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Abstract

Telecommunication systems should have a high degree of availability, i.e.,
high probability of correct and timely provision of requested services. To
achieve this, correctness of software for such systems and system fault tol-
erance should be ensured. Application of formal methods helps us to gain
confidence in building correct software. However, to be used in practice,
formal methods should be well integrated into existing development process.
In this paper we propose a formal model-driven approach to development
of communicating systems. Essentially our approach formalizes and extends
Lyra – a top-down service-oriented method for development of communicat-
ing systems. Lyra is based on transformation and decomposition of models
expressed in UML2. We formalize Lyra in the B Method by proposing a set
of formal specification and refinement patterns reflecting the essential mod-
els and transformations of the Lyra service specification, decomposition and
distribution phases. Moreover, we extend Lyra to integrate reasoning about
fault tolerance in the entire development flow.

Keywords: communicating systems, service-oriented development, fault tol-
erance, UML, B Method
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1 Introduction

Modern telecommunication systems are usually distributed software-intensive
systems providing a large variety of services to their users. Development of
software for such systems is inherently complex and error prone. However,
software failures might lead to unavailability or incorrect provision of sys-
tem services, which in turn could incur significant financial losses. Hence
it is important to guarantee correctness of software for telecommunication
systems.

Formal methods have been traditionally used for reasoning about soft-
ware correctness. Nevertheless, they are yet insufficiently well integrated
into current development practice. Unlike formal methods, Unified Model-
ing Language (UML) [18] has a lower degree of rigor for reasoning about
software correctness but is widely accepted in industry. UML is a general
purpose modelling language and, to be used effectively, should be tailored to
a specific application domain.

Nokia Research Center has developed the design method Lyra [15] – a
UML2-based service-oriented method specific to the domain of communicat-
ing systems and communication protocols. The design flow of Lyra is based
on the concepts of decomposition and preservation of the externally observ-
able behaviour. The system behaviour is modularised and organized into
hierarchical layers according to the external communication and related in-
terfaces. It allows the designers to derive the distributed network architecture
from the functional system requirements via a number of model transforma-
tions.

From the beginning Lyra has been developed in such a way that it would
be possible to bring formal methods (such as program refinement, model
checking, model-based testing etc.) into more extensive industrial use. A
formalization of the Lyra development would allow us to ensure correct-
ness of system design via automatic and formally verified construction. The
achievement of such a formalization would be considered as significant added
value for industry.

In this paper we propose a set of formal specification and refinement
patterns reflecting the essential models and transformations of Lyra. Our
approach is based on stepwise refinement of a formal system model in the
B Method [3] – a formal framework with automatic tool support. While
developing a system by refinement, we start from an abstract specification
and gradually incorporate implementation details into it until executable
code is obtained. While formalizing Lyra, we single out a generic concept of
a communicating service component and propose patterns for specifying and
refining it. In the refinement process the service component is decomposed
into a set of service components of smaller granularity specified according
to the proposed pattern. Moreover, we demonstrate that the process of
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distributing service components between different network elements can also
be captured by the notion of refinement.

To achieve system fault tolerance, we extend Lyra to integrate modelling
of fault tolerance mechanisms into the entire development flow. We demon-
strate how to formally specify error recovery by rollbacks as well as reason
about error recovery termination.

The proposed formal specification and development patterns establish a
background for automatic generation of formal specifications from UML2
models and expressing model transformations as refinement steps. Via au-
tomation of the UML2-based Lyra design flow we aim at smooth incorpora-
tion of formal methods into existing development practice.

2 Lyra: Service-Based Development of Com-

municating Systems

2.1 Overview of Lyra

Lyra [15] is a model-driven and component-based design method for the de-
velopment of communicating systems and communication protocols. It has
been developed in the Nokia Research Center by integrating the best prac-
tices and design patterns established in the area of communicating systems.
The method covers all industrial specification and design phases from pre-
standardisation to final implementation. It has been successfully applied in
large-scale UML2-based industrial software development, e.g., for specifica-
tion of architecture for several network components, standardisation of 3GPP
protocols, implementation of several network protocols etc.

Lyra has four main phases: Service Specification, Service Decomposition,
Service Distribution and Service Implementation. The Service Specification
phase focuses on defining services provided by the system and their users.
The goal of this phase is to define the externally observable behaviour of
the system level services via deriving logical user interfaces. In the Service
Decomposition phase the abstract model produced at the previous stage is
decomposed in a stepwise and top-down fashion into a set of service compo-
nents and logical interfaces between them. The result of this phase is the log-
ical architecture of the service implementations. In the Service Distribution
phase, the logical architecture of services is distributed over a given platform
architecture. Finally, in the Service Implementation phase, the structural
elements are adjusted and integrated into the target environment, low-level
implementation details are added and platform-specific code is generated.
Next we discuss Lyra in more detail with an example.
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2.2 Lyra by Example

We model a positioning system which provides positioning services to calcu-
late the physical location of a given item of user equipment (UE) in a mobile
network [1, 2]. We consider Position Calculation Application Part (PCAP),
which manages communication between two standard network elements. We
assume that the PCAP functional requirements are correctly defined [1, 2]
and, hence, focus on the architectural decomposition and distribution deci-
sions.

The Service Specification phase starts from creating the domain model of
the system. It describes the system with included system level services and
different types of external users. Each association connecting an external
user and a system level service corresponds to a logical interface. For the
system and the system level services we define active classes, while for each
type of an external user we define the corresponding external class. The rela-
tionships between the system level services and their users become candidates
for PSAPs - Provided Service Access Points of the system level services. The
logical interfaces are attached to the classes with ports. The domain model
for the Positioning system and its service PositionCalculation is shown in
Fig.1(a) and PSAP of the Positioning system – I User PSAP is shown in
Fig.1(b). The UML2 interfaces I ToPositioning and I FromPositioning de-
fine the signals and signal parameters of I user PSAP. We formally describe
the communication between a system level service and its user(s) in the
PSAPCommunication state machine as illustrated in Fig.1(c). The position-
ing request pc req received from the user is always replied: with the signal
pc cnf in case of success, and with the signal pc fail cnf otherwise.

To implement its own services, the system usually uses external entities.
For instance, to provide the PositionCalculation service, the positioning sys-
tem should first request Radio Network Database (DB) for an approximate
position of User Equipment (UE). The information obtained from DB is used
to contact UE and request it to emit a radio signal. At the same time, one
or more Reference Location Measurement Unit devices (ReferenceLMU) are
contacted to provide additional measurements of radio signals. The radio
measurements obtained from UE and ReferenceLMU are used to calculate
the exact position of UE. The calculation is done by the Algorithm service
provider (Algorithm), which produces the final estimation of the UE location.
Let us observe that the services provided by the external entities partition
execution of the PositionCalculation service into the corresponding stages.
In the next phase of the Lyra development - Service Decomposition - we focus
on specifying the service execution according to the identified stages.

In the Service Decomposition phase, we introduce the providers of ex-
ternal services into the domain model constructed previously, as shown in
Fig.2(a). The model includes the external service providers DB, UE, Ref-
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(a) (b) (c)

Idle serving

pc_req

pc_cnf

pc_fail_cnf

<<ServiceSpecification>>

                      Positioning                     

I_ToPositioning I_FromPositioning

I_user

aUser : User

<<usecase>>
PositionCalculation

aPositioning : Positioning

Figure 1: (a) Domain Model. (b) PSAP of Positioning. (c) State diagram.

erenceLMU and Algorithm, which are then defined as the external classes.
For each association between a system level service and the corresponding
external class we define a logical interface. The logical interfaces are attached
to the corresponding classes via ports called USAPs – Used Service Access
Points, as presented in Fig.2(b).

Let us observe that the system behaviour is modularised according to the
related service access points – PSAPs and USAPs. Moreover, the functional
architecture is defined in terms of service components, which encapsulate the
functionality related to a single execution stage or another logical piece of
functionality.

In Fig.3(a) we present the architecture diagram of the Positioning sys-
tem. Here ServiceDirector plays two roles: it controls the service execution
flow and handles the communication on the PSAP. The behaviour of Ser-
viceDirector is presented in Fig.3(b). The top-most state machine specifies
the communication on PSAP, while the state submachine Serving specifies
a valid execution flow of the position calculation. The substates of Serving
encapsulate the stage-specific behaviour and can be represented as the corre-
sponding submachines. In their turns, these machines (omitted here) include
the specifications of specific PSAP-USAP communications.

The modular system model produced at the Service Decomposition phase
allows us to analyse various distribution models. In the next phase – Service
Distribution – the service components are distributed over a given network
architecture. The signalling network protocols are used for communication
between the service components allocated on distant network elements.

In Fig.4(a) we illustrate the physical structure of the distributed posi-
tioning system. Here Positioning RNC and Positioning SAS represent
the predefined network elements called RNC and SAS correspondingly. The
standard interface Iupc is used in the communication between them. We
map the functional architecture obtained at the previous stage to the given
network architecture by distributing the service components between the net-
work elements. The functional architecture of the Positioning SAS network
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PositionCalculation
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I_ToAlgorithm
I_UE

I_DB

I_User

I_Algorithm

I_LMU

(b)

Figure 2: (a) Domain Model. (b) PSAP and USAPs of Positioning.

element is illustrated in Fig.4(b). The functionality of ServiceDirector spec-
ified at the Service Decomposition phase is now decomposed and distributed
over the given network. ServiceDirector SAS handles the interface towards
the RNC network element and controls the execution flow of the positioning
calculation process in the SAS network element.

Finally, at the Service Implementation phase we specify how the virtual
communication between entities in different network nodes is realized using
the underlying transport services. We also implement data encoding and de-
coding, routing of messages and dynamic process management. The detailed
description of this stage can be found elsewhere [15, 1, 2].

In the next section we give a brief introduction into our formal framework,
the B Method, which we will use to formalize the development flow described
above.
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Architecture Diagram I_FromPositioning
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Figure 3: (a) PositionCalculation functional architecture. (b) Service Direc-
tor: PSAP communication and execution control.

3 Developing Systems by Refinement in the

B Method

The B Method [3] is an approach for the industrial development of highly
dependable software. The method has been successfully used in the develop-
ment of several complex real-life applications [16]. Recently the B method
has been extended by the Event B framework [4], which enables modelling
of event-based systems. Event B is particularly suitable for developing dis-
tributed, parallel and reactive systems. In fact, this extension has incorpo-
rated the action system formalizm [6] in the B Method. In the rest of the
paper, we refer to the B Method together with its extension Event B simply
as B.

The tool support available for B provides us with the assistance for the
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Figure 4: (a) Architecture of service. (b) Architecture of Positioning SAS.

entire development process. For instance, Atelier B [9], one of the tools
supporting the B Method, has facilities for automatic verification and code
generation as well as documentation, project management and prototyping.
It has a plug-in for integrating modelling in Event B. Atelier B provides
us with a high degree of automation in verifying correctness that improves
scalability of B, speeds up development and, also, requires less mathematical
training from the users.

3.1 Modelling in B

The B Method adopts the top-down approach to system development. The
development starts from creating a formal system specification. A formal
specification is a mathematical model of the required behaviour of a system,
or a part of a system. In B, a specification is represented by a collection of
modules, called Abstract Machines. The Abstract Machine Notation (AMN),
is used in constructing and verifying them. An abstract machine encapsulates
a local state (local variables) of the machine and provides operations on the
state. A simple abstract machine has the following general form:

MACHINE AM

SETS TYPES

VARIABLES v

INVARIANT I

INITIALISATION INIT

EVENTS

E1 = . . .

. . .

EN = . . .

END
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The machine is uniquely identified by its name AM. The state variables of
the machine, v, are declared in the VARIABLES clause and initialised in
INIT as defined in the INITIALISATION clause. The variables in B are
strongly typed by constraining predicates of the machine invariant I given in
the INVARIANT clause. The invariant is usually defined as a conjunction
of the constraining predicates and the predicates defining the properties of
the system that should be preserved during system execution. All types in
B are represented by non-empty sets. Local types can be introduced by enu-
merating the elements of the type, e.g., TYPE = {element1, element2, . . .},
or by defining them as subsets of already existing types or sets.

The operations E1, . . . , EN of the machine are defined in the
EVENTS clause. The operations are atomic meaning that, once an oper-
ation is chosen, its execution will run until completion without interference.
There are two standard ways to describe an operation in B: either by the
preconditioned operation PRE cond THEN body END or the guarded op-
eration SELECT cond THEN body END. Here cond is a state predicate,
and body is a B statement. If cond is satisfied, the behaviour of both the
precondition operation and the guarded operation corresponds to the execu-
tion of their bodies. However, these operations behave differently when an
attempt to execute them from a state where cond is false is undertaken. In
this case the precondition operation leads to a crash (i.e., unpredictable or
even non-terminating behaviour) of the system, while the execution of the
guarded operation is blocked. The preconditioned operations are used to
describe the operations that will be turned (implemented) into procedures
called by the user. On the other hand, the guarded operations are useful
when we have to specify system behaviour in terms of its reactions on the
occurrence of certain events. The operations of event-based systems are often
called events.

The B statements that we will use to describe the bodies of events have
the following syntax:

S == x := e | IF cond THEN S1 ELSE S2 END | S1 ; S2 |
x :: T | ANY z WHERE Q THEN S END | S1 || S2 | . . .

The first three constructs - an assignment, a conditional statement and a
sequential composition have the standard meaning. A sequential compo-
sition is disallowed in abstract specifications but permitted in refinements.
The remaining constructs allow us to model nondeterministic or parallel be-
haviour in a specification. Usually they are not implementable so they have
to be refined (replaced) with executable constructs at some point of program
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development. We use two kinds of nondeterministic statements – the nonde-
terministic assignment and the nondeterministic block. The nondeterministic
assignment x :: T assigns the variable x an arbitrary value from the given set
(type) T. The nondeterministic block ANY z WHERE Q THEN S END
introduces the new local variable z which is initialised (possibly nondeter-
ministically) according to the predicate Q and then used in the statement
S. Finally, S1 || S2 models parallel (simultaneous) execution of S1 and S2
provided S1 and S2 do not have a conflict on state variables. The special
case of the parallel execution is a multiple assignment, which is denoted as
x, y := e1, e2.

The B statements are formally defined using the weakest precondition
semantics [10]. Intuitively, for a given statement S and a postcondition P, the
weakest precondition wp(S,P) describes the set of all such initial states from
which execution of S is guaranteed to establish P. The weakest precondition
semantics is a foundation for establishing correctness of specifications and
verifying refinements between them. To show correctness (consistency) of an
event-based system, we should demonstrate that its invariant is true in the
initial state (i.e., after the initialisation is executed) and that every event
preserves the invariant:

wp(INIT, I) = true, and
gi ∧ I ⇒ wp(Ei, I)

3.2 Refinement of Event-Based Systems

The basic idea underlying stepwise development in B is to design the sys-
tem implementation gradually, by a number of correctness preserving steps
called refinements. The refinement process starts from creating an abstract
specification and finishes with generating executable code. The intermediate
stages yield the specifications containing a mixture of abstract mathemati-
cal constructs and executable programming artefacts. In general, refinement
process can be seen as a way to reduce nondeterminism of the abstract speci-
fication and replace abstract mathematical data structures by data structures
implementable on a computer. Hence refinement allows us to introduce im-
plementation decisions gradually.

Formally, we say that the statement S is refined by the statement S ′,
written S ⊑ S ′, if, whenever S establishes a certain postcondition, so does
S ′:

S ⊑ S′ if and only if for all postconditions p : wp(S, p) ⇒ wp(S′, p)

In the AMN the results of intermediate development stages – the refinement
machines – have essentially the same structure as the more abstract specifica-
tions. In addition, a refinement machine explicitly states which specification
it refines.
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Assume that the refinement machine AM ′ given below is a result of re-
finement of the abstract machine AM :

REFINEMENT AM ′

REFINES AM

VARIABLES v′

INVARIANT I ′

INITIALISATION INIT ′

EVENTS

E1 = . . .

. . .

EN = . . .

END

In AM ′ we replace the abstract data structures of AM with concrete ones.
The invariant of AM ′, I ′, defines now not only the invariant properties of the
refined specification but also the connection between the newly introduced
variables and the abstract variables that they replace. For a refinement step
to be valid, every possible execution of the refined machine must correspond
(via I ′) to some execution of the abstract machine. To demonstrate this, we
should prove that INIT ′ is a valid refinement of INIT, each event of AM ′ is
a valid refinement of its counterpart in AM and that the refined specification
does not introduce additional deadlocks, i.e.,

wp(INIT ′, ¬wp(INIT,¬I ′)) = true,

I ∧ I ′ ∧ g′
i
⇒ gi ∧ wp(S′,¬wp(S,¬I ′)), and

I ∧
∨

N

i
gi ⇒ g′

i

Often refinement process introduces new variables and the corresponding
computations (new events) on them, while leaving the previous variables
and computations essentially unchanged. Such refinement is referred to as
superposition refinement [7]. Let us consider the abstract machine AM S

and the refinement machine AM SR:

REFINEMENT AM SR

MACHINE AM S REFINES AM S

VARIABLES a VARIABLES a, b

INVARIANT I INVARIANT I ′

VARIANT V

INITIALISATION INIT INITIALISATION INIT ′

EVENTS EVENTS

E = WHEN g E = WHEN g

THEN S END THEN S END

E1 = WHEN g1 THEN S1 END

E2 = WHEN g2 THEN S2 END

END END
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Observe that the refinement machine contains the new events E1 and E2 as
well as the new clause VARIANT. The new events define computations
on the newly introduced variables b and, hence, can be seen as the events
refining the statement skip on the abstract variables. Every new event should
decrease the value of the variant. This allows us to guarantee that new
events cannot take the control forever, since the variant expression cannot be
decreased infinitely. For each newly introduced event, we should demonstrate
that the variant expression is a natural number and execution of the event
decreases the variant, i.e.,

V ∈ NAT, and
I ′ ∧ gi ⇒ wp((n := V ; Si), n < V )

In B, there are also mechanisms for structuring the system architecture by
modularisation. The abstract machines can be composed by means of several
mechanisms providing different forms of encapsulation. For instance, if the
machine C INCLUDES the machine D then all variables and operations
of D are incorporated in C. However, to guarantee internal consistency (and
hence independent verification and reuse) of D, the machine C can change
the variables of D only via the operations of D.

Next we illustrate modelling and refinement in B by presenting a formal
development of fault-tolerant communicating systems according to the Lyra
methodology.

4 Towards Formalizing and Extending Lyra

4.1 Modelling a Service Component in B

In Section 2 we have defined a service component as a coherent piece of func-
tionality that provides its services to a service consumer via PSAP(s). We
used this term to refer to the providers of external services introduced at
the Service Decomposition phase. However, the notion of a service compo-
nent can be generalized to represent the service providers at different levels
of abstraction. Indeed, even the entire Positioning system can be seen as a
service component providing the Position Calculation service. On the other
hand, peer proxies introduced at the lowest level of abstraction can also be
seen as the service components providing the physical data transfer services.
Therefore, the notion of a service component is central to the entire Lyra
development process.

A service component has two essential parts: functional and communi-
cational. The functional part is a ”mission” of a service component, i.e.,
the service(s) that it is capable of providing. The communicational part is
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an interface via which a service component receives requests to execute the
service(s) and sends the results of service execution.

Execution of a service usually involves certain computations. We call
the B representation of this part of a service component Abstract CAlculat-
ing Machine (ACAM). The communicational part is correspondingly called
Abstract Communicating Machine (ACM), while the entire B model of a ser-
vice component is called Abstract Communicating Component (ACC). The
abstract machine ACC below presents the proposed pattern for specifying a
service component in B.

While specifying a service component, we adopt a systemic approach, i.e.,
model the service component together with the relevant part of its environ-
ment, the service consumer. Namely, when modelling the communicational
(ACM) part of ACC, we also specify how the service consumer places requests
to execute a service in the operation input and reads the results of service
execution in the operation output. The input parameters param and time of
the operation input model the parameters of a request and the maximal time
allowed for executing the service. For instance, in the Positioning System ex-
ample described in Section 2, an arrival of the position calculation request –
the signal pc req – can be represented as an instantiation of the operation
input. Moreover, the request might have parameters – the precision of posi-
tion calculation defined by the service consumer and the maximal execution
time defined by the system, e.g., according to the current network load. The
parameters of the request are stored in the internal data buffer in data, so
they can be used by ACAM while performing the required computations.

In our initial specification we abstract away from the details of computa-
tions required to execute a service, i.e., ACAM is modelled as a statement
non-deterministically generating the results of service execution. These re-
sults are stored in the internal output buffer out data. The service consumer
obtains the results of service provision as the output parameter res of the
operation output. Already in the abstract specification we model possibil-
ity of failure – out data might contain values representing the results of not
only successful service executions but also failed ones. In our example, in
case of successful execution, the signal pc cnf together with the calculated
position are sent to the service consumer. Otherwise, the signal pc fail cnf
is generated.

While executing the operation output, the input and output buffers are
emptied and the service component becomes ready to accept a new service
request. Here we reserve the abstract constant NIL to model the absence of
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data.

MACHINE ACC

SETS DATA

CONSTANTS NIL, Abort data

PROPERTIES

NIL ∈ DATA ∧ Abort data ∈ DATA ∧ ¬ (Abort data = NIL)

VARIABLES in data, out data

INVARIANT

in data ∈ DATA ∧ out data ∈ DATA

INITIALISATION

in data, out data := NIL, NIL

EVENTS

input(param,time) =

PRE param ∈ DATA ∧ time ∈NAT1 ∧ ¬ (param=NIL) ∧ in data=NIL

THEN

in data := param

END;

calculate =

SELECT ¬ (in data=NIL) ∧ out data = NIL

THEN

out data :∈ DATA - {NIL}

END;

res ← output =

PRE ¬ (out data = NIL)

THEN

res := out data ||

in data,out data := NIL, NIL

END

END

In Lyra, a service component is usually represented as an active class with
the PSAP(s) attached to it via the port(s). The state diagram depicts the
signalling scenario on PSAP including the signals from and to the external
class modelling the service consumer. Essentially these diagrams suffice to
specify a service component according to the ACC pattern. Namely, the
UML2 description of PSAP is translated into the communicational (ACM)
part of the machine ACC. The functional (ACAM) part of ACC should be
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instantiated by the data types specific to the modelled service component.
This translation formalizes the Service Specification phase of Lyra.

Let us observe that the machine ACC can be seen as a specification pat-
tern, which can be instantiated by supplying the details specific to a service
component under construction. For instance, the ACM part of ACC models
data transfer to and from a service component very abstractly. We have
shown how it can be instantiated for the Positioning system example. While
developing a more complex service component, this part can be instantiated
with more elaborated data structures and the corresponding protocols for
transferring them.

Next we discuss how to extend Lyra with the explicit representation of
the fault tolerance mechanisms and then show the use of the ACC pattern
in the entire Lyra development process.

4.2 Introducing Fault Tolerance in the Lyra Develop-

ment Flow

Currently the Lyra methodology addresses fault tolerance implicitly, i.e., by
representating not only successful but also failed service provision in the Lyra
UML models. However, it leaves aside modelling of mechanisms for detecting
and recovering from errors – the fault tolerance mechanisms. We argue that,
by integrating explicit representation of the means for fault tolerance into the
entire development process, we establish a basis for constructing systems that
are better resistant to errors, i.e., achieve better system dependability. Next
we will discuss how to extend Lyra to integrate modelling of fault tolerance.

In the first development stage of Lyra we set a scene for reasoning about
fault tolerance by modelling not only successful service provision but also
service failure. In the next development stage – Service Decomposition – we
elaborate on representation of the causes of service failures and the means
for fault tolerance.

In the Service Decomposition phase we decompose the service provided
by a service component into a number of stages (subservices). The service
component can execute certain subservices itself as well as request other
service components to do it. According to Lyra, the flow of the service
execution is managed by a special service component called Service Director.
It implements the behaviour of PSAP of a service component as specified
earlier. Moreover, it co-ordinates the execution flow by enquiring the required
subservices from the external service components.

In general, execution of any stage of a service can fail. In its turn, this
might lead to failure of the entire service provision. Therefore, while spec-
ifying Service Director, we should ensure that it does not only orchestrates
the fault-free execution flow but also handles erroneous situations. Indeed,
as a result of requesting a particular subservice, Service Director can obtain
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Figure 5: Service decomposition: faults in the execution flow

a normal response containing the requested data or a notification about an
error. As a reaction to the occurred error, Service Director might

• retry the execution of the failed subservice,

• repeat the execution of several previous subservices (i.e., roll back in
the service execution flow) and then retry the failed subservice,

• abort the execution of the entire service.

The reaction of Service Director depends on the criticality of an occurred
error: the more critical is the error, the larger part of the execution flow
has to be involved in the error recovery. Moreover, the most critical (i.e.,
unrecoverable) errors lead to aborting the entire service. In Fig.5(a) we
illustrate a fault free execution of the service S composed of subservices
S1, . . . , SN . Different error recovery mechanisms used in the presence of
errors are shown in Fig.5(b) - 5(d).

Let us observe that each service should be provided within a certain fi-
nite period of time – the maximal service response time Max SRT. In our
model this time is passed as a parameter of the service request. Since each at-
tempt of subservice execution takes some time, the service execution might be
aborted even if only recoverable errors have occurred but the overall service
execution time has already exceeded Max SRT. Therefore, by introducing
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Max SRT in our model, we also guarantee termination of error recovery, i.e.,
disallow infinite retries and rollbacks, as shown in Fig.5(e).

Next we demonstrate how to represent the extended Lyra development
as refinement in B.

5 Service-Oriented Development by Refine-

ment in B

5.1 Formalizing Service Decomposition

In the first stage of our formalized development we used the UML2 models
produced at the Service Specification phase to specify a service component ac-
cording to the ACC pattern. The next step focuses on modelling the service
execution flow with the incorporated fault tolerance mechanisms. Namely,
we introduce a representation of Service Director into the abstract specifica-
tion of a service component. This is done by refining the machine ACC to
capture the design decisions made at Service Decomposition and Service Dis-
tribution phases. Hence, to derive the specification of Service Director, we use
UML2 diagrams modelling both the functional and the platform-distributed
architectures. In general, we should consider two cases:

1. Service Director is ”centralized”, i.e., it resides on a single network
element,

2. Service Director is ”distributed”, i.e., different parts of the execution
flow are orchestrated by distinct service directors residing on different
network elements.

Assume for simplicity that the set of subservices required in the execution
of the service S consists of three elements: S1, S2 and S3. At the Ser-
vice Decomposition phase, in both cases the model of the service component
providing the service S looks as shown in Fig.6. The service distribution ar-
chitecture diagram for the first case is given in Fig.7. In the second case, let
us assume that the execution flow of the service component is orchestrated
by two service directors: the Service Director1, which handles the communi-
cation on PSAP and communicates with the service component providing S1,
and Service Director2, which orchestrates the execution of the subservices S2

and S3. The service directors communicate with each other while passing the
control over the corresponding parts of the execution flow. The architecture
diagram depicting the overall arrangement for the second case is shown in
Fig.9.

We model the decomposed service as a sequence over the abstract set
TASKS. Each element of TASKS represents the individual subservice. More-
over, we introduce the abstract function Next to models the service execution

16



I_ToS
 I_FromS

I_S1

I_S2

I_S3

I_ToS3

I_FromS3

I_FromS1

I_ToS1
I_FromS2

I_ToS2

Figure 6: Service component with
USAPs.

I_User

I_User

I_S3 I_S3I_S2

I_S2

I_S1
I_S1

Figure 7: Architecture diagram
(case 1)

flow. In case of the centralized Service Director, the subservices are executed
one after another, i.e., the abstract representation of Next will be instantiated
as follows:

Next(Si) = Si+1

for i : 1..max sv, where max sv is the maximal number of subservices re-
quired to execute the service.

In the second case, the function Next describes the execution flow from
the point of view of the main service director, i.e., it treats the groups of
services managed by other service directors as atomic steps in the execution
flow. In our example, the service S1 is managed by Service Director1, while
S2 and S3 are managed by ServiceDirector2. In this case the function Next
treats the execution of S2 and S3 as one execution step the performance of
which is delegated to Service Director2. Hence, in this example Next will be
instantiated as follows:

Next(S1) = S2, and Next(S2) = S4

The result of refinement of the machine ACC – the machine ACC DEC

– is given below.

REFINEMENT ACC DEC

REFINES ACC

SETS

DATA; TASK; RESPONSE = {OK, REPEAT, ROLLBACK, ABORT}

CONSTANTS Service, Eval, Next, max sv

PROPERTIES

Service ∈ seq1(TASK) ∧ size(Service) = max sv ∧
Eval ∈ TASK × DATA → RESPONSE ∧
∀ dd. (dd ∈ DATA ⇒ ¬ (Eval(Service(1),dd) = ROLLBACK)) ∧

Next ∈ 1 . . max sv 7 2 . . max sv+1 ∧
1 ∈ dom(Next) ∧ (max sv+1) ∈ ran(Next) ∧
∀ii. (ii ∈ dom(Next) ∧ ¬ (Next(ii)=max sv+1)⇒Next(ii) ∈ dom(Next))∧
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∀ii. (ii ∈ dom(Next) ⇒ ii<Next(ii)) ∧ . . .

VARIABLES
in data, out data, time left, old time left,
curr task, resp, finished, results, curr data

INVARIANT
resp ∈ RESPONSE ∧
results ∈ 1 . . max sv 7→ DATA-{NIL} ∧
curr data ∈ DATA ∧
curr task ∈ 1 . . max sv+1 ∧
(finished = FALSE ⇒ time left>0) ∧
time left ≤ old time left ∧
dom(results) ⊆ dom(Next) ∧
(finished = TRUE ⇒ (resp=ABORT) ∨ (curr task = max sv+1)) ∧
(finished = FALSE ⇒ curr task ∈ 1 . . max sv) ∧
(finished = FALSE ⇒ curr task ∈ dom(Next)) ∧
(curr task = max sv+1 ⇒ ¬ (resp=ABORT)) ∧
(finished = TRUE ∧ curr task = max sv+1 ⇒
Next −1 (curr task) ∈ dom(results)) ∧ . . .

INITIALISATION
in data, out data := NIL, NIL ||
time left, old time left := max time, max time ||
curr task, resp := 1, OK ||
finished, results := FALSE, ∅ ||
curr data := NIL

EVENTS

input(param,time) =
PRE param ∈ DATA ∧ time ∈NAT1 ∧ ¬ (param=NIL) ∧ in data=NIL
THEN
in data, time left, old time left := param, time, time

END;

handle =
SELECT ¬ (in data=NIL) ∧ finished = FALSE ∧ (time left < old time left)
THEN
old time left := time left; curr data :∈ DATA-{NIL};
resp := Eval(Service(curr task),curr data);
CASE resp OF
EITHER OK THEN
results(curr task) := curr data;
curr task := Next(curr task);
IF curr task = max sv+1 THEN finished := TRUE END
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OR ROLLBACK THEN
curr task := Next −1 (curr task);
results := {curr task} ⊳− results

OR REPEAT THEN skip
OR ABORT THEN finished := TRUE
END

END
END;

timer =
SELECT ¬ (in data=NIL) ∧ finished = FALSE ∧ (time left = old time left)
THEN
CHOICE
time left :∈ {xx | xx ∈ NAT1 ∧ xx<time left}

OR
time left, resp := 0, ABORT ;
finished := TRUE

END
END;

calculate =
SELECT ¬ (in data=NIL) ∧ out data = NIL ∧ finished = TRUE
THEN
IF resp = ABORT THEN out data := Abort data
ELSE
out data := results(Next −1 (curr task))

END
END;

res ← output =
PRE ¬ (out data = NIL)
THEN
res := out data ; in data,out data := NIL, NIL

END

END

The currently executed subservice is modelled by the variable curr task.
The results of the current subservice execution are stored in the variable
curr data. The results of all subservices already executed are accumulated
in the variable results. The variable finished indicates the end of service exe-
cution. The variable is set to TRUE when the whole sequence of subservices
has been executed or some unrecoverable error has occurred.

To model progress of time, we introduce the variable time left. When
a service request is received in the operation input, time left is set to the
maximal service response time Max SRT, which is received as the second
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parameter of input. The variable old time left is used to force interleav-
ing between progress of the execution flow and the passage of time. The
operation timer decreases the value of time left, disables itself and enables
the operation handle, which specifies the service co-ordinating behaviour of
Service Director.

In the operation handle, we model not only requesting a certain subservice
and obtaining its response, but also handling notifications about errors. We
introduce the abstract function Eval, which evaluates the obtained response
from a requested subservice. The result of evaluation is assigned to the
variable resp. If the subservice was successfully executed then the variable
resp gets the value OK. In this case the next element from the sequence
of subservices is chosen for execution according to the function Next. If
a benign failure has occurred and error recovery merely requires to retry
the execution of the failed subservice then the variable resp is assigned the
value REPEAT. This situation is illustrated in Fig. 5(b). However, if a more
critical error has occurred, i.e., the variable resp gets the value ROLLBACK,
the execution of several subservices preceding the failed service should be
repeated as well. This case is depicted in Fig. 5(c). The inverse of the function
Next defines which subservices should be re-executed, i.e., to which subservice
the execution flow should rollback. In this case, we also delete the results of
executing these subservices from results. Finally, if an unrecoverable error
has occurred, i.e., the value of resp becomes ABORT, then the execution of
the service is terminated (i.e., the variable finished is assigned TRUE ) as
shown in Fig. 5(d).

Let us note, that the variable resp also obtains the value ABORT once
the timeout has occurred. This is modelled in the operation timer. The
system might be in a state where the value of time left had already became
zero, while the execution of the service has not yet been finished, as depicted
in Fig. 5(e).

In the refined machine ACC DEC the guard of the event calculate is
strengthened to ensure that the final result of the service is computed only
after the execution of all subservices is finished (or aborted), i.e., when fin-
ished = TRUE.

The performed refinement has affected the ACAM part of the ACC pat-
tern. The newly introduced events allowed us to define the details of execu-
tion of the decomposed service. In the VARIANT clause of ACC DEC we
not only ensure that the newly introduced events do not take control forever
but also that execution of the service terminates.

Let us observe that our approach to introducing fault tolerance can be
seen as an abstract implementation of the rollback error recovery frequently
used in distributed systems [11]. Indeed, the operation handle defines the
rollback procedure by co-ordinating error recovery according to the check-
points defined by the function Next. The stable data storage is modelled by
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the variable results. The operation handle ensures consistency of the system
state by the appropriate updates of results.

While defining the execution flow over subservices in ACC DEC, we
abstracted away from modelling the details of the communication between
Service Director and the external service providers – the USAP communica-
tion. Moreover, we omitted the explicit representation of the external service
providers as such and modelled only the results of subservices provision. In
our next refinement steps we decompose the obtained specification to intro-
duce the detailed representation of the external service providers and the
USAP communication.

5.2 Formal Modelling of Service Distribution

Let us first consider the case of a ”centralized” service director shown in
Fig. 7. It is easy to observe that the service component SC providing the
service S plays a role of the service consumer for the service components
SC1, . . . , SCN providing the subservices S1, . . . , SN . We specify the ser-
vice components SC1, . . . , SCN as the separate machines ACC SC1 . . .

ACC SCN according to the proposed pattern ACC. The process of trans-
lating the UML2 models of SC1, . . . , SCN into B is similar to specify-
ing SC at the Service Specification phase. The communicational parts of
the included machines ACC SC1, . . . , ACC SCN specify the PSAPs of
SC1, . . . , SCN . To ensure the match between the corresponding USAPs of
SC and PSAPs of the external service components, we derive USAPs of SC
from PSAPs of SC1, . . . , SCN .

To define the mechanism for communicating with SC1, . . . , SCN , we
refine the operation handle to specify the communication on USAPs. Namely,
we replace the nondeterministic assignments modelling specific stages of the
service execution by the corresponding signalling scenarios: at the proper
point of the execution flow, a desired service is requested by writing into the
input channel of the corresponding included machine, and later the produced
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results are read from the output channel of this machine. Graphically this
arrangement is depicted in Fig.8.

Modelling the case of a distributed service director is more complex. Let
us assume that the execution flow of the service component SC is orches-
trated by two service directors: the ServiceDirector1, which handles the com-
munication on PSAP of SC and communicates with SC1, and ServiceDirec-
tor2, which orchestrates the execution of the SC2 and SC3 services. The
architecture diagram depicting the overall arrangement is shown in Fig.9.

The service execution proceeds according to the following scenario: via
PSAP of SC ServiceDirector1 receives the request to provide the service
S. Upon this, via USAP of SC, it requests the component SC1 to provide
the service S1. When the result of S1 is obtained, ServiceDirector1 requests
ServiceDirector2 to execute the rest of the service and return the result back.
In its turn, ServiceDirector2 at first requests SC2 to provide the service S2
and then SC3 to provide service S3. Upon receiving the result from S3,
it forwards it to ServiceDirector1. Finally, ServiceDirector1 returns to the
service consumer the result of the entire service S via PSAP of SC.

This complex behaviour can be captured in a number of refinement steps.
At first, we observe that ServiceDirector2, coordinating execution of S2 and
S3, can be modelled as a ”large” service component SC2-SC3, which provides
the services S2 and S3. Let us note that the execution flow in SC2-SC3 is or-
chestrated by the ”centralized” service director ServiceDirector2. We use this
observation in our next refinement step. Namely, we refine the B machine
modelling SC defined according to the ACC DEC pattern by including
into it the machines modelling the service components SC1 and SC2-SC3
and introducing the required communicating mechanisms. The result of this
refinement step – the machine SDirector1 – is given below (the parts of
SDirector1, which coincide with the corresponding parts of ACC DEC are
replaced with dots).

REFINEMENT SDirector1

REFINES ACC DEC

INCLUDES Comp1, SDirector2

CONSTANTS
boolnum , . . .

PROPERTIES
boolnum ∈ BOOL → 0 . . 1 ∧
boolnum(FALSE) = 0 ∧ boolnum(TRUE) = 1 ∧
max sv = 3 ∧ Next = {1 7→ 2,2 7→ 4} ∧
(Service = ([C1 Service] a SD2 Service))

VARIABLES
in data, out data, time left, old time left,
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curr task, resp, finished, results, curr data, start flag

INVARIANT

start flag ∈ BOOL

VARIANT

boolnum(start flag)

INITIALISATION

. . . || start flag := TRUE

ASSERTIONS

Next ∈ 1 . . max sv 7 2 . . max sv+1 ∧
1 ∈ dom(Next) ∧ (max sv+1) ∈ ran(Next) ∧
∀ ii. (ii ∈ dom(Next) ⇒ ii<Next(ii)) ∧
∀ ii. (ii ∈ dom(Next) ∧ ¬ (Next(ii)=max sv+1)⇒ Next(ii) ∈ dom(Next))

EVENTS

input(param,time) = . . .END;

handle =

SELECT ¬ (in data=NIL) ∧ finished = FALSE ∧
(time left < old time left) ∧
((curr task=1 ∧ C1 out data 6= NIL) ∨
(curr task=2 ∧ SD2 out data 6= NIL))

THEN

old time left := time left;

CASE curr task OF

EITHER 1 THEN curr data ← C1 output

OR 2 THEN curr data ← SD2 output

END

END;

resp := Eval(Service(curr task),curr data);

CASE resp OF

EITHER OK THEN

results(curr task) := curr data;

curr task := Next(curr task);

IF curr task = max sv+1 THEN finished := TRUE END

OR ROLLBACK THEN

curr task := Next −1 (curr task);

results := {curr task} ⊳− results

OR REPEAT THEN skip

OR ABORT THEN finished := TRUE

END

END;

start flag := TRUE
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END;

starter =

SELECT ¬ (in data=NIL) ∧ finished = FALSE ∧

(time left = old time left) ∧

start flag = TRUE ∧

((curr task=1 ∧ C1 in data = NIL) ∨

(curr task=2 ∧ SD2 in data = NIL))

THEN

CASE curr task OF

EITHER 1 THEN C1 input(in data,time left)

OR 2 THEN SD2 input(results(Next −1 (curr task)),time left)

END

END;

start flag := FALSE

END;

timer = . . .END;

calculate = . . .END;

res ← output = . . .END;

END

The machine SDirector1 includes the machines Comp1 and SDirector2 spec-
ifying the service components SC1 and SC2-SC3 correspondingly. They are
defined according to ACC and ACC DEC patterns respectively. Since these
machines can be obtained by a simple instantiation of these patterns, we omit
their representation here.

The Service Director of SC communicates with the service component
SC1 and the Service Director of SC2-SC3 by placing the corresponding re-
quests in their input channels and reading the responses from their output
channels. The order of requests is defined by the function Next. The func-
tion is instantiated in the PROPERTIES close to represent the particular
architecture given in Fig. 9. Requesting the services from CS1 and SC2-
SC3 is modelled in the operation starter, reading the output channels of
SC1 and SC2-SC3 in the operation handle. Note, that the operation handle
have been refined to explicitly model obtaining a response from the requested
component.

In our consequent refinement step we focus on decomposition of SC2-
SC3. We single out separate service components SC2 and SC3 as before and
refine ServiceDirector2 to model communication with them. The final archi-
tecture of formal specification is shown in Fig.10. We omit the presentation
of the detailed formal specifications – they are again obtained by recursive
application of the proposed specification and refinement patterns.
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At the further refinement steps we focus on particular service components
and refine them (in the way described above) until the desired level of granu-
larity is obtained. Once all external service components are in place, we can
further decompose their specifications by separating their ACM and ACAM
parts. Such a decomposition will allow us to concentrate on the communica-
tional parts of the components and further refine them by introducing details
of the required concrete communication protocols.

5.3 Discussion

The proposed approach to formalizing Lyra in B allows us to verify cor-
rectness of the Lyra decomposition and distribution phases. This is done by
introducing generic patterns for communicating service components and then
associating the Lyra development steps with the corresponding B refinements
on these patterns. In development of real systems we merely have to establish
by proof that the corresponding components in a specific functional or net-
work architecture are valid instantiations of these patterns. All together this
constitutes a basis for automating industrial design flow of communicating
systems.

The decomposition model that we have used for testing our approach is
still relatively simple. As a result, all refinement steps were automatically
proved by AtelierB – a tool supporting B. While describing the formalization
of Lyra in B, we considered only the sequential model of service execution.
However, parallel execution of services is also a valid interpretation of the
considered UML2 models. We are planning to work on extending our B mod-
els to include parallel execution of services. We foresee that such extensions
will make automatic proof of model refinements more difficult. However,
by developing generic proof strategies, we will try to achieve high degree of
automation in formal verification of our models.

Currently our approach can be implemented on a platform supporting the
classical B Method and EventB. However, it can be adapted to the emerg-
ing RODIN platform [17] as well. The two major adjustments would need
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to be done. Firstly, we would need to replace the preconditioned opera-
tions modelling communication between service components by the events,
which explicitly work with input and output buffers of communicating com-
ponents. Consequently, in the operation handle and starter, the calls of
preconditioned operations would be replaced by the assignments to the cor-
responding buffers. Secondly, we would need to eliminate sequential com-
position and other control structures (like conditional and CHOICE state-
ments) extensively used in our specifications. This can be achieved by split-
ting the operations using these control structures into the corresponding sets
of events. Obviously, it would lead to rather artificial proliferation of new
events. However, we believe that in the future the RODIN platform will allow
us to conservatively extend the language and, hence, keep the used control
structures.

6 Conclusions

In this paper we proposed a formal approach to development of communi-
cating distributed systems. Our approach formalizes and extends Lyra [15] –
the UML2-based design methodology adopted in Nokia. The formalization is
done within the B Method [3] and its extension EventB [4] – a formal frame-
work supporting system development by stepwise refinement. We derived the
B specification and refinement patterns reflecting models and model trans-
formations used in the development flow of Lyra. The proposed approach
establishes a basis for automatic translation of UML2-based development of
communicating systems into the specification and refinement process in B.
Such automation would enable smooth integration of formal methods into
existing development practice. Since UML is widely accepted in industry, we
believe that our approach has a potential for wide industrial uptake.

Lyra adopts the service-oriented style for development of communicating
systems. We presented the guidelines for deriving B specifications from cor-
responding UML2 models at each development stage of Lyra and verified the
development by the corresponding B refinements. The major model transfor-
mations aim at service decomposition and distribution over the given plat-
form. The proposed formal model of communication between the distributed
service components is generic and can be instantiated by virtually any con-
crete communication protocol. Moreover, we demonstrated how to extend
Lyra to integrate reasoning about fault tolerance in the entire development
flow.

The initial formalization of Lyra has been undertaken using model check-
ing techniques [15]. However, since telecommunicating systems tend to be
large and data intensive, this formalization was prone to the state explosion
problem. Our approach helps to overcome this limitation.
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Development of distributed communicating systems has been a topic of
ongoing research over several decades. Our review of related work is confined
to the consideration of the recent research conducted within B.

The pioneering work on formal development of distributed systems in
Event B was done by Abrial et al. [5]. They demonstrated how to prove
termination of a complex distributed protocol in Event B. In our work we
use the principles defined in [5] to formalize the service-oriented development
of complex communicating systems.

Yadav and Butler [22] used Event B to design fault tolerant transactions
for replicated distributed database systems. They demonstrated how to for-
mally verify by refinement that the design of a replicated database confirms to
the one copy database abstraction. Similarly, in our work we use refinement
to verify that the externally observable behaviour of distributed implemen-
tation of a service is equivalent to its centralized abstraction. However, our
primary goal was not only formal verification of service development but also
integration of modelling and refinement in B into the existing UML2-based
development flow.

Treharne et al. [21] investigated verification of safety and liveness prop-
erties of communicating components by combining the B Method and the
process algebra CSP. However, they do not consider service decomposition
and distribution aspects of the communicating system development.

Boström and Walden [8] proposed a formal methodology (based on the
B Method) for developing distributed grid systems. In their approach the B
language is extended with grid-specific features and the system development
is governed by B refinement. In our approach the system development is
guided by the existing development practice, so that the refinement process
is hidden behind the facade of UML2.

There is active research going on translating UML to B [12, 13, 14, 19, 20].
Among these, the most notable is research conducted by Snook and But-
ler [19] on designing the method and the U2B tool to support the automatic
translation. In our future work we are planning to integrate our efforts with
the U2B developers to achieve the automatic translation of Lyra into B.
While doing this, we will focus specifically on translating models and model
transformations used in Lyra to automate formalization of the entire UML-
based development process in the domain of the communicating distributed
systems. Moreover, we are planning to further enhance the proposed ap-
proach to address issues of concurrency.
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