestExecuted := ∅ ||
 TestPassed := ∅ ||
 Input_In_ErrorN1:= Indx × {FALSE} ||
 FMS_State:=env
 END;

TickTime=
 BEGIN
 skip
 END;

Freeze=
 SELECT FMS_State=stop
 THEN
 skip
 END

END

Ç®È

REFINEMENT FMSR4

REFINES FMSR3

SEES Global

VARIABLES
 Indx, InputN, Input_StatusN, Input_StatusN1, Input_In_ErrorN, Input_In_ErrorN1,
 Last_Good_InputN, Output, FMS_State, Processed, cc, num,
 TestExecuted, TestPassed, Time, Clock_Flag, State

DEFINITIONS

Exist_Test_For_Execution ==
(∃(ii,te).(ii∈Indx ∧ te∈TESTS ∧ (ii,te)∉TestExecuted ∧ Input_In_ErrorN1(ii)=FALSE ∧
(te∈C_TEST É ∀mm.(mm∈ComplexTest(te) É (ii,mm)∈TestExecuted ∧ (Freq(te) mod Freq(mm)=0))) ∧
(Time mod Freq(te)=0)));

CONDITION(tt,ti,st) == (Cond(tt,st)=TRUE ∧ (ti mod Freq(tt)=0));

StopCond == (∀(ii,te).(ii∈Indx ∧ te∈TESTS ∧ CONDITION(te,Time,State) É (ii,te)∈TestExecuted))

INVARIANT
 Time ∈ NATURAL ∧
 Clock_Flag ∈ CLOCK_STATES ∧
 State ∈ STATE

INITIALISATION
 Indx := 1..max_indx ||
 InputN := (1..max_indx) × {Good_Input} ||
 Input_StatusN := (1..max_indx) × {ok} ||

Input_StatusN1 := (1..max_indx) × {ok} ||
 Input_In_ErrorN := (1..max_indx) × {FALSE} ||

Input_In_ErrorN1 := (1..max_indx) × {FALSE} ||
 Last_Good_InputN := (1..max_indx) × {Good_Input} ||
 Output := Init_Output || FMS_State := env ||
 Processed := (1..max_indx) × {FALSE} ||
 cc := (1..max_indx) × {0} || num := (1..max_indx) × {0} ||
 TestExecuted := ∅ || TestPassed := ∅ ||
 Time :=0 || Clock_Flag := disabled ||
 State :∈ STATE

OPERATIONS

Environment=
 SELECT FMS_State=env ∧ Clock_Flag=disabled
 THEN
 InputN :∈ Indx → T_INPUT ||
 FMS_State := detloop
 END;

Ê±Ë

DetectionLoop=
 SELECT FMS_State=detloop
 THEN
 ANY ii,te

WHERE ii∈Indx ∧ te∈TESTS ∧ (ii,te)∉TestExecuted ∧
 Input_In_ErrorN1(ii)=FALSE ∧ CONDITION(te,Time,State) ∧

 (te∈C_TEST Ì ∀mm.(mm∈ComplexTest(te) Ì
(ii,mm)∈TestExecuted ∧ (Freq(te) mod Freq(mm)=0)))

 THEN
 CHOICE
 TestPassed:=TestPassed ∪{ii Í te}
 OR
 skip
 END;
 IF (ii,te)∉TestPassed
 THEN
 Input_In_ErrorN1(ii):=TRUE ||
 TestExecuted:=TestExecuted∪({ii}×TESTS)
 ELSE
 TestExecuted:=TestExecuted∪{ii Í te}
 END
 END ||
 IF StopCond THEN FMS_State:=det END
 END;

Detection=
 SELECT FMS_State=det
 THEN
 Input_In_ErrorN := Input_In_ErrorN1 ||
 FMS_State:= anlloop
 END;

AnalysisLoop=
 SELECT FMS_State=anlloop
 THEN
 ANY ii WHERE ii∈Indx ∧ Processed(ii)=FALSE ∧ Config(yy)≤cc(ii) ∧

cc(ii)+Config(xx)≤max_int ∧ num(ii)+1≤max_int
 THEN
 IF Input_In_ErrorN(ii)=FALSE
 THEN
 IF Input_StatusN(ii)=suspected
 THEN
 cc(ii):=cc(ii)-Config(yy); num(ii):=num(ii)+1;
 IF (num(ii)<Limit ∧ cc(ii)=0)
 THEN Input_StatusN1(ii):=ok; num(ii):=0
 END
 END
 ELSE
 cc(ii):=cc(ii)+Config(xx); num(ii):=num(ii)+1;
 IF (num(ii)≥Limit ∨ cc(ii)≥Config(zz))

Î±Î

THEN
 Input_StatusN1(ii):=confirmed_failed
 ELSE
 Input_StatusN1(ii):=suspected
 END
 END ||
 Processed(ii):=TRUE
 END;
 IF ran(Processed)={TRUE}

THEN FMS_State:=anl
ELSE FMS_State:=anlloop
END

 END;

Analysis=
 SELECT FMS_State=anl
 THEN
 Input_StatusN := Input_StatusN1 ||
 FMS_State:=act
 END;

Action=
 SELECT FMS_State=act ∧ confirmed_failed ∈ ran(Input_StatusN)
 THEN
 CHOICE
 IF Input_StatusN-1[{ok,suspected}]≠∅
 THEN
 Indx := Input_StatusN-1[{ok,suspected}] ||
 InputN := Input_StatusN-1[{ok,suspected}] InputN ||
 Input_StatusN := Input_StatusN {ok,suspected} ||
 Input_In_ErrorN := Input_StatusN-1[{ok,suspected}] Input_In_ErrorN ||
 Last_Good_InputN := Input_StatusN-1[{ok,suspected}] Last_Good_InputN ||
 Input_StatusN1:= Input_StatusN1 {ok,suspected} ||
 Processed:= Input_StatusN-1[{ok,suspected}] Processed ||
 cc:= Input_StatusN-1[{ok,suspected}] cc ||
 num:= Input_StatusN-1[{ok,suspected}] num ||
 Input_In_ErrorN1:= Input_StatusN-1[{ok,suspected}] Input_In_ErrorN1 ||
 TestPassed := Input_StatusN-1[{ok,suspected}] TestPassed ||
 TestExecuted := Input_StatusN-1[{ok,suspected}] TestExecuted ||
 FMS_State:=out
 ELSE FMS_State:=stop

 END
 OR
 FMS_State:=stop
 END
 WHEN
 FMS_State=act ∧ confirmed_failed ∉ ran(Input_StatusN)
 THEN
 FMS_State:=out
 END;

ÏAÐ

Return=
 SELECT FMS_State=out
 THEN

Last_Good_InputN := Last_Good_InputN (Input_StatusN-1[{ok}] InputN);
 Output:∈ran(Last_Good_InputN) ||
 Input_In_ErrorN:= Indx × {FALSE} ||
 Processed := Indx × {FALSE} ||
 TestExecuted := ∅ ||
 TestPassed := ∅ ||
 Input_In_ErrorN1:= Indx × {FALSE} ||
 FMS_State:=env ||
 Clock_Flag:=enabled
 END;

TickTime=
 SELECT Clock_Flag=enabled
 THEN
 Time:=Time+1 || State :∈ STATE;
 IF Exist_Test_For_Execution

THEN Clock_Flag:=disabled
END

 END;

Freeze=
 SELECT FMS_State=stop
 THEN
 skip
 END

END

ÑÓÒ±Ô9ÕÀÖ±×
ØÙÔ7Ú
Û ÜAÝ�Þàß±×�á�ß
â ã�ä�åçæ�èêéìëíä�îïé�ðòñ¸ó
îçñêðAè¤ë�æçéìô ðAîöõAä�÷ùøÙîçðAú ð	û�ü
â ã�ä�åçæ�èêéìëíä�îïé�ðòñþýÿæçéìøçä�ë æçéìô ÷ �

��� Ü�� á��
	�Ö�� Ô�ÑÓÒ±Ô9ÕÀÖ±×
ØÙÔ7Ú
Û
â ã�ä�åçæ�èêéìëíä�îïé�ðòñ�
�ðAë�å��ùé ä�è���÷ùô ä�îç÷�ä
â ó
î � éìô é��ùé ä�ñ�ðAè������ æ�îç÷�ä�� ý æAîòæ�û	ä�ë ä�îïé��Aü � é ä�ë ��� ä � ä�æ�è�÷ùø

Þàß±×�á�ß������ÀÜÀÜ� �Ü�Ý�!��òÜ¸ÒÀÜ�� Ô"�çØ#�±Ò$	&%àßÀØÙÔ\ÒAÖ�ØòØ��'	(� Ô\Ò±ÔfØçÚ ×)�AÚ ÔiÜàÒ
â ó
î � éìô é��ùé ä ð�ñ¸ó
îçñêðAè¤ë�æçéìô ð�î#��ü � é ä�ë � ��÷ùô ä�îç÷�ä �

*,+.-0/ 13254 6 7�4 6 7�859:1 6 ;
*,+�+</=7�4?>(136�7�@51.7

